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� We examined individual differences in depression, reward sensitivity, and motivation.
� Elevated depression scores were associated with poor learning of improbable rewards.
� Event-related potentials revealed reduced anticipation for and processing of rewards.

a b s t r a c t

Objective: Although impaired reward processing in depression has been well-documented, the exact nat-
ure of that deficit remains poorly understood. To investigate the link between depression and the neural
mechanisms of reward processing, we examined individual differences in personality.
Methods: We recorded the electroencephalogram from healthy college students engaged in a probabilis-
tic reinforcement learning task. Participants also completed several personality questionnaires that
assessed traits related to reward sensitivity, motivation, and depression. We examined whether behav-
ioral measures of reward learning and event-related potential components related to outcome processing
and reward anticipation—namely, the cue and feedback-related reward positivity (RewP) and the stimu-
lus preceding negativity (SPN)—would link these personality traits to depression.
Results: Participants who scored high in reward sensitivity produced a relatively larger feedback-RewP.
By contrast, participants who scored high in depression learned the contingencies for infrequently
rewarded cue-response combinations relatively poorly, exhibited a larger SPN, and produced a smaller
feedback-RewP, especially to outcomes following cue-response combinations that were frequently
rewarded.
Conclusion: These results point to a primary deficit in reward valuation in individuals who score high in
depression, with secondary consequences that impact reward learning and anticipation.
Significance: Despite recent evidence arguing for an anticipatory deficit in depression, impaired reward
valuation as a primary deficit should be further examined in clinical samples.
� 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Reward processing impairments are commonly observed in
depression (see Der-Avakian and Markou, 2012; Pizzagalli, 2011,
for review), but the exact nature of these deficits is still not fully
understood. Inconsistent experimental results reported through-
out the literature (e.g., Knutson and Heinz, 2015) may stem from
the fact that reward processing is not actually a unitary construct
but is rather characterized by distinct but interrelated processes
with specific temporal dynamics. In particular, reward processing
can be subdivided into separate functions related to outcome pro-
cessing (evaluating the reward value of feedback), reward learning
(adapting stimulus-response contingencies based on principles of
reinforcement learning), and reward anticipation (evaluating the
reward value of cues that predict or anticipate reward acquisition;
Berridge and Kringelbach, 2015; Berridge and Robinson, 1998,
2003; Berridge et al., 2009). All of these processes have been
reported to be deficient in depression, as described below. Our goal
in this study was to investigate the neurocognitive processes that
link these distinct reward processes with individual differences
in depression-related personality traits.

https://core.ac.uk/display/287940713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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1 Because our study examined individual differences in personality across the
normal population (as opposed to in a clinical sample with depression), we refer to
the differences as personality ‘‘traits” (e.g., traits associated with reward sensitivity,
depression-related traits). Further, we use the term ‘‘score” to refer to the specific
traits as revealed by each questionnaire (e.g., ‘‘participants who scored high in reward
responsiveness”). By contrast, we refer to ‘‘depression” or ‘‘depression symptoms”
when referring to the clinical definition of depression.
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Depression has been associated with impaired reward learning
(Kunisato et al., 2012; but see also Chase et al., 2010), particularly
when rewards are intermittent (Kumar et al., 2008; Pizzagalli et al.,
2005, 2008). Likewise, the neuroimaging literature has implicated
both abnormal reward anticipation and outcome processing in
depression (Knutson et al., 2008; Santesso et al., 2012; Smoski
et al., 2009). Relative to that of control groups, striatal regions
are hypoactive during reward anticipation (Pizzagalli et al., 2009;
Smoski et al., 2009; Stoy et al., 2012; but see Gorka et al., 2014
and Knutson et al., 2008) and reward acquisition (Forbes et al.,
2009; Pizzagalli et al., 2009; Smoski et al., 2009) in depressed indi-
viduals. Moreover, the activity of anterior cingulate cortex (ACC) is
typically (Mies et al., 2013; Steele et al., 2007; see also Harvey
et al., 2010) – but not uniformly (Smoski et al., 2009) – reduced
during outcome processing. Further, when clinically depressed
individuals anticipate monetary rewards or pleasant images, ACC
activity is sometimes enhanced (Knutson et al., 2008; Gorka
et al., 2014; see also Dichter et al., 2012), sometimes reduced
(Smoski et al., 2009, 2011), and sometimes unchanged (Pizzagalli
et al., 2009) relative to that of control subjects, discrepancies that
may stem from differences in task design and participant
demographics.

In contrast to these inconsistent results in the hemodynamic
neuroimaging literature, a growing body of electrophysiological
studies in humans has consistently indicated that reward process-
ing is impaired in depression. These studies have focussed on the
reward positivity (RewP), a component of the human event-
related potential (ERP) elicited in response to unexpected reward
delivery that is proposed to index the impact of fast, phasic mid-
brain dopamine reward prediction error (RPE) signals carried to
ACC (Holroyd and Coles, 2002). RewP appears to be generated in
ACC (Becker et al., 2014; Miltner et al., 1997; but see also
Proudfit, 2015) and a wealth of evidence indicates that it indexes
an RPE, being larger for unexpected than for expected rewards
(Sambrook and Goslin, 2015; Walsh and Anderson, 2012). Further,
RewP amplitude is reduced in individuals diagnosed with depres-
sion, as well as in healthy individuals with depressive symptoms
(Proudfit, 2015 for review; see also Holroyd and Umemoto, 2016).

RewP amplitude is correlated across individuals with self-
reports of reward sensitivity (Bress and Hajcak, 2013; see also
Cooper et al., 2014; Liu et al., 2014; Parvaz et al., 2016) and has
been proposed as a potential neural marker for depression
(Proudfit, 2015). However, these findings are complicated by the
fact that other reward processes can also affect RewP amplitude.
For instance, impaired reward learning would be expected to dis-
rupt reward anticipation, thereby disrupting RPE signals to the out-
come and altering the amplitude of the RewP. Conversely, impaired
reward learning associated with depression, as noted above, could
stem from an impairment of outcome processing, as suggested by
the smaller RewP in depression. Given that RewP amplitude is
inversely correlated with reward expectancy (see below, Holroyd
and Krigolson, 2007; Holroyd et al., 2003, 2009; Sambrook and
Goslin, 2015), a blunted RewP could also result from elevated
reward anticipation of the forthcoming reward.

To investigate the link between impaired reward processing
and depression, we adopted an approach recently promoted by
the United States National Institute of Mental Health called the
Research Domain Criteria (RDoC) framework (National Institute
of Mental Health). To better characterize the etiology of mental
disorders, the RDoC approach encourages the study of basic func-
tional processes (such as reward responsiveness) mediated by
specific neural substrates (such as midbrain dopamine neurons).
According to this view, these functional processes vary dimension-
ally across the population (e.g., from low to high reward sensitiv-
ity), and only manifest in the symptoms of mental disorders
when their extreme expression is maladaptive (Insel et al., 2010).
Inspired by this approach, we examined in a normal population
the relationships between personality traits related to reward sen-
sitivity and motivation (e.g., reward responsiveness, anhedonia
and persistence) and several neural measures of reward processing
in order to assess the contributions of these processes to
depression.

