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Abstract

The reinforcement learning theory suggests that the feedback negativity should be larger when feedback is unexpected.

Two recent studies found, however, that the feedback negativity was unaffected by outcome probability. To further

examine this issue, participants in the present studies made reward predictions on each trial of a gambling task where

objective reward probability was indicated by a cue. In Study 1, participants made reward predictions following the

cue, but prior to their gambling choice; in Study 2, predictions were made following their gambling choice. Predicted

and unpredicted outcomes were associated with equivalent feedback negativities in Study 1. In Study 2, however, the

feedback negativity was larger for unpredicted outcomes. These data suggest that the magnitude of the feedback

negativity is sensitive to violations of reward prediction, but that this effect may depend on the close coupling of

prediction and outcome.
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Event-related brain potential (ERP) studies have consistently

reported the presence of a medial frontal negative deflection

peaking at approximately 250 ms when participants receive neg-

ative compared to positive performance feedback (Holroyd &

Coles, 2002; Luu, Tucker, Derryberry, Reed, & Poulsen, 2003;

Nieuwenhuis, Holroyd, Mol, & Coles, 2004; Nieuwenhuis et al.,

2002; Ruchsow, Grothe, Spitzer, & Kiefer, 2002). A similar

feedback negativity has been reported following the presentation

of stimuli indicating monetary loss or nonreward compared to

reward (Gehring &Willoughby, 2002; Hajcak, Holroyd, Moser,

& Simons, 2005; Hajcak, Moser, Holroyd, & Simons, 2006;

Holroyd, Hajcak, & Larsen, 2006; Yeung, Holroyd, & Cohen,

2005; Yeung & Sanfey, 2004). In fact, Nieuwenhuis, Yeung,

Holroyd, Schurger, and Cohen (2004) found that a feedback

negativity could be elicited by either monetary or performance

information when feedback conveyed information about both

dimensions simultaneously; the aspect of the feedback that elic-

ited the feedback negativity was determined by the aspect of the

feedback that was emphasized. Nieuwenhuis et al. argued that

monetary losses and negative performance feedback are func-

tionally equivalent insofar as both reflect outcomes along a

good–bad dimension. In terms of the neural generator of the

feedback negativity, studies that utilize source-localization sug-

gest that the feedback negativity is generated near the anterior

cingulate cortex (ACC; Gehring & Willoughby, 2002; Miltner,

Braun, & Coles, 1997; Nieuwenhuis, Yeung, et al., 2004); con-

sistent results implicating the ACC in processing negative feed-

back have been reported using fMRI (Nieuwenhuis, Heslenfeld,

et al., 2005; Nieuwenhuis, Schweizer, Mars, Botvinick, &

Hajcak, 2007).

Holroyd and Coles (2002) have argued that the feedback

negativity reflects the activity of a reinforcement learning system.

This reinforcement learning theory is predicated on animal re-

search that implicates the basal ganglia and the midbrain dopa-

mine system in reward prediction and reinforcement learning. In

particular, this research indicates that when events are better or

worse than anticipated, the basal ganglia induce a phasic increase

or decrease, respectively, in the activity of midbrain dopamine

neurons (Barto, 1995; Montague, Dayan, & Sejnowski, 1996;

Schultz, 2002). The reinforcement learning theory proposes that

the amplitude of the feedback negativity is determined by the

impact of this phasic dopamine signal on the ACC (Holroyd &

Coles, 2002), such that unexpected negative feedback is associ-

ated with a large negativity and unexpected positive feedback is

associated with a small negativity.

Recent studies have tested the reinforcement learning theory’s

contention that the feedback negativity reflects a reward predic-

tion error signal. For instance, evidence consistent with the re-

inforcement learning theory has been reported in studies where

participants were required to learn stimulus–response mappings

based on feedback; on some trials, participants received feedback
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that was inconsistent with learned stimulus–response mappings.

In these studies, unexpected negative compared to positive feed-

back has been found to elicit the largest feedback negativity

(Gibson, Krigolson, & Holroyd, 2006; Holroyd & Coles, 2002;

Nieuwenhuis, Nielen, Mol, Hajcak, & Veltman, 2005; Nieu-

wenhuis et al., 2002). Additionally, Holroyd, Nieuwenhuis, Ye-

ung, and Cohen (2003) manipulated feedback frequency in a

gambling task to induce expectations regarding feedback valence

and found that the feedback negativity was larger when mon-

etary losses were infrequent.

A recent study by Hajcak et al. (2005), however, failed to find

an influence of reward probability on the magnitude of the feed-

back negativity in a gambling task. Participants in Experiment 1

of the Hajcak et al. study performed a gambling task in which

they chose one from among four doors following a cue that in-

dicated the probability of reward on each trial (25%, 50%, or

75%). Based on the reinforcement learning theory, we predicted

that the feedback negativity would be largest for nonrewarding

feedback delivered on the 75% trials because such occurrences

should violate subjects’ expectations set by the predictive cue.

