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ARTICLE INFO ABSTRACT

Comparisons between expectations and outcomes are critical for learning. Termed prediction errors, the vio-
lations of expectancy that occur when outcomes differ from expectations are used to modify value and shape
behaviour. In the present study, we examined how a wide range of expectancy violations impacted neural signals
associated with feedback processing. Participants performed a time estimation task in which they had to guess
the duration of one second while their electroencephalogram was recorded. In a key manipulation, we varied
task difficulty across the experiment to create a range of different feedback expectancies — reward feedback was
either very expected, expected, 50/50, unexpected, or very unexpected. As predicted, the amplitude of the
reward positivity, a component of the human event-related brain potential associated with feedback processing,
scaled inversely with expectancy (e.g., unexpected feedback yielded a larger reward positivity than expected
feedback). Interestingly, the scaling of the reward positivity to outcome expectancy was not linear as would be
predicted by some theoretical models. Specifically, we found that the amplitude of the reward positivity was
about equivalent for very expected and expected feedback, and for very unexpected and unexpected feedback. As
such, our results demonstrate a sigmoidal relationship between reward expectancy and the amplitude of the
reward positivity, with interesting implications for theories of reinforcement learning.
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1. Introduction

Reinforcement learning in humans and other animals depends on
the computation of prediction errors — discrepancies between the ex-
pected and the actual value of outcomes. Computationally, prediction
errors are used to update the values of choice options so that over time
behaviour is optimized to achieve the system’s primary goal of max-
imizing reward (Rescorla & Wagner, 1972; Sutton & Barto, 1998; c.f.
utilitarianism, Mill, 1863). Past findings with monkeys suggest that
learning systems within the simian brain utilize neural prediction errors
to optimize behaviour, with the primary supportive evidence being the
scaling of the firing rate of the midbrain dopamine system in these
animals in a manner predicted by reinforcement learning theory
(Schultz, Dayan, & Montague, 1997; see also Amiez, Joseph, & Procyk,
2005; Matsumoto, Suzuki, & Tanaka, 2003; Matsumoto, Matsumoto,
Abe, & Tanaka, 2007; Schultz, Tremblay, & Hollerman, 1998;
Shidara & Richmond, 2002). For example, in a seminal study, Schultz
et al. (1997) demonstrated that the firing rates of neurons within the
midbrain dopamine system in monkeys mirrored the theoretical pre-
dictions of reinforcement learning: with learning, the dopamine neuron

firing rates concomitantly decreased to rewards and increased to cues
predicting the rewards. In humans, studies using both functional mag-
netic resonance imaging (Bray & O’Doherty, 2007; Brown & Braver,
2005; Haruno & Kawato, 2006; Jessup, Busemeyer, & Brown, 2010;
Nieuwenhuis et al., 2005; Niv, Edlund, Dayan, & O’Doherty, 2012;
O’Doherty et al., 2004; Roy et al., 2014; Silvetti, Seurinck, & Verguts,
2013; Tanaka et al., 2004; Tobler, O’Doherty, Dolan, & Schultz, 2006)
and electroencephalography (Cohen & Ranganath, 2007; Eppinger,
Kray, Mock, & Mecklinger, 2008; Ferdinand, Mecklinger,
Kray, & Gehring, 2012; Hajcak, Moser, Holroyd & Simons, 2007;
Hassall, MacLean, & Krigolson, 2014; Hewig et al., 2007;
Holroyd & Krigolson, = 2007; Holroyd & Coles, 2002; Holroyd,
Nieuwenhuis, Yeung, & Cohen, 2003; Holroyd, Krigolson, Baker,
Lee, & Gibson, 2009; Krigolson & Holroyd, 2007; Krigolson et al., 2011;
Krigolson, Hassall, & Handy, 2014; Morris, Heerey, Gold, & Holroyd,
2008; Nieuwenhuis et al., 2002; Walsh & Anderson, 2012) have shown
learning-related changes in the evoked responses to reward feedback
that suggest that the underlying neural systems generating these signals
are computing prediction errors. Specifically, the aforementioned stu-
dies in humans (and in monkeys) have shown a sensitivity of reward
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signals to expectancy — the difference between unexpected rewards
and punishments elicit a larger neural response than the difference
between expected rewards and punishments (e.g., Holroyd & Krigolson,
2007; Sambrook & Goslin, 2015).