Toward this end we recorded the electroencephalogram from
healthy college students engaged in a reinforcement learning task.
In order to parse apart different reward-related processes, we uti-
lized the high temporal resolution afforded by the ERP technique
(Novak and Foti, 2015; Novak et al., 2016; Pornpattananangkul
and Nusslock, 2015). State depression levels were assessed using
a self-report questionnaire (Foti and Hajcak, 2009; Foti et al.,
2015; Liu et al., 2014) (see Section 2.3. Questionnaires). In addition,
because depression is not a unitary construct, participants also
completed several personality questionnaires that assessed per-
sonality traits related to depression,1 enabling us to parse which
aspects of depression are most related to the reward processes of
interest. In order to characterize the dynamic evolution of these dif-
ferent reward processes across each trial, we then examined how the
following three ERP components related to these personality traits.

First, we examined the feedback-related RewP to assess individ-
ual differences in sensitivity to reward feedback. In line with pre-
vious reports, we predicted that participants who self-report high
reward sensitivity would exhibit a relatively large feedback-
related RewP (Bress and Hajcak, 2013; Cooper et al., 2014; Liu
et al., 2014; Parvaz et al., 2016), whereas those high in
depression-related personality traits would exhibit a small
feedback-related RewP (Proudfit, 2015).

Second, in order to assess reward anticipation, we examined the
stimulus preceding negativity (SPN), a slow negative-going ERP
component that predicts forthcoming feedback stimuli (Brunia,
1988; Brunia and Damen, 1988; Brunia et al., 2011, for review).
SPN is sensitive to motivationally relevant outcomes, increasing
in amplitude (i.e., becoming more negative) when participants
anticipate forthcoming monetary rewards (Fuentemilla et al.,
2013; Kotani et al., 2003; Ohgami et al., 2006) or positively-
valenced stimuli (Böcker et al., 1994, 2001). We predicted that
traits related to anticipation of future outcomes would be associ-
ated with increased and decreased SPN, respectively, according to
the degree to which participants anticipated or desired the forth-
coming rewards. Importantly, as depression has been associated
with impaired reward anticipation, participants high on
depression-related traits were expected to produce an abnormal
SPN, although the direction of this effect (reduced or enhanced)
was difficult to predict.

Third, because the feedback-related RewP has been shown to
propagate with learning from outcomes to events that predict
the outcomes (e.g., Holroyd et al., 2011), we examined the RewP
to the cue (‘‘cue-RewP”) in order to assess the response to external
stimuli that predict reward. Because both the cue-RewP and the
SPN reflect processes related to reward anticipation, personality
traits associated with outcome anticipation were expected to affect
both ERP components similarly.

Finally, as depression has been associated with impaired reward
learning, participants high on depression-related traits were
expected to perform the task poorly relative to the other
participants.
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2. Materials and methods

2.1. Participants

Sixty-eight undergraduate students were recruited from the
University of Victoria Department of Psychology subject pool to
fulfill a course requirement or earn bonus credits. All subjects (7
males, 9 left-handed, age range = 17–26 years, mean
age = 20 ± 1.9 years) had normal or corrected-to-normal vision.
Each also received a monetary bonus in addition to the credits,
the amount of which depended on their task performance (see Sec-
tion 2.4. Procedure). All subjects provided informed consent as
approved by the local research ethics committee. The experiment
was conducted in accordance with the ethical standards prescribed
in the 1964 Declaration of Helsinki.
2.2. Task design

Participants performed a probabilistic reinforcement learning
task (Fig. 1) in which one of five possible cues (3.3� by 3.3� square
visual angle), selected at random, was presented for 800 ms on
each trial. These five cues were randomly selected from a set of
ten different images from different object categories (Fig. 1, bot-
tom). Immediately following cue offset a small white cross (.5�
by .5� square visual angle) appeared at the center of the screen,
to which participants were instructed to make a response. Partic-
ipants were told to respond by freely choosing either the ‘‘Z” key
or the ‘‘/” key within a 500 ms response limit, after which the
image of the small white central cross was replaced with a blank
screen for 1000 ms, followed by the appearance of a feedback
stimulus. If the participant responded within the 500 ms deadline,
the 1000 ms delay was extended by the time remaining between
their response and the 500 ms deadline (e.g., if the response time
was 200 ms, then the remaining 300 ms was added to the
1000 ms delay, resulting in a total delay of 1300 ms on that trial).
If participants failed to respond within 500 ms, then the message
‘‘Respond quickly!” was presented immediately following the
deadline and the same trial was repeated. Otherwise, after the
delay period, a feedback stimulus (3.3� by 3.3� square visual
angle) was presented for 800 ms, consisting of either a gray circle
or a diamond representing reward and no-reward, the mappings
of which were counterbalanced across participants. Finally, the
next trial started after an inter-trial interval of 600 ms during
Fig. 1. Sequence of events for an example trial (top) and the set of ten cue images (botto
Section 2.2. Task Design), and the remaining five cues were used for the second phase (i
600 ms (the 1st panel from left) followed by one of the cues for 800 ms (the 2nd panel from
participants were required to learn by trial-and-error which of the two response keys to p
on a thick black line) within a 500 ms response deadline. After a 1 s delay period (in addit
Design) a feedback stimulus was presented for 800 ms (the last panel). The gray diamon
(not shown here) indicated a no-reward for half of the participants, and the feedback-rew
across subjects). Presentation of the fixation dot indicated the start of the next trial. Not
which a small black fixation dot was presented at the center of
the screen.

Unbeknownst to the participants, each of the five cues was
uniquely associated with a reward probability of either 100%,
75%, 50%, 25%, or 0% for one of the two possible responses (here-
after called the ‘‘correct response”), whereas the other response
to each cue (hereafter called the ‘‘incorrect response”) always
resulted in no-reward feedback. One of the two response keys
was selected at random to serve as the correct response for two
of the four cues associated with the 100%, 75%, 50%, or 25% reward
probabilities, while the other response key served as the correct
response for the remaining two cues. For the 0% reward probability
cue, the ‘‘correct” response was selected at random between the
two response keys, but both correct and incorrect responses for
this cue always resulted in no-reward. Halfway through the exper-
iment the five cues were replaced with the remaining 5 cues from
the set of ten cues (Fig. 1, bottom), requiring participants to learn
the appropriate stimulus-response mappings anew.
2.3. Questionnaires

Participants completed a total of six personality questionnaires
related to motivation, reward sensitivity, and other depression-
related traits, described below, administered through LimeSurvey
(https://www.limesurvey.org/) on the same computer where the
task was performed. These included (1) The 20-item Persistence
Scale (PS: Cloninger et al., 1993; Gusnard et al., 2003), which
assesses the tendency to overcome daily challenges on a scale of
1 (definitely false) to 5 (definitely true). (2) The 8-item Reward
Responsiveness (RR) Scale (Van den Berg et al., 2010), which is a
self-report measure of reward-related behavior on a scale of 1
(strong disagreement) to 4 (strong agreement). The RR scale was
derived in part from the Behavioral Inhibition/Activation Scale
(Carver and White, 1994) in order to provide a purer measure of
reward responsiveness. (3) The 18-item Temporal Experience of
Pleasure Scale (TEPS), which assess two components of hedonic
capacity, namely consummatory pleasure (TEPS-C: i.e., ‘‘liking” or
in-the-moment experience of pleasure) and anticipatory pleasure
(TEPS-A: i.e., ‘‘wanting”), on a scale of 1 (‘‘very false for me”) to 6
(‘‘very true for me”) (Gard et al., 2006). (4) The 12 item, short-
form of the Intolerance of Uncertainty Scale (IU), which measures
sensitivity to and avoidance of uncertain and ambiguous situations
(Carleton et al., 2007; Freeston et al., 1994) on a scale of 1 (not at
m). Five cues were randomly selected for the first phase (i.e., block 1 through 8, see
.e., block 9 through 16). Top: Each trial began with presentation of a fixation dot for

left). At the offset of the cue a small white cross appeared (the 3rd panel from left);
ress for a potential reward (the ‘‘X” or the ‘‘/” key, illustrated by the two black boxes
ion to the remaining time within the 500 ms response deadline; see Section 2.2. Task
d image (as shown in the figure) indicated a 2 cents reward and a gray circle image
ard mappings were reversed for the other half of the participants (counterbalanced
e that the stimulus images are enlarged in the figure for the purpose of illustration.

