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Abstract 

The emergence of “Systems Biology” in recent years highlights the systematic 

viewpoint of bio-system modeling. Building on such a background, Dual Descriptor 

Method, a generic methodology for biological sequence analysis is proposed. From a 

systematic perspective, Dual Descriptor is defined as a two element set of 

Composition Weight Map and Position Weight Function which aim at reflecting the 

composition and permutation information of a sequence. An alternate training 

algorithm is provided to get an optimum description of the building patterns of the 

sequences. In this paper, dual descriptor method has been applied to the analysis of 

two typical problems of molecular biology: gene identification and the prediction of 

protein function. Satisfactory and insightful results are achieved. Owing to the 

generality of this methodology, dual descriptor method has wide application 

perspective for many problems of pattern recognition, especially those involved in 

“Systems Biology”. 

 

Keywords: Biological sequence analysis; Gene identification; Protein function 

prediction; Pattern Recognition; Systems Biology 
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1. Background 

After the completion of human genome sequencing project, we step into the 

post-genomic era (Comment, 2004; Lander, et al., 2001; Venter, et al., 2001). One 

ambitious goal of this era is to establish a “unified biology” which aims at unifying 

the biological disciplines from microscopic “molecular biology” to macroscopic 

“population biology” and even the “evolutionary biology” to achieve a profound 

comprehension of life (Nature Editorial, 2001). It has been acknowledged that the 

unification of biology lies in a synthesis of the human knowledge about biological 

systems (McDaniel and Weiss, 2005), which recently gives birth to a new field called 

“Systems Biology” (Aebersold, 2005; Church, 2005; Liu, 2005). The core spirit of 

systems biology is the systematical paradigm which is different from the traditional 

analytic paradigm where much attention is paid to the components of a system while 

little is known about the wholeness of the system as an ordered organization. The 

appearance of the subject “Systems Biology” milestoned a paradigm shift from 

analytic to systematic in the field of biological research.  

From the systematical perspective, an abstract system S is modeled as a two 

element set S = { E, R }, where E is the elements (building blocks) of the system and 

R is the mutual relations (building rules) between these elements. The building blocks 

of a system indicate “what are used” for the build of the system while the building 

rules of the system indicate “how to build” the system. This abstract system model is 

usually represented as a network (a graph from the perspective of Combinatorics) 

with E to be vertexes and R to be edges which has been exemplified by many 
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biological networks such as molecular metabolic networks (Fiehn and Weckwerth, 

2003; Kell, 2004), gene regulation networks (Klemm and Bornholdt, 2005; Schlitt and 

Brazma, 2005) and protein interaction networks (Pellegrini, et al., 2004; Rousseau 

and Schymkowitz, 2005) etc.  

Life is organized as a multi-leveled living system from the microscopic molecular 

components of a cell to the macroscopic population of individuals. Each level can be 

modeled as an abstract system, including the outcome of a genome sequencing project: 

biological sequence, which is the coarse-grained representation of polynucleotide or 

polypeptide at molecular level. If a biological sequence is viewed as a system, its 

building blocks are the nucleic acids or amino acids whose occurrence number carries 

the composition information of the sequence, and its building rules are the mutual 

relations between these molecules which reflect the permutation information of the 

sequence. Therefore the partition of the information of a character sequence into 

composition and permutation (Ma, 2007) is consistent with the systematical paradigm. 

In the present work, we devise a novel generic methodology, called “dual 

descriptor method”, for biological sequence analysis by formulizing the ideas given in 

Ma (2007) from a systematical viewpoint. This methodology is used for the study of 

two typical problems of computational molecular biology: gene identification and the 

prediction of protein function. The average accuracy for the coding/non-coding 

recognition is more than 95% on a dataset of five bacterial genomes. And through the 

analysis by using dual descriptors, it is found that protein function prediction cannot 

be easily accomplished because there is high similarity between the building patterns 
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of the proteins of different functional groups. The results achieved are satisfactory and 

insightful, demonstrating the applicability of the present methodology to biological 

sequence analysis. Due to the generality of this methodology, it is also useful to many 

problems of pattern recognition, especially those involved in “Systems Biology”.  

2. Methodology 

2.1. Quantization of character sequence 

Suppose a character set { }1 2, , , , ,  ( 2)i nC c c c c n= ≥ . We use C* to represent 

the set of the sequences composed of the characters in C and with finite lengths. 

Designate an order for the characters in C and then the order numbers constitute an 

integer set { }1,2, , , ,N i= n . Construct the map . There are totally  

kinds of such maps. Choosing any one of them, we can quantize the character 

sequence. For example, we can choose the following one: 

:m C N→ !n

1 2

1 1

{ }
: :

{ 1 2 }

i n

i

c c c c
m C N m c i

i n
→ = → =             (1) 

Under this map, for each sequence *s C∈ , there is a corresponding number N.  

When s ε=  (null sequence), define 0N = ; when 
1 0k ki i is c c c
−

= ,  

1
1 1

k k
k kN i n i n i n i−

−= ⋅ + ⋅ + + ⋅ + 0

,

⋅

                                (2) 

where . Suppose the length of the sequence s is L, then Eq. (2) 

can be rewritten as: 

1 , 0,1,ji n j k≤ ≤ =

1
k

L
L k

c
k

N n i−

=

= ∑                                                (3) 

where  is the number i corresponding to the character  which appears at the  
kci kc

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
22

3.
1 

: P
os

te
d 

23
 A

ug
 2

00
8



position k in the sequence s. Therefore, under the map m1, for any sequence in C*, 

there is a unique non-negative integer corresponding to it, i.e., via map m1, we obtain 

a one-to-one map between C* and Z+, where Z+ represents the non-negative integer 

set. 

2.2. Definition of Dual Descriptor 

On C*, Dual Descriptor (DD) is defined as a two element set: 

{ },  DD M P=                                                 (4) 

where M is the Composition Weight Map (CWM) and P is the Position Weight 

Function (PWF) which are used to reflect the two aspects of information of a 

character sequence: composition and permutation.  