Results revealed that the magnitude of the feedback negativity

elicited by nonrewarding feedback was, in fact, the same across

all levels of probability, suggesting that the feedback negativity is

insensitive to objective reward probability. There are, however,

potential methodological reasons why this study yielded results

that were not supportive of the reinforcement learning theory

and contrasted with findings from previous reinforcement learn-

ing studies.

Most previous feedback negativity studies that did find effects

of expectancy (Gibson et al., 2006; Holroyd & Coles, 2002;

Nieuwenhuis, Nielen, et al., 2005; Nieuwenhuis et al., 2002) em-

ployed reinforcement learning tasks in which subjects were re-

quired to learn the probability of reward throughout the

experiment, and the learning process may have induced greater

attentional engagement and kept reward expectations closely

linked to the actual reward probability on each trial. Possibly, the

Hajcak et al. (2005) participants developed expectations that

were only loosely tied to the probability of reward indicated by

the predictive cue. Although the success of the experimental ma-

nipulation was supported by self-report following the experi-

mentFparticipants indicated that they received the most

rewards when the cue indicated that a reward was probable

and the fewest rewards when the cue indicated that a reward was

improbableFthese self-reports were retrospective and global

(see also Baker, Krigolson, & Holroyd, 2006). Thus, on a trial-

by-trial basis, participants’ expectations might have been incon-

sistent with the predictive cue or not particularly strong. The

distinction being drawn here between reinforcement learning

tasks that may involve a strong coupling between subjective ex-

pectations and reward probability on the one hand, and gam-

bling tasks that may involve a relatively more loose coupling of

subjective expectations and reward probability on the other, is

similar to Kahneman and Tversky’s (1982) suggestion that there

exist ‘‘passive’’ or automatic expectations built up through ex-

perience (e.g., during a reinforcement learning task) that are

stronger and differ frommore ‘‘conscious anticipations’’ that are

subject to doubt and reconsideration (e.g., during a gambling

task). After receiving nonrewards on two or three trials in a row

in the gambling task, for example, participants may have suc-

cumbed to the ‘‘gambler’s fallacy’’ and expected a reward even if

the chance of reward was objectively low (25%). Or, it is possible

that despite the retrospective reports of differential expectations,

these expectations were relatively uniform or weak across the

three levels of predictive cue: Participants may have expected

rewards on 50%, 55%, and 60% of the trials, even though the

probability of reward was 25%, 50%, and 75%, respectively.

To further examine the sensitivity of the feedback negativity

to expectancy violations, participants in the current experiments

performed a gambling task similar to that used in the Hajcak

et al. (2005) study in which the odds of reward and nonreward

were manipulated on a trial-by-trial basis via a predictive cue.

Going beyond previous gambling studies, however, participants

were asked to indicate prospectively whether they believed they

would receive a reward on each trial. Thus, we were able to

explicitly examine feedback negativity magnitude elicited by pre-

dicted and unpredicted outcomes as determined by the partic-

ipants on a trial-by-trial basis and could therefore provide amore

directmeasure of the influence of expectancy on themagnitude of

the feedback negativity. We expected this design to control for

any inconsistencies between objective probability indicated by

the predictive cue and subjective expectations developed through

the course of the task, as we obtained subjects’ own predictions

on a trial-by-trial basis. If the feedback negativity reflects a re-

ward prediction error, as Holroyd andColes (2002) suggest, then

unpredicted nonrewards should elicit a larger feedback negativity

compared to predicted nonrewards.

We also evaluated the effect of prediction on the P3, as it has

been shown to be sensitive to expectancies in numerous studies

(Courchesne,Hillyard, &Courchesne, 1977; Duncan-Johnson&

Donchin, 1977; Johnson & Donchin, 1980). It was, therefore,

hypothesized that unpredicted outcomes would elicit larger P3s

than predicted outcomes and would allow us to examine the

effects of prediction on multiple stages of feedback processing.

EXPERIMENT 1

Method

Participants

Seventeen undergraduate students (8 women) in an upper-level

psychology class at the University of Delaware participated in

the current experiment for extra credit. Additionally, partici-

pants were told that they could earn between $0.00 and $24.00 in

bonus money based on their performance. All participants were

paid $12.00.

Task

The task was administered on a Pentium III class computer,

using Presentation software (Neurobehavioral Systems, Inc.) to

control the presentation and timing of all stimuli. Subjects’ pri-

mary objective on each trial was to guess which of four doors

presented horizontally in a color graphic hid a prize by pressing

the left or right ‘‘ctrl’’ or ‘‘alt’’ key. At the beginning of each trial,

a white ‘‘1,’’ ‘‘2,’’ or ‘‘3’’ appeared on the screen for 1000 ms to

inform the participants how many doors contained prizes; there-

fore, ‘‘1,’’ ‘‘2,’’ and ‘‘3’’ cues indicated that the probability of

reward on the upcoming trial was .25, .50, and .75, respectively.