https://www.limesurvey.org/
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all characteristic of me) to 5 (entirely characteristic of me). IU was
included because it has been considered a transdiagnostic con-
struct across depression and anxiety, and impacts reward anticipa-
tion in depression (Nelson et al., 2014). (5) The 21 item short-form
of the Depression Anxiety Stress Scale (DASS-21) (Lovibond and
Lovibond, 1995), which measures severity of depression, anxiety,
and stress on a scale from 0 (‘‘did not apply to me at all”) to 3 (‘‘ap-
plied to me very much, or most of the time”). Participants also
completed the 22-item Ruminative Responses Scale (RRS:
Treynor et al., 2003), which measures the propensity to ruminate
in response to depressed mood on a scale of 1 (almost never) to
4 (almost always). However, the rumination scale and the stress
subscale of the DASS-21 were not included in the analyses as they
tended to strongly correlate with other variables (for example,
with anxiety and depression scores), and because they were not
the primary focus of the study. Summed total scores were used
for each of the questionnaires such that high scores indicated,
respectively, high persistence, high reward responsiveness, high
hedonic capacity (or reduced anhedonia), high intolerance of
uncertainty, and high levels of depression and anxiety. In order
to minimize the duration of the experiment, the non-negatively
framed questionnaires (PS, RR, and TEPS) were administered half-
way through the task (i.e., at the end of 8th block) and the ques-
tionnaires related to other depression-related traits (RRS, IU, and
DASS-21) were administered at the completion of the experiment.

2.4. Procedure

Participants were seated comfortably in front of a computer
monitor (1024 by 1280 pixels) at a distance of about 60 cm in an
electromagnetically shielded dimly lit room. The task was pro-
grammed in Matlab (MathWorks, Natick, MA, USA) using the Psy-
chophysics Toolbox extension (Brainard, 1997; Pelli, 1997).
Subjects rested the fingertips of their index fingers comfortably
on two response keys (see Section 2.2. Task Design) of the com-
puter keyboard. Participants were provided with both written
and verbal instructions that explained the procedure, and were
told to maintain correct posture and to minimize head movements
and eye blinks during the experiment. They were instructed that
they would be presented with one of five cue images on each trial
and to respond to each cue by pressing either of two specified
response keys after the cue disappeared and was replaced with a
small central white cross, after which they would see a feedback
stimulus (Fig. 1). Half of the participants were told that an image
of a gray circle indicated that they earned a 2 cents reward and
an image of a gray diamond indicated that they did not earn any
reward; the feedback-reward mappings were reversed for the
other half of the participants. Participants were informed that they
should perform the task as best as they could in order to maximize
their reward earnings, and that all of the money that they earned
would be theirs to take home at the end of the experiment. In addi-
tion, participants were told that some cues were associated with a
higher reward probability than the other cues, and that they
should respond as quickly as possible.

Participants first performed a practice block consisting of 30 tri-
als. The practice block utilized two cue images randomly selected
from a set of 5 images (i.e., a chair, a house, a shoe, a soccer ball,
and a frying pan) that were not used in the actual experimental
blocks. In the practice block the correct response differed for the
two cues (i.e., left response for one cue and right response for the
other cue), but was associated with an 80% reward probability
for both cues, thus exposing the participants to the probabilistic
nature of the task. Participants earned between 10 and 25 cents
from the practice block. The practice trials were followed by the
task proper, which consisted of 16 blocks of 60 trials each. Each
cue appeared 12 times in each block. The experiment consisted
of 2 phases, each consisting of 8 blocks. When the 8th block was
completed (Phase 1), participants were given a small break during
which they answered several demographic questions (related to
age, gender, history of concussion, medication status, and so on)
and three personality questionnaires (see Section 2.3. Question-
naires) on the computer screen. The second half of the experiment
(Phase 2) resumed afterwards; participants were told that they
would continue performing the same task with five new cues.
When the experiment was completed, participants answered the
three remaining personality questionnaires (see Section 2.3. Ques-
tionnaires) and were paid their reward earnings, which varied
approximately from CAN $5 to $10.

2.5. ERP data acquisition and pre-processing

The electroencephalogram (EEG) was recorded using a montage
of 41 electrode sites in accordance to the extended international
10–20 system (Jasper, 1958). Signals were acquired using Ag/AgCl
ring electrodes mounted in a nylon electrode cap with an abrasive,
conductive gel (EASYCAP GmbH, Herrsching-Breitbrunn,
Germany). Signals were amplified by low-noise electrode differen-
tial amplifiers with a frequency response high cut-off at 50 Hz
(90 dB–octave roll off) and digitized at a rate of 250 samples per
second. Digitized signals were recorded to disk using Brain Vision
Recorder software (Brain Products GmbH, Munich, Germany).
Interelectrode impedances were maintained below 20 kX. Two
electrodes were also placed on the left and right mastoids. The
EEG was recorded using the average reference. The electroocculo-
gram (EOG) was recorded for the purpose of artifact correction;
horizontal EOG was recorded from the external canthi of both eyes,
and vertical EOG was recorded from the suborbit of the right eye
and electrode channel Fp2.

2.6. Data analysis

Post-processing and data visualization were performed using
Brain Vision Analyzer software (Brain Products GmbH). The digi-
tized signals were filtered using a fourth-order digital Butterworth
filter with a passband of 0.10–20 Hz. Segmentation of epochs of
data differed depending on the type of stimuli analyzed. For the
cue and reward feedback, the data were segmented for an
800 ms epoch extending from 200 ms prior to 600 ms following
presentation of each stimulus (i.e., cue or feedback). For the SPN,
the data were segmented for a 3300 ms epoch extending from
200 ms prior to 3100 ms following presentation of each cue stim-
ulus. As an exploratory analysis, we also examined the readiness
potential component, which is reported in Supplementary
Material. Ocular artifacts were corrected using an eye movement
correction algorithm (Gratton et al., 1983). The EEG data were re-
referenced to linked mastoids electrodes. Data were baseline cor-
rected by subtracting from each sample for each channel the mean
voltage associated with that electrode during the 200 ms interval
preceding stimulus onset for all the ERP components (except for
the readiness potential, see Supplementary Material). Trials with
muscular and other artifacts were excluded according to a
150 lV Max–Min voltage difference, a ±150 lV level threshold, a
±35 lV step threshold, and a 0.1 lV lowest-allowed activity level
as rejection criteria. ERPs were then created for each electrode
and participant by averaging the single-trial EEG according to the
reward and no-reward conditions for the feedback stimuli, and
for each probability condition, separately for the cue, response,
and delay periods.