Reward prediction error theories derive from early mathematical
formalisms of reinforcement learning. Rescorla and Wagner (1972)
proposed that surprising events should have more impact on behaviour
than unsurprising events. They offered that the value of a given cue was
the prediction, or the expectancy, of a subsequent outcome; as such,
they defined a prediction error as the difference between the value of an
outcome and the value of the cue that predicted the outcome. In
mathematical models, for example, if a cue would lead with 100%
confidence to a reward, its value would be 1, yet if the agent was unsure
whether the cue would result in a reward (50% chance of reward), then
the value would be 0.5. This position holds that larger differences be-
tween expected and outcome values lead to larger prediction errors.
Rescorla and Wagner (1972) also proposed that the degree of learning
is proportional to the magnitude of prediction errors, with larger and
smaller prediction errors resulting in larger and smaller changes in
value and behavior, respectively. On this account, the degree of
learning from an outcome is linearly related to the expectedness of an
outcome. Additionally, modern developments of the Rescorla-Wagner
learning rule (e.g., temporal difference learning; Sutton & Barto, 1990;
Sutton & Barto, 1998), continue to describe the relationship between
learning and outcome expectedness to be linear. This prediction has
received substantial empirical support. For instance, studies have
shown that the magnitude of neural prediction error signals impacts the
magnitude of behavioural adaptations on future trials within a re-
occurring environment in that the larger the prediction error signal, the
larger the behavioural adaptation (Cavanagh, Frank, Klein, & Allen,
2010; Cohen & Ranganath, 2007; Frank, Woroch, & Curran, 2005;
Gehring, Goss, Coles, Meyer, & Donchin, 1993; Holroyd & Krigolson,
2007; Holroyd et al., 2009; Morris et al., 2008; Wessel, Danielmeier,
Morton, & Ullsperger, 2012).

In principle then, neural systems for reinforcement learning should
be sensitive to differing levels of expectancy deviation (i.e., differing
prediction error magnitudes). Supporting this, Holroyd and Krigolson
(2007) demonstrated that the amplitude of the reward positivity (for-
merly the feedback-related negativity), a medial-frontal component of
the human event-related brain potential (ERP) involved in reward
evaluation, scaled to outcome expectancy during performance of a time
estimation task in which on each trial participants guessed the duration
of one second and received feedback on their performance. They
showed that the amplitude of the reward positivity for unexpected
outcomes was larger than the reward positivity for expected outcomes.
Importantly, they demonstrated that changes in response times were
larger following incorrect trials than correct trials, as well as un-
expected trials than expected trials, demonstrating that behavioural
adaptations were related to the amplitude of the reward positivity. In a
follow-up study that confirmed and extended this result, Holroyd et al.
(2009) demonstrated that the reward positivity scaled across three le-
vels of expectancy — expected (80%), control (50%), and unexpected
(20%: see also Cohen, Elger, & Ranganath, 2007; Eppinger et al., 2008;
Ferdinand et al., 2012; Hajcak et al., 2007; Hewig et al., 2007;
Holroyd & Coles, 2002; Holroyd, Pakzad-Vaezi, & Krigolson, 2008;
Holroyd, Nieuwenhuis, Yeung, & Cohen, 2003; Holroyd,
Krigolson, & Lee, 2011; Kreussel et al., 2012; Liao, Gramann, Feng,
Dedk, & Li, 2011; Martin & Potts, 2011; Nieuwenhuis et al., 2002; Ohira
et al., 2010; Pfabigan, Alexopoulos, Bauer, & Sailer, 2011; Potts, Martin,
Burton, & Montague, 2006; Walsh & Anderson, 2011).