One and a half seconds after the offset of the cue, the question:

‘‘Do you think youwill win on this trial?’’ appeared on the screen

and remained there until participants indicated yes or no using

the left and right ‘‘ctrl’’ and ‘‘alt’’ keys. Thus, participants were

first presented with a cue that conveyed the objective probability

of reward on the upcoming trial; then, participants predicted
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whether or not they thought they would choose correctly. Im-

mediately following their subjective prediction, the graphic of the

doors appeared until the participant chose a door. Five hundred

milliseconds following their choice, a feedback stimulus appeared

on the screen for 1000 ms: a green ‘‘1’’ feedback indicated a

correct guess, and a green ‘‘o’’ feedback indicated an incorrect

guess. All other stimuli were presented in white font against

a black background; all stimuli were positioned in the center of

the screen. The cue and feedback stimuli occupied approximately

21 of visual angle horizontally, and 21 vertically. A fixation

mark (1) was presented in the intertrial interval. The interval

between offset of the feedback stimulus and the following cuewas

1000 ms.

Participants were informed that they would earn $.05 for each

correct guess. Unbeknownst to the participants, the outcome of

each trial was predetermined and pseudorandom such that over-

all the participants received exactly 50% correct feedback; neg-

ative feedback was delivered on 75% of 1-cue trials, 50% of

2-cue trials, and 25% of 3-cue trials.

Procedure

After a brief description of the experiment, EEG sensors were

attached and the participant was given detailed task instructions.

To familiarize participants with the task, each was given a prac-

tice block consisting of 40 trials andwas instructed to guess which

door hid a prize. The experiment consisted of 12 blocks of 40

trials (480 total trials) with each block initiated by the partici-

pant. The experimenter entered the room every 160 trials to in-

form the participant how much money he or she had earned.

Because all participants received the same number of rewarding

and nonrewarding feedback, all participants were paid a uniform

amount for their participation.

Psychophysiological Recording, Data Reduction, and Analysis

The electroencephalogram (EEG) was recorded using a Neuro-

soft Quik-Cap. Recordings were taken from three locations

along the midline: Frontal (Fz), Central (Cz), and Parietal (Pz).

In addition,Med-Associates tin electrodes were placed on the left

and right mastoids (A1 and A2, respectively). During the re-

cording, all activity was referenced to Cz. The electrooculogram

(EOG) generated from blinks and vertical eye movements was

also recorded using Med-Associates miniature electrodes placed

approximately 1 cm above and below the participant’s right eye.

The right earlobe served as a ground site. All EEG/EOG elec-

trode impedances were below 10 kO, and the data from all chan-

nels were recorded by a Grass Model 7D polygraph with Grass

Model 7P1F preamplifiers (bandpass5 0.05–35 Hz).

All bioelectric signals were digitized on a laboratory micro-

computer using VPM software (Cook, 1999). The EEG was

sampled at 200 Hz. Data collection began with the participants’

response (500 ms prior to feedback), and continued for 1500 ms.

Off-line, the EEG for each trial was corrected for vertical EOG

artifacts using the method developed by Gratton, Coles, and

Donchin (1983; Miller, Gratton, & Yee, 1988) and then re-ref-

erenced to the average activity of the mastoid electrodes. Trials

were rejected and not counted in subsequent analysis if there was

excessive physiological artifact (i.e., 25 ms of invariant analog

data on any channel or A/D values on any channel that equaled

that converters minimum or maximum values). Single-trial EEG

data were lowpass filtered at 20 Hz with a 19 weight FIR digital

filter as per Cook and Miller (1992).

As the primary aim of the current study was to evaluate the

effect of the participant’s predictions on the feedback-locked

ERPs, grand average waveforms were created for predicted and

unpredicted nonrewards and predicted and unpredicted rewards,

collapsed across the objective probability factor (i.e., 1-cue,

2-cue, and 3-cue trials). The average activity in the 200-ms pre-

stimulus window served as a baseline. One outstanding issue

in feedback negativity (FN) research is whether variance in

FN amplitude between rewarding and nonrewarding feedback

results mainly from activity elicited by nonrewards, by rewards,

or by both. As argued at length by Luck (2005), the absolute

amplitudes of ERP components are meaningless in and of

themselves because, for example, an apparent decrease in the

amplitude of a component can result from the superposition

of a component with opposite polarity (see his rule #4, p. 56).

For these reasons, we have used a difference-wave approach to

isolate the valence-related variance in the ERP in a manner

that is independent of the source of the variance (nonrewards,

rewards, or both; Holroyd, 2004; Luck, 2005). Specifically,

difference waves were created by subtracting the ERPs observed

following rewards from the ERPs observed following nonre-

wards. These difference waves were created separately based on

the predictions made by participants: predicted (predicted non-

rewards minus predicted rewards feedback) and unpredicted

(unpredicted nonrewards minus unpredicted rewards feedback).