Following convention the feedback-related RewP (feedback-
RewP) was measured at channel FCz, where it reaches maximum
amplitude (see Section 3.3. ERPs), utilizing a difference wave
approach that isolated the RewP from overlapping ERP compo-
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nents such as the P300 (Holroyd and Krigolson, 2007; Sambrook
and Goslin, 2015). Furthermore, feedback-RewP amplitude was
evaluated post-learning. For each reward probability cue, partici-
pants were considered to have learned the cue-response associa-
tion when three consecutive correct responses were made (see
alsoFuentemilla et al., 2013; Morris et al., 2008). Feedback-RewP
was analyzed in the blocks after this criterion was reached for each
reward probability condition and for each participant. ERPs were
then averaged across reward probability as follows (cf. Holroyd
and Krigolson, 2007; Holroyd et al., 2009): for each participant
the ERP to reward feedback stimuli in the 100% reward probability
condition (100% predicted reward) was subtracted from the ERP to
no-reward feedback stimuli in the 0% reward probability condition
(100% predicted no-reward) to generate a ‘‘predicted” difference
wave (predicted feedback-RewP). Likewise, the ERP to reward
feedback stimuli in the 75% reward probability condition (expected
reward) was subtracted from the ERP to no-reward feedback stim-
uli in the 25% reward probability condition (expected no-reward)
to generate an ‘‘expected” difference wave (expected feedback-
RewP). The ERP to reward feedback stimuli in the 25% reward
probability condition (unexpected reward) was subtracted from
the ERP to no-reward feedback stimuli in the 75% reward probabil-
ity condition (unexpected no-reward) to generate an ‘‘unexpected”
difference wave (unexpected feedback-RewP). Finally, the ERP to
reward feedback stimuli in the 50% reward probability condition
(50% reward) was subtracted from the ERP to no-reward feedback
stimuli in the 50% reward probability condition (50% no-reward) to
generate a ‘‘50%” difference wave (50% feedback-RewP). Feedback-
RewP amplitude was then determined by finding the maximum
negative deflection in the difference wave from 200 to 320 ms
(determined based on visual inspection of the overall feedback-
RewP for each participant and condition) following feedback onset,
separately for the predicted, expected, unexpected, and 50%
feedback-RewP; this difference-wave approach isolates the inter-
action of expectancy with valence by removing the main effect of
probability (Holroyd and Krigolson, 2007; Sambrook and Goslin,
2015). Consistent with previous studies, we expected feedback-
RewP amplitude to scale with the expectation of reward probabil-
ity, in keeping with an RPE signal, being largest when rewards are
least expected (unexpected feedback-RewP), intermediate when
rewards are random (50% feedback-RewP), smaller when rewards
are expected (expected feedback-RewP), and smallest when
rewards are completely predicted (predicted feedback-RewP)
(Holroyd and Krigolson, 2007; Holroyd et al., 2003, 2009;
Sambrook and Goslin, 2015).

We analyzed the other ERP components at channel FCz, where
they reached maximum amplitude collapsed across conditions
(but see Section 3.3. ERPs), but only for the last four blocks of both
task phases (i.e., blocks 5 to 8 and blocks 13–16),2 as we assumed
that participants acquired the cue-response mappings in the latter
half of each phase. First, the ‘‘cue-RewP” was measured within a
time-window of 200–320 ms post-cue onset (determined based on
the same criterion as for the feedback-RewP) and analyzed with
the difference wave approach (see below). Second, the SPN was mea-
sured as mean ERP amplitude from 600 ms before until the onset of
feedback delivery,3 time-locked to cue onset. In contrast to how we
assessed the feedback RewP, which was averaged separately accord-
ing to feedback valence (reward, no reward) and then assessed as a
2 This criterion was used for all the ERP components except for the feedback-RewP.
The feedback-RewP analysis utilized a different learning criterion (see Section 2.6.
Data Analysis) in order to increase the number of trials for the unexpected RewP,
which were relatively few (but always more than 5).

3 SPN amplitude generally reaches maximum immediately before reward delivery;
nevertheless, we took a broader time-window to capture the sustained nature of SPN
(see also Fuentemilla et al., 2013). Increasing the window size by 200 ms did not
materially change the results.
difference wave, cue-RewP and SPN amplitude were each averaged
across feedback valence (reward, no reward), separately for each of
the five reward probability conditions (hereafter, these ERPs will
be called ‘‘raw” ERPs for each reward probability condition to distin-
guish them from the ERPs assessed as difference waves, below). In
addition, to conduct multiple regression analyses on the personality
trait scores, we utilized a difference wave approach on cue-RewP and
SPN amplitude in order to equate the expectedness of rewards with
‘‘predicted” and ‘‘expected” difference waves as per above. Specifi-
cally, the ERP in the 100% reward probability condition was sub-
tracted from the ERP in the 0% reward probability condition to
generate a ‘‘predicted” cue-RewP. The ERP in the 75% reward proba-
bility condition was subtracted from the ERP in the 25% reward
probability condition to generate an ‘‘expected” cue-RewP. Further,
as a control comparison, the ERP to the 50% reward probability con-
dition was analyzed by subtracting the ERP preceding positive feed-
back from the ERP preceding negative feedback, yielding a ‘‘50%”
cue-RewP. The same procedure was applied to generate a ‘‘pre-
dicted” SPN, an ‘‘expected” SPN, and a ‘‘50%” SPN. Finally, each ERP
component was also averaged across trials irrespective of the out-
come probabilities, yielding an ‘‘overall feedback-RewP” (i.e., across
the four feedback-RewP difference waves), an ‘‘overall cue-RewP”
(i.e., across the three cue-RewP difference waves), and ‘‘an overall
SPN” (i.e., across the five SPN waveforms).

All of the analyses were conducted using SPSS (IBM SPSS 23). A
within-subject ANOVA with repeated measures was conducted on
the amplitude of each of the ERP components, followed as appro-
priate by a post-hoc contrast that assessed linearity as a function
of reward probability. Means and standard deviations (SD) are pro-
vided for these analyses. Greenhouse-Geisser correction was
applied when the sphericity assumption was violated. In addition,
a multiple linear regression analysis was conducted separately on
the amplitude of each ERP component with the personality traits
as predictors, using the backward method in which all of the pre-
dictors were entered into the model first and then non-
contributing predictors were step-wise eliminated (with the SPSS
default minimum p-value of 0.1 for retaining each predictor in
the model. E.g., Kudlicka et al., 2014; Umemoto and Holroyd,
2016; see also Brunborg et al., 2010; Mackie et al., 2013). The back-
ward method was used in order to explore the joint effect of
related-personality traits (e.g., reward sensitivity traits) on
performance.

