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ABSTRACT 

Several prokaryotic ClC proteins have been demonstrated to function as exchangers 

that transport both chloride ions and protons simultaneously in opposite directions. 

However, the path of the proton through the ClC exchanger and how the protein brings 

about the coupled movement of both ions are still unknown. In the present work, we 

demonstrate that a previously unknown secondary water pore is formed inside a ClC 

exchanger by using an atomistic molecular dynamics (MD) simulation. From the 

systematic simulations, it was determined that the glutamate residue exposed to the 

intracellular solution, E203, plays an important role as a trigger for the formation of the 

secondary water pore. Based on our simulation results, we conclude that protons in the 

ClC exchanger are conducted via a water network through the secondary water pore 

and we propose a new mechanism for the coupled transport of chloride ions and 

protons. 

 

In the early 1980’s, a protein from the electric organ of a Torpedo ray was found to be 

involved in the transport of chloride ions across the cell membrane1,2. Since this discovery, it 

has been widely accepted that this protein, identified as a member of the chloride channel 

(ClC) family, is simply a channel through which a chloride ion is conducted via electrostatic 

diffusion regulated by an ion gradient or voltage across the cell membrane. However, recent 

reports have shown that the several members of the ClC family are not channels, but instead 

are chloride ion/proton exchangers in which the flux of chloride ions is coupled to the flux of 

protons in the opposite direction with a stoichiometric ratio of 2:13-7. Nevertheless, the 

pathway for proton conduction and the mechanism of coupled transport for chloride ions and 

protons have not been elucidated, although some studies have suggested clues for proton 

transport in the exchangers. Most notably, Accardi et al.3,4 have proposed that the two 
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glutamate residues E148 and E203 of Escherichia coli (E. Coli) ClC exchanger, the former 

residue located adjacent to the extracellular side and the latter exposed to the intracellular 

solution, are involved in proton transport in ClC exchangers based on experimental results 

demonstrating that the coupled movement of protons and chloride ions vanishes when these 

residues are mutated. They have also proposed that the proton and chloride ion pathways are 

separate because the glutamate residue on the intracellular side (E203), which has been 

suggested to be involved in proton transport, is distant from the putative chloride ion pathway. 

To prove that these two pathways are separate, these researchers attempted to find a residue 

that could deliver a proton from E203 to E1487. Among many candidates, they focused on the 

highly conserved tyrosine residue Y445 because it has a hydroxyl side chain that lies halfway 

between the two glutamate residues E148 and E203. However, they found that the removal of 

the hydroxyl group from Y445 by mutating it to phenylalanine or tryptophan has no 

significant effect on the protein’s electrophysiological behavior. 

The primary objective of this study is to elucidate the proton pathway inside a ClC 

exchanger and to identify the role of E203 on the proton transport. For this purpose, we 

performed an atomistic molecular dynamics (MD) simulation, which has proven to be a 

useful tool to solve problems that cannot be addressed directly by laboratory experiments8-10. 

We used the crystallographic structure of the prokaryotic ClC protein from E. coli11,12 as a 

model structure of a ClC exchanger for our simulations. Based on the results from atomistic 

MD simulation, a secondary pathway for proton transport was discovered and a mechanism 

for the coupled movement of chloride ions and protons is proposed. 

 

RESULTS 

Secondary water pore revealed by an atomistic simulation 
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According to the crystal structure of the ClC exchanger, water molecules are found at both 

extracellular and intracellular vestibules but not in the putative ion translocation pathway11,12. 

Under these circumstances, it is hypothesized that a proton is not able to pass through the 

pathway due to the absence of a continuous water network that is a prerequisite for proton 

conduction. Although the mechanism of proton transport in a ClC exchanger has not been 

elucidated, recent result4 has shown that proton transport in a prokaryotic ClC exchanger is 

impaired when E203 is mutated to a glutamine that functions to mimic the protonated state of 

a glutamate residue. 