FNs were then defined as the maximum negative amplitude of

these difference waves within a window between 200 and 500 ms

following feedback at each electrode site. This procedure con-

trolled for the main effect of stimulus probability and prediction

on the ERP, ensuring that the ERP measure was sensitive to

the interaction of feedback expectations and valence (Holroyd,

2004).

The P3 was evaluated for each outcome and prediction at all

sites. The P3 was defined as the most positive peak in the 200–

600-ms window following feedback onset. The FN and P3 were

statistically evaluated using SPSS (version 13.1) General Linear

Model software with the Greenhouse–Geisser correction applied

to p values associated with multiple df repeated measures com-

parisons.

Results

Behavioral Results

On average, participants predicted that they would receive a

reward on 15.81% (SD5 18.63), 73.93% (SD5 22.31), and

94.67% (SD5 6.63) of 1-, 2-, and 3-cue trials, respectively. An

ANOVA on number of predicted rewards at each level of cue

confirmed the impression that the cue influenced participants’

predictions, F(2,32)5 91.52, po.001. Post hoc analyses indicat-

ed that participants predicted rewards on more 3-cue trials

than both 2- and 1-cue trials, t(16)5 3.84, po.01 and

t(16)5 13.85, po.001, respectively; additionally, rewards were

predicted more on 2- than 1-cue trials, t(16)5 8.39, po.001.

Thus, the behavioral data established that the predictive cue

influenced participants’ predictions regarding the subsequent

feedback. It is interesting to note the presence of a general

positive bias: Participants predicted rewards on more than 50%

of 2-cue trials, t(16)5 4.42, po.001, and more than 75% of

3-cue trials, t(16)5 12.23, po.001; on the other hand, reward

prediction on 1-cue trials did not differ reliably from 25%,

t(16)5 2.03, p4.05.
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The FN

Figure 1 presents feedback-locked ERP averages for rewarding

and nonrewarding feedback for predicted (left) and unpredicted

(right) outcomes at Fz (top), Cz (middle), and Pz (bottom).

Nonrewards were associated with a frontally maximal negative-

going deflection that peaked approximately 300 ms following

feedback. Figure 1 also presents the difference wave obtained by

subtracting reward from nonreward for predicted and unpre-

dicted outcomes (predicted nonreward minus predicted reward

and unpredicted nonreward minus unpredicted reward) at Fz

(top), Cz (middle), and Pz (bottom), and Table 1 presents the

average FN amplitudes at each recording site. A 3 (Location)� 2

(Prediction) repeated measures ANOVA indicated a trend to-

ward larger FNs at frontal-central recording sites, F(2,32)5

2.91, po.09. Additionally, the FN on predicted and unpredicted

feedback did not differ, F(1,16)o1, and the interaction between

location and prediction did not reach significance, F(2,32)o1.1

Based on the behavioral data, it appeared that the strength of

subjects’ predictions varied considerably with the predictive cue.

To further characterize the effect of prediction on FNmagnitude,

then, we conducted a 2 (Prediction: predicted vs. unpredicted)�
2 (Prediction Strength: strong vs. weak) ANOVA on a subset of

the data. This follow-up analysis only included 11 participants

because the other 6 did not have the appropriate minimum

number of trials for ERP analysis (20) in the weak prediction

condition. For weak predictions, the predicted and unpredicted

difference waves were calculated by subtracting rewards from

nonrewards on 2-cue trials. For strong predictions, the predicted

difference wave was calculated by subtracting predicted rewards

on 3-cue trials from predicted nonrewards on 1-cue trials; the

unpredicted difference wave was calculated by subtracting un-

predicted rewards on 1-cue trials from unpredicted nonrewards

on 3-cue trials.We conducted the analysis in this manner because

the number of predicted rewards on 1-cue trials and predicted

nonrewards on 3-cue trials were insufficient to yield stable wave-

forms. The analysis, conducted at Cz, where the FN was nu-

merically largest, indicated that the FN did not vary with respect

to prediction, F(1,10)o1, or prediction strength,F(1,10)o1, and

prediction strength did not interact with prediction, F(1,10)o1.

Thus, the magnitude of the FN was insensitive to predictions

when they were both strong (M5 � 8.05, SD5 4.06 and M5

� 8.52, SD5 5.52 for predicted vs. unpredicted outcomes, re-

spectively) and weak (M5 � 6.37, SD5 5.40 and M5 � 6.09,

SD5 3.83 for predicted vs. unpredicted outcomes, respectively).

The P3

The P3 amplitudes following predicted and unpredicted feedback

are presented in Table 1. Consistent with the impression sug-

gested by Figure 1, a 2 (Prediction) � 2 (Outcome) � 3 (Loca-

tion) repeated measures ANOVA confirmed that the P3 became

larger at more parietal recording sites, F(2,32)5 4.89, po.05.

Additionally, the P3 was larger following unpredicted than pre-

dicted feedback, F(1,16)5 7.92, po.05, and larger for rewards

than nonrewards, F(1,16)5 15.87, po.001. The three-way in-

teraction and all two-way interactions failed to reach statistical

significance (all ps4.20).

