1	Oilseed Rape straw for Cultivation of Oyster Mushroom
2	Ahma
3	d Norouzi, Gholamali Peyvast (Corresponding Author), and Jamalali Olfati
4	affiliated with the University of Guilan, Horticultural Department, Rasht, Iran-
5	Islamic Republic.
6	Tel: +98 (0) 131-7725326
7	Fax: +98 (0) 131-7757261
8	Email: gpeyvast@yahoo.com and peyvast@gu.ac.ir
9	Address: Km 6 Gazvin Road, Faculty of Agriculture, Horticultural Department,
10	Rasht, Iran. Islamic Republic.
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

26

27 ABSTRACT

Oyster mushroom [*Pleurotus ostreatus* var. sajor caju (Fr.) Singer] cultivation can play 28 29 an important role in managing organic waste. It can be cultivated on a wide rang of 30 substrates containing lignin and cellulose. Oyster mushroom was grown on five 31 substrates: Rise straw (Oryza sativa L. var. Alikazemi), Rise straw + Oilseed Rape 32 straw (Brassica napus var. Hyola 401) (75:25 dw /dw), Rise straw + Oilseed Rape straw 33 (50:50 dw /dw), Rise straw + Oilseed Rape straw (25:75 dw /dw) and Oilseed Rape 34 straw alone. Oilseed Rape straw alone and Rise straw + Oilseed Rape straw (25:75 dw 35 /dw) were best for fruit body production of P. ostreatus. Time to fruiting for P. 36 ostreatus was also shorter on Oilseed Rape straw. Protein content of the fruit bodies 37 obtained from Oilseed Rape straw was higher than those from other substrates. Using 38 Oilseed Rape straw as a substrate appears to be suitable for oyster mushroom 39 production.

40

41 KEYWORDS. *Pleurotus ostreatus*, organic waste, oilseed Rape, rice straw, protein,
42 fruit body

43

44 INTRODUCTION

Oyster mushroom [*Pleurotus ostreatus* var. *sajor caju* (Fr.) Singer] cultivation has increased during the last decade (Chang, 1999; Royse, 2002). This mushroom accounted for 14.2% of the total world production of edible mushrooms produced in 1997 (Chang, 1999). Although commonly grown on pasteurized wheat (*Triticum vulgare* Vill.) or rice (*Oryza sativa* L.) straw, oyster mushroom can be cultivated on a wide variety of substrates containing lignin and cellulose. Oyster mushroom cultivation can play an important role in managing and recycling of organic wastes as analternative to other methods of disposal (Nirmalendu and Mukherjee, 2007).

53	Oyster mushrooms can also produce fruiting bodies on goose grass (Eleucine
54	coracana Gaertn.), kikuyu grass (Pennisetum typhoides S. & H.) straw; sorghum
55	(Sorghum vulgare Pers.) and maize stem (Zea mays L.) (Bano et al., 1987; Goswami
56	et al., 1987), as well as on wood and sawdust of poplar (Populus robusta Bartr.), oak
57	(Quercus leucotrichopora L.), horse chestnut (Aesculus indica Colebr.), Acasia sp.
58	(Pant et al., 1987), chopped banana [Musa paradisiaca subsp. sapientum (L.) Kuntze]
59	pseudostem (Singh and Tandon, 1987), cotton (Gossypium sp.) stalk, pea (Pisum
60	satium L.) shells (Philippoussis et al., 2001; Zervakis et al., 2001), and straw of some
61	species of wild plants including: Leonotis sp., Sida acuta Burm, Parthenium
62	argentatum Gray, Ageratum conyzoides L., Cassia sophera L., Tephrosia purpurea
63	(Linn.) Pers., and Lantana camara L. (Nirmalendu and Mukherjee, 2007). The
64	substrate used depends on its availability in a specific region. Rice is an important
65	agriculture crop in northern parts of Iran which is a staple food for many Iranians.
66	Oilseed Rape as a second crop is increased recently after rice harvesting in this
67	region. Oilseed Rape straw is considered to be waste and is disposed of by burning.
68	This project was undertaken to determine if Oilseed Rape straw can be used as an
69	alternative to the common straws such as rice and other gramineae straw as a
70	substrates for cultivation of oyster mushroom.

