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Abstract

The development of the field of cognitive neuroscience has inspired a revival of interest in the brain mechanisms involved in the

processing of rewards, punishments, and abstract performance feedback. One fruitful line of research in this area was initiated by the report of

an electrophysiological brain potential in humans that was differentially sensitive to negative and positive performance feedback [J. Cogn.

Neurosci. 9 (1997) 788]. Here we review current knowledge regarding the neural basis and functional significance of this feedback-evoked

‘error-related negativity’ (ERN). Our review is organized around a set of predictions derived from a recent theory, which holds that the ERN

is associated with the arrival of a negative reward prediction error signal in anterior cingulate cortex.

q 2004 Elsevier Ltd. All rights reserved.
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Humans (and other animals) use feedback to learn how to

behave. Such learning depends crucially on the ability of the

organism to discriminate between positive feedback,

indicating that the behavior was appropriate, and negative

feedback, indicating that the behavior was in some way

inappropriate. It is not surprising, therefore, that there is

evidence from a variety of sources that indicates that the

brain responds differentially to positive and negative

feedback.

This differential neural response is evident in measures

of the event-related brain potential, derived from recordings

of the electroencephalogram (see Fig. 1). For example, in a

study by Miltner and colleagues, human participants were

required to estimate the duration of a 1-s interval [1].

Following a warning cue, they pressed a button when they

believed that 1 s had elapsed. This response was followed

600 ms later by a feedback stimulus indicating whether

their estimate was correct (positive feedback) or incorrect

(negative feedback). A time window around 1 s was used to

determine response accuracy and this window was adap-

tively adjusted so that the probabilities of positive

and negative feedback stimuli were both 0.5. In different

conditions, feedback was provided in auditory, visual and

somatosensory modalities.

Analysis of the event-related brain potential responses

(ERPs) following the feedback stimulus revealed that,

following negative feedback, the potential became more

negative. This negativity was isolated by subtracting the

response to positive feedback from the response to negative

feedback. The resulting waveform had an average amplitude

of between 5 and 10 mV and a peak latency of between 230

and 270 ms, with the somatosensory and visual modalities

being associated with the shortest and longest latencies,

respectively. Several other studies had previously also

reported a similar negative ERP under conditions of

negative feedback [2–6] (for more references see Ref. [7]).

However, these earlier studies either did not elaborate on

this finding or did not control for the relative probabilities of

positive and negative feedback.

When the source of the negative scalp potential was

estimated using equivalent dipole analysis procedures, a

generator in or near the anterior cingulate cortex (ACC) was

suggested [1]. In this respect, the negativity closely

resembled another event-related brain potential, the error-

related negativity (ERN or Ne), which had previously been
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identified in reaction time tasks (reviewed in Refs. [8,9]).

This response ERN peaks within 100 ms of an error

response and also appears to be generated by neural activity

in the ACC [10,11]. This resemblance led to the proposal

that the negativities following response errors (the response

ERN) and negative feedback (the feedback ERN) were

associated with the same neural and cognitive error-

detection process [1].

1. Reinforcement learning theory of the ERN

A recent theory has extended the hypothesis of Miltner

et al. [1] by proposing that both the response ERN and the

feedback ERN are produced by a dopamine system for

reinforcement learning [12]. Details regarding the neuro-

physiological motivation for this theory are reviewed

elsewhere [12,13]. Briefly, the theory is predicated on

previous research implicating the basal ganglia and midbrain

dopamine system in reward prediction and reinforcement

learning. According to this previous research [14,15] (for

review, see Ref. [13]), the basal ganglia evaluate ongoing

events and predict whether the events will end in success or

failure. When the basal ganglia revise their predictions for

the better, they induce a phasic increase in the activity of

midbrain dopaminergic neurons, and when the basal ganglia

revise their predictions for the worse, they induce a phasic

decrease in the activity of midbrain dopaminergic neurons.

These phasic increases and decreases in dopamine activity

indicate that ongoing events are ‘better than expected’ and

‘worse than expected,’ respectively, and are used by the basal

ganglia to update its predictions, such that the system

gradually learns the earliest predictor of reward or punish-

ment. Furthermore, the dopamine signals are also conveyed

to the frontal cortex where they are used as reinforcement

learning signals, serving the adaptive modification of

behavior. The reinforcement learning theory of the ERN

extends this theoretical framework by proposing that the

impact of the dopamine signals on ACC modulates the

amplitude of the ERN, such that phasic decreases in

dopamine activity (indicating that ongoing events are

worse than expected) are associated with large ERNs, and

phasic increases in dopamine activity (indicating that

ongoing events are better than expected) are associated

with small ERNs [12,16]. According to this position, the

dopamine signals are used by the ACC to improve

performance on the task at hand.