Discussion

The current experiment evaluated the effect of perceived reward

probability on feedback processing in a manner similar to that

reported by Hajcak et al. (2005). The current experiment ex-

tended the methodology of the Hajcak et al. study, however, by

asking participants to indicate whether or not they thought they

would receive a reward on a trial-by-trial basis. Thismodification

controlled for possible inconsistencies between the objective

probabilities indicated by the predictive cues and the partici-
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Figure 1. ERPs elicited by predicted (left) and unpredicted (right)

rewarding and nonrewarding feedback, as well as the nonreward minus

reward difference waveform, at Fz (top), Cz (middle), and Pz (bottom)

from Experiment 1. Feedback onset occurred at 0 ms.

Table 1. Mean (M) and Standard Deviation (SD) for FN and P3

Magnitudes in Experiment 1 (Left) and Experiment 2 (Right)

Measure

Study 1 Study 2

Predicted Unpredicted Predicted Unpredicted

M SD M SD M SD M SD

FN
Fz � 8.61 4.71 � 8.36 5.79 � 6.64 3.31 � 9.02 4.87
Cz � 8.39 5.22 � 8.27 6.25 � 6.54 3.28 � 9.37 4.96
Pz � 8.07 5.59 � 7.06 5.44 � 5.39 3.37 � 8.33 4.87

P3
Reward
Fz 12.51 5.21 13.00 6.27 7.51 4.48 11.14 6.45
Cz 15.66 6.36 16.72 8.31 12.94 5.33 17.72 7.57
Pz 15.47 6.77 16.22 8.84 16.88 5.84 20.78 7.97

Nonreward
Fz 8.97 4.21 11.26 5.05 7.61 5.91 9.33 4.79
Cz 11.13 4.91 13.31 5.40 11.29 6.75 14.81 6.57
Pz 11.23 5.47 13.17 5.20 14.60 5.96 17.78 6.45

1Even when the FN was evaluated at Cz, as in Holroyd et al. (2003),
prediction did not influence the magnitude of the FN, F(2,32)o1.



pants’ subjective expectations. In line with the retrospective re-

ports of the participants in the Hajcak et al. study, participants’

predictions in the present experiment were reliably modulated by

the predictive cue such that they predicted the most rewards on

3-cue trials and the fewest rewards on 1-cue trials. Thus, we were

able to build on our previous study in two important ways: (a)

We were able to provide a behavioral measure to verify that the

predictive cue induced appropriate expectations on a trial-by-

trial-basis and (b) we were able to compare directly predicted

versus unpredicted rewards and nonrewards as perceived by the

participants on each trial.

The results of the current study indicated that the feedback

negativity was not larger for unpredicted outcomes as perceived

by the participants on each trial. Further analyses of predicted

versus unpredicted feedback as a function of cue (i.e., predictions

on 2-cue trials versus those made on 1- and 3-cue trials) similarly

indicated that there was no effect of prediction on the feedback

negativity.

Interestingly, the results from the present study did confirm

that subjective predictions differed substantially from objective

probability. That is, participants underestimated rewards some-

what on 1-cue trials, but demonstrated a positive bias on 2- and

3-cue trials, predicting rewards on approximately 74% and 95%

of trials, respectively. Overall, these data indicate that predictive

cues induced appropriate expectations overall, but that partic-

ipants’ predictions differed from objective probability in a num-

ber of cases.

In Experiment 1, participants were asked to make their pre-

dictions immediately after the predictive cue was presented but

prior to choosing a door. Therefore, their predictions were made

prior to their choice in the gambling task, but after having

knowledge about the likelihood of reward. Research on ‘‘magical

thinking’’Fwhereby individuals believe that their predictions

have some influence over a probabilistic outcomeFsuggests that

making predictions before actions might actually strengthen ex-

pectations (Rothbart & Snyder, 1970). Specifically participants

in the Rothbart and Snyder study were more confident in being

correct and wagered more money when predicting an outcome

before engaging in a probabilistic task (i.e., rolling dice). Thus,

we believed that this design would lead to high confidence and

strong expectations about predicted rewards.

This design choice, however, was made on the assumption

that expectations induced by the cue would remain constant

throughout the duration of each trial. This might not have been

the case, however. Because participants had time to reconsider

their predictions at multiple time points during each trial, it is

possible that the strength of the prediction made after the cue

faded or even changed over the course of the trial. For instance,

participants could have felt confident that they would receive a

reward based on a cue (e.g., on a 3-cue trial), but changed their

expectations after their gambling choice. These possibilities are

consistent with Kahneman and Tversky’s (1982) analysis of how

most individuals commit themselves to expect a range of possible

outcomes in a task rather than an exact probability estimate, and

given enough time to reconsider their predictions in the current

study, subjects might have had fairly weak (i.e., wide ranged)

expectations at the time of feedback presentation.