M is a map from the character set C to a real number set X, i.e., :M C X→ , 

{ }1 2, , , , , | ( {0})i n iX x x x x x R= ∈ － ; :M C X→  is an extension of  

for the image set from integer to real numbers. P is a real-valued function of position 

k in the character sequence s; P(k) reflects the weight endued to the position k; P(k) is 

an extension of the default position weight function of base n number system 

:m C N→

( )  L kI k n −= .  

2.2.1. Pattern Description Function 

For a sequence s composed of the characters in C and with length L, under the 

map :M C X→ , it can be converted into a real number sequence x, that is: 

[ [1], [2], , [ ], , [ ]]

[ [1], [2], , [ ], , [ ]]

s s s s k s L

x x x x k x L

=
⇓

=
                              (5) 

where  
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1 1

2 2

i f   ( [ ] )
i f   ( [ ] )

[ ] ( 1, 2 , , ;  , )
i f   ( [ ] )

i f   ( [ ] )

i i
i i

n n

x s k c
x s k c

x k k L x
x s k c

x s k c

=⎧
⎪ =⎪
⎪⎪= =⎨ =⎪
⎪
⎪

=⎪⎩

X c C∈ ∈  

For the character sequence s, its pattern description function is defined as: 

( ) ( ) [ ] ( 1,2, , )N k P k x k k L= × =                            (6) 

where the coefficient  before ( )P k [ ]x k  is the position weight function. 

2.2.2. Dual Formula 

The sum of the first l items of N(k) is 

1 1

( ) ( ) ( ) [ ] ( )
i

i xi

l l

i
k k x X k

S l N k P k x k x P k
= = ∈

= = =∑ ∑ ∑ ∑ x                         (7) 

where 
ixk represents the position k where  appears.  indicates some kind of 

dual relation and thus is called Dual Formula or Dual Variable. To know the dual 

relationship indicated by , see the following two special cases: 

ic ( )S l

( )S l

1) If the compositions are equally weighted, i.e., constant 1 ( )i ix x X= = ∈ , then  

( ) 1 ( )
i

i xi

c
x X k

S l P k
∈

= ∑ ∑ x                                        (8) 

Let ( )
i i

xi

x x
k

P P k=∑ , then 
i

i

c
x X

S
∈

= xP∑ , i.e., (
ix iP x X )∈  represent the contribution 

of the character  to the sum from 1 to l of the value of the position weight function. 

Actually,  is the position weighted frequencies when it is normalized by 

the sequence length L, which constitutes the “permutation part” of dual variable.  

ic

 (
ix iP x X∈ )

2) If the positions are equally weighted, i.e., ( ) constant 1 ( 1,2, , )P k k L= = = , 

then 
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( ) 1
i xi

p i
x X k

S l x
∈

= ∑ ∑                                           (9) 

Let , and then 1
i

xi

x
k

n =∑ ixn  indicates the occurrence number of character  in the 

sequence s, namely, . And then, 

ic

i

i

x
x X

n
∈

=∑ l
i

i

p i
x X

S x
∈

= xn∑ . Because 
ixn  is just the 

occurrence number of the character  in the sequence s, ic ix , multiplying on 
ixn , 

indicates the weight of 
ixn  in the composition of the sequence s, and thus 

(i i )x x X∈  are called Composition Weight Factors (CWF), which constitute the 

“composition part” of dual variable.  

The above two cases are two special cases where either the composition or the 

position is equally weighted. In general case, of course, neither of them (composition 

and position) is equally weighted.  

2.2.3. Target Pattern and Standard Pattern 

When both the composition and the position are equally weighted, i.e., 

 and , the pattern description function is also a 

constant: , which is called Target Pattern. 

Without losing generality, suppose the constant = 1, then 

( ) constantP k = [ ] constantx k =

( ) ( ) [ ] constant ( 1,2, , )N k P k x k k L= = =

( ) 1 ( 1,2, , )N k k L= = , 

which is called Standard Pattern.  

2.3. Training DD to describe patterns of character sequence 

Dual Descriptor can be trained on datasets. The training process of DD is the 

process of feature extraction from character sequence, which is implemented by 

minimizing the pattern deviation of a character sequence from a target pattern.  

2.3.1. Pattern Deviation Function 

To describe the pattern deviation of a sequence, we defined the Pattern Deviation 
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Function (PDF) as: 

( 2

1

1 ( )
L

k
d N k

L =

= ∑ )t−                                       (10) 

which represents the deviation of a sequence (whose pattern is described by N(k)) 

from a target pattern t. when 1t = , d represents the deviation of the sequence from 

the standard pattern: . ( ) 1 ( 1,2, , )N k k L= =

2.3.2 Minimization of Pattern Deviation Function 

The training of a DD is to minimize d. Substitute Eq. (6) into Eq. (10), we get  

( 2

1

1 ( ) [ ]
L

k
d P k x k

L =

= ∑ )t− .                                  (11) 

P(k) can be expanded on a set of basis functions ( )  ( 1, 2, , )b k mγ γ = , i.e.,  

( ) ( ) ( 1, 2, , )P k a b k mγ γ
γ

γ= =∑ ,                          (12) 

in which aγ is independent of k and ( )  ( 1, 2, , )b k mγ γ =  is the m items of the basis 

functions. The coefficients ( aγ ) in the expanded form of the position weight function 

P(k) are abbreviated as PWC (Position Weight Coefficients). 