Crucially, we entered this experiment with several specific pre-
dictions that were mainly related to the multiple regression anal-
ysis conducted on the overall ERP components (i.e., that were
independent of reward probability). To reiterate, we predicted that
the overall feedback-RewP would be associated with reward sensi-
tivity traits, being larger (more negative) in participants who score
high in reward responsiveness and low in anhedonia and depres-
sion, and smaller in participants who score high in anhedonia
and depression. In line with the previous reports (Bress and
Hajcak, 2013; Liu et al., 2014; Proudfit, 2015), we also expected
to observe this pattern of results particularly for the 50%-
feedback RewP condition. Likewise, we predicted that both the
overall cue-RewP and overall SPN would be associated with traits
related to anticipation of future outcomes, being larger (more neg-
ative) in participants who score high in TEPS-A and smaller in par-
ticipants who score high in IU; although we predicted that the
overall SPN would also be modulated by participants’ level of
depression, the direction of this modulation was not specified.
Note that although both the cue-RewP and SPN reflect reward
anticipatory processes, the former is produced by a relatively tran-
sient neural response to reward-predictive stimuli, whereas the
latter is produced by a more sustained neural response that antic-
ipates the forthcoming outcome. In addition, for completeness we
conducted multiple regression analyses on each ERP component



Table 1
Participant questionnaire scores. RR = reward responsiveness scale. TEPS-C = tempo-
ral experience of pleasure scale, consummatory pleasure subscale. TEPS-A = temporal
experience of pleasure scale, anticipatory pleasure subscale. PS = persistence scale.
DASS-D = depression subscale of the depression, anxiety, stress scale (DASS-21).
DASS-A = anxiety subscale of DASS-21. IU = intolerance of uncertainty scale.

Mean SD Range

RR 26.4 2.7 20–32
TEPS-C 38.8 4.8 24–48
TEPS-A 45.9 5.6 26–60
PS 69.4 10.4 36–90
DASS-D 3.9 4.1 0–19
DASS-A 5 4.6 0–21
IU 29.5 9.4 16–59
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separately for each probability condition (i.e., predicted, expected,
unexpected, and 50%); a multiple regression analysis that tested a
specific a priori prediction about the feedback-RewP is presented
in the main text, and the remaining multiple regression analyses
on the other ERP components, which were exploratory, are
reported in Supplementary Material.

To account for the potential influence of outliers, we adopted
the following jackknife approach. For each dependent variable,
the same multiple regression analysis was performed multiple
times by a method of leave-one-out (i.e., by excluding the data
for a different participant at each iteration) (Hewig et al., 2011;
Umemoto and Holroyd, 2016). Based on the result of each iteration,
if any single participant was found to contribute uniquely to the
final regression model—in that removing their data resulted in an
inclusion or exclusion of one or more personality predictors from
the model, and the same result was not obtained by the other iter-
ations within the same analysis – then the data of this participant
were excluded from the given analysis. This procedure was applied
to each multiple regression analysis. This method provides an
objective means for the systematic removal of outliers that is free
of experimenter bias, ensuring that the results are robust against
the contribution of any single participant. Across all of the tests
reported below, this method excluded the data of between zero
and two participants, with an average of 0.9 participants excluded
per test. The degrees of freedom indicate the number of partici-
pants included in each analysis.
5 The peak detection algorithm can overestimate effect sizes (Luck, 2014, online
3. Results

The data of two participants who reported taking more than one
psychotropic medication (including an anti-depressant and either
an anti-psychotic or an anti-epileptic) were excluded from the
analysis. In total the data of 66 participants were analyzed.4

3.1. Questionnaires

Table 1 provides a summary of the questionnaire scores, and
Table 2 provides the zero-order correlations between question-
naire scores.

3.2. Behavior

Accuracy and reaction times (RTs) for each condition are shown
in Fig. 2. Note that the dip in accuracy at block 9 corresponds to the
new set of stimulus cues introduced at the start of Phase 2. More-
over, because the cue stimulus was presented for 800 ms before
participants were allowed to make a response, relatively fast RTs
across blocks likely indicate that participants prepared for the
response early while the cue was still on the screen. A repeated-
measures ANOVA on accuracy with reward probability as the
within-subject factor revealed a significant effect of probability,
F(3.4,222) = 180, p < 0.01, gp2 = 0.74. Polynomial contrasts indi-
cated a significant linear trend, F(1,65) = 470.6, p < 0.01,
gp2 = 0.88, a quadratic trend, F(1,65) = 94.4, p < 0.01, gp2 = 0.59,
and a cubic trend, F(1,65) = 17.7, p < 0.01, gp2 = 0.21. The same
analysis on RT also revealed a significant effect of probability,
F(3.4,219) = 16.8, p < 0.01, gp2 = 0.21. Polynomial contrasts indi-
cated a significant linear trend, F(1,65) = 47.5, p < 0.01, gp2 = 0.40,
and a quadratic trend, F(1,65) = 7.3, p < 0.01, gp2 = 0.10. These
results indicate that performance improved (i.e., higher accuracy
and faster RT) as a function of increased reward probability. Zero
4 The data of two participants who were taking a single anti-depressant (Cipralex
were included in the analyses. Excluding these data did not change the obtained
results.

Chapter 9), as suggested by the non-zero cue-RewP in Fig. 5. Whereas relative
comparisons of cue-RewP amplitude using the peak detection approach appear
reliable, absolute measures of RewP amplitude should be interpreted with caution
due to potential overestimation of effect sizes. See Supplementary Material (‘‘Related
to footnote #5”).
)

order correlations revealed that persistence scores were correlated
positively with overall accuracy (N = 66, r = 0.25, p = 0.04), which
was the case in the 75%, 50%, and 25% reward probability condi-
tions (all p < 0.05). Depression scores on the other hand were cor-
related negatively with accuracy in the 25% reward probability
condition (N = 66, r = �0.24, p = 0.05) (Fig. 3).

3.3. ERPs

3.3.1. Cue RewP
Fig. 4. presents the 3 s time-course of ERPs time-locked to the

onset of the predictive cues. Because the amplitude of the cue-
RewP was numerically larger at channel Cz but not statistically dif-
ferent from channel FCz (p = 0.4), we conducted the analyses on
ERP data recorded at channel FCz. A repeated-measures ANOVA
on cue-RewP amplitude with reward probability as a within-
subject factor (i.e., predicted, expected, and 50% cue-RewP)
revealed a significant effect of probability, F(2,130) = 9.7, p < 0.01,
gp2 = 0.13 (Fig. 5a). The polynomial contrast indicated a linear
trend, F(1,65) = 16.1, p < 0.01, gp2 = 0.20, such that the predicted
cue-RewP (�3.7 lV ± 3.8 lV) was the largest (most negative), the
expected cue-RewP (�2.1 lV ± 3 lV) was the second largest, and
the 50% cue-RewP (�1.3 lV ± 2.5 lV) was the smallest (most pos-
itive), in line with the theory that the RPE signals propagate back in
time with learning from feedback stimuli to events that predict the
feedback (Baker and Holroyd, 2009; Holroyd et al., 2011; see also
Holroyd and Coles, 2002).5 Table 3 summarizes the results of mul-
tiple linear regressions on the overall ERP amplitudes across proba-
bilities with the personality trait scores as predictors. This analysis
on the overall cue-RewP amplitude (averaged across the three
difference waves) did not reveal a significant model. The results of
separate multiple linear regressions for each probability condition
with the same predictors are reported in Supplementary Material
(Supplementary Table S2a).

3.3.2. SPN
SPN was examined immediately preceding the receipt of the

reward feedback (Fig. 4). A repeated ANOVA on the raw SPN ampli-
tude with reward probability as the within-subjects factor revealed
a significant effect of probability, F(2.5,160) = 3, p = 0.04, gp2 = 0.05
(Fig. 5b). Polynomial contrasts indicated a significant linear trend,
F(1,65) = 5.7, p = 0.02, gp2 = 0.08, and a cubic trend, F(1,65) = 4.7,
p = 0.03, gp2 = 0.07 (0%: 2.3 lV ± 4.4 lV; 25%: 2.8 lV ± 3.3 lV;
50%: 3.2 lV ± 2.7 lV; 75%: 2.7 lV ± 3 lV; 100%: 3.7 lV ± 2.9 lV),
revealing that raw SPN amplitude became more negative as the



Table 2
Zero-order correlations between questionnaire scores. Abbreviations are given in Table 1.