Since Miltner et al.’s report in 1997, much progress has

been made in understanding the neural basis and functional

significance of the feedback ERN. Many of the empirical

studies that have led to this progress have been inspired by

the reinforcement learning theory of the ERN (hereafter

called the ‘RL-ERN theory’). Below, we will review the

current knowledge about the feedback ERN. Our review

will be organized around four core predictions of the

RL-ERN theory: (i) The feedback ERN reflects a good/bad

evaluation; (ii) feedback ERN amplitude depends on the

relation between actual vs. expected outcome; (iii) feedback

ERN amplitude varies inversely with response ERN

amplitude as a function of learning; (iv) the feedback

ERN is generated in ACC. We will discuss each of these

predictions in turn, and evaluate the existing literature in the

light of these predictions. Following this overview, we will

discuss outstanding questions regarding the feedback ERN,

including the possibility that the ERN reflects the emotional

impact of a negative expectation violation. We note that

aside from this emotion hypothesis, the RL-ERN theory is

currently the only theory that attempts to explain the

functional significance of the feedback ERN. For example,

the conflict monitoring theory, while providing a powerful

explanation of the response ERN and brain-activity

associated with high-conflict correct trials, does not in its

present form address the feedback ERN [9,17].

2. Four predictions of the reinforcement learning theory

2.1. The feedback ERN reflects a good–bad evaluation

The RL-ERN theory holds that the ERN reflects the

outcome of an evaluation of events along a good–bad

dimension, suggesting that the ERN should be sensitive to

any performance-related feedback information indicating

favorable or unfavorable outcomes. This notion is supported

by the finding that an apparent ERN is observed following

feedback indicating a loss [18,19] and following feedback

indicating an incorrect response [1,20].

Although the negative ERP components elicited by

losses and by feedback indicating an incorrect response

have a similar morphology, timing with respect to

Fig. 1. Typical example of event-related brain potentials associated with

negative and positive feedback (adapted from Ref. [25]). Negative is

plotted up by convention. Waveforms were recorded from electrode Cz.

Arrows indicate the peak of the feedback ERN and the P300 components in

the waveform associated with negative feedback. Note that although the

P300 reaches maximum amplitude over posterior parts of the scalp, the

component is also visible over frontal regions as seen here.
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the feedback, and mediofrontal scalp distribution, there has

been a debate regarding whether or not they are the same

phenomenon [18,21,22]. To investigate this issue system-

atically, we conducted two gambling experiments in which

the feedback stimuli on each trial conveyed information

along two different dimensions: a ‘gain/loss’ dimension

indicating whether the subject’s choice led to a gain or loss

of money, and a ‘correct/error’ dimension indicating

whether the subject’s choice was better or worse than the

alternative choice that the subject could have made [23].

Furthermore, the background color of the feedback display

(green or red) correlated with one of the two dimensions,

emphasizing either the gain/loss aspect (in one experiment)

or the correct/error value of the feedback (in the other

experiment). The results demonstrated that the frontocentral

negativity elicited by the feedback stimuli was sensitive to

both the gain/loss information and the correct/error

information conveyed by the feedback stimulus, depending

on which dimension of the feedback was made most salient

to the subjects. Gehring and Willoughby [18], using a

similar gambling paradigm, found a negative component

following the feedback that was sensitive to the gain/loss

dimension but not to the correct/error dimension of the

feedback. In this study, the most salient information in the

feedback display was the gain/loss aspect of the chosen

outcome, and the observed negativity was duly sensitive to

this aspect.

Together, these studies seem to indicate that the ERN

reflects a rapid evaluation of ongoing events along an

abstract good–bad dimension, rather than in terms of

correctness or gain/loss. Note that the RL-ERN theory is

non-specific as to what constitutes a good or bad outcome.

According to the theory, the ERN system can base its good–

bad evaluations on different sources of information, and the

choice of source can be determined by the context in which

the information is provided.