71

72 MATERIALS AND METHODS

73 Oyster mushroom spawn was purchased from Keshtpashohan Laboratory in
74 Tehran, Iran. The substrates were: 1) Rise straw (*Oryza sativa* L. var. Alikazemi), 2)

75 Rise straw + Oilseed Rape (Brassica napus L. var. Hyola 401) straw (75:25 dw /dw), 3) 76 Rise straw + Oilseed Rape straw (50:50 dw /dw), 4) Rise straw + Oilseed Rape straw 77 (25:75 dw /dw) and 5) Oilseed Rape straw. Rice and Oilseed Rape straws were obtained locally, and had been stored approximately 6 and 2 months respectively. Both 78 79 straws were chopped into small pieces (1-2 cm), weighed and soaked in water during 80 overnight. Extra water present in the substrates was drained and the substrates were 81 spread on clean blotting paper and air dried for 15 min to remove excess water. 82 Substrates were pasteurized by boiling for 30 min in water.

83 A sample of each substrate was weighed before and after drying in an oven at 84 60°C for 2 days to determine dry mater content. Total nitrogen, potassium, and ash (%) 85 were measured (Table 1). Amounts of substrates (3,000 g) with 85% moisture were 86 mixed with 10% spawn (ww/ww). Inoculated substrates were placed in 50×35 cm 87 polythene bags. Bags were tightly closed and pin holes $(1/100 \text{ cm}^2)$ made through the 88 bags for drainage. They were kept in a spawn running room at $25\pm1^{\circ}$ C in the dark until 89 primordia formed. After primordial formation, large holes were made in the polythene 90 bags to allow normal development of fruiting bodies. Bags were kept at 22±1°C with a 91 12 hr photoperiod (1,500-2,000 lux) and 85-90% relative humidity. Adequate 92 ventilation was provided to prevent increased CO₂ concentration in the room. 93 Mushrooms were manually harvested three days after primordia initiation.

Biological efficiencies (BE) were calculated from ratios of weight (kg) of fresh mushrooms harvested kg^{-1} to dry weight of substrates. Total nitrogen and protein were determined in samples of 0.5 g dry weight by the Kjeldhal method using concentrated H₂SO₄, K₂SO₄ and CuSO₄ to digest the sample and Phosphorus by spectrometry. Total C was determined by oxidation with potassium dichromate and titration of excess dichromate with ammonium ferrosulfate (Kalembasa and Jenkinson 1973). Electrolytic conductivity (EC) was determined in the effluent and in a saturated
solution (Rhoades et al. 1989). A completely randomized experimental design with 15
replications was used. Data were analyzed using SAS (ver. 9.00, SAS, Inc., Cary,
N.C.). The Tukey-test was performed to separate means.

- 104
- 105 **R**

RESULTS AND DISCUSSION

106 Oilseed Rape straw added to substrate increase EC, N and C content in substrate 107 and decrease P, K and ash in substrate (Table 1). Substrate affected time to primordial 108 initiation and biological efficiency of mushroom production (Table 2). Primordia were 109 formed most rapidly on Oilseed Rape straw alone in first flush but in second and third 110 flushes Oilseed Rape straw increase primordial initiation. Biological efficiency was 111 affected by treatment (Table 2). In the first flush of production, biological efficiency 112 was better for fruiting bodies on Oilseed Rape straw alone and Oilseed Rape straw + 113 rice straw (75:25). Biological efficiency was generally lowest when the substrate was 114 Oilseed Rape straw in second and third flushes.

115 Substrate affected dry matter, ash, protein, potassium and phosphorous content, (Table 3). The lowest levels of dry matter, ash, potassium and phosphorous were 116 117 obtained from fruiting bodies developed from spawn grown on Oilseed Rape straw 118 alone. Protein concentration in fruiting bodies was highest when mushrooms were 119 cultivated on Oilseed Rape straw. Protein content of fruiting bodies produced on 120 Oilseed Rape straw alone and its mixtures with rice straw was better than from rice 121 straw alone. There was a tendency of K, P, Dry matter and Ash levels for fruit bodies to 122 be highest when the substrate was mixed with rice and Oilseed Rape straws and lowest 123 when Oilseed Rape straw was alone. Fruiting bodies produced on rice straw obtained 124 also the highest level of potassium, while those produced on Oilseed Rape straw.

