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Abstract 

The specific role of neuroinflammation in the pathogenesis of Parkinson’s disease 

remains to be fully elucidated.  By infusing lipopolysaccharide (LPS) into the striatum, 

we investigated the effect of neuroinflammation on the dopamine nigrostriatal pathway.  

Here, we report that LPS-induced neuroinflammation in the striatum causes progressive 

degeneration of the dopamine nigrostriatal system, which is accompanied by motor 

impairments resembling parkinsonism.  Our results indicate that neurodegeneration is 

associated with defects in the mitochondrial respiratory chain related to extensive S-

nitrosylation/nitration of mitochondrial proteins.   Mitochondrial injury was prevented by 

treatment of L-N6-(l-iminoethyl)-lysine, an inducible nitric oxide synthase (iNOS) 

inhibitor, suggesting that iNOS-derived NO is responsible for mitochondrial dysfunction.  

Furthermore, the nigral dopamine neurons exhibited intracytoplasmic α-synuclein and 

ubiquitin accumulation.  These results demonstrate that degeneration of nigral dopamine 

neurons by neuroinflammation is associated with mitochondrial malfunction induced by 

NO-mediated S-nitrosylation/nitration of mitochondrial proteins. 
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Introduction 

Microglial activation is a pathological hallmark of neurodegenerative diseases 

including Parkinson’s disease (PD)1.  Microgliosis is a normal response in the damaged 

CNS, which can promote sprouting of injured neurons by providing neurotrophic factors2.  

On the other hand, the activated microglia may be destructive to neurons by releasing 

inflammatory molecules such as nitric oxide (NO), and cytokines3,4.  While the role of 

activated microglia in the parkinsonian brain is controversial, the observation of 

persistent microgliosis in the nigra of parkinsonian patients, and 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP)-exposed humans and animals has led to a postulation 

that the chronic inflammatory response might contribute to loss of the dopamine 

neurons5-8.  In line with this concept, an epidemiological study has reported that the risk 

of developing PD was significantly reduced by regular use of non-steroidal anti-

inflammatory drugs such as ibuprofen9.  Furthermore, it has been observed that reactive 

microglia express increased levels of inflammatory enzymes such as inducible nitric 

oxide synthase (iNOS) in the substantia nigra of PD brains10, and  iNOS has a pivotal role 

in the loss of dopaminergic neurons in MPTP11 and lipopolysaccharide (LPS)-induced12 

animal models for PD. 

It has been reported that upregulated iNOS produces high level of NO, which can 

inhibit mitochondrial respiration via S-nitrosylation of mitochondrial proteins such as 

complex I, leading to cellular energy deficiency13.  Moreover, NO either alone or 

combined with superoxide anion to form peroxynitrite, can deplete mitochondrial 

antioxidants, and enhance oxidative stress in the mitochondria14, as mitochondrial 

impairment is highly implicated in PD pathophysiology15.  Recently, it was demonstrated 
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that mitochondrial dysfunction alone is sufficient to initiate parkinsonism in conditional 

knock-out mice by disrupting the gene for mitochondrial transcription factor A in the 

nigral dopamine neurons16.  The primary pathogenicity of a mitochondrial defect in the 

study is in line with the fact that rare familial forms of PD are related to mutations in the 

genes encoding PINK1 or DJ1, which both regulate mitochondrial function17.  These 

facts suggest that nigral dopaminergic neurons are highly vulnerable to mitochondrial 

insults compared to the other neurons. 