At first glance, the results from a gambling study by

Yeung and Sanfey [19] appear to pose a problem for the

view, held by the RL-ERN theory, that the ERN scales with

the goodness of ongoing events. On each trial in that study,

subjects gambled on one of two possible response options

and were then told the outcome of their choice. This could

be a large gain of money (32–40¢), a small gain (7–11¢), a

small loss (6–10¢), or a large loss (32–40¢). Yeung and

Sanfey found that the feedback ERN was larger on trials that

involved a loss than on trials that involved a gain of money.

However, the amplitude of the ERN was not affected by the

magnitude of the reward. In contrast, the amplitude of a later

component of the ERP, the P300 (see Fig. 1), appeared to be

selectively sensitive to the absolute magnitude of the

reward, irrespective of the valence of the outcome. These

results could be taken to suggest that the evaluation process

indexed by the ERN is binary, simply coding whether events

are good or bad regardless of the magnitude of reward or

penalty. In contrast, the RL-ERN theory claims that ERN

amplitude is sensitive to the size of the reward prediction

error, and thus, would appear to predict a larger negativity

for large negative outcomes.

However, the RL-ERN theory can accommodate the

results of Yeung and Sanfey [19] in the following way. It

should be noted that subjects in Yeung and Sanfey’s

experiment knew whether, on a particular trial, they

gambled on a small (i.e. safe) or large (i.e. risky) outcome.

It is possible that the monitoring system scales the variance

of possible outcomes so that the extreme outcomes are

weighted equally irrespective of their absolute magnitude

[7]. For instance, the system may treat losing 10¢ when this

represents the maximum loss in a similar way as losing 1¢

when this represents the maximum loss. If this hypothesis is

correct, then an interesting case would be to present subjects

with a range of possible outcomes, and to compare ERN

amplitude for the intermediate outcomes relative to ERN

amplitude for the extreme outcomes. Even if the monitoring

system adjusts its sensitivity to the extreme outcomes, the

RL-ERN theory predicts that intermediate outcomes should

be associated with intermediate-sized ERN amplitudes. On

this account, the ERN shows a graded but normalized (i.e.

with respect to the experienced range of outcomes)

sensitivity to outcome values. The currently available

evidence regarding this issue is mixed [7,24], suggesting a

need for additional research.

2.2. Feedback ERN amplitude depends on the relation

between actual vs. expected outcome

According to the RL-ERN theory, the ERN reflects a

negative reward prediction error, a signal elicited when the

monitoring system has to revise its reward expectations for

the worse. The amplitude of the ERN is proportional to the

size of the prediction error. From this follows the prediction

that the amplitude of the feedback ERN should be

dependent on the difference between the actual outcome

of a trial and the expected outcome of that trial. In a

probabilistic learning study, described in more detail in

Section 3, we found initial evidence in line with this

prediction [12,25]. Subjects were required to learn a set of

stimulus–response mappings on the basis of trial-to-trial

performance feedback. In one task condition, the response

was 80% predictive of the value of the feedback stimulus

[25]. The behavioral results suggested that subjects

gradually learned to select the response with the highest

probability of reward. Nevertheless, on 20% of the trials this

response led to unexpected penalty. The ERN associated

with this unpredicted turn of events had an amplitude of

more than 10 mV—probably the largest average feedback

ERN reported in the literature. Furthermore, in a condition

in which the correct stimulus–response mapping was

randomly determined on each trial, the size of the ERN

was larger if the correct mapping was different from the

mapping that applied when the subject previously encoun-

tered the same stimulus [12]. This result suggests that ERN

amplitude tracks the prediction error on a trial-to-trial basis.
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In line with this, Butterfield and Mangels [26] found that

feedback-ERN amplitude was larger for semantic retrieval

errors endorsed as correct with high confidence than for

low-confidence errors.

In two recent feedback ERN studies, both using a

gambling task, we have studied the effect of the relation

between actual vs. expected outcome in more detail. In one

study, we manipulated the expected value of the feedback

by changing, between different task blocks, the probability

of reward, while the size of the reward was held constant

[27]. In this study, subjects were required, on each trial, to

pick one of four balloons presented on the computer screen.

The subjects were told that only one of the balloons

contained money, and that their goal was to earn as much

money as possible throughout the experiment. The outcome

of each trial was communicated by means of a feedback

stimulus. Unbeknown to the subjects, the location of the

money was under control of the experimenter. In one task

condition, subjects won money on 25% of the trials and

picked an empty balloon on 75% of the trials. In another

task condition, these probabilities were reversed. According

to the RL-ERN theory, the negative prediction error

associated with non-rewards (i.e. an empty balloon) should

be larger when the system comes to expect rewards, and

smaller when it comes to expect nothing. The results were

consistent with this theoretical prediction: the feedback

ERN was larger in the condition in which rewards were

frequent than in the condition in which rewards were

infrequent. A similar explanation may apply to the finding

that the amplitude of the response ERN is inversely

proportional to the frequency of response errors [12,28].