In contrast to these computational theories, biological processes are
often non-linear. For example, non-linearity has been found in the en-
docrine system (Baldi & Bucherelli, 2005), in synaptic plasticity (Kerr,
Huggett, & Abraham, 1994), and in neural communication (Foster,
Kreitzer, & Regehr, 2002). Indeed, even midbrain dopamine signaling
has been characterized as non-linear when manipulating reward

266

Biological Psychology 129 (2017) 265-272

expectancy (Fiorillo, Tobler, & Schultz, 2003) and reward magnitude
(Schultz, 2016; Schultz et al., 2015; Stauffer, Lak, Kobayashi, & Schultz,
2016; Stauffer, Lak, & Schultz, 2014). For example, Stauffer et al.
(2014) gave monkeys unpredictable rewards of varying magnitude
(0.1-1.2 ml of juice). The authors asserted that, because the rewards
could not be predicted, reward predictions were constant and near zero.
Thus, they claimed, prediction error magnitudes were proportional to
reward magnitudes. Interestingly, they observed that dopamine acti-
vation comported to a sigmoid-shaped utility function, such that ex-
treme gains and losses resulted in relatively smaller changes in sub-
jective  value (see Bernoulli, 1738 /1954; Mas-Colell,
Whinston, & Green, 1995).

Thus a relationship between reward expectancy and prediction error
amplitudes is apparent, yet the issue of linearity has never been ex-
amined. In the present study, we investigated the relationship between
reward expectancy and a neural correlate of reward evaluation, the
reward positivity, across a range of expectancies from very expected to
very unexpected. The reward positivity reflects the evaluation of re-
ward feedback within the human medial-frontal cortex and is quanti-
fied as the difference between the ‘positive’ feedback waveform and the
‘negative’ feedback waveform (positive — negative; see Proudfit, 2015
for a review). Similar to Holroyd and Krigolson (2007), we employed a
time estimation task modified to include a range of conditions in which
successful outcomes were either very expected, expected, un-
predictable, unexpected and very unexpected. In line with previous
findings (e.g., Holroyd et al., 2009) and a strict interpretation of the
Rescorla-Wagner learning rule (Rescorla & Wagner, 1972), one of our
hypotheses was that there would be a linear relationship between the
amplitude of the reward positivity and expectancy. However, our al-
ternative hypothesis was that we would find a non-linear relationship
between the amplitude of the reward positivity and expectancy — a
result in congruence with biological research (e.g., a sigmoidal re-
lationship). Furthermore, we sought to determine whether the broa-
dened range of expectancies would cause a broadened range of changes
in behaviour. Thus, in line with Holroyd and Krigolson (2007), we
hypothesized that the behavioural adaptations as measured by changes
in response times following positive and negative feedback would be
larger following incorrect trials than correct trials and would follow the
same trend as the reward positivity across expectancies.

2. Methods
2.1. Participants

Twenty undergraduate students (10 female, mean age: 22) from
Dalhousie University participated in the experiment. All participants
had normal or corrected-to-normal vision, no known neurological im-
pairments, and volunteered for extra course credit in a psychology
course. The data of two participants were removed from post-experi-
ment analyses — due to an excessive number of artifacts in the EEG
data of one subject and to errors in the experimental procedure for the
other. All participants provided informed consent approved by the
Health Sciences Research Ethics Board at Dalhousie University, and the
study followed ethical standards as prescribed in the 1964 Declaration
of Helsinki.