To explore these possibilities, participants in Experiment 2

performed a similar gambling task. In this case, however, sub-

jective predictions were made following responses and just prior

to the presentation of feedback.We hypothesized that this design

might strengthen expectations by having participants make re-

ward predictions just after their response and immediately before

receiving feedback. In this way, the time between prediction and

outcome was reduced, and this, in turn, would reduce the pos-

sibility that participants might second guess or change their pre-

dictions and thereby increase attention to the action–outcome

pairs. We again predicted that the feedback negativity should be

enhanced for unpredicted outcomes.

EXPERIMENT 2

Method

Participants

Seventeen different undergraduate students (15 women) in a

separate upper-level psychology class at the University of Del-

aware participated in the current experiment for extra credit. As

in Experiment 1, participants were told that they could earn be-

tween $0.00 and $24.00 in bonus money based on their perfor-

mance; all participants were paid $12.00.

Task and Procedure

The task and procedures and data analysis strategies for Exper-

iment 2 were identical to Experiment 1 except that the subjective

prediction questionF‘‘Do you think you will win on this tri-

al?’’Fwas presented after participants chose a door.

Results

Behavioral Results

Participants predicted a reward on 21.5% (SD5 18.4), 69.0%

(SD5 19.5), and 94.9% (SD5 6.9) of 1-, 2-, and 3-cue trials,

respectively. An ANOVA on number of predicted rewards at

each level of cue confirmed that the cue influenced participants’

predictions, F(2,32)5 114.14, po.001. Post hoc analyses indi-

cated that participants predicted rewards on more 3-cue trials

than both 2-cue trials, t(16)5 6.98, po.001, and 1-cue trials,

t(16)5 15.27, po.001; additionally, rewards were predicted

more on 2- than 1-cue trials, t(16)5 7.91, po.001. Thus, the

behavioral data established that the predictive cue influenced

participants’ predictions regarding the subsequent feedback. As

in Experiment 1, participants exhibited a positive bias in their

predictions and predicted rewards on more than 50% and 75%

of 2- and 3-cue trials, respectively, t(16)5 4.02, po.001, and

t(16)5 11.89, po.001, respectively; however, participants did

not predict fewer than 25% of rewards on 1-cue trials,

t(16)5 .79, p4.40.2

The FN

Figure 2 presents feedback-locked ERP averages for rewarding

and nonrewarding feedback for predicted (left) and unpredicted

(right) outcomes at Fz, Cz, and Pz. As in Experiment 1, non-

rewarding feedback elicited a negative deflection approximately

300 ms following feedback onset. Figure 2 also presents the

difference wave obtained by subtracting rewards from nonre-

wards for predicted and unpredicted outcomes at each recording
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2To examine whether the percentage of predicted rewards varied be-
tween experiments, we conducted a 3 (Cue) � 2 (Experiment) repeated
measures ANOVA on percent of predicted rewards for each type of cue.
Although the percentage of predicted rewards varied as a function of cue,
F(2,64)5 202.15, po.001, there was no effect of experiment, F(1,32)o1,
and Experiment did not interact with Cue, F(2,64)o1. Thus, subjective
probabilitieswere not affected bywhen participantsmade their prediction.



site, and Table 1 presents the average FN amplitudes at each

recording site. Unlike Experiment 1, however, the critical 3

(Electrode Site) � 2 (Prediction) repeated measures ANOVA on

FN amplitude revealed that it was larger following unpredicted

outcomes, F(1,16)5 6.31, po.05. Although the FNwas larger at

frontal electrode sites, F(2,32)5 3.78, po.05, the interaction of

electrode site and prediction did not reach significance,

F(2,32)o1.3

As in Experiment 1, we sought to determine whether predic-

tion strength modulated the effect of prediction on the FN and

compared the FN elicited by predicted and unpredicted feedback

on 2-cue trials (i.e., the weak prediction condition) with that on

1- and 3-cue trials (i.e., the strong prediction condition). Like

Experiment 1, this follow-up analysis was conducted on a sub-

sample of 11 participants who had at least 20 trials of each type in

the weak prediction condition. At Cz, where the FN was largest,

the FN did not differ as a function of prediction in this subset

of the data, F(1,10)o1. Critically, however, themain effect of pre-

diction strength, F(1,10)5 4.96, po.05, was qualified by an in-

teraction with prediction, F(1,10)5 6.07, po.05, indicating that

the FN did, indeed, differ as a function of prediction on strong

trials (M5 � 5.43, SD5 2.99 for predicted and M5 � 10.43,

SD5 4.80 for unpredicted outcomes), F(1,10)5 7.23, po.05,

but not weak trials (M5 � 10.88, SD5 6.61 for predicted and

M5 � 10.04, SD5 6.77 for unpredicted outcomes), F(1,10)o1.

Thus, the interaction between prediction and prediction strength

seems to be driven by the relatively small FN on predicted out-

comes when predictions are strong.