For a given CWM, 0(i i )x x X∈  are constants. To minimize d, from 0d
aγ

∂
=

∂
, 

we get  

(
2

1

1

( ) ( ) [ ]
, 1,2, ,

( ) [ ]

L

k

L

k

u b k b k x k
m

v b k x k

αβ α β

α α

α β=

=

=
=

=

∑

∑
)                   (13) 

where  and  are the ( )b kα ( )b kβ α -th and β -th basis function, respectively, and 

0[ ]x k X∈  is the number at the k-th position in the real number sequence x. The 

coefficients of P(k) can be written as a vector  which can be obtained from the a
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matrix  and the vector : u v

1−=a u v                                                (14) 

where  and the matrix  and the vector  are composed of 

the elements 

1 2( , , , , , )ma a a aγ=a u v

uαβ  and vα . 

For a given PWF ( ), 0 ( )P k ( )  ( 1, 2, , )a k mγ γ =  are constants. To minimize d, 

from 0
i

d
x
∂

=
∂

, we arrive at: 

0

2
0

( )

( )

i

xi

i

xi

x
k

i
x

k

P k
x

P k
=
∑

∑
                                          (15) 

where 
ixk  represents the position k in the real number sequence x where ix  appears.  

2.3.3 Extracting common features of multiple sequences 

For the situation of multiple sequences, to extract the common features of these 

sequences, the PDF for the ensemble of these sequences is defined as the mean value 

of the PDF values of these sequences: 

1

1 n

j
j

D d
n =

= ∑                                             (16) 

where n is the number of the sequences, and 2

1

1 ( ( ) 1)
jL

j j
kj

d N k
L =

= −∑  is the PDF 

value for the j-th sequence with the length Lj, and  is the pattern description 

function of the j-th sequence.  

( )jN k

For a given CWM, from 
1

0
n

j

j

dD
a aγ γ=

∂∂
= =

∂ ∂∑ , we arrive at: 
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(1

1

, 1, 2, ,

n
j

j

n
j

j

U u
m

V v

αβ αβ

α α

α β=

=

=

=
=

∑

∑
)

a

.                           (17) 

At this time, the coefficient vector  is given by 

1−=a U V                                                (18) 

where the matrix U  and the vector  are the sums of  and  (that are for 

single sequence), respectively.  

V u v

Similarly, for a given PWF, from 
1

0
n

j

ji i

dD
x x=

∂∂
= =

∂ ∂∑ , we arrive at: 

2

( )

( )

i

xi

i

xi

x
j k

i
x

j k

P k
x

P k
=
∑∑

∑∑
.                                       (19) 

2.3.4. Choice of the basis functions 

Basis functions in Eq. (12) are usually chosen as periodic functions, such as 

trigonometric function 

           2( ) cos ( 2,3, )m
m

kP k a m
m
π

=∑ =                       (20) 

or  

mod( )       ( 2,3, )k mP k e m= = ,                              (21) 

because periodicity is a main difference between an ordered and an random sequence. 

Note that m starts from 2 rather than 1, because one – periodicity is the simple repeat 

of the same thing and thus meaningless here (just as in the case of the above character 

set C where C must have at least two elements because one element is unable to 

encode any information).  

If the local information around some position in the sequence is concerned, 
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wavelet functions can also be considered, such as: 

,( ) ( )P k a kα β
α β

ψ α β= −∑∑ .                               (22) 

When 2 jα =  and nβ = ,  is the usual discrete binary wavelet, and at that 

time, 

( )P k

, ,( ), ( )a P k kα β α βψ=< > . The choice of wavelet function may extend the 

description ability of dual descriptor to a multileveled system owing to the 

multi-scaled analysis ability of wavelet as in the Mallat Algorithm (Mallat, 1999), 

which will be studied in the future.  

2.3.5. Alternate training Process 

The alternate training process for a DD on a sequence (or a set of sequences) 

consists of the following steps: 

Step (1): Preparing a dataset composed of one or multiple sequences; set the 

maximum step number Nmax. 

Step (2): Randomly construct a CWM, i.e, assign a random real number to each 

of the characters in C and these real numbers constitute the set of ( )i ix x X∈ , and 

then use the minimization condition in Eq. (14) or Eq. (18) to obtain a corresponding 

PWF, namely, a set of coefficients ( )  ( 1, 2, , )a k mγ γ = . 

Step (3): With the set of coefficients ( )  ( 1, 2, , )a k mγ γ = , use the 

minimization condition in Eq. (15) or Eq. (19) to obtain a CWM, namely, a set of 

(i i )x x X∈ ; Generally speaking, the set of ( )i ix x X∈  obtained in this step is not 

the same as those are used in Step (1). 

Step (4): Repeat Step (2) and Step (3) until the stop condition is satisfied.  

Stop condition: the minimum d (or D) is achieved, or the maximum step number 
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Nmax is reached. 

In the training process, d (or D) becomes smaller and smaller. When d (or D) 

reaches its minimum value, the training process stops and an optimum DD is obtained 

on the dataset of the sequences used. The flowchart for the training of a DD on a 

dataset is illustrated in Fig. 1 (a).  

Dual descriptor method can also be viewed as a kind of machine-learning 

approach. Different from other machine-learning approaches where local minimums 

are ubiquitous and cannot be tackled readily, the present method does not yield local 

minimum in principle because the PDF (Eq. (10)) is a quadric function and has only a 

unique global minimum. An object-oriented implementation of Dual Descriptor (the 

DD class written in Python language), which wraps the alternate training algorithm, is 

freely available from the author upon request. 

2.4. Using DD as a sequence classifier 

Because the result of the alternate training process is the acquirement of an 

optimum DD, the resultant DD carries the common features of the sequences that are 

used for the training, and then can be used as a classifier to identify sequence. For a 

sequence s to be identified, just use the resultant optimum DDp and DDn, which are 

obtained by training on the positive sample dataset and the negative sample dataset 

respectively, to calculate the PDF value dp and dn of this sequence, respectively. The 

classification of the sequence s is just to see which one of dp and dn is the smaller. If 

dp is less than dn, then the sequence s belongs to the Class P (positive sample); 

otherwise, the sequence s belongs to the Class N (negative sample). Fig. 1 (b) shows 
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the flowchart of using DD as a sequence classifier.  