2.2. Apparatus and procedure

Participants were comfortably seated in a soundproof room in front
of a computer monitor and used a standard USB gamepad to perform a
modified time estimation task (Miltner, Braun, & Coles, 1997) written
in MATLAB (Version 8.42, Mathworks, Natick, U.S.A.) using the Psy-
chophysics Toolbox extension (Brainard, 1997). The time estimation
task has been used previously to manipulate reward expectancy (e.g.,
Holroyd & Krigolson, 2007). On each trial of the task, participants were
asked to estimate the duration of one second. Participants were cued to
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begin their estimation by a 50 ms auditory tone (3000 Hz) and de-
pressed a button on the gamepad when they believed one second had
elapsed. Following the participant’s response, a fixation cross was
centrally presented for a brief duration (500-800 ms) after which a
feedback stimulus was presented for 1000 ms. The feedback stimulus
was presented in light grey on a dark grey background and consisted of
either a check mark for correct trials or an ‘X’ for incorrect trials. A trial
was considered correct when the participant’s response fell within a
response window centered on the target estimation time. Prior to the
next trial, a blank screen was presented for a brief period of time
(500-800 ms).

The response window was initially set to be 1000 ms 100 ms
(i.e., 900 ms to 1100 ms) after the auditory cue. After each correct trial
the response window decreased in size and conversely after each in-
correct trial the response window increased in size, which ensures that
the feedback probabilities are consistent across participants. For ex-
ample, in the control condition, the degree to which the response
window increased or decreased after correct and incorrect performance
was equal (15 ms). Although participants estimated the second-long
interval with varying degrees of precision, they each reached an equi-
librium consisting of roughly half correct and half incorrect trials.
Further, the degree to which the response window increased or de-
creased was dependent on experimental condition (very expected, ex-
pected, control, unexpected, and very unexpected; see Table 1), which
determined the difficulty of the condition and participants’ expectations
of success. For example, in the very expected condition the response
window decreased by a small amount on correct trials, becoming only
slightly more difficult, and increased by a large amount following in-
correct trials, becoming much easier, resulting in participants receiving
more positive feedback than negative feedback. Theoretical and actual
outcome feedback proportions are provided in Table 1. At the start of
each block, the response window size was initialized with the final
response window size of the previous block and within each block
participants only encountered trials from one experimental condition.

The experiment began with a practice block that constituted 20
trials with a two second target time and a change of response window
size as in the control condition ( = 15 ms) so participants could gain
familiarity with the task. Participants completed two blocks of 80 trials
for each of the five experimental conditions. As such, there were a total
of 800 experimental trials across all five conditions per participant. The
sequencing of experimental conditions was randomly counterbalanced
across participants. The task lasted on average 62 min [95% confidence
intervals: 61 min, 63 min].

+

2.3. Data acquisition

Response time (ms) and accuracy (correct or incorrect) data were
recorded by the experimental program. Electroencephalographic (EEG)
data from 64 electrodes that were mounted in a fitted cap with a
standard 10-10 layout (ActiCAP, Brain Products GmbH, Munich,
Germany) were recorded using Brain Vision Recorder software (Version
1.10, Brain Products GmbH, Munich, Germany). All electrodes were
referenced to a common ground and, during recording, electrode

Table 1
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impedances were kept below 20 k2. EEG data were sampled at 500 Hz,
amplified (ActiCHamp, Revision 2, Brain Products GmbH, Munich,
Germany), and filtered through an antialiasing low-pass filter of 8 kHz.

2.4. Data analysis

2.4.1. Behavioural analysis

For each condition (very expected, expected, control, unexpected,
very unexpected) and feedback outcome (positive, negative), we com-
puted mean response times and mean accuracies for each participant.
Furthermore, we computed the absolute difference of mean change in
response times following correct and incorrect trials for each condition
and feedback outcome to examine whether there were changes in be-
haviour related to differences in reward expectancy.