Inspired by these results, we performed MD simulations by varying the protonation state of 

E203 to confirm the structural change caused by the protonation state of E203. Here, the 

glutamate residue adjacent to the extracellular side, E148, which is known to be a key residue 

for chloride ion conduction, was kept protonated. Figure 1a shows the equilibrated structure 

of the ClC exchanger with the pore, as predicted by the HOLE program13, where E203 is 

deprotonated and two chloride ions are bound to the positions resolved by X-ray 

crystallography (Sint and Scen). Here, the predicted pore is consistent with the chloride ion 

pathway, and a water molecule was not observed inside the pore during the equilibration, as 

previously reported11,12,14. However, as E203 is protonated and the two chloride ions inside 

the chloride ion pathway are transported to the outside of the pore, a significant structural 

change occurs. After 2 ns equilibration, the region between the Y445 and E203 residues is 

rapidly filled with water molecules originating from the intracellular side, as shown in Figure 

1b. Consequently, the water molecules form a continuous network that links E203 with E148; 

a previously unknown region that is predicted to be a pore by the HOLE program. Initially, 

we assumed this network of water molecules was an intermediate and expected that the water 

pore would disappear as the system reached equilibrium. However, this water pore was 

continued for an additional 12 ns (supplementary Video 1 online). Hence, we refer to this 
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novel water pore as ‘the secondary pore’, whereas the chloride ion pathway previously 

determined by X-ray crystallography is referred to as ‘the primary pore’.  

 

Role of E203 as a gate 

To investigate the reason of the formation of the secondary pore, the structural change caused 

by protonation of E203 was investigated in detail by overlapping the two structures shown in 

Figure 1a and b. As shown in Figure 1c, the most notable change in the protein structure was 

found near E203. Before protonation, the negatively charged side chain of E203 interacts 

with the positively charged arginine residue (R28) of another subunit of the protein via 

charge-charge interactions. However, when E203 lost its negative charge by protonation, the 

charge-charge interaction between E203 and the R28 was broken. In such a case, R28 is 

separated from E203, which results in the formation of a cleft between E203 and R28. Water 

molecules penetrated into the secondary pore through this cleft, and a continuous water 

network was formed inside the secondary pore, as shown in Figure 1b. It seems that E203 

acts as a gate that triggers the formation of the secondary water pore through the breakage of 

charge-charge interaction with R28, an observation that is reminiscent of E148 acting as a 

gate for chloride ion conduction by the charge-dipole interaction with α-helix N12. The role of 

E203 as a gate became more evident when we compared the distance between deprotonated 

E203 and R28 with that between protonated E203 and R28. As shown in Figure 2, the 

distance between E203 and R28 remained nearly unchanged at approximately 2Å before 

protonation. However, these residues moved apart from each other as E203 lost its charge by 

protonation. Thus, it is clear that the protonation of E203 is a prerequisite for the formation of 

the secondary pore. 

It is also possible that there are several other factors that may be involved in the formation 

of the secondary pore. To investigate whether other factors are necessary for the secondary 
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pore formation, we systematically generated structures with an embedded ClC exchanger by 

varying the position of the chloride ion and the protonation state of the E148 and E203 

residues. As summarized in Table 1, the secondary pore was formed only when both E148 

and E203 were protonated and the chloride ions at the primary pore were moved to outside of 

the pore, which implies that the formation of the secondary pore is affected not only by the 

protonation state of E148 and E203, but also by the position of the chloride ion inside the 

primary pore. Here, it is interesting to note that the secondary pore was always filled with 

water molecules originating from the intracellular side whereas no water molecules were 

observed to migrate from the extracellular side. 