125	Production of Oyster mushroom on biological waste substrates can be a highly
126	efficient method for producing protein-rich food. It appears that Oilseed Rape straw
127	mixed with rice straw can be used successfully as a substrate to benefit some aspects of
128	oyster mushroom cultivation. It should be determined if concentrations of the
129	components of the Oilseed Rape straw are at optimum levels for use in a substrate.
130	Production on Oilseed Rape straw alone did not always produce the highest nutrient
131	content in the mushroom. It remains to be determined why mixing Oilseed Rape straw
132	with rice straw produced beneficial results regarding biological efficiency, but this was
133	not the case as regards nutrient content of the mushrooms which was benefited by the
134	presence of Oilseed Rape straw.
135	
136	
137	
138	
139	
140	
141	
142	
143	
144	
145	
146	
147	
148	
149	

Substrate	PH	EC	Р	K	Ash	С	Ν	
		(µs/cm)	(mg/100 g DM)	(mg/100 g DM)	(%)	(%)	(%)	C/N
								(%)
Rice straw	6.54	3.60	84.2	809.5	4.5	55.39	0.804	68.89
Rice straw+ Oilseed Rape	6.54	3.74	74.6	803.0	4.4	55.63	0.820	67.84
straw								
(75:25 dry wt/dry wt)								
Rice straw+Oilseed Rape	6.58	3.98	68.2	780.3	4.2	55.68	0.822	67.73
straw								
(50:50 dry wt/dry wt)								
Rise straw+ Oilseed Rape	6.58	4.00	66.6	778.4	3.9	55.89	0.828	67.50
straw								
(25:75 dry wt/dry wt)								
Oilseed Rape straw	6.58	4.05	57.0	762.5	3.8	55.97	0.830	67.43

TABLE 1. Some characteristics measured in substrates.

				Biological efficiency ^Z				
Substrate	Days to	o primordial		First	Second flush	Third flush	Total	
	First	Second	Third	flush				
	flush	flush	flush					
Rice straw	28.25 ^a	13.25 ^c	14.25 ^b	567.01 ^d	236.07 ^a	108.80^{a}	911.88 ^c	
Rice straw+Oilseed Rape	24.50 ^b	14.25 ^c	14.50 ^b	588.08 ^c	233.20 ^{ab}	108.60 ^a	929.88 ^b	
straw								
(75:25 dry wt /dry wt)								
Rice straw+Oilseed Rape	22.75 ^c	17.00 ^b	14.75 ^b	602.52 ^b	228.91 ^{ab}	105.22 ^{ab}	936.65 ^b	
straw								
(50:50 dry wt /dry wt)								
Rise straw+Oilseed Rape	21.00 ^d	20.25 ^a	16.25 ^a	630.00 ^a	228.11 ^{ab}	102.04 ^b	960.15 ^a	
straw								
(25:75 dry wt /dry wt)								
Oilseed Rape straw	20.50 ^d	20.75 ^a	16.75 ^a	632.33 ^a	224.73 ^b	99.80 ^b	956.87 ^a	

TABLE 2. Effect of substrate on days to primordial initiation and biological efficiency of *P. ostreatus*

 $^{\rm Z}$ defined as g fresh weight kg^{-1} dry substrate. ^Y values in a column followed by the same letter are not significantly different,

 $P \leq 0.01$, Tukey test.

	DM	Ash	Protein	K	Р
Substrate	(%)	(%)	(% DM)	(mg/100 g DM)	(mg/100 g DM)
Rice straw	7.99 ^{az}	6.38 ^a	18.53 ^e	2826.75 ^a	952.25 ^a
Rice straw+Oilseed Rape straw	7.98 ^a	6.26 ^{ab}	18.76 ^d	2447.50 ^b	931.00 ^b
(75:25 dry wt /dry wt)					
Rice straw+Oilseed Rape straw	7.93 ^a	4.14 ^b	19.52 ^c	2698.75 ^b	917.50 ^c
(50:50 dry wt /dry wt)					
Rise straw+Oilseed Rape straw	7.82 ^{ab}	6.11 ^b	20.00^{b}	2611.75 ^c	895.25 ^d
(25:75 dry wt /dry wt)					
Oilseed Rape straw	7.52 ^b	5.92 ^c	20.27^{a}	2583.00 ^c	837.75 ^e

TABLE 3. Effect of substrate on nutritive qualities of Oyster mushroom.