2.5. Evaluating the accuracy of classification 

Three indicators are used to assess the classification ability of dual descriptor: 

Sensitivity, Specificity and Accuracy, which are commonly adopted in the evaluation 

of gene identification algorithms (Burset and Guigo, 1996). Sensitivity (Sn) represents 

the proportion of positive samples that have been correctly recognized as positive and 

Specificity (Sp) represents the proportion of negative samples that have been correctly 

recognized as negative. That is: 

TPSn
TP FN

=
+

    and    TNSp
TN FP

=
+

,                   (23) 

where TP is the True Positive and FN is the False Negative and TN is the True 

Negative and FP is the False Positive. Accuracy (Ac) is simply defined as the average 

of Sn and Sp, i.e.,  

Sn SpAc
2
+

= .                                           (24) 

For the details of the definition of these indicators, see Burset and Guigo (1996).  

3. Materials 

The annotated protein coding genes for five bacteria genomes Wigglesworthia 

brevipalpis (NC_004344), Lactococcus lactis (NC_002662), Escherichia coli K12 

(NC_000913), Bifidobacterium longum (NC_004307) and Streptomyces coelicolor 

(NC_003888) were downloaded from ftp://ftp.ncbi.nih.gov/genomes/bacteria 

(corresponding to GenBank Release 153.0). For reliability, those genes with unknown 

or uncertain protein products (namely, those genes with “hypothetical”, “predicted”, 
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“probable” or “possible” in their protein product annotation) are removed from the 

dataset. For each species, a half of the genes are used as the training set and the other 

half as the test set in each round of the cross-validation tests.  

The functional annotation for the proteins in the five bacteria genomes is 

according to COG. There are totally 25 functional groups in the updated version of 

COG database (Tatusov, et al., 2003; Tatusov, et al., 1997). For the purpose of 

demonstration, we focus on two functional groups: the functional group “translation, 

ribosomal structure and biogenesis” (symbolized by J) and the functional group 

“transcription” (symbolized by K). The protein sequences for the five bacteria 

genomes are extracted from their corresponding NC_xxxxxx.faa files that locate at the 

above directory. Some basic information of these genomes is listed in Table 1. 

Table 1. Some basic information of the five bacteria genomes used in this study a 

Species Abbreviation NC_number GC%
Gene 

Number

Protein 

Number 

in J 

Protein 

Number

in K 

Wigglesworthia 

brevipalpis 
W. bre NC_004344 22.5 126 107 21 

Lactococcus 

lactis 
L. lac NC_002662 35.3 1466 114 119 

Escherichia coli 

K12 
E. col NC_000913 50.8 2474 164 225 

Bifidobacterium 

longum 
B. lon NC_004307 60.1 687 101 99 

Streptomyces 

coelicolor 
S. coe NC_003888 72.1 5001 226 801 
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a The GC content (GC%) varies from the lowest 22.5 of Wigglesworthia brevipalpis to 

the highest 72.1 of Streptomyces coelicolor which covers the whole range of GC 

contents of the species currently available in the public database. The column “Gene 

Number” indicates the number of protein coding gene after removing those genes 

with uncertain protein products. The last two columns “Protein Number in J” and 

“Protein Number in K” indicate the protein numbers in the two functional groups J 

and K (according to the functional classification of COG database), respectively 

(including those proteins with uncertain annotation but the COG functional 

information can be inferred).  

4. Results 

4.1. Using DD to recognize protein coding genes 

The first step for dealing with the genomic data that are acquired by sequencing 

projects is undoubtedly to find the protein coding genes. A variety of algorithms has 

been developed to fulfill this purpose and they are summarized in Ma (2007). Dual 

descriptor method, as a new methodology of sequence analysis proposed from the 

systematic viewpoint, can be added to the stock of these powerful tools. Owing to its 

“holograph” ability that not only the composition but also the permutation 

information of a sequence can be reflected, dual descriptor can be used for the task of 

gene identification.  

 

Table 2. The sensitivity, specificity and accuracy for coding/non-coding sequence 
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recognition in self-tests and ten-fold cross-validation tests for the five bacterial 

genomes a 

Self-tests Cross-validation tests 

Species Sensitivity 

(%) 

Specificity

(%) 

Accuracy

(%) 

Sensitivity

(%) 

Specificity 

(%) 

Accuracy 

(%) 

W. bre 97.62 99.21 98.41 98.57±1.75 97.94±1.07 98.25±1.23

L. lac 96.32 99.18 97.75 97.62±0.35 98.85±0.23 98.24±0.24

E. col 93.21 98.02 95.61 93.75±0.55 97.89±0.24 95.82±0.31

B. lon 96.80 99.42 98.11 96.40±0.58 98.28±0.77 97.34±0.55

S. coe 90.80 97.98 94.39 91.33±0.32 97.92±0.15 94.62±0.15
a In the Self-tests and the Cross-validation tests, the maximum training step number 

Nmax (see Fig. 1) is set to be 5.   

 

The results for the identification of protein coding genes from non-coding 

sequences are listed in Table 2. It can be found that the average accuracy is 96.85% in 

the self-tests and almost equally good in cross-validation tests, suggesting that the 

information encoded in the sequences has been captured by the dual descriptors in the 

alternate training process and that based on the specificity of this information for the 

coding genes, high accuracy of classification can be achieved. The accuracies for the 

five genomes are all more than 90% and insensitive to the GC contents of the 

genomes (GC% in the 4th column of Table 1), which shows the applicability of dual 

descriptor method to gene identification. It should be noticed that, after the training 

process, the accuracy for the identification of protein coding genes of E. coli K12 is 

improved from the original 91.64% (Ma, 2007) to the current 95.82% with an increase 

of near five percents, which demonstrates the validity of the alternate training process 
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to get an optimum description of the genes’ common features. Fig. 2 gives an intuitive 

impression for the classification result using dual descriptor.  