 

Proton transport via the secondary water pore 

Based on the result that the formation of the continuous water network inside the secondary 

pore is dependent on the protonation state of E203 that is known to be involved with proton 

transport4, it is reasonable to assume that this water pore is a pathway for proton transport 

because a proton is easily transported along the continuous water network by hop-and-turn, or 

the “Grotthuss mechanism”15. According to experimental results3,4, the ClC exchanger loses 

its ability to transport protons when E203 is mutated to a glutamine (E203Q). Thus, a 

secondary water pore that transports protons should not be formed in the mutant E203Q ClC 

exchanger if our assumption is correct. To determine whether the secondary water pore is 

formed in the mutant ClC exchanger (E203Q), a ClC exchanger in which E203 is mutated to 

glutamine was equilibrated for 14 ns using MD simulation. In the mutated structure, it was 

observed that the E203Q interacted with R28 via hydrogen bonding (Fig. 3a). We also noted 

that the hydrogen bonding between E203Q and R28 prevented water molecules on the 

intracellular side from entering into the secondary pore, as did the charge-charge interaction 

between E203 and R28 in the wild type (see Fig. 1a and 3a). Nonetheless, these two 
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structures (wild vs. mutated) have a significant difference in the way of controlling the 

interaction between E203 (Q203 in the mutant exchanger) and R28. In contrast to the wild 

type ClC exchanger, which is able to control the interaction between E203 and R28 by 

gaining or losing a negative charge based on the protonation state of E203, the E203Q ClC 

exchanger kept interacting with R28 irrespective of the protonation state of Q203. As a result, 

the formation of the secondary pore was not observed in the mutant exchanger (E203Q), as 

summarized in Table 1. This result explains why the mutated ClC exchanger lost its function 

of proton transport when E203 was mutated to glutamine. Based on these results, it can be 

concluded that the secondary pore is a pathway for proton transport in ClC exchangers. 

These results are consistent with another hypothesis that suggesting the proton pathway is 

separate from the chloride ion pathway and that the two pathways are bifurcated at E148 

toward the intracellular side3,4. However, this hypothesis assumed that protons would be 

transported through this pathway via a protein residue7, rather than a continuous water 

network, which highlights the following unresolved issues: First, proton movement along the 

protein’s residues must be coupled to the occupancy of the binding sites of chloride ions. 

Second, the distance between E148 and E203 is farther than 15Å, which is too far of a 

distance for a proton to cross in a single hop. Assuming that the secondary water pore 

discovered in this work is a proton pathway, these issues are easily explained: First, proton 

conduction in a ClC exchanger is coupled to chloride ion transport because the secondary 

pore is formed only when the chloride ions inside the chloride ion pathway are moved to the 

outside of the pore. Second, a proton can be easily transported between E203 and E148 along 

the continuous water network by hop-and-turn, or the “Grotthuss mechanism”15.  

 

Role of Y445 as a barrier between the proton and chloride ion pathway 
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For a proton to be transported from E203 to E148, a series of protein residues or a continuous 

water network that can mediate the proton movement is required. Accardi et al.7 focused on 

the highly conserved tyrosine residue Y445 as a candidate for proton transport because it is 

the only residue that has a hydroxyl side group that lies halfway between E203 and E148. 

However, they found that mutation of Y445 to phenylalanine (F) or tryptophan (W) has no 

significant effect on the electrophysiological behavior of the exchanger. Here, it is 

noteworthy that the aromatic side group of Y445 is similar to that of phenylalanine and 

tryptophan except hydroxyl group.  

  To determine the role of the Y445 hydroxyl group in proton transport, a ClC exchanger in 

which the tyrosine residue was mutated to a phenylalanine (Y445F) was generated for MD 

simulations. As shown in Table 1 and Figure 3b, the secondary pore was formed in the 

structure containing Y445F as in the wild type structure. In addition, no differences were 

observed in how the aromatic side chain of both Y445 and Y445F separated the secondary 

pore from the chloride ion pathway. When the chloride ions inside the primary pore were 

transported to the outside of the pore, the side chain of the tyrosine residue was rotated 

slightly toward the primary pore, which resulted in the expansion of the secondary water pore, 

as shown in Figure 1b and c. It is known that the primary role of the tyrosine residue is to 

stabilize a chloride ion through the hydroxyl group when the ion is bound at the Scen 

position11,12. In addition to its primary role, it seems that the tyrosine residue may have a 

secondary role where it functions as a barrier that separates the secondary pore from the 

primary pore via the aromatic side group. Based on these assumptions, the removal of the 

hydroxyl group from the tyrosine residue should not affect the formation of the secondary 

water pore. This hypothesis is supported by the experimental results demonstrating that 

proton transport was not impaired by the removal of the hydroxyl group from the tyrosine 

residue by the mutations Y445F and Y445W7. 
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CONCLUSIONS 