RR TEPS-C TEPS-A PS DASS-D DASS-A

RR
TEPS-C 0.25*

TEPS-A 0.43* 0.24
PS 0.41** 0.08 0.12
DASS-D 0.05 0.16 0.24 �0.00
DASS-A 0.15 0.14 0.27* 0.14 0.65**

IU �0.11 �0.03 �0.16 0.05 0.44** 0.38**

* p < 0.05.
** p < 0.01.

Fig. 2. Block by block performance in reaction times (RT) (top) and accuracy (bottom) across different probabilities (from the 100% reward probability condition on the left to
the 0% reward probability condition on the right). The x-axis indicates each block from block 1 to block 16 (new cues were introduced at the beginning of block 9). Error bars
indicate standard errors of the mean.

Fig. 3. Performance accuracy averaged into quartiles in relation to persistence and
depression scores. The x-axis shows accuracy for each quartile (Qt), with Qt1
associated with lowest accuracy and Qt4 associated with highest accuracy. For the
persistence scores (white bars), the accuracy for each quartile was averaged across
the probability conditions (100%, 75%, 50%, and 25%). For the depression scores
(gray bars), the accuracy for each quartile is presented for the 25% reward
probability condition only. The y-axis indicates standardized questionnaire scores
for the persistence and depression scales. Error bars indicate standard errors of the
mean.
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rewards became less probable.6 Simple contrasts comparing the
raw SPN amplitude for each probability condition to the raw SPN
amplitude for the 100% probability condition, which served as a ref-
erence, indicated that the raw SPN was significantly more negative
in the 0%, 25%, 75% probability conditions (all p = 0.01), but not in
the 50% probability condition (p = 0.09). A multiple linear regression
analysis on the overall SPN amplitude (averaged across the five prob-
ability conditions) indicated that participants high in depression and
low in IU scores produced larger (more negative) SPNs overall,
F(2,61) = 3.5, p = 0.04, explaining 10% of the variance (Table 3a).
See Supplementary Material for the results of exploratory multiple
linear regression analyses conducted separately for each probability
condition (Supplementary Table S2b).
3.3.3. Feedback-RewP
A repeated ANOVA on feedback-RewP amplitude with reward

probability as a within-subject factor (i.e., predicted, expected,
unexpected, and 50% feedback-RewP) revealed a significant effect
of probability condition, F(2.6,167) = 22.4, p < 0.01, gp2 = 0.26
(Fig. 6). Polynomial contrasts indicated a significant linear trend,
F(1,65) = 37.1, p < 0.01, gp2 = 0.36, and quadratic trend, F(1,65)
= 12.7, p < 0.01, gp2 = 0.16. Further analysis revealed that predicted
6 Time-locking the ERPs to response onset yielded comparable results.



Fig. 4. Event-related brain potentials (ERPs) and associated scalp voltage maps
time-locked to the onset of predictive cues (0 ms) and measured at channel FCz. The
five reward probability conditions are shown in different colors: 0% reward
probability = black, 25% reward probability = red, 50% reward probability = blue,
75% reward probability = green, 100% reward probability = pink. Time periods of
evaluation are shown for each ERP component in the grey shaded areas. The cue-
RewP is evaluated between 200 and 320 ms, SPN is evaluated during the 600 ms
interval preceding the onset of feedback stimulus between 1700 and 2300 ms, and
the feedback RewP is evaluated around 2700 ms; note that because the feedback-
RewP was time-locked to the onset of feedback stimuli, the indicated time-interval
is only approximate. The scalp voltage maps for the cue-RewP (left) and SPN (right)
are illustrated over their associated period of evaluation. Negative is plotted up by
convention. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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feedback-RewP (�3 lV ± 3.6 lV) was numerically, but not signifi-
cantly, smaller than the expected feedback-RewP
(�3.3 lV ± 3.5 lV) (p = 0.4), which was numerically, but not signif-
icantly, smaller than the 50% feedback-RewP (�4.1 lV ± 3.4 lV),
F(1,65) = 3.7, p = 0.06, which in turn was significantly smaller than
the unexpected feedback-RewP (�6.4 lV ± 3.5 lV), F(1,65) = 26.5,
p < 0.01, gp2 = 0.28. Broadly consistent with previous observations,
the feedback-RewP amplitude displayed an interaction of valence
with expectancy (Holroyd and Krigolson, 2007; Sambrook and
Goslin, 2015).

A multiple regression analysis on the overall feedback-RewP
(averaged across the four difference waves) indicated a trend that
Fig. 5. ERP component amplitudes across conditions. (a) cue-RewP amplitudes for the pre
(b) Stimulus Preceding Negativity (SPN) amplitude for each of the reward probabilities (x
standard errors of the means.
participants high in reward responsiveness produced a larger
(more negative) overall feedback-RewP, F(1,63) = 2.8, p = 0.1,
explaining 4% of the variance in feedback-RewP amplitude
(Table 3b). We predicted that participants high in reward sensitiv-
ity would exhibit a larger feedback-RewP particularly to the 50%
reward condition (Bress and Hajcak, 2013; Liu et al., 2014),
whereas those high in depression scores would exhibit a smaller
feedback-RewP to this condition (Proudfit, 2015). The multiple lin-
ear regression analyses on feedback-RewP conducted separately
for each probability condition (Table 4) indicates that participants
high in reward sensitivity (i.e., reward responsiveness and con-
summatory pleasure) and low in depression scores produced a
large feedback-RewP, particularly when rewards were highly
expected. In contrast to our prediction, feedback-RewP amplitude
for the 50% condition was not modulated by traits related to
depression or to reward sensitivity.
3.4. Correlations between behavior and ERPs

Zero-order correlations were examined for overall accuracy,
RTs, and the three overall ERP components (averaged across
reward probabilities). There was a marginally significant positive
correlation across individuals between the overall accuracy and
overall feedback-RewP (Pearson r = 0.23, p = 0.06), indicating that
the feedback-RewP was smaller for people who performed the task
better (likely due to decreased prediction errors to the feedback
stimuli once the stimulus-response mappings were learned). Also,
there was a trend for a positive correlation across individuals
between the amplitudes of the overall cue-RewP and the overall
SPN (Pearson r = 0.21, p = 0.09), indicating that reduced reward
anticipation in response to reward predictive cues was associated
with reduced reward anticipation of forthcoming feedback stimuli.
4. Discussion

Recent investigations on the neurobiological mechanisms of
reward processing in depression have centered on understanding
its relation to anhedonia (Der-Avakian and Markou, 2012;
Pizzagalli, 2011). Although anhedonia is classically defined as the
inability to experience pleasure, more recent considerations have
associated it with deficits in motivation and reward anticipation
rather than with the inability to experience pleasure per se
(Treadway and Zald, 2011 for review). The evidence to date is
therefore inconclusive as to which reward processes are
dysfunctional in individuals with elevated levels of depression.
dicted cue-RewP (Pred), the expected cue-RewP (Exp), and the 50% cue-RewP (50%).
-axis). Negative is plotted up for consistency with the ERP figures. Error bars indicate



Table 3
A summary of multiple regression analyses on the overall amplitude across probabilities for the ERP components with personality traits as predictors. Only the significant results
are reported. (a) Overall stimulus preceding negativity (SPN) amplitude. (b) Overall feedback-related reward positivity (Feedback-RewP) amplitude.

