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Light deprivation is a known environmental stressor in Scandinavia and other regions of 

high latitude; in a large fraction of the population, behavioral changes such as reduced 

activity, higher food-intake, and increased urge to sleep take place during months with 

few or even no daylight hours1. In some people, this environmental stress can provoke a 

particular form of mood disorder, termed seasonal affective disorder (SAD), which is 

characterized by the occurrence of depressive symptoms in winter. This observation led 

to successfully develop the rational and efficient treatment strategy of bright light 

therapy2. 

 
Several findings suggest that SAD is mediated through the serotonin (5-HT) system. In 

post mortem human brain samples, 5-HT concentrations are lowest in people dying in the 

winter3. Also, the concentration of the serotonin metabolite 5-HIAA is lower in jugular 

blood samples collected in winter4. These biomarkers may be associated with seasonal 

changes in the activity of plasma-membrane serotonin transporter (5-HTT) that serves a 

central role in neural serotonin transmission by regulating synaptic interstitial 5-HT 

levels5, 6. However, previously there has been no clear evidence for seasonal variation in 

the 5-HTT binding in brain in vivo. Two contradicting brain molecular imaging studies, 

one reporting lower binding7 and one higher8 binding in winter compared to summer, 

suffered from small sample sizes, questionable criteria for the cut-offs between summer 

and winter, and radioligands less specific than those available today.  

 

However, the link between 5-HTT and SAD is also pointed out by the observation that 

carriers of a 44-base pair deletion in the 5-HTT-linked polymorphic region (short 5-

HTTLPR allele = S-allele) generally are more vulnerable to the disorder than carriers of 

the insertion (long 5-HTTLPR allele = L-allele)9. This polymorphism influences 5-HTT 

expression, with lower expression in carriers of the S-allele5. In comparison to L-allele 

homozygotes, S-allele carriers have increased propensity to develop mood disorders in 

response to stressful environmental cues10, 11, in particular in response to seasonal 

changes9, 12 . Further, in functional magnetic resonance (fMRI) studies exposure to 

stressful and fearful environmental cues evoke greater limbic activation in S-allele 

carriers13. However, there was no difference in cerebral 5-HTT binding between carriers 



of the S-allele and L-allele homozygotes in a two large samples of 96 healthy 

volunteers14 measured in vivo with single photon emission computed tomography 

(SPECT) and of 42 healthy volunteers15 measured with positron emission tomography 

(PET). Only when subjects were stratified according to an additional single nucleotide 

polymorphism (SNP) on the L-allele, which has been taken into account by activation 

studies, were differences in in vivo 5-HTT binding identified16, 17. Furthermore, phasic 5-

HTT changes, which would be the molecular equivalent to the endophenotype identified 

by activation studies, in terms of a different molecular response to environmental cues in 

S-allele carriers compared to L-allele homozygotes, have – to our knowledge - not yet 

been studied with PET. 

 

We sought evidence for seasonal variation in the 5-HTT binding data from a sample of 

54 healthy subjects studied with the highly specific radioligand [11C]DASB18. To avoid 

arbitrary classification, we predicted [11C]DASB binding with the number of daylight 

minutes at the latitude of Copenhagen 

(http://aa.usno.navy.mil/data/docs/Dur_OneYear.php/), and incorporated adjustment for 

age and gender in a general linear model. We found that length of daylight time in 

minutes correlates negatively with BPND for [11C]DASB in the putamen and the caudate 

(putamen: -0.0438 BPND/(100 minutes) [-0.0689; -0.0186], p=0.001, caudate: -0.0363 [-

0.0702; -0.0023] BPND/(100 minutes), p = .037), with a similar tendency in the thalamus 

(-0.0299 BPND/(100 minutes) [-0.0656; 0.00581, p=0.099), but found no such association 

in the midbrain (0.0192 BPND/(100 minutes) [-0.0858; 0.1242], p=0.715). The findings 

were also reproduced when data were modeled to a harmonic function, that allows for a 

time delay in the seasonal effect. Correction for age and gender revealed a marked gender 

effect (higher binding in men) in the caudate (p = 0.0002), and decreasing [11C]DASB 

BPND with age in the putamen (p = 0.034) and the thalamus (p = 0.043). It could be 

argued that seasonal changes in availability of food selection and seasonal changes in 

food preferences might affect neural serotonin levels through variations in tryptophan-

intake. However, in our sample there was no correlation between [11C]DASB BPND and 

plasma tryptophan, neither in terms of absolute concentration nor relative to large neutral 



amino acids with which tryptophan is competing at the blood-brain barrier19. Also, there 

was no seasonal variation of absolute or relative tryptophan concentrations in our sample. 

 

We then asked if the seasonal effect was more pronounced in S-alleles carriers, given the 

evidence from activation and population studies. We stratified our sample according to 5-

HTTLPR-allelic status, and searched for a gene-daylight interaction effect; 19 subjects 

were homozygote L-allele carriers and 35 subjects were S-allele carriers. Again in 

putamen, we found a significant gene*daylight effect (p, corrected for age and gender = 

0.0448) with a negative correlation between the [11C]DASB BPND and daylight time in 

carriers of the S-allele, but not in carriers of the L-allele (Figures 1 and 2).  

 

Consistent with prior studies in which SAD patients had a higher likelihood of being S-

allele carriers9, 12, and having higher 5-HTT binding during depressive episodes20, we 

found that the 5-HTT binding in carriers of the S-allele is affected by seasonal changes, 

but not in carriers of the L-allele. We found the strongest seasonal effect in the putamen, 

an anatomical region with a dense serotonin innervation18, that is implicated in motor 

functions, but also in processing of aversive stimuli21, 22. We did not find any seasonal 

variation in midbrain, where the serotonergic cell bodies are located23. Possibly, [11C]-

DASB is merely reflecting the number of neurons than 5-HHT tonus in this region and 

thus not sensitive to seasonal effects.  

 

By examining the effect of daylight hours on the serotonergic system, we identified a 

distinct neurobiological endophenotype for the short 5-HTTLPR-allele with dynamic 

seasonal changes in 5-HTT binding. The neurobiological endophenotype identified here 

directly links activation studies, showing responses on the neural circuit level, with 

dynamic changes in transporter expression measured in vivo. 
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Figure 1. Left figure illustrates the seasonal effect on [11C]DASB BPND (putamen) with 

pointwise confidence limits, modeled as a harmonic function with period 1 year 

(estimated peak in the middle of December, SE = 21 days, in good agreement with the 

model using daylight minutes as a predictor) adjusting for age and gender. The plotted 

points are the partial residuals (male of mean age). The functional form was validated by 

including additional frequency components and by comparison with estimates from an 

additive model. The right figure displays the interaction between number of daylight 

minutes and HTTLPR-allelic status adjusting for age and gender. For comparison with 

the left figure the estimated linear response as a function of daylight minutes was 

transformed to a function of calendar time. 



 
Figure 2. Results of voxel-based analysis using parametric images representing specific 
5-HTT binding, all normalized to Montreal Neurological Institute (MNI) space. 
Correlations between [11C]DASB BPND (adjusted for age and gender) and amount of 
daylight on the day of the scan in Copenhagen. 