2.4.2. Electroencephalographic analysis

All EEG processing was conducted in Brain Vision Analyzer (Version
2.1.1, Brain Products GmbH, Munich, Germany). For each participant
and channel the continuous EEG data were first re-referenced to an
average mastoid reference and were then filtered using a dual-pass
phase free Butterworth filter (pass band: 0.1 Hz to 30 Hz; notch filter:
60 Hz). After this, epochs of data were extracted from the continuous
EEG from 1000 ms before to 2000 ms after every event of interest.
Events of interest in the present study were experiment condition (very
expected, expected, control, unexpected, very unexpected) and feed-
back valence (positive, negative) thus yielding 10 bins of EEG data for
each participant (e.g., very expected positive, very expected negative).
Long (3000 ms) epochs were extracted from the continuous EEG to
facilitate independent component analysis (ICA) native to Brain Vision
Analyzer to identify and remove blinks and other eye movement arti-
facts (Luck, 2014). A restricted fast ICA with classic PCA sphering was
used in which processing continued until either a convergence bound of
1.0 x 1077 or 150 steps had been reached. Subsequent to this, a visual
examination of component head maps in conjunction with an ex-
amination of the related factor loadings was used to select components
to be removed to correct ocular artifact via ICA back transformation.
Following from this, the EEG data were re-segmented to a shorter
800 ms interval for each event of interest (200 ms before to 600 ms
after). Data were then baseline corrected using a 200 ms window prior
to feedback stimulus onset and were submitted to an artifact rejection
algorithm that removed segments of data that had gradients greater
than 10 pV/ms or an absolute difference of more than 150 pV (segment
maxima minus segment minima) within the segment. The artifact re-
jection algorithm resulted in a loss of 7.5% of the total EEG data, on
average, for each participant.

Event-related potential waveforms were then constructed for each
participant and channel by averaging the segmented EEG for each event
of interest, and grand average ERP waveforms were constructed by
averaging the ERPs across participants. Next, difference waveforms
were constructed for each participant and channel for each level of
expectancy by subtracting negative feedback ERPs from positive feed-
back ERPs (Luck, 2014; Table 2).

For example, the expected condition difference waveforms were

Experimental manipulation of task difficulty. Responses were deemed correct when they occurred within a temporal window centered around the one second mark; task difficulty was
manipulated as a function of how this response window shrank (made more difficult) or grew (made easier) after correct and incorrect trials, respectively. The degree of change is
reported as increment correct and incorrect for each condition. Based on these increments, predictions of success for each condition are reported as correct and incorrect probability. The

actual mean percentages of success are also reported for comparison.

Condition of Difficulty Increment Correct Increment Incorrect

Correct Probability

Incorrect Probability Correct Actual Incorrect Actual

Very Expected 3ms 30 ms 90%
Expected 3ms 12 ms 75%
Control 15 ms 15 ms 50%
Unexpected 12 ms 3ms 25%
Very Unexpected 30 ms 3ms 10%

10% 84% 16%
25% 71% 29%
50% 52% 48%
75% 29% 71%
90% 15% 85%
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Table 2
Conditional waveform subtractions to create reward positivity difference waveforms for
all conditions of expectancy.

Condition of Expectancy Feedback Waveform Subtractions

Very Expected Positive in very expected — Negative in very

unexpected

Expected Positive in expected — Negative in unexpected
Control Positive in control — Negative in control
Unexpected Positive in unexpected — Negative in expected

Very Unexpected Positive in very unexpected — Negative in very

expected

created by subtracting the ERPs to negative feedback in the unexpected
correct condition from the ERPs to positive feedback in the expected
correct condition. This procedure isolated the effect of feedback valence
and/or the interaction of feedback valence and probability by con-
trolling for a main effect of event probability (see Holroyd & Krigolson,
2007; Sambrook & Goslin, 2015). Finally, averaging the corresponding
individual difference waveforms across all participants created five
grand average difference waveforms. To determine the scalp distribu-
tion of the reward positivity, and to assess the presence of component
overlap, topographic maps were created for each condition by aver-
aging individual participant scalp topographies at the time of their re-
spective reward positivity peaks.