Multiple linear regression on the overall ERP components

Predictors Beta t p Final model R2

(a) SPN overall
SPN Depression �0.35 �2.5 0.01 F(2,61) = 3.5, p = 0.04 0.1

IU 0.24 1.8 0.08

(b) Feedback-RewP overall
Feedback-RewP RR �0.21 �1.7 0.1 F(1,63) = 2.8, p = 0.1 0.04

Note: There was no significant result on the overall cue-RewP.

Fig. 6. Event-related brain potentials (ERPs) elicited by reward (R) and no-reward (NR) feedback, the feedback reward positivity difference waves (feedback-RewP DW), and
associated scalp voltage maps. ERPs are measured at channel FCz and stimulus onset occurs at 0 ms; negative is plotted up by convention. Top left: Feedback-RewP for the
predicted condition elicited by the ERP to the no-reward feedback in the 0% reward probability condition (gray, dotted line) and to the reward feedback in the 100% reward
probability condition (gray line). Top right: Feedback-RewP for the expected condition elicited by the ERP to the no-reward feedback in the 25% reward probability condition
(gray, dotted line) and to the reward feedback in the 75% reward probability condition (gray line). Bottom left: Feedback-RewP for the 50% condition elicited by the ERP to the
no-reward feedback in the 50% reward probability condition (gray, dotted line) and to the reward feedback in the 50% reward probability condition (gray line). Bottom right:
Feedback-RewP for the unexpected condition elicited by the ERP to the no-reward feedback in the 75% reward probability condition (gray, dotted line) and to the reward
feedback in the 25% reward probability condition (gray line).

Table 4
A summary of multiple regression analyses on feedback-related reward positivity (Feedback-RewP) amplitude separately for each probability condition with personality traits as
predictors. Only the significant results are reported.

Multiple linear regression on feedback-RewP conducted separately for each probability condition

Predictors Beta t p Final model R2

Predicted FB-RewP RR �0.27 �2.2 0.03 F(2,62) = 3.8, p = 0.03 0.11
Depression 0.21 1.8 0.08

Expected FB-RewP TEPS-C �0.29 �2.4 0.02 F(2,63) = 4.4, p = 0.02 0.12
Depression 0.26 2.1 0.04
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To investigate this issue, in the current study we recorded the EEG
from healthy college students engaged in a probabilistic reinforce-
ment learning task and examined whether separate ERP compo-
nents associated with reward learning, anticipation, and outcome
processing would link individual differences in reward sensitivity
and motivation to personality traits related to depression.
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In terms of their behaviour, the participants’ task performance
(as indicated by accuracy and RT) differed according to the reward
probabilities for each stimulus condition, confirming that they
learned the stimulus-response mappings more easily for higher
reward probabilities compared to lower reward probabilities.
Moreover, the participants who scored high in the trait persistence
performed the task more accurately overall, whereas the partici-
pants who scored high in depression performed the task worse,
but only when the rewards were unlikely (i.e., following cues that
predicted reward with 25% probability). This observation is consis-
tent with previous findings that indicated that clinically depressed
individuals or those with elevated depressive symptoms fail to
exhibit a response bias towards rewarding stimuli, especially when
these are delivered with intermittent reward schedules (Kunisato
et al., 2012; Pizzagalli et al., 2005, 2008), which has been said to
reflect a difficulty in integrating reward history across trials
(Pizzagalli et al., 2008). Conversely, given the putative association
of persistence with the cognitive control process mediated by
ACC (Gusnard et al., 2003; Kurniawan et al., 2010; see also
Parvizi et al., 2013), the high accuracy by persistent individuals
might reflect a better ability to integrate rewards across many
trials.

RPE signals carried by dopamine neurons are known to ‘‘travel
back in time” with learning to the earliest indication of forthcom-
ing reward (Schultz et al., 1997). A wealth of RewP studies has
revealed a comparable process in humans (Walsh and Anderson,
2012). Accordingly, we found that the amplitude of the cue-RewP
increased (i.e., became more negative) as the predictability of
reward outcomes increased. There was no relation between the
overall cue-RewP amplitude and individual differences in
personality.

Reward anticipation was examined with the SPN, which is char-
acterized by a sustained negative potential over frontal-central
areas of the scalp during the delay period prior to the delivery of
reward feedback stimuli. Raw SPN amplitude increased (became
more negative) as reward probability decreased, being largest in
the 0% reward probability condition and smallest (most positive)
in the 100% reward probability condition, indicating that raw
SPN increases for improbable positive outcomes, or alternatively,
for probable negative outcomes (Fuentemilla et al., 2013). Modula-
tion of SPN amplitude by feedback stimuli inducing negative affect
has also been observed previously; for example, anticipation of an
aversive noise compared to a neutral tone elicited a larger SPN
(Kotani et al., 2001), which aligns with the interpretation that
inevitable negative outcomes elicit larger SPNs while expected
positive outcomes elicit smaller (more positive) SPNs (see also
Morís et al., 2013).

In the present study participants who scored high in depression
and low in IU produced a larger (more negative) overall SPN. With
respect to depression, larger (more negative) overall SPN may indi-
cate a pessimistic assessment of forthcoming outcomes by these
participants. By contrast, smaller (more positive) overall SPN
amplitude in participants high in IU – who are characterized by
excessive worry over unknown future events – may indicate a rel-
atively more optimistic view of forthcoming rewards. Yet contrary
to this interpretation an exploratory analysis suggests that partic-
ipants high in IU are relatively insensitive to highly probable forth-
coming negative outcomes, presumably because of constant worry
about future unknowns (see Supplementary Material and Supple-
mentary Figure S3). Taken together, these results suggest that
SPN amplitude is inversely correlated with reward probability,
and that the relatively large (more negative) SPN observed in par-
ticipants with elevated depression scores reflects biased attention
towards negatively-valenced stimuli, consistent with past findings
(Beck, 1976; De Raedt and Koster, 2010; Matt et al., 1992).
We also examined the amplitude of the feedback-RewP as an
indicator of reward sensitivity. As expected, feedback-RewP ampli-
tude increased (i.e., became more negative) as the reward out-
comes became more unexpected. This result is the opposite of
the effect of expectedness on cue-RewP amplitude, consistent with
the theory that the reward signals propagate with learning to the
reward predictive cues (see above). Participants high in reward
responsiveness produced a relatively larger (more negative) overall
feedback-RewP; although this result only exhibited a statistical
trend, it is in line with observations from several previous studies
(Bress and Hajcak, 2013; see also Cooper et al., 2014; Liu et al.,
2014; Parvaz et al., 2016). Moreover, participants who scored high
in reward sensitivity (as indicated by reward responsiveness and
consummatory pleasure) and low in depression produced a larger
feedback-RewP for the rewards that were especially probable.

Although the relatively large feedback-RewP to highly probable
rewards could indicate that the reward signals failed to propagate
back with learning to their associated reward-predictive cues for
these individuals, a few considerations argue against this possibil-
ity: First, these traits were unrelated to the size of cue-RewP,
which would have been smaller for those participants who pro-
duced a larger feedback-RewP. Second, the result is also inconsis-
tent with the finding that people who scored high in depression
learned more slowly from improbable rewards, and that they
exhibited a relatively pessimistic view of forthcoming rewards as
suggested by a relatively large (more negative) overall SPN – which
together would have caused reward delivery to be relatively more
unexpected, producing a larger feedback-RewP. These findings
therefore suggest that individual differences in feedback-RewP
amplitude directly reflect differences in outcome processing,
rather than indirectly reflect other aspects of the task performance
such as differences in reward learning or reward anticipation.