In another study [7], we manipulated the expected

outcome by varying the range of possible outcomes

communicated by the feedback stimulus, while keeping

constant the probability of the various outcomes. Subjects

performed a similar gambling task to that described above.

However, instead of two, there were three, equiprobable

possible outcomes on each trial. In a so-called ‘win’

condition, these were þ5¢, þ2.5¢, and 0¢. In a ‘lose’

condition, involving separate task blocks, the possible

outcomes were 25¢, 22.5¢, and 0¢. Note that in both

conditions, the intermediate outcome corresponded with the

objective expected outcome. As predicted by the RL-ERN

theory, the feedback ERN associated with these two

outcomes did not differ in amplitude, even though one

outcome entailed a loss and the other outcome entailed a

gain of money (see Fig. 2A). Another interesting result

concerned the ERPs elicited by the ‘0’ outcomes in each

condition. A large ERN was elicited in the win condition, in

which ‘0’ was the worst possible outcome (see Fig. 2B). In

contrast, the feedback ERN was virtually absent in the lose

condition, in which ‘0’ was the best possible outcome.

These and other results from this study suggest that the

feedback ERN is sensitive not to the absolute magnitude of

the reward, but rather to deviations from the expected value

of the reward. Thus, the feedback ERN behaves as if it

reflects a reward prediction error.

2.3. Feedback ERN amplitude varies inversely with

response ERN amplitude as a function of learning

A central claim of the RL-ERN theory is that the ERN,

like phasic activity of the midbrain dopamine system, is

elicited following the earliest predictor of negative outcome

[13]. This claim is consistent with the timing of the response

ERN and the feedback ERN. In typical choice RT tasks, in

which subjects are aware of the stimulus–response map-

pings, the response is the earliest predictor of the outcome of

a trial. Indeed, subjects can often efficiently regulate their

performance without the use of trial-to-trial feedback.

Hence, in choice RT tasks, the ERN occurs immediately

following an erroneous response. In contrast, in tasks such

as the time estimation task used by Miltner et al. [1],

subjects rely on trial-to-trial feedback for evaluation of their

performance. As a consequence, the feedback stimulus itself

is the earliest predictor of the outcome of the trial, and the

ERN is observed following a negative feedback stimulus.

In a recent experiment, we have investigated the timing

of the ERN more systematically [12]. Subjects performed a

probabilistic learning task in which they were instructed to

Fig. 2. Illustration of context sensitivity of the feedback ERN (adapted from Ref. [7]). Waveforms were recorded from electrode FCz. Time ¼ 0 ms indicates

the onset of the feedback stimulus. See text for details.
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produce speeded two-choice responses to a series of stimuli.

Subjects were not informed about the stimulus–response

mappings, but were instead required to determine these on

the basis of trial-to-trial feedback. Some of the stimuli were

consistently mapped to one or the other response, and choice

accuracy associated with these stimuli showed a gradual

increase from 50% to approximately 80% over the course of

50 presentations of each of the stimuli; the use of a stringent

response deadline assured that accuracy did not reach

perfection. The critical results in this experiment concerned

the effect of learning of the stimulus–response mappings on

the relative size of the response ERN and the feedback ERN.

As predicted by the RL-ERN theory, during the initial stages

of learning, the ERN was large following the feedback and

absent following the response. However, as subjects learned

the stimulus–response mappings, this pattern gradually

reversed: The ERN slowly ‘propagated back’ from the

feedback to the response as the predictive value of the

response was learned. This pattern of results was not found

for a separate set of stimuli for which the mapping to the

response was randomly determined on each trial, and hence

could not be learned. In this task condition, the ERN

remained invariably high following the feedback, and did

not propagate back to the response.

In a follow-up study, using a variant of the probabilistic

learning task, we replicated these results [25]. In that study,

we also established more clearly that the relative size of the

response ERN and feedback ERN is highly sensitive to

the degree to which a response is predictive of the value of

the feedback. A stepwise increase of this predictive power

(20–50–80–100%) led to a monotonic increase in response

ERN amplitude and to a corresponding decrease in feedback

ERN amplitude. Together, these results underline the

intimate relationship between learning and the time of

occurrence of the ERN.