4.2. Using DD to describe the building patterns of protein coding genes  

Nowadays, there are millions of protein coding genes that have been identified 

and stored in the public databases such as GenBank/EMBL/DDBJ (Benson, et al., 

2005). With these already known genes, an equally important but less noticed task is 

to describe the features of genes to convert raw data into human understandable 

knowledge, which is a process of data-mining or knowledge-discovery. A proper 

methodology is necessary to achieve this goal. Dual descriptor is helpful to the 

implementation of this task owing to its “description” ability.  

As shown above, there are two sets of parameters for a dual descriptor: 

Composition Weight Factors (CWF) and Position Weight Coefficients (PWC), 

corresponding to the two components of a dual descriptor, respectively, with the 

former to be the image set of Composition Weight Map (CWM) and the latter to be 

the coefficients of the expanded form of Position Weight Function (PWF). The 

intuitive meaning of the two sets of parameters (they correspond to building block 

usage and building rule usage, respectively) gives us the possibility to explore the 

building patterns of the sequences. 

Table 3 shows the CWF and PWC of the obtained dual descriptors after the 

alternate training process, and a close-inspection of these parameters informs us of the 

building patterns of the protein coding genes. A CWF for a character carries the 

composition information of that character in the sequence. The larger its absolute 
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value is, the more important role the character plays in the building patterns of the 

sequence. From Table 3, it can be found that the first two largest (absolute value) 

CWF for the two AT-rich genomes (GC% < 50%) are xG and xT, while the first two 

largest CWF for the GC-rich genomes (GC% > 50%) are xC and xG, and for the AT & 

GC content-balanced genome (GC% = 50.8%), the first two largest CWF are xT and 

xG. Firstly, we notice that the common character in the top two CWF of the five 

genomes is G, which means guanine always plays important role in the building 

patterns of the protein coding genes no matter how rich its content is. Secondly, we 

can find that the pattern of T (with xT to be the second largest CWF) in AT-rich 

genomes and the pattern of C (with xC to be the second largest CWF) in CG-rich 

genomes are important ones for the building patterns of the sequences due to their 

abundance.  

 

Table 3. The composition weight factors (CWF) and position weight coefficients 

(PWC) of the optimum dual descriptors for the five bacterial genomes 

CWF a PWC (×100) b 

Species 
xA xC xG xT a2 a3 a4 a5 a6 

W. bre 0.1614 2.956 -15.91 9.869 -0.0283 -2.6752 0.0436 0.0226 0.0190

L. lac 5.496 2.137 -44.09 38.70 -0.0106 -1.0885 0.0118 0.0164 0.0124

E. col -3.069 0.9414 -16.12 28.56 -0.0142 -1.5072 0.0061 0.0111 0.0126

B. lon -13.99 31.71 -29.52 26.24 -0.0077 -0.9506 0.0003 -0.0016 0.0122

S. coe 34.66 -60.82 51.89 -40.22 0.0042 0.4159 -0.0044 -0.0025 -0.0015
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a xN (N = A, C, G, T) are the composition weight factors whose absolute value 

indicates the contribution of the corresponding nucleotide to the building patterns of 

the protein coding genes. For all the five genomes, the initial values of CWF are the 

same, as: xA = 1, xC = 2, xG = 3, xT = 4.  
b ai (i = 2, 3, 4, 5, 6) are the coefficients of the expanded form of the corresponding 

position weight function whose absolute value indicates contribution of the 

periodicity – i in the building patterns of the sequences. For saving the print space, the 

PWC listed in this table have been amplified 100 times. 

 

Likewise, PWC carry the permutation information: the larger the absolute value of 

a PWC is, the stronger the corresponding periodicity is in the building patterns of the 

sequence. From Table 3, it can be found that the three – periodicity (a3) is the 

strongest signal and common in all the genomes used, which is acknowledged as the 

reflection of the triplet codes in coding sequences (Gutierrez, et al., 1994; Kobayashi, 

et al., 2003; Shepherd, 1981) and shows the unity of the building rules of protein 

coding genes. Besides, the periodicities 4 and 5 (a4 and a5) are relatively stronger than 

other periodicities in the building pattern of the coding sequences of the AT-rich 

genomes, while the periodicities 6 and 4 (a6 = 0.0122 for B. lon and a4 = -0.0044 for S. 

coe) are the stronger signals than other periodicities in the two GC-rich genomes, 

respectively. The genome with balanced AT & GC contents has the second strongest 

signal of two – periodicity (a2 = -0.0142 for E. col). Additionally, the four – 

periodicity (a4 = 0.0003 for B. lon) is particularly weak in the building pattern of the 

protein coding genes of the human gastrointestinal tract resident, Bifidobacterium 

longum. These differences, on the other hand, reflect the diversity of the building 
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rules of protein coding genes, which may embody the adaptation of the organisms to 

their living environments. 

Owing to the alternate training process, a CWF also carries the permutation 

information by its sign. According to Eq. (15), we know that the positive sign of a 

CWF means that the corresponding character more frequently appears at the positions 

where position weight function get positive values while a negative sign of a CWF 

means the opposite situation. For example, according to Eq. (20) and the PWC listed 

in Table 3, the position weight function of the dual descriptor for the E. coli K12 

genome can be written as:  

6

2

2( ) cos( )

2-0.0142cos( ) -1.5072cos( ) 0.0061cos( )
3 2

20.0111cos( ) 0.0126cos( ).
5 3

m
i

kP k a
m

kk

k k

π

kπ ππ

π π

=

=

=

+ +

∑

+                    (25) 

Because P(k) is approximated by trigonometric functions that are periodic, the 

approximation of P(k) is also a periodic function whose periodicity is the least 

common multiple (LCM) of those of its expanded items. Since we take the first five 

items (from 2 to 6) of the series (20) as the approximation, the periodicity of P(k) here 

is 60 which is the LCM of the periodicities 2, 3, 4, 5, 6. The values of P(k) on the 

interval of [0, 59] (one period) are listed in Supplementary Table 1. A detailed 

examination of this list informs us that P(k) gets negative values at the positions that 

can be divided exactly by 3 while gets positive values at other positions. Sifting the 

CWF for E. col in Table 3, we know that xA and xG take negative values, indicating 

that they appear more frequently at the locations of 0, 3, 6, ,…, and so on, meanwhile, 
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xC and xT take positive values, indicating that they have more preference for other 

positions. See Supplementary Fig. 1 for an intuitive impression of the building 

patterns reflecting such features in the E. coli K12 genome. Fig. 3 illustrates the 

meaning of CWF as the position weighted contents by a linear regression. 