For each of the five expectancy conditions (very expected, expected,
control, unexpected, very unexpected) the reward positivity amplitude
was measured as the maximal deflection between 200 and 350 ms in
the participant average waveforms following feedback stimulus onset at
channel FCz, where the peaks were maximal and in line with previous
literature (Krigolson & Holroyd, 2007; Krigolson et al., 2014).

2.4.3. Statistical procedures

Statistics were conducted on accuracy to ensure that the experi-
mental manipulation of difficulty was successful and on reaction time to
determine corresponding changes in behaviour related to neural sig-
nals. A one-way repeated measures ANOVA was conducted on accuracy
rates across conditions and followed up with a trend analysis to de-
scribe the relationship. These same statistical procedures were carried
out on reaction time scores. Statistics on neural data focused on the
reward positivity. First, we checked for differences in the peak latency
of the reward positivity across conditions with a one-way repeated
measures ANOVA. Second, a one-way repeated measures ANOVA was
used to determine whether the amplitude of the reward positivity
changed across conditions. Repeated measures t-tests with a Holm
correction (Holm, 1979) were then conducted to determine where the
amplitude differed. Finally, a post-hoc trend analysis was conducted to
determine the relationship of this change. The functions tested were
sigmoidal, linear, quadratic, and cubic, and the fit was determined by
variability explained (R?.

ANOVAs, t-tests, and trend analyses were conducted in SPSS
(Version 23, IBM Corp., Armonk, U.S.A.). The trend analysis for the
reward positivity amplitude was conducted using custom code devel-
oped in MATLAB (Version 8.42, Mathworks, Natick, U.S.A.).
Corrections of t-tests using the Holm method were performed using R
Studio (Version 0.99.902, RStudio Inc., Boston, U.S.A) and R (Version
3.3.0, The R Foundation, Vienna, Austria).

3. Results
3.1. Behavioural data

A repeated measures ANOVA (condition: very expected, expected,
control, unexpected, and very unexpected) with a Greenhouse-Geisser
correction (assumption of sphericity was violated, X2(9) = 26.85,
p = 0.002) revealed that participants’ accuracy decreased with
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Fig. 1. Behavioural data. Change in response times following negative feedback for all
levels of expectancy. Error bars indicate 95% confidence intervals.

increasing condition difficulty, F(2.258, 38.38) = 437.60, p < 0.001,
n2 = 0.963 (linear trend, F(1.17) = 409.43, p < 0.001, 12 = 0.960;
see Table 1). A subsequent repeated measures ANOVA (condition: very
expected, expected, control, unexpected, and very unexpected) cor-
rected with Greenhouse-Geisser (assumption of Sphericity was violated,
X3(9) = 30.77, p < 0.001) revealed that response times increased as
the outcomes (negative feedback) became more unexpected, F(1.84,
31.26) = 3.61, p = 0.042, ng = 0.175 (quadratic trend, F(1.17)
= 5.72, p = 0.028, nZ = 0.252; see Fig. 1).

3.2. Electroencephalographic data

The grand average difference waveforms revealed an ERP compo-
nent with a timing and scalp topography consistent with the reward
positivity in all of the experimental conditions (see Figs. 2 and 3). All of
the difference waveforms were maximal at frontal-central areas of the
scalp for all conditions. Full descriptive statistics for the reward posi-
tivity are provided in Table 3. A repeated measures ANOVA indicated
that there were no significant differences between reward positivity
timing across feedback expectancies, F(4.68) = 1.65, p = 0.172,
n2 = 0.089. The assumption of sphericity was met, X*(9) = 7.04,
p = 0.636.