2.4. The feedback ERN is generated in anterior

cingulate cortex

The RL-ERN theory provides a precise account of how the

ERN is generated: negative and positive reward prediction

errors are coded as phasic decreases and increases in activity

of the midbrain dopamine system, respectively. These phasic

dopamine signals are then conveyed to several cortical brain

regions including a part of the ACC associated with the

cognitive control of motor behavior [29,30]. The negative

and positive dopamine signals, respectively, disinhibit or

inhibit the apical dendrites of motor neurons there, giving rise

to differential activity of this area between correct trials and

error trials, which is manifested at the scalp as the ERN.

Thus, although the reward prediction error signals are coded

by the midbrain dopamine system, the electrophysiological

correlate of these signals, the ERN, is generated in ACC

(see also Ref. [16]).

In line with this view, equivalent dipole source modeling

studies have generally indicated the ACC as the most likely

source of the feedback ERN [1,18,20]. One study has

suggested a feedback ERN generator in a more caudal and

dorsal region of medial frontal cortex, but this dipole model

was not based on an exploratory fitting procedure, leaving

open the possibility that a dipole in ACC provided a better

fit of the data [31]. In any case, source modeling results must

be interpreted with caution because the dipole source

localization problem is underdetermined (the so-called

‘inverse problem’). Another, more specific problem in

modeling the source of the feedback ERN concerns the

overlap of this component with the P300 (see Fig. 1). This

complicates the source localization modeling, and may

require the addition of extra dipoles [1], which increases the

risk of finding a statistically appropriate but false source

model solution. Nevertheless, the source modeling studies

discussed above receive indirect support from neurophy-

siological recordings in monkeys, indicating that activity of

ACC motor neurons is modulated by the absence of

expected rewards [32–34].

Functional neuroimaging studies have also investigated

the impact on ACC activity of positive and negative

reinforcers. Although not observed in each study [35], some

studies have found increased ACC activation in response to

financial penalty [36–38]. Similarly, Bush and colleagues

[39] found that dorsal ACC was activated by unexpected

decreases in monetary reward. Other studies have investi-

gated the neural response to abstract performance feedback.

Ullsperger and von Cramon [40] found that activity in the

rostral cingulate motor area was increased following

negative compared to positive feedback in a dynamically

adaptive motion prediction task. Monchi and colleagues

reported a rostral ACC area that was reliably activated by

negative feedback in the Wisconsin card sorting test [41].

In a recent functional magnetic resonance imaging study,

using a probabilistic learning task, we demonstrated that a

single area in dorsal ACC is sensitive to both error responses

and negative feedback [42]. Importantly, the magnitude of

the observed ACC activations mirrored the amplitude of the

response ERN and feedback ERN in electrophysiological

studies involving the same task [12,25], being largest when

the reward prediction error is also largest. This presents

compelling support for the RL-ERN theory, which claims

that the response ERN and feedback ERN are generated in

the same area of ACC. An intriguing question for future

research is how the findings reviewed above are related to

the well-known role of ACC in coding the negative affect

associated with pain, a primary negative reinforcer [43].

3. Discussion

We have reviewed the current knowledge regarding the

neural basis and functional significance of the feedback

ERN, an electrophysiological brain potential in humans that

is differentially sensitive to negative and positive perform-

ance feedback [1]. Studying the feedback ERN can provide
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important clues about the nature of the neural mechanisms

contributing to error processing, decision making, and

reinforcement learning. The results from neurophysiological

and functional imaging studies provide converging evidence

for the view that the feedback ERN is generated in ACC,

and electrophysiological studies appear to indicate that the

ERN reflects an evaluation process that monitors for

unexpected favorable or unfavorable events. The amplitude

of the feedback ERN is sensitive to deviations between the

actual and expected value of outcomes, rather than to the

absolute magnitude of these outcomes. Furthermore, if

subjects are able to learn the actions that lead to these bad

outcomes, then the ERN propagates back to these actions,

which come to serve as the earliest predictors of the

negative outcomes. All of these findings are consistent with

the recently proposed RL-ERN theory of the ERN, which

suggests that the ERN reflects the impact on ACC of a

negative reward prediction error signal, conveyed by the

midbrain dopamine system, that is generated when ongoing

events are suddenly worse than expected [12].