The P3

The average P3 amplitudes elicited by predicted and unpredicted

feedback are presented in Table 1. A 2 (Prediction) � 3 (Out-

come) � 3 (Electrode Site) repeated measures ANOVA indicat-

ed that the P3 was larger at more parietal recording sites,

F(2,32)5 35.31, po.001. The P3 was again larger following un-

predicted compared to predicted feedback, F(1,16)5 42.86,

po.001, and, like Experiment 1, the P3 was also larger follow-

ing rewards than following nonrewards, F(1,16)5 12.17, po.01.

Consistent with the depiction in Figure 2, the influence of out-

come (i.e., the FN) on the P3 was largest at parietal recording

sites, F(2,32)5 13.82, po.001. The three-way interaction and

other two-way interactions did not reach significance (all

ps4.05).

Consistent with our FN results, which demonstrated an effect

of prediction strength in this experiment, an analysis of the P3 at

Pz, where it was largest, showed that the difference between un-

predicted and predicted feedback was larger in Experiment 2

(M5 3.53 mV, SD5 2.50) than Experiment 1 (M5 1.34 mV,
SD5 2.09), t(32)5 2.77, po.01.

General Discussion

The reinforcement learning theory holds that feedback negativity

amplitude is determined by an interaction between feedback va-

lence and expectedness, such that unexpected feedback induces

greater variance in feedback negativity amplitude relative to ex-

pected feedback. This prediction has been confirmed in several

experiments (Gibson et al., 2006; Holroyd & Coles, 2002;

Nieuwenhuis, Nielen, et al., 2005; Nieuwenhuis et al., 2002).

However, in a recent study we found that feedback negativity

amplitude appeared insensitive to the objective probability of

feedback in two gambling tasks (Hajcak et al., 2005). A possible

explanation for this discrepancy is that the overt probabilities in

these experiments only loosely corresponded to the participants’

actual expectations. Thus, if a person does not believe that trials

associated with 50% reward will in fact lead to reward half of the

time, then feedback negativity amplitude will not reflect a pre-

diction error associated with 50% reward. In the present study

we investigated this possibility by modifying the Hajcak et al.

task so that participants were queried about their subjective re-

ward prediction either before (Experiment 1) or after (Experi-

ment 2) their response. We found that feedback negativity

amplitude varied with subjective expectation only when predic-

tions were made following the response. Furthermore, this mod-

ulation of the feedback negativity was apparent when predictions

were presumably strongest (i.e., on 1- and 3-cue trials but not

2-cue trials). These results provide additional support for the

reinforcement learning theory but indicate that the methods for

inferring subjective expectancies should be carefully evaluated in

future experiments, and further, that participants’ expectancies

may have to be relatively strong and closely coupled with action-

outcome pairs to influence feedback negativity amplitude.
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Figure 2. ERPs elicited by predicted (left) and unpredicted (right)

rewarding and nonrewarding feedback, as well as the nonreward minus

reward difference waveform, at Fz (top), Cz (middle), and Pz (bottom)

from Experiment 2. Feedback onset occurred at 0 ms.

3Because the sample in Experiment 2 was comprised largely of wom-
en, we reanalyzed the data from Experiment 1 using gender (8 women, 9
men) as a between-groups variable to investigate whether gender might
explain the expectancy effect found in Experiment 2. Across all sites, and
at Fz only, there was no effect of prediction on the magnitude of the FN,
F(1,15)o1, the magnitude of the FN did not vary by gender, F(1,15)o1,
and the interaction between prediction and gender did not approach
significance, F(1,15)o1. Thus, it is unlikely that the difference between
Experiments 1 and 2 was a function of the different gender distributions.



Why was feedback negativity amplitude associated with re-

ward expectancy only when the expectation was queried after the

response, but not before? Given the data at hand, it seems rea-

sonable to assume that participants’ predictions fluctuated over

the course of each trial, solidifying only after participants were

committed to a response. Presumably, the process of action se-

lection involved an evaluation of the likelihood of each action–

outcome pair, followed by selection of the action with the highest

subjective expected value. The number of potential outcomes

would also have been smaller after the response (when there were

only two action–outcome possibilities), compared to before each

response (when then there were a total of eight action–outcome

possibilities). For these reasons, participants would have con-

fronted fewer possibilities, and would have evaluated these more

thoroughly, following each response relative to before it. Thus it

seems that participants would have been most confident in their

predictions at the end of each trial. Importantly, the P3 data are

consistent with this position: The effect of expectancy violation

on the P3 was more than twice as large in Experiment 2 as in

Experiment 1 (partial eta squared5 .72 vs. .33, respectively; see

also the Results section for Experiment 2). In contrast, partic-

ipants’ behavior did not differ between the two experiments (i.e.,

percentage of predicted rewards for each cue), suggesting that

when participants made their predictions did not alter their gam-

bling habits altogether, but rather changed how strongly they felt

about their chances. Given that we did not collect self-reported

confidence on each trial, future studies will have to further eval-

uate this possibility.