A repeated measures ANOVA with a Greenhouse-Geisser correction
(assumption of sphericity was violated, X%(9) = 22.18, p = 0.009)
conducted on the reward positivity amplitude revealed that the am-
plitude of the component was differentially modulated by experimental
condition, F(2.50, 42.47) = 14.11,p < 0.001, ng = 0.453 (see Fig. 2).
As predicted, the reward positivity was larger in the unexpected con-
dition relative to the control condition, t(17) = 4.55, p = 0.002, and
larger in the control condition relative to the expected condition, £(17)
= 3.20, p = 0.026. Further, the size of the reward positivity for the
very unexpected and the unexpected conditions did not statistically
differ, t(17) = 0.45, p = 0.696, nor did the size of the reward positivity
between the very expected and expected conditions, t(17) = 0.97,
p = 0.696. Moreover, a post-hoc analysis revealed that a sigmoid
function best fit the data (R® = 0.971) as compared to linear
(R? = 0.921) and quadratic (R% = 0.947) functions. Fig. 4A presents
the reward positivity amplitudes across conditions as a function of their
observed accuracy for each condition. Fig. 4B presents the difference in
reward positivity amplitude between each pair of conditions that are
closest in probability (error bars indicate 95% confidence intervals;
Cummings, 2013).

4. Discussion

Supporting previous work, the current research demonstrates that
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Fig. 2. Conditional waveforms and difference waveforms for all conditions of expectancy at channel FCz.

the amplitude of the reward positivity scales in magnitude with ex-
pectancy (e.g., Holroyd & Krigolson, 2007; Holroyd et al., 2009;
Sambrook & Goslin, 2015). Specifically, we found that the amplitude of

Table 3
Reward positivity peak voltages and peak times for all conditions of expectancy with 95%

confidence intervals at channel FCz.

the reward positivity increased from the expected to the control con- Condition of Peak 05% Confidence  Peak 95% Confidence
dition, and from the control to the unexpected condition, in line with Expectancy Amplitude Intervals (uV) Time Intervals (ms)
the predictions of reinforcement learning theory (i.e., ®v) (ms)
Rescorla & Wagner, 1972). We also demonstrate that the amplitude of
the reward positivity was not sensitive to more extreme differences in Very Expected >3 375 682 267 243 290

p ty o . : . Expected 45 2.65  6.36 263 242 283
expectancy. We found that the reward positivity amplitude increased in Control 7.6 536  9.77 268 252 284
a sigmoidal fashion as a function of unexpectedness. These findings are Unexpected 11.2 8.21 14.13 281 265 297
in contrast with theoretical accounts that state that the relationship Very Unexpected  11.9 8.80 15.06 290 272 309
between prediction error amplitude and expectancy is linear (e.g.,
Rescorla & Wagner, 1972).

Very Expected Expected Control Unexpected Very Unexpected

Fig. 3. Topographic maps for all conditions of expectancy. Top: Standardized topographic maps on a constant scale of voltage to demonstrate the reward positivity across conditions.
Bottom: Topographic maps with different individual scales of voltage to demonstrate a scalp topography consistent with the reward positivity in each condition of expectancy.
Topographic contour lines indicate a step of activity to demonstrate the spread of activity across the scalp. Each map has six contour lines equally spaced between the maximum and
minimum voltage of activity on the corresponding plot. The central contour line indicates that activity is strongest at frontal-central regions of the scalp, including electrode FCz — where