  

4.3. Using DD to analyze the problem of protein function prediction 

One important task of molecular biology in post-genomic era is the annotation of 

protein function. The basic methods for this task are experimental techniques such as 

gene inactivation and microarray expression (Collins, et al., 2003; Kobayashi, et al., 

2003) etc. When the experimental data accumulate to a certain degree, theoretical 

prediction of protein function is also possible by using a knowledge-based approach, 

which relies on the similarity between the newly sequenced and the function-known 

proteins. Dual descriptor can help answer the question of “to what degree can such a 

similarity-based approach be successful” owing to its analysis ability.  

 

Table 4. The sensitivity, specificity and accuracy for the five genomes used for the 

analysis of protein function prediction 

Fun J vs. Fun K a Fun J vs. Rand b Fun K vs. Rand c Rand J vs. Rand K d 

Species 
Sn Sp Ac Sn Sp Ac Sn Sp Ac Sn Sp Ac 

W. bre 78.50 80.95 79.73 77.57 68.22 72.90 90.48 71.43 80.95 74.77 80.95 77.86

L. lac 60.53 66.39 63.46 75.44 57.02 66.23 79.83 63.87 71.85 76.32 73.11 74.71

E. col 59.76 66.67 63.21 78.05 62.20 70.12 75.11 65.78 70.44 77.44 63.56 70.50
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B. lon 56.44 59.60 58.02 78.22 67.33 72.77 69.70 78.79 74.24 71.29 70.71 71.00

S. coe 59.29 59.93 59.61 79.65 62.39 71.02 81.02 61.67 71.35 82.74 64.04 73.39

Average 62.90 66.71 64.81 77.79 63.43 70.61 79.23 68.31 73.77 76.51 70.47 73.49
a The column “Fun J vs. Fun K” lists the evaluation indicators (Sensitivity, Specificity 

and Accuracy) for the identification between the protein sequences belonging to the 

two functional groups J and K of COG.  
b The column “Fun J vs. Rand” lists those indicators for the identification between the 

protein sequences of the functional group J and their corresponding randomly shuffled 

sequences.  
c The column “Fun K vs. Rand” lists the indicators for the identification between the 

protein sequences of the functional group K and their corresponding randomized 

sequences.  
d The last column “Rand J vs. Rand K” lists the indicators for the identification 

between the two groups of randomized sequences which are generated by shuffling 

the corresponding protein sequences of the two functional groups, respectively.  

  

The evaluation indicators for the protein function prediction from amino acid 

sequence are listed in Table 4. As shown, the average accuracy for the prediction of 

the two functional groups J and K is 64.81% and that for the identification of the 

functional sequences from their corresponding randomized sequences is 70.61% and 

73.77%, respectively. That the average accuracy (64.81%) for the identification 

between the proteins of the two functional groups is less than those (70.61% and 

73.77%) for the identification between the functional sequences and random 

sequences means that the protein sequences for the two functional groups are more 

similar to each other than their similarity to their corresponding randomized 
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sequences (with the same amino acid composition). Another point should be noticed 

is that, even the accuracy (73.49%) for the identification between the two sets of 

random sequences is higher than that (64.81%) for the identification between the two 

functional groups, which means at least two things: (1) the functional sequences have 

common features which differentiate them from random sequences; (2) the protein 

function prediction, at least for the two functional groups J and K used in the present 

study, cannot be easily achieved.  

 

Table 5. The PWC for the building rules of the proteins of the two functional groups J 

and K in the five bacterial genomes 

PWC for Fun J (×100) PWC for Fun K (×100) 
Species 

a2 a3 a4 a5 a6 a2 a3 a4 a5 a6 
p a 

W. bre 4.88 2.33 8.52 7.30 -1.33 0.286 1.31 10.17 -6.61 6.77 0.62

L. lac 3.24 6.85 6.79 1.88 2.69 5.08 4.48 0.276 4.64 8.51 0.89

E. col 1.35 4.09 5.32 4.87 4.12 2.69 2.36 5.40 4.68 3.91 0.79

B. lon 4.28 -3.78 3.86 9.51 5.82 1.62 3.14 4.37 8.33 6.57 0.62

S. coe 2.01 6.62 2.55 6.89 2.74 1.26 2.39 3.58 3.48 2.37 0.19

a The last column “p” indicates the p – values in the paired t – test which is performed 

in a purpose of comparing the periodicities (a2 - a6) in the building patterns of the 

protein sequences of the two functional groups J and K. 

 

To know the intrinsic difficulty of the task of protein function prediction, we can 

analyze the parameters of the obtained dual descriptor. The PWC for the five bacterial 
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genomes are listed in Table 5. Through a paired t – test, we find that the p – values for 

the five genomes are all larger than 0.1 which means that there is no significant 

difference between the building rules (revealed by periodicities) of the protein 

sequences of the two functional groups. That’s why the ascertainment of protein 

function still mainly relies on experiments and why theoretical prediction are only 

applicable to those proteins that can be found high homolog to the function-known 

proteins by sequence alignments (Marti-Renom, et al., 2000; Wang, et al., 2000). 

There is still a long way to go to achieve an accurate prediction of a protein’s function 

from its amino acid sequence.  