Together these results point to impaired reward valuation in
individuals high in depression-related traits rather than to
impaired reward anticipation per se (or to impaired reward learn-
ing). In other words, these individuals appear not to experience
rewards as rewarding as other individuals do. By contrast, RewP
amplitude is normal in people with schizophrenia, suggesting that
these individuals value rewards normally but that the rewards fail
to motivate behaviours (e.g., Kring and Barch, 2014 for review;
Morris et al., 2011). Note that although the RewP is said to index
the impact of RPE signals carried by midbrain dopamine neurons
on ACC (Holroyd and Coles, 2002; see also Walsh and Anderson,
2012), the origin of impaired reward valuation in depression may
arise outside of ACC and the dopamine system. In particular, the
RPE signals themselves are produced in dopamine-innervated
reward regions including the nucleus accumbens and orbitofrontal
cortex. Impaired reward valuation by these regions, which are
often seen to be hypoactive in depression, would therefore result
in the dopamine system carrying abnormal RPE signals to the
ACC (Holroyd and Umemoto, 2016)—as appears to be the case in
clinically depressed individuals (Gradin et al., 2011; Kumar et al.,
2008).

Taken together, these results can be summarized as follows.
First, persistent individuals exhibited a superior ability to integrate
rewards across many trials, as revealed by better learning of
stimulus-response associations. Second, IU was associated with
reduced reward anticipation, as revealed by a smaller SPN. Third,
participants who score high in depression exhibited greater diffi-
culty in learning stimulus-response associations with infrequent
rewards. Although the depression and IU scores were strongly cor-
related (see also, Nelson et al., 2014), only the depression scores
and not the IU scores were associated with a more pessimistic
assessment of reward delivery (as revealed by a larger overall
SPN) and blunted reward sensitivity (as revealed by a smaller
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feedback-RewP), particularly when rewards were highly expected.
As discussed above, the high expectation for negative outcomes
and reduced reward learning in the low reward probability condi-
tion, coupled with a smaller feedback-RewP, is indicative of a pri-
mary deficit in reward valuation, as opposed to deficit in reward
anticipation per se, which likely slowed learning to infrequent
rewards.

Further, as observed in several previous studies (Proudfit,
2015), participants high in reward responsiveness produced rela-
tively larger (more negative) feedback-RewP amplitudes, particu-
larly when rewards were predicted; and the consummatory
pleasure subscale of the anhedonia scale (i.e., TEPS) was correlated
with larger feedback-RewP amplitude when rewards were
expected, in line with a previous finding of a study with healthy
individuals (Liu et al., 2014; but see also Cooper et al., 2014).
Although a predicted association between reward responsiveness
and larger RewP amplitude exhibited only a statistical trend,7 the
weakness of this effect may be task-dependent.8

A limitation of the current study is that the experiment involved
only healthy college students, so the results might not generalize
to clinically depressed individuals. Yet, it is promising that the
amplitude of the feedback-RewP has been consistently associated
with reward sensitivity both in sub-clinical and clinically
depressed individuals (Foti and Hajcak, 2009; Liu et al., 2014; see
also Parvaz et al., 2016). Moreover, reduced reward valuation as
indicated by blunted feedback-RewP is already seen in pre-
pubertal children and adolescents (Proudfit, 2015). Nevertheless,
blunted reward valuation as a biomarker for depression requires
further investigation, as one recent study observed a normal
feedback-RewP in depressed individuals who reported intact posi-
tive mood reactivity (Foti et al., 2014).

Examination of reward anticipation indicated a link between
depression and reward anticipation prior to feedback delivery
(i.e., SPN). This suggests that participants who scored high in
depression were more pessimistic about the probability of reward
delivery, as revealed by an increased overall SPN. A link between
SPN and ACC activation has been reported in a recent combined
EEG and fMRI study (Kotani et al., 2015; but see also Böcker
et al., 1994; Masaki et al., 2010), suggesting that past studies
reporting increased ACC activity during reward anticipation
(Knutson et al., 2008; Gorka et al., 2014; see also Dichter et al.,
2012) may in part reflect increased pessimism about the outcomes.
In particular, these studies utilized tasks in which rewards were
probabilistically delivered on about 50 or 66 % of the trials, so
the more depressed participants may have expected negative out-
comes more than positive outcomes, inducing larger ACC activity.
7 Note also that the analysis for feedback-RewP only included post-learning trials
(defined as following three consecutive correct responses for each probability
condition), and feedback-RewP for predictable outcomes generally becomes smaller
with learning (see also the observed negative correlation between accuracy and
feedback-RewP in this study).

8 In addition, the task design regarding the 50% reward probability condition is
characterized by a critical difference from previous studies. In most previous task
designs, reward feedback was delivered with 50% probability irrespective of which
response is chosen by the subject (e.g., Holroyd and Coles, 2002). For this reason the
condition can control for individual differences in learning and performance on
feedback-RewP amplitude; because the reward and no-reward outcomes are entirely
unpredictable on such trials, they generate a feedback-RewP that is unconfounded by
other task variables (e.g., Morris et al., 2011). However, in the present study on such
trials the rewards were delivered with 50% probability following only one of the 2
responses, and were never delivered following the other response (Holroyd et al.,
2009). Hence participants still had to learn the correct responses in this condition, and
the no-reward outcomes occurred more frequently overall than the reward outcomes
did. This nuance in the task design may explain why no association was found
between the reward sensitivity scores (i.e., reward responsiveness, TEPS-C, and
depression) and the 50% feedback-RewP as reported in previous studies, as well as for
the remaining ERP components in this condition. Future investigations should take
into account such differences in task design.
Furthermore, observations of a reduced fMRI BOLD response in
ACC in depression may be due to evaluating data pooled across dif-
ferent reward probability conditions (Smoski et al., 2009). These
observations also highlight the importance of incorporating learn-
ing into tasks in order to examine reward processing (see Adams
et al., 2016), as it has been widely acknowledged that the midbrain
dopamine system is heavily involved in a variety of reward-related
processes including reward learning (Berridge et al., 2009; Schultz,
2007).

Finally, it is worth noting that the severity or the clinical profile
of depression may differentially impact reward anticipation, as
previous studies have observed impaired reward anticipation only
in individuals with early depression onset prior to adulthood
(Nelson et al., 2014; Shankman et al., 2007, 2013). Therefore, future
investigations examining SPN amplitude in individuals who exhi-
bit such a clinical profile would be beneficial.

In conclusion, our study highlights how individual differences
in personality contribute to the dynamics of reward processing.
Consistent with past studies we found that individuals who scored
high in depression exhibited difficulty in learning stimulus-
response contingencies for improbable rewards, a more pessimistic
view of reward acquisition, and blunted sensitivity to reward
value; crucially, although the behavioural and SPN results would
predict a larger feedback-related RewP due to the rewards being
more unexpected, the reduced feedback-RewP confirms a primary
deficit in reward valuation in individuals who score high in depres-
sion. Future studies should expand on these results by further
examining individual differences in personality in clinically
depressed patients.
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