In the present work, a secondary water pore in a ClC exchanger was revealed using atomistic 

MD simulation. The secondary water pore is formed between the intracellular residue E203 

and the extracellular residue E148. The systematic research revealed that the secondary water 

pore is formed only when both E148 and E203 are protonated and the chloride ions inside the 

chloride ion pathway are transported to the outside. It was also determined that E203 interacts 

with R28 and functions as a gate that controls the formation of the secondary pore by losing 

or gaining a negative charge according to its protonation state. In addition, Y445 was 

demonstrated to function as a barrier that separates the secondary water pore from the 

chloride ion pathway. We conclude that the secondary pore is a pathway for proton 

conduction on the basis of the following results: First, the secondary pore is formed only 

when E203, which is known to be a key residue for proton transport3,4, loses its charge by 

protonation. Second, a continuous water network inside the secondary pore links E203 and 

E148, two residues known to be involved in the proton transport in ClC exchangers. Third, 

assuming the secondary water pore is a proton pathway, two unresolved issues introduced by 

the previous proposal4 are now resolved. Fourth, the highly conserved Y445 functions as a 

barrier that separates the secondary pore from the chloride ion pathway, supported by the 

experimental result7 that removal of the hydroxyl group from Y445 does not affect the 

electrophysiological behavior of the exchanger. Finally, considering that the secondary water 

pore for proton conduction is formed when two chloride ions inside the chloride ion pathway 

are transported to the outside of the pore, it is clear why the flux of chloride ions is coupled to 

the flux of protons in the opposite direction with a stoichiometric ratio of 2:1. In light of these 

results, we hypothesize that the transport of chloride ions in a ClC exchanger is coupled to 

proton transport as illustrated in Figure 4. First, the protonation of E148 causes the primary 
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pore to be opened, which results in chloride ion conduction (Fig. 4a). After the chloride ions 

pass through the primary pore, the interaction between E203 and the R28 is broken, resulting 

in the formation of a water network in the secondary pore (Fig. 4b). Next, the proton 

belonging to protonated E148 is transferred to a water molecule inside the secondary pore, 

and subsequently the primary pore is closed by deprotonation of E128 (Fig. 4c). Finally, the 

proton is able to pass through the secondary pore via the water network (Fig. 4d). 

Although this work demonstrates that ClC exchangers conduct protons via the water 

network formed inside the secondary pore rather than by a protein residue, it still remains to 

be elucidated why the simultaneous protonation of E203 and E148 is required for the 

secondary pore formation. Also, additional experimental and theoretical investigations are 

required to verify that a proton can be transported via this water network. Nonetheless, we 

believe that the discovery of the secondary water pore in a ClC exchanger is a stepping stone 

to better understand the unique characteristics of ClC exchangers in which chloride ion 

transport is coupled to proton transport and a good example for prediction in silico precedent 

of verification in vivo. 

 

METHODS 

Structural simulations were performed using the wild type ClC crystal structure, Protein Data 

Bank (PDB) code 1OTS, which has recently been resolved by X-ray crystallography at 2.5Å 

resolution from Escherichia coli12. The two chloride ions at positions Sint and Scen in the 

crystal were preserved. The positions Sint and Scen were designated according the notation of 

Dutzler et al.12
 The initial structure was embedded in a 16:0-palmytoyl,18:1(Δ9)-

oleoylphosphatidylethanolamine lipid bilayer, which is generally accepted as a good model 

for the E. coli membrane16. The lipid bilayer with the embedded ClC protein was hydrated 

with approximately 30 Å thick water layers. The final structure contained approximately 
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87,600 atoms and was energy-minimized by the conjugated gradient method. First, only 

water molecules were minimized while the other atoms were fixed with constraints; the 

constraints imposed on the lipid molecules and the protein were then sequentially released so 

that the ClC protein became free to move. The generated membrane structure was 

equilibrated using MD simulation for 4 ns with an NPT ensemble. To elucidate the role of 