This study was designed to analyze the link between dopamine neurodegeneration 

and neuroinflammation, both pathological features of PD6,8,18.  We hypothesized that 

excessive production of iNOS derived NO from LPS-activated microglia ultimately 

causes mitochondrial malfunction via S-nitrosylation/nitration of mitochondrial proteins, 

which leads to dopaminergic neurodegeneration.  We and other groups have 

demonstrated that intranigral19-21 or intrapalidal22 LPS induces cell death of the nigral 

dopaminergic neurons through microglial activation.  However, these animal models did 

not recapitulate some cardinal features of PD such as progressive dopaminergic 

neurodegeneration, Lewy body-like intracytoplasmic inclusion and parkinsonian 

behavioral impairments.  We show here that LPS-induced striatal inflammation causes 

the impairment of the mitochondrial respiratory chain in both the substantia nigra and 

striatum, followed by progressive degeneration of the dopamine nigrostriatal pathway, 

behavioral impairment, and accumulation of α-synuclein and ubiquitin in the substantia 

nigra.  Our results suggest that NO produced by iNOS plays an important role in S-

nitrosylation/nitration of mitochondrial proteins and this mediates mitochondrial 

dysfunction and the consequent dopaminergic neurodegeneration. 
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Results 

1. Progressive degeneration of the dopamine nigrostriatal system 

To characterize and quantify the loss of dopaminergic neurons in the midbrain 

after LPS injection, immunostaining with an antibody against tyrosine hydroxylase (TH) 

and non-biased stereological estimation of the TH-positive neurons in the substantia nigra 

were performed.  Abundant TH-positive cell bodies and fibers existed in the substantia 

nigra and ventral tegmental area ipsilateral to the saline injection.  In contrast, the number 

of TH-positive cells and fibers progressively decreased in the substantia nigra ipsilateral 

to the LPS injection, while TH-positive neurons in the ventral tegmental area were spared 

(Fig. 1a).  Stereological estimation of the spared nigral dopaminergic cells showed a 

significant loss of the TH-positive cells: 21% at one week (p=8x10-3), 38% at two weeks 

(p=1x10-5), and 41% at four weeks (p=2x10-7; Fig. 1b).  In addition, the progressive cell 

loss appeared to be significantly correlated to time, as shown in Fig. 1c (r=0.643, 

p=0.007).  Nissl staining of adjacent sections showed fewer large neurons in the 

substantia nigra, consistent with the loss of dopaminergic neurons four weeks after LPS 

injection (Fig. 1d).  To detect ongoing degenerative events of the nigrostriatal 

dopaminergic system, silver staining was performed.  No nigral degeneration was 

detected in the substantia nigra ipsilateral to the vehicle-injected striatum (Fig. 1e).  

However, nigral neurons with silver deposits in their cell bodies or fibers were observed 

in the substantia nigra ipsilateral to the LPS-injected side (Fig. 1e).  In addition to the loss 

of dopaminergic cell bodies in the substantia nigra, silver staining of striatal sections 

revealed that axon terminals were undergoing degeneration by LPS-induced 

inflammation, as shown by dense staining with silver grains (Fig. 2a).    In contrast, the 
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immunostaining for dopamine- and cAMP-regulated phosphoprotein polypeptide 

(DARPP-32) indicated that the population of gamma-aminobutyric acid (GABA) neurons 

in the striatum was not markedly affected by the LPS infusions (Fig. 2b, top panel).  In 

agreement with the immunostaining, expression level of DARPP-32 was not significantly 

altered by LPS challenge as determined by Western blot analysis (Fig. 2b, bottom panel; 

p=0.299).  Consistent with the degeneration of the nigrostriatal system, the level of 

striatal dopamine significantly declined to 42% of the control level, four weeks after LPS 

injection (p=1x10-9).  The turnover ratio of 3,4-dihydroxyphenylacetic acid  (DOPAC, 

p=1x10-6) or homovanillic acid (HVA, p=1x10-5) to dopamine was significantly increased, 

as occurs in PD23.  There was also a significant increase in HVA level (p=0.004) but not 

DOPAC following LPS (Fig. 2c), suggesting a compensatory increase of dopamine 

release from residual dopaminergic neurons23.  Serotonin but not its primary metabolite, 

5-hydroxyindole acetic acid (5-HIAA) was also significantly decreased (p=0.0002) 

leading to a significant increase in the turnover ratio (5-HIAA/serotonin; p=2x10-5) (see 

supplementary Fig. 1 online), which may indicate that serotonergic neurons were 

affected by LPS infusion. 