158 ^Z values in a column followed by the same letter are not significantly different, $P \le 0.01$, Tukey test.

159 LITERATURE CITED

160	Z. Bano, S. Rajarathnam and N. Nagaraja. 1987. Some important studies on <i>Pleurotus</i>
161	mushroom technology. Proc. International Conference on science and
162	cultivation technology of edible fungi. Regional Research Laboratory, Jammu
163	Tawi, India, pp. 53–64.
164	S. T. Chang. 1999. World production of cultivated and medicinal mushrooms in 1997
165	with emphasis on Lentinus edodes (Berk) Sing, China. Int. J. Med. Mush.
166	1:291–300.
167	S. C. Croan. 2000. Conversion of wood waste value-added products by edible and
168	medicinal Pleurotus (Fr.) P. Karst Species (Agaricales S.I., Basidiomycetes). Int.
169	J. Med. Mush. 2:773–780.
170	F. K. Fianu, R.K. Assoku, and P. Anumel. 1981. Poisonous weeds in pastures:
171	Experimental studies in animals with Tephrosia purpurea (L) Pers. Bull. Anim.
172	Health. Prod. Str. 29 :341–348.
173	V. Goswami, S. Sharma, and S.P. Sehgal. 1987. Possibilities of cultivation of
174	Pleurotus sajor caju (Fr.) Singer on agricultural waste in Rajasthan. Proc.
175	International Conference on science and cultivation technology of edible fungi.
176	Regional Research Laboratory, Jammu Tawi, India, pp. 75–77.
177	S.J. Kalembasa, and, D.S. Jenkinson. 1973. A comparative study of titrimetric and
178	gravimetric methods for the determination of organic carbon in soil. Journal of
179	Science Food Agriculture 24:1085–1090.
180	D. Nirmalendu, and M. Mukherjee. 2007. Cultivation of Pleurotus ostreatus on weed
181	plants. Biores. Technol. 98:2723–2726.
182	S.K. Pant, J.C. Bhatt, and N.S.K. Harsh. 1987. A suitable Substrate for cultivation of
183	Pleurotus ostreatus. Proc. International Conference on science and cultivation

- technology of edible fungi. Regional Research Laboratory, Jammu Tawi, India,
 pp. 70–71.
- A. Philippoussis, G. Zervakis, and P. Diamantopoulou. 2001. Bioconversion of
 agricultural lignocellulosic wastes through the cultivation of the edible
 mushrooms *Agrocybe aegerita, Volvariella volvacea* and *Pleurotus* spp. World
 J. Microbiol. Biotechnol. 17:191–200.
- J.D. Rhoades, N.A. Matghi, P.J. Shause, and W. Alves. 1989. Estimating soil salinity
 from saturate soil-paste electrical conductivity. Soil Science Society American
 Journal 53:428-433.
- D.J. Royse. 2002. Influence of spawn rate and commercial delayed release nutrient
 levels on *Pleurotus cornucopiae* (oyster mushroom) yield, size and time to
 production. Appl. Microbiol. Biotechnol. 58:527–531.
- 196 R.P. Singh. and I.N. Tandon. 1987. Screening of suitable substrate for production of
- 197 Pleurotus xabellatus (Brek & Br) SAAC. Proc. International Conference on
- 198 science and cultivation technology of edible fungi. Regional Research
- 199 Laboratory, Jammu Tawi, India, pp. 90–92.
- 200 G. Zervakis, A. Philippoussis, S. Ioannidou, and P. Diamantopoulou. 2001. Mycelial
- 201 growth kinetics and optimum temperature conditions for the cultivation of
- 202 edible mushroom species on lignocellulosic substrates. Folia Microbiol.
- **46**:231–234.