the reward positivity is typically analyzed.
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Fig. 4. Reward positivity amplitude peaks and comparisons at channel
B 4 y
20~ FCz. A: Peak amplitudes of the reward positivity across expectancies.
61 Expectancies were transformed into a continuous scale by averaging the
n actual proportion of correct and incorrect rates for each condition of ex-
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This relationship may instead reflect the biological principles of the
dopamine system (Fiorillo et al., 2003; Schultz, 2016; Schultz et al.,
2015; Stauffer et al., 2016; Stauffer et al., 2014). Although it is beyond
the scope of the present manuscript to provide a full background on the
mechanisms underlying the reward positivity, one prominent account
relates its production to phasic dopamine activity. According to the
reinforcement learning (RL) theory of the reward positivity, the reward
positivity reflects the impact of a dopaminergic prediction-error signal
on anterior cingulate cortex (Holroyd & Coles, 2002; Holroyd & Yeung,
2012; Holroyd & McClure, 2015). Specifically, the RL theory of the re-
ward positivity posits that anterior cingulate cortex, the basal ganglia,
and the midbrain dopamine system comprise an RL system within the
human midbrain and medial-frontal cortex. The basal ganglia compute
a prediction error when feedback is received, which the midbrain do-
pamine system then conveys to anterior cingulate cortex (and other
regions) to optimize behaviour. On this view, the reward positivity is
the observable EEG correlate of the impact of the dopaminergic signal
on anterior cingulate cortex (Holroyd & Coles, 2002; Holroyd, 2013,
Holroyd & Yeung, 2012; Holroyd & McClure, 2015; Krigolson et al.,
2014; Krigolson, Pierce, Tanaka, & Holroyd, 2009).

If phasic changes in dopamine influence the amplitude of the re-
ward positivity, then factors affecting the dopamine system (such as
reward magnitude and expectancy) may also affect the reward posi-
tivity. Schultz and others have provided empirical evidence that do-
pamine prediction-error signals change non-linearly with both reward
magnitude and reward expectancy (Fiorillo et al., 2003; Schultz, 2016;
Schultz et al., 2015; Stauffer et al., 2016; Stauffer et al., 2014). For
example, reward expectancy has been shown to affect phasic activation
of monkey dopamine neurons. Fiorillo et al. (2003) held rewards con-
stant and observed that dopamine prediction errors scaled mono-
tonically to reward expectedness: greater prediction errors for more
unexpected rewards. Along with Stauffer et al.’s (2014) discovery of a
utility function within monkey midbrain, the existence of a similar
function for outcome probabilities is plausible. Such a function (relating
reward expectancy to dopamine prediction errors) would provide an
explanation for our reward positivity data showing no change in reward
positivity at extreme levels of expectancy. Additional studies involving
rewards with multiple magnitudes would determine if the reward po-
sitivity responds to reward magnitude the same way that it responds to
reward expectancy here. If the relationship between reward positivity
and reward magnitude resembles a utility function, it would imply that
humans might also learn via a dopamine utility function (Schultz, 2016;
Schultz et al., 2015; Stauffer et al., 2016; Stauffer et al., 2014).

An alternative explanation of these findings is that changes in dif-
ficulty in the extreme expectancy conditions were harder to detect than
changes in the moderate expectancy conditions. Specifically, there was
an average difference of 21% chance of success between the moderate
conditions (e.g., between the control condition and the expected

condition), yet only a difference of 13.5% chance of success between
the extreme conditions (e.g., between the expected condition and very
expected condition). This may have consequences on one’s expectations
in that the precision to which humans can distinguish between success
rates may be limited. Perhaps performance differences between the
extreme conditions were too small for the participants to detect and so
their expectations of success did not differ. This would indicate that
humans broadly generalize across expectations: if the probabilities of
two events are similar enough, they are perceived as being equal.
Future research could address this by collecting self-report data from
participants as to their perceived likelihood of succeeding within each
condition.

In sum, our findings support the claim that the expectancy of out-
comes differentially modulates the reward positivity. We demonstrated
that reward positivity amplitude increased between the expected,
control, and unexpected outcomes. Importantly, we provide novel
evidence that the neural systems that underlie human reward proces-
sing may adhere to biological principles in that there is a sigmoid re-
lationship between the reward positivity and the unexpectedness of an
event. These data suggest that while the neural computations that un-
derlie reward processing in general follow reinforcement learning
theory (e.g., Rescorla & Wagner, 1972), more accurate models of
human learning should incorporate lower and upper boundaries of
expectancy violations.
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