2. Intracytoplasmic accumulations of α-synuclein and ubiquitin 

One of the pathological hallmarks of PD is the formation of Lewy bodies, a 

proteinaceous cytoplasmic inclusion containing α-synuclein and ubiquitin24.  Thus, we 

double immunostained midbrain sections with antibodies to TH and α-synuclein, or TH 

and ubiquitin to assess intracytoplasmic accumulations of these proteins following striatal 

inflammation.  Fluorescent microscopic analysis of dual-stained TH and α-synuclein 

demonstrated smeared immunostaining of α-synuclein in the neuronal cytoplasm of the 
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vehicle-injected side.  However, an accumulation of α-synuclein in the cytoplasm of 

surviving TH-positive neurons was observed in the substantia nigra ipsilateral to the LPS 

injection (Fig. 3a,b).  Immunofluorescent staining also revealed that ubiquitin 

accumulates in the spared dopaminergic neurons following intrastriatal LPS injections 

(Fig. 3c).  

3. Behavioral impairments 

A mild and spontaneous rotational behavior was observed in the LPS-treated 

animals, so we further studied the effects of LPS on rotational behavioral induced by 

amphetamine.  Amphetamine-induced rotational behavior was analyzed to assess the 

unilateral degeneration of the presynaptic dopaminergic neuron terminals.  Vehicle-

injected rats did not show any significant bias in turning behavior after receiving an 

amphetamine injection.  However, intrastriatal LPS caused a marked ipsilateral rotational 

behavior toward the lesioned side (p=0.031) upon amphetamine challenge, four weeks 

after LPS injections (Fig. 4a). 

The cylinder test was carried out at one week, two weeks, and four weeks post- 

LPS injection to assess an independent forelimb touch of animals to support their body 

against a cylinder wall 25.  Pronounced asymmetric forelimb use was developed by 

unilateral intrastriatal LPS injection, but not by vehicle injections.  Asymmetric forelimb 

use was significantly increased at all three time points (p=0.004, p=0.005, and p=0.013 

respectively) (Fig. 4b).   

4. Mitochondrial dysfunction 

Intrastriatal LPS induced a significant decrease in nigral (81.3% of control, 

p=0.045) and striatal (85.3% of control, p=0.028) mitochondria state III respiration (the 
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ability to phosphorylate ADP into ATP), which was efficiently prevented by treatment of 

L-N6-(l-iminoethyl)-lysine (L-NIL) (Fig. 5a,b).  When using the substrates pyruvate and 

malate, in the presence of carbonyl cyanide 4-trifluoromethoxy phenylhydrazone for 

maximum (state V) respiration, LPS induced a significant decrease in complex I activity 

of both nigral (80.9% of control, p=0.035) and striatal (81.2% of control, p=0.032) 

mitochondria.  This impairment in complex I-driven state V respiration was blocked by 

treatment with the iNOS inhibitor.  When utilizing succinate, the substrate for complex II 

driven respiration, state V respiration was also significantly reduced in the substantia 

nigra (79.0% of control, p=0.021) and striatum (84.6% of control, p=0.024) ipsilateral to 

LPS challenge (Fig. 5a,b).  The reduction in complex II-driven state V respiration was 

prevented by treatment with L-NIL.  This mitochondrial malfunction was not as marked 

as that of a previous study26, which may reflect wash-off of severely damaged 

mitochondria during the isolation, as a Ficoll gradient method was used here.   

5. Nitration and S-nitrosylation of mitochondrial proteins 

To determine if nitration or S-nitrosylation of mitochondrial proteins is involved 

in the neuroinflammation-mediated mitochondrial dysfunction, we analyzed the nitration 

and/or S-nitrosylation level of mitochondrial proteins including complex I, manganese 

superoxide dismutase (Mn-SOD), and thioredoxin (TRX)-2.  Mitochondrial function can 

be compromised by extensive nitration or S-nitrosylation of mitochondrial complex I14.  