5. Conclusion and further thinking 

The above results demonstrate the application of dual descriptor method in two 

typical problems of computational molecular biology: gene identification and the 

prediction of protein function. In the former case, the building blocks are the 

nucleotides and the building rules of the protein coding genes are revealed as (short 

range) periodicities of these nucleotides in the building patterns of the sequences. In 

the latter case, the building blocks are the amino acids and the building rules of the 

protein sequences of the two functional groups J and K have no significant difference, 

which makes the protein function prediction a hard task to accomplish, at least for the 

two functional groups used in this study.  

However, the protein function prediction is not impossible because there may be 

other ordered information hidden in the sequences which cannot be revealed by (short 
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range) periodicities but can differentiate the two functional groups of protein 

sequences. In fact, periodicity is only a kind of symmetry: translational symmetry. 

Other symmetries such as rotational symmetry or centrosymmetry can also be 

considered to reflect the ordered (non-random) information of a sequence (which will 

be studied later).  

As a generic mathematical model, the systematic viewpoint of dual descriptor 

equips it with two sides of ability: owing to its “holograph” ability, dual descriptor 

can be used as a feature extractor and data classifier, while owing to it “description” 

ability, it can be used as a pattern finder and problem analyzer for any problems 

involving sequence analysis. In fact, many problems in “Systems Biology”, such as 

the identification of essential genes in the regulation networks or the prediction of 

“hub” proteins in protein interaction networks and so forth, can be analyzed by this 

methodology. Furthermore, many (if not any) systems can be represented by character 

sequences, especially in the simulation using computers where any objects are 

implemented in the form of binary sequences in the memory of the computing system. 

Therefore, the current methodology has a very wide scope of application.  
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Figure Legends 

Fig. 1. Flowcharts for the alternate training process of DD and using DD as a 

classifier. (a) The alternate training process of DD on a dataset. “Randomly construct 

a CWM” means assigning a random number to each CWF. Usually, the assignment of 

the values for the CWF is according to the natural order of the characters in the 

alphabet, i.e., the map in Eq. (1) is used. (b) Optimum DD used as a classifier. 

“Optimum DDp” denotes the dual descriptor that is trained on the positive samples 

and obtained when the termination condition of the training process is reached, while 

“Optimum DDn” denotes that for the negative samples. 

 

Fig. 2. Coding and non-coding sequences (of E. coli K12). The abscissa axis indicates 

the pattern deviation values of the sequences described by the optimum DDp and the 

ordinate axis indicates those values described by the optimum DDn. Red triangles 

represent the protein coding genes and black circles represent the non-coding 

sequences which are generated by shuffling the corresponding coding sequences. 

Because DDp is optimum for the building patterns of coding sequences, the coding 

sequences can get relatively less values than the non-coding sequences and thus the 

points representing the coding sequences locate at the left half of the figure while 

those representing the non-coding sequences locate at the right half of the figure. 

Similarly, because DDn is optimum for the building patterns of non-coding sequences, 

the non-coding sequences can get relatively less values than the coding-sequences and 

thus the points representing the non-coding sequences locate at the lower half of the 
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figure while those for the coding sequences locate at the upper half of the figure. The 

overlapped area between coding and non-coding constitutes the false positive and 

false negative of the recognition. 

 

Fig. 3. The linear correlation between the sum of position weighted contents Nw (on 

the interval of one period of the corresponding position weight function, here the 

period length is 60, see Supplementary Table 1 for details) and the CWF xN of the 

Dual Descriptor for the protein coding genes of E. coli K12. The correlation 

coefficient is as high as 0.986, which indicates that the meaning of a CWF is the 

position weighted content of the corresponding character. 
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Fig. 1. Bin-Guang Ma 
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Fig. 2. Bin-Guang Ma 
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Fig. 3. Bin-Guang Ma 
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Supplementary Materials 
 

 

Supplementary Fig. 1. Illustration of the building patterns of the protein coding 

genes of E. coli K12. Adenines locate at the positions with Green background color; 

Cytosines locate at the positions with Blue background color; Guanines locate at the 

positions with Black background color; Thymines locate at the positions with Red 

background color. The sequences are truncated from the beginning to the length of 60 
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that is one period of the corresponding position weight function. This figure is 

generated using BioEdit software (Hall, T.A. 1999. BioEdit: a user-friendly biological 

sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. 

Symp. Ser. 41, 95-98).      

 

 

 

Supplementary Table 1. The nucleotide contents and their corresponding position 

weighted contents at the positions within the length of one period of the position 

weight function (on the dataset of protein coding genes of E. coli K12) 

P(k) Nucleotide Contents Position Weighted Contents 
k 

sign value A C G T Aw Cw Gw Tw 

0 - 0.01491531 0.280 0.232 0.345 0.143 -0.004 -0.003 -0.005 -0.002

1 + 0.00777518 0.272 0.218 0.171 0.338 0.002 0.002 0.001 0.003

2 + 0.0071802 0.166 0.264 0.334 0.236 0.001 0.002 0.002 0.002

3 - 0.01514622 0.256 0.244 0.354 0.147 -0.004 -0.004 -0.005 -0.002

4 + 0.00742621 0.296 0.236 0.180 0.288 0.002 0.002 0.001 0.002

5 + 0.0078519 0.183 0.270 0.290 0.257 0.001 0.002 0.002 0.002

6 - 0.0151139 0.256 0.244 0.350 0.150 -0.004 -0.004 -0.005 -0.002

7 + 0.00765104 0.301 0.226 0.176 0.297 0.002 0.002 0.001 0.002

8 + 0.00730207 0.181 0.273 0.289 0.256 0.001 0.002 0.002 0.002

9 - 0.01502208 0.250 0.248 0.348 0.153 -0.004 -0.004 -0.005 -0.002

10 + 0.00738107 0.294 0.225 0.178 0.303 0.002 0.002 0.001 0.002

11 + 0.00777518 0.178 0.274 0.293 0.255 0.001 0.002 0.002 0.002

12 - 0.01511617 0.251 0.246 0.352 0.152 -0.004 -0.004 -0.005 -0.002

13 + 0.00765104 0.297 0.226 0.178 0.299 0.002 0.002 0.001 0.002

14 + 0.00730434 0.176 0.279 0.289 0.256 0.001 0.002 0.002 0.002

15 - 0.01494535 0.248 0.244 0.357 0.151 -0.004 -0.004 -0.005 -0.002

16 + 0.00742621 0.291 0.230 0.180 0.299 0.002 0.002 0.001 0.002
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17 + 0.00765104 0.176 0.276 0.291 0.256 0.001 0.002 0.002 0.002