E148 and E203 in proton transport, different initial structures were generated by modifying 

the protonation state of E148 and E203, as well as the position of the chloride ions. In 

addition, the role of the hydroxyl group of Y445 was investigated by mutation to a 

phenylalanine. The structure with E203 mutated to a glutamine (E203Q) was also generated 

to confirm previous experimental results4. Each modified structure, summarized in Table 1, 

was equilibrated for 14 ns, and the structural changes caused by the modification are 

observed. The Langevin piston algorithm was used for constant pressure and temperature. 

Pressure and temperature were set to 1 atm and 310 K, respectively. The particle mesh Ewald 

(PME) summation was used for the calculation of the electrostatic force without cutoff17. The 

electrostatic neutralization of the system, which is a prerequisite for PME, was satisfied by 

adding an appropriate number of sodium and chloride ions to each modified structure. All 

calculations were performed using the NAMD program for parallel computation18. The 

CHARMM force field with all-atom parameters was used: CHARMM22 for protein19, 

CHARMM27 for phospholipids20, and the TIP3P model for water molecules21. For sodium 

and chloride ions22, parameters in the CHARMM force field were used without modification. 

The HOLE program13, which has been widely used for the prediction of the pore in channel 

proteins, is used for the pore analysis. All simulations were performed on our local Linux 

cluster. 
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FIGURE LEGENDS 

Figure 1. Structural representations of E. coli ClC exchanger. Equilibrated structures of 

the ClC exchanger with the primary pore (a) and the secondary pore (b) are shown and two 

structures overlapped are shown in (c) to compare the structural differences between (a) and 

(b). Two chloride ions are represented as green spheres in (a) and the pores predicted by the 

HOLE program are shown with yellow transparent color in (a) and (b). The structures (a) and 

(b) are colored red and blue in (c), respectively. D, F, and N helices are shown by cartoon 

representation and key residues are shown in stick representation. All the snapshot figures in 

this paper are created with PyMOL (www.pymol.org). 

Figure 2. Distance between E203 and R28 during the equilibration simulation. Blue and 

red lines represent the distances when E203 is protonated and deprotonated, respectively. 

Figure 3. Structural representations of E. coli mutant ClC exchangers. Simulations were 

performed with mutants E203Q (a) and Y445F (b). D, F, and N helices are shown by cartoon 

representation and key residues are shown in stick representation. Hydrogen bonding between 

Q203 and R28 is represented with red lines. 

Figure 4. Schematic representation of the coupled movement of chloride ions and 

protons through the primary and secondary pores of the ClC exchanger. Helices D, F, 

and N are represented by grey cylinders. Chloride ions (a) are represented as green spheres 

and protons are represented as yellow spheres. (a) Protonation of E148 causes the primary 

pore to be opened, which results in chloride ion conduction. (b) After the chloride ions pass 

through the primary pore, the interaction between E203 and the R28 is broken due to the 

protonation of E203, resulting in the formation of a water network in the secondary pore. (c) 

A proton belonging to E128 is transferred to a water molecule in the secondary pore and 

passes through the secondary pore via the water network.
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Conditions used in simulation 

 protonation 
of E203 

protonation 
of E148 

number of Cl– 
at the primary pore 

the formation of 
the secondary pore 

2 X 
O 

0 O 

2 X 
O 

X 
0 X 

2 X 
O 

0 X 

2 X 

WT 

X 

X 
0 X 

O 0 O 
Y445F O 

X 0 X 

O 0 X 
E203Q E → Q 

X 0 X 
 

 

Table 1. Atomistic molecular dynamics simulation conditions for the ClC exchanger 

from Escherichia coli. The configuration for each structure simulation was equilibrated for 

14 ns. The inclusion of a simulation condition (protonation of E203 or E148) or the formation 

of the secondary pore is denoted by (O) and the exclusion of a simulation condition 

(protonation of E203 or E148) is denoted by (X). 
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