Mn-SOD and TRX-2 are both important mitochondrial antioxidant enzymes, and 

nitration of these enzymes is related to their inactivation, which can result in a toxic level 

of oxidative stress in the mitochondria27,28.  We isolated complex I, Mn-SOD, and TRX-2 

by using immunoprecipitation and then probed the isolated proteins with 3-nitrotyrosine 
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or S-nitrosylcystein antibody using western blot analysis.  The total expression levels of 

Mn-SOD and TRX-2 were not altered by intrastriatal LPS injection (Fig. 6a).  However, 

a significant elevated nitration of complex I (p=0.038) and TRX-2 (p=0.041) occurred in 

the substantia nigra three days after LPS challenge, while complex I (p=0.038), Mn-SOD 

(p=0.035), and TRX-2 (p=0.008) were significantly nitrated by LPS-induced 

neuroinflammation in the striatum (Fig. 6a,b).  Treatment with L-NIL efficiently 

prevented the increased protein nitration.  LPS injection significantly increased in S-

nitrosylation of complex I in the substantia nigra, which was blocked by L-NIL injection 

(Fig. 6c,d).   

6. Neuroinflammation in the nigrostriatal pathway after intrastriatal LPS injection 

We characterized neuroinflammation by immunostaining of MHC class II (OX-6), 

a marker for activated microglia and by measuring the transcriptional induction of 

proinflammatory cytokine genes via the RNase protection assay following intrastriatal 

LPS injection.  We also performed western blot analysis to see the temporal and regional 

patterns of iNOS expression after LPS challenge.   

Increased iNOS expression began to be detected 6hr after LPS challenge in both 

the substantia nigra (p=0.035) and striatum (p=0.021) (Fig. 7a,b).  The increased nigral 

iNOS immunoreactivity was gradually reduced as time passed, and returned to control 

level at three days (p=0.042 at one day, and p=0.265 at three days), while the increase in 

striatal iNOS expression reached a peak at one day and was still prominent at three days 

(p=0.007 at one day, and p=0.027 at three days) (Fig. 7a,b). 

Injection of LPS into the striatum markedly increased the number of OX-6-

positive microglia in the striatum at seven days post injections, and the increased 
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immunoreactivity remained elevated for four weeks (Fig. 7c, top panel).  

Immunoreactivity for OX-6 began to appear in the ipsilateral substantia nigra one week 

after LPS injection, peaked at two weeks, and was still prominent four weeks after LPS 

(Fig. 7c, bottom panel).   

  Significant transcriptional increases of IL-1α (p=0.006), TNF-α (p=0.007), IL-1β 

(p=0.003), and IL-6 (p=0.001) were measured in the LPS-treated striatum three hours 

after LPS injection.  The level of TNF-α mRNA remained significantly elevated for up to 

one day (p=0.043) and IL-1β for three days (p=0.027) after LPS (supplementary Fig. 2 

a,b online).  Interestingly, there was a significant increase in the mRNA expression of 

IL-1β (p=3x10-4) and IL-6 (p=0.002) in the ipsilateral substantia nigra, as early as three 

hours (see supplementary Fig. 2 c,d online). 

 

Discussion 

Neuroinflammation and selective loss of dopaminergic neurons in the substantia 

nigra are pathological hallmarks of PD1,6.  However, the correlation between these two in 

PD remains unclear.  Here, we showed that neuroinflammation is able to mediate 

mitochondrial impairment by nitration/S-nitrosylation of mitochondrial proteins, 

specifically complex I.  This is followed by progressive dopaminergic neurodegeneration 

in the nigrostriatal system.  The loss of the dopaminergic neurons might be attributable to 

the intrinsic sensitivity of dopaminergic neurons to compromised mitochondrial function.  