Despite the progress in understanding the feedback ERN

signal, several outstanding questions remain. A first

question is, what does the brain do with the reward

prediction error signal thought to be indexed by the ERN?

According to the RL-ERN theory, the ACC uses this signal to

positively (negatively) reinforce the behaviors and motor

systems involved in arriving at the positive (negative)

outcome. This view is consistent with the observation that

ERN amplitude varies as a function of learning. However,

although there is indirect evidence from neurophysiological

research and computational modeling studies [12], direct

empirical evidence that the ERN reflects a reinforcement

learning signal is still lacking. One possible avenue for

exploring this issue is by studying how dopaminergic

pharmacological agents affect ERN amplitude and simple

associative learning [44,45].

A second outstanding question concerns the relation

between the feedback ERN and immediately preceding

action. According to the RL-ERN theory, the ERN

specifically indicates when the consequences of a response

are worse than expected. This notion refers to a fundamental

principle of operant conditioning, according to which

learning should occur only when the reward or punishment

is contingent on the animal’s behavior. This issue was

addressed to some extent in the probabilistic learning

experiment mentioned earlier [12]. One of the stimuli in this

experiment was always associated with a negative trial

outcome, irrespective of the subject’s response, and hence

was the earliest predictor of negative outcome. Because the

negative outcomes associated with this stimulus were not

the consequence of the subjects’ responding, it was

predicted that by the end of learning no ERN should be

observed on these trials. As expected, in the course of

learning, the amplitudes of the response ERN and feedback

ERN gradually decreased. However, they did not diminish

to zero—even after many presentations of the stimulus,

there remained a small but clear ERN following response

and feedback that appeared resistant to further learning.

This result can perhaps be explained by making the

assumption that an additional cognitive process was

continuing the search for an appropriate response strategy

even after the simple reward-prediction process posited by

the RL-ERN theory had given up [12]. Thus, better tests

seem needed to evaluate the relation between the ERN,

previous responding, and cues that predict feedback

irrespective of the response. For instance, an important

question is whether ERNs will be observed when the

subjects’ task is to simply look at stimuli informing them

about monetary rewards and punishments, in the absence of

responding.

A third challenge for future research is to determine the

relationship between the ERN and the amount or complexity

of evaluative information in the feedback. Results from a

study by Mars et al. [24] suggest that if the information

conveyed by the feedback display is complex, then this may

draw away attention from the simple good-or-bad character

of the feedback. These authors studied the effect on the ERN

of different types of feedback in the time estimation task.

In one condition, the feedback had a binary character,

indicating whether the time estimation was adequate or not.

In this condition, the authors found a substantial ERN

following negative feedback, replicating the findings of

Miltner et al. [1]. In a second condition, the feedback could

take on three different values, indicating whether the

estimation was too short, appropriate, or too long. The

feedback ERN in this condition was significantly smaller

than in the first condition. Presumably, the increased amount

of information in the feedback reduced the impact of the

valence dimension of the feedback. The RL-ERN theory

makes no prediction regarding the effect of feedback

complexity on the ERN. According to the theory, the

ERN reflects ‘scalar’ (good/bad) error signals, and not

‘vector’ signals that tell you what you should have done in

addition to whether you were right or wrong. Indeed, this is

a fundamental property of reinforcement learning theory

[46]. Further research is needed to test this aspect of the

RL-ERN theory and to extend the findings of Mars et al.

As a final issue, it has been proposed that the response

ERN [31,47] and the feedback ERN [18] may reflect an

emotional reaction to errors. Although future research is

needed to investigate this issue, the RL-ERN theory appears

to be compatible with the idea that the ERN is associated

with emotional processing [48]. In particular, the emotion

hypothesis leaves open the question how negative outcomes

are detected in the brain; this function may be carried out by

a system for reinforcement learning, which in turn may

provide the input for a system involved in emotional and

motivational functioning. One possibility is that the

RL-ERN theory constitutes a formal instantiation of

the somatic marker hypothesis [27,49]. According to this

hypothesis, decision making is biased by emotionally

induced somatic states, for instance through the influence
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of particular neurotransmitter systems. The phasic dopa-

mine signals hypothesized to underlie ERN generation may

serve as a type of somatic marker. Another possibility is that

the ERN is directly related to the error-detection process

itself, and that the emotional reaction to errors is simply

sensitive to the same variables as the ERN, yielding a

correlation in the absence of a direct causal relation between

the two phenomena.
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