Putting the current findings in the context of the reinforce-

ment learning theory and results of previous reinforcement

learning tasks, it appears that the feedback negativity is highly

sensitive to task demands that make the connections between

predictions and action–outcome pairsmore or less salient.We are

further examining this issue in a series of ongoing experiments

(Baker et al., 2006; Gibson et al., 2006; Lee, Krigolson, & Hol-

royd, 2006), and our preliminary results suggest that the role of

predictions depends on depth of processing: Participants appear

to make more concrete predictions in trial-and-error learning

tasks in which they are required to attend more deeply to the

relationship between feedback and behavior compared to gam-

bling or guessing tasks where the contingencies are less apparent.

Thus, reinforcement learning tasks seem to involve more ‘‘pas-

sive expectations’’ that are quite strong and built up through

experience whereas gambling tasks seem to involve more ‘‘con-

scious anticipations’’ that are more susceptible to doubt and re-

consideration (cf. Kahneman & Tversky, 1982). In other words,

the differences between reinforcement learning tasks and gam-

bling tasks might be understood in terms of the former relying on

more basic ‘‘bottom up’’ processes that might become strong and

automatic because of heightened attention and the latter relying

on more complex ‘‘top down’’ processes involving multiple eval-

uations and considerations of actions and outcome that are more

flexible because of limited attentional capture by the task (cf.

Holroyd et al., 2006).

In this respect, it is interesting to note that Yeung et al. (2005)

found that the magnitude of the feedback negativity was smaller

in two gambling tasks that did not require overt responses.

Participants in this study rated the gambling tasks that involved

making overt responses as more interesting; additionally,

participants had larger self-reported affective responses to non-

rewarding versus rewarding outcomes during tasks that re-

quired a response, despite the fact that the objective value of

feedback was identical. Yeung et al. interpreted differences in the

feedback negativity between gambling tasks that require a re-

sponse and those that do not as reflecting differences in partic-

ipants’ level of interest. Alternatively, the present studies suggest

that (even implicit) reward predictions following responses

may explain the larger feedback negativity in tasks that require

a response.

We recognize that, by asking the participants to make a di-

chotomous prediction on each trial, the meaning of the feedback

is actually changed. For instance, participants would often have

correctly predicted negative feedback; in this way, the negative

feedback could simultaneously indicate that a participant’s pre-

diction was correct, and that he or she did not receive a reward.

Interestingly, the feedback negativity appeared to track the

monetary value of the feedback and was not related to its per-

formance-related aspect. This observation is consistent with a

recent study by Nieuwenhuis and colleagues, who found that the

feedback negativity could reflect either utilitarian- or perfor-

mance–related information conveyed by feedback, depending on

which aspect of the feedback is emphasized (Nieuwenhuis et al.,

2004). These data suggest that the feedback negativity is not,

however, elicited simply by unpredicted outcomes (Oliveira,

2005)Fas even predicted outcomes elicited a feedback negativity

in both Experiments 1 and 2.

We have noted that the P3 was larger for unpredicted com-

pared to predicted feedback in Experiments 1 and 2. These data

are consistent with previous studies that have demonstrated sen-

sitivity of the P3 to expectancy violations (Courchesne et al.,

1977; Duncan-Johnson & Donchin, 1977; Johnson & Donchin,

1980). However, the P3 also was larger following rewards than

nonrewards in both Experiments 1 and 2, which might suggest

that the variance in amplitude of the feedback negativity in the

present study resulted from component overlap with the P3.

However, the opposite appears to be the case, as the variance in

P3 amplitude appears to have resulted from component overlap

with the feedback negativity. This conclusion holds because

feedback negativity amplitude (measured as a difference wave)

was frontal-centrally distributed for both Experiments 1 and 2: If

variance in the size of the difference wave resulted from an in-

crease in P3 amplitude across conditions, then the difference

wave would exhibit a posterior scalp distribution (Holroyd,

2004). Further, both the feedback negativity and P3 were larger

following unpredicted nonrewards in Experiment 2 relative to

Experiment 1; if just one component were driving both effects in

Experiment 2, one would expect a larger feedback negativity to

relate to a smaller P3, or vice versa. For these reasons we con-

clude that the changes in feedback negativity amplitude observed

in the present study did not result from component overlap with

the P3.

Overall, the present study provides further insight into elect-

rocortical activity related to processing rewards and nonrewards.

In particular, the feedback negativity was clearly sensitive to vi-

olations of reward prediction when a prediction was made fol-

lowing a response and immediately before receiving feedback in

the gambling task. These data suggest that themagnitude of error

signals are modulated by participants’ predictions, but that these

predictions solidify only after the participants have committed to

a particular action, perhaps because of increased attention to or

confidence in the action–outcome associations. Future studies

can test this possibility, for example by asking participants about

their attention to or confidence in their predictions in addition to

asking them about the predictions themselves.
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