18 - 0.01523804 0.248 0.248 0.351 0.153 -0.004 -0.004 -0.005 -0.002

19 + 0.00777518 0.295 0.224 0.181 0.299 0.002 0.002 0.001 0.002

20 + 0.00750293 0.175 0.281 0.290 0.253 0.001 0.002 0.002 0.002

21 - 0.01502208 0.250 0.247 0.352 0.152 -0.004 -0.004 -0.005 -0.002

22 + 0.0071802 0.291 0.227 0.182 0.300 0.002 0.002 0.001 0.002

23 + 0.00765104 0.174 0.278 0.290 0.257 0.001 0.002 0.002 0.002

24 - 0.01499203 0.246 0.248 0.354 0.152 -0.004 -0.004 -0.005 -0.002

25 + 0.0078519 0.288 0.228 0.183 0.301 0.002 0.002 0.001 0.002

26 + 0.00730434 0.168 0.28 0.299 0.254 0.001 0.002 0.002 0.002

27 - 0.01514622 0.24 0.247 0.361 0.152 -0.004 -0.004 -0.005 -0.002

28 + 0.00730207 0.291 0.230 0.178 0.301 0.002 0.002 0.001 0.002

29 + 0.00777518 0.171 0.280 0.294 0.254 0.001 0.002 0.002 0.002

30 - 0.01503718 0.243 0.247 0.361 0.149 -0.004 -0.004 -0.005 -0.002

31 + 0.00777518 0.290 0.228 0.180 0.302 0.002 0.002 0.001 0.002

32 + 0.00730207 0.173 0.278 0.296 0.253 0.001 0.002 0.002 0.002

33 - 0.01514622 0.243 0.253 0.353 0.151 -0.004 -0.004 -0.005 -0.002

34 + 0.00730434 0.290 0.223 0.182 0.305 0.002 0.002 0.001 0.002

35 + 0.0078519 0.171 0.277 0.298 0.253 0.001 0.002 0.002 0.002

36 - 0.01499203 0.242 0.247 0.357 0.154 -0.004 -0.004 -0.005 -0.002

37 + 0.00765104 0.289 0.222 0.186 0.302 0.002 0.002 0.001 0.002

38 + 0.0071802 0.171 0.276 0.297 0.255 0.001 0.002 0.002 0.002

39 - 0.01502208 0.241 0.247 0.361 0.150 -0.004 -0.004 -0.005 -0.002

40 + 0.00750293 0.294 0.224 0.183 0.299 0.002 0.002 0.001 0.002

41 + 0.00777518 0.171 0.276 0.296 0.257 0.001 0.002 0.002 0.002

42 - 0.01523804 0.246 0.245 0.359 0.150 -0.004 -0.004 -0.005 -0.002

43 + 0.00765104 0.295 0.224 0.182 0.299 0.002 0.002 0.001 0.002

44 + 0.00742621 0.175 0.281 0.296 0.247 0.001 0.002 0.002 0.002

45 - 0.01494535 0.245 0.248 0.359 0.148 -0.004 -0.004 -0.005 -0.002

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
22

3.
1 

: P
os

te
d 

23
 A

ug
 2

00
8



46 + 0.00730434 0.288 0.226 0.184 0.302 0.002 0.002 0.001 0.002

47 + 0.00765104 0.173 0.279 0.293 0.255 0.001 0.002 0.002 0.002

48 - 0.01511617 0.248 0.246 0.355 0.151 -0.004 -0.004 -0.005 -0.002

49 + 0.00777518 0.289 0.227 0.183 0.301 0.002 0.002 0.001 0.002

50 + 0.00738107 0.175 0.278 0.290 0.257 0.001 0.002 0.002 0.002

51 - 0.01502208 0.247 0.244 0.357 0.152 -0.004 -0.004 -0.005 -0.002

52 + 0.00730207 0.289 0.227 0.183 0.301 0.002 0.002 0.001 0.002

53 + 0.00765104 0.173 0.279 0.299 0.249 0.001 0.002 0.002 0.002

54 - 0.0151139 0.244 0.250 0.355 0.152 -0.004 -0.004 -0.005 -0.002

55 + 0.0078519 0.289 0.223 0.186 0.302 0.002 0.002 0.001 0.002

56 + 0.00742621 0.170 0.278 0.298 0.254 0.001 0.002 0.002 0.002

57 - 0.01514622 0.238 0.246 0.359 0.156 -0.004 -0.004 -0.005 -0.002

58 + 0.0071802 0.287 0.226 0.186 0.300 0.002 0.002 0.001 0.002

59 + 0.00777518 0.171 0.275 0.299 0.255 0.001 0.002 0.002 0.002

Note: k denotes the positions in the coding sequences; P(k) denotes the values of the 

position weight function at these positions; The “Nucleotide Contents” are the 

nucleotide frequencies at the positions i in the sequences where i mod 60 = k. The 

“Position Weighted Contents” Nw (N = A, C, G, T) are the “Nucleotide Contents” 

multiplied by the value of P(k) at each position, i.e., Nw = N*P(k). According to Eq. 

(15), Nw is correlated with the CWF: xN (N = A, C, G, T) listed in Table 3 of the 

manuscript. The linear correlation coefficient is shown on Fig. 3. 
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