Greenamyre and colleagues reported that systemic administration of a complex I inhibitor, 

rotenone to rats produced a selective degeneration of dopaminergic neurons in the 

substantia nigra29.  Consistent with their report, we recently found that trichloroethylene 
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causes selective loss of the nigral dopaminergic neurons in rats via complex I inhibition, 

and long term exposure to the chemical may be related to the development of 

parkinsonism in a group of factory workers30.  Thus, it can be questioned, what makes the 

nigral dopaminergic neurons substantially susceptible to mitochondrial dysfunction.  A 

recent study showed that nigral dopamine neurons unusually rely on L-type voltage-gated 

calcium ion channels for basal activity, and the reliance increases with age31.  The high 

dependency on the calcium channel leads to sustained elevation in cytosolic calcium 

concentration, which enhances mitochondrial respiration, reactive oxygen species 

generation, and ATP demand32-34.  Therefore, the nigral dopaminergic neurons can be 

devastated by mitochondrial insults, which are tolerable to the other populations of 

neurons.  In addition to loss of the nigral dopaminergic neurons, we observed a decrease 

in striatal serotonin level four weeks after LPS injection.  This may indicate damage of 

the serotonergic nerve terminals or actual loss of serotonergic neurons originating in the 

dorsal raphe nucleus, although we have not performed histopathological assessment for 

the serotonergic neurons.  It has been found that serotonergic abnormality occurs in the 

striatum of PD brain such as decreased levels in serotonin, serotonin transporter 

immunoreactivity and tryptophan hydroxylase protein35.  Moreover, serotonergic 

neuronal loss has been reported in the dorsal raphe nucleus in PD36.   This result may 

provide evidence that striatum-innervating monoaminergic neurons including 

serotonergic neurons originating from the dorsal raphe and dopaminergic neurons 

originating from the substantia nigra are commonly vulnerable to neurotoxic insults such 

as neuroinflammation. 
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The implication of NO in PD pathogenesis is supported by the observations that 

iNOS expression is upregulated in activated microglia10, the immunoreactivity of 3-

nitrotyrosine is prominently increased37,38, and several proteins including parkin, 

peroxiredoxin-2, and protein-disulphide isomerase lose their function by S-nitrosylation 

in PD brains39-41.  NO is a small molecule that can be highly diffusible through 

membranes.  And NO reacts at a diffusion-limited rate with superoxide anion to produce 

peroxynitrite, which is a potent oxidant and can compromise mitochondrial biomolecules 

to induce mitochondrial dysfunction13,14.  To support this notion, our results demonstrated 

that iNOS-derived NO is responsible for the S-nitrosylation/nitration of mitochondrial 

proteins and impairment of mitochondrial respiration (Fig. 5 and 6).  We obtained two 

interesting findings in terms of mitochondrial S-nitrosylation and nitration analysis.  First, 

we found that increase in 3-nitrotyrosine immunoreactivity in complex I is more 

prominent in the striatal mitochondria, while S-nitrosylation in complex I is more evident 

in the nigral mitochondria.  This result might be involved in hyper production of both NO 

and superoxide by striatal microglia, but not by nigral microglia following intrastriatal 

LPS injection.  Tremendous amount of peroxynitrite is rapidly produced by reaction of 

two reactive oxygen species, and protein nitration might be dominant over S-nitrosylation 

in the striatum.  Second, we observed preventative effect of L-NIL on Mn-SOD nitration 

in striatum, but not on thioredoxin-2.  Mn-SOD of rats has eight tyrosine residues, 

whereas thioredoxin-2 has only one tyrosine residue.  In contrast, there are two cysteine 

residues in Mn-SOD and three cysteine residues in thioredoxin-2.   NO might 

preferentially S-nitrosylate thioredoxin-2 rather than nitrate the antioxidant enzyme, 

because of comparative abundance of cysteine residues.  Thus, differentiation of nitration 
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level in thioredoxin-2 might not be achieved by L-NIL administration in the striatal 

mitochondria. 

 An important question still remains to be addressed in this study; how does 

striatal neuroinflammation cause progressive loss of the dopaminergic cells.  iNOS may 

participate in early dopaminergic neurotoxicity because we observed that iNOS 

expression occurred at early-time points, but it returned to control level before one week 

after LPS injection.  Thus, it seems that another neurotoxic mechanism was involved at 

the later time periods.  We found that microglia were activated one week after LPS 

challenge, and the microgliosis and TNF-α upregulation were sustained for four weeks in 

the substantia nigra.  This finding is consistent with a report that TNF-α stimulates 

microglia to release glutamate in an autocrine manner to cause excitotoxicity, which is 

partially evoked by calcium-dependent activation of neuronal NOS (nNOS)42,43.  

Although we have not assessed the level of glutamate in the substantia nigra, we 

observed that treatment of N-nitro-l-arginine, a selective inhibitor of nNOS and 

endothelial NOS, was also neuroprotective against intrastriatal LPS in mice (unpublished 

data), suggesting the possible contribution of nNOS to the dopamine neurodegeneration.  

This suggestion is further supported by our observation of cytoplasmic accumulation of 

α-synuclein and ubiquitin in the nigral dopamine-producing neurons, and extensive 

nitrosative/oxidative stress caused impairment of the ubiquitin proteasome system, 

resulted in accumulation of misfolded proteins41,44.  Hence, our results may reflect the 

molecular pathway for Lewy body formation and PD pathogenesis. 

It is very interesting that loss of a relatively small population of nigral dopamine 

neurons caused a decrease in the striatal dopamine level and behavioral impairment in the 
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LPS-treated animals.  The behavioral deficit began even at early time-point like one week 

following LPS injection.  This phenomenon may suggest that the striatal inflammation 

antagonizes the function of the dopaminergic nigrostriatal pathway via altering synthesis 

and/or release of dopamine, or by modulating dopamine-mediated signal transduction 

before a significant demise of the dopaminergic neurons occurs.  In support of this 

suggestion, it was shown that MPTP treatment induces striatal TH nitration, which was 

related to inactivation of the enzyme and a subsequent greater decline in dopamine level, 

compared to the loss of the dopaminergic neurons45.  In addition, direct injection of 

proinflammatory mediators into the striatum such as prostaglandin D2 and the 

thromboxane A2 agonist induced impairment of motor behavior; although, the specific 

mechanism was not elucidated46,47.  Further study is required to fully illuminate the 

mechanism by which neurochemical alterations and behavioral deficit occur following 

intrastriatal LPS injections.  Taken together, results of the present study provide strong 

support to the hypothesis that neuroinflammation may be a critical risk factor for PD.  

This animal model may be useful for studying neuroinflammatory mechanisms by which 

nigral dopamine neurons degenerate, and could also be useful in assessing novel 

neuroprotective therapeutic interventions for PD. 

 

Methods 

Animals and surgery   Male Sprague-Dawley rats (3-months old, 300-350 g) were 

housed under a twelve hour light–dark cycle with free access to food and water in the 

Division of Lab Animal Resources at the University of Kentucky.  All animal 

experiments were performed according to the NIH Guide for the Care and Use of 



 15

Laboratory Animals and were approved by the University of Kentucky Institutional 

Animal Care and Use Committee.   

In order to investigate the detrimental effect of iNOS on the mitochondria, 

animals were treated with L-NIL (5 mg/ml/kg, i.p., Cayman Chemical, Ann Arbor, MI) 

or its vehicle (sterilized saline) 20 min before, and one day and two days after LPS 

injection.  For the injection of LPS into the striatum, rats were deeply anesthetized with 

sodium pentobarbital (50 mg/kg i.p.) and were positioned in a stereotaxic frame 

(Stoelting Co., Wood Dale, IL) with the incisor bar at the level of the ear.  LPS 

(Salmonella minnesota; Sigma-Aldrich, St Louis, MO) dissolved in saline (2.5 μg/μl) 

was injected into the right striatum (3 μl/site) using the following coordinates (in mm): 

site 1, anteroposterior (AP) 1.0, mediolateral (ML) 2.0, dorsoventral (DV) -5.5; site 2, AP 

1.0, ML 3.5, DV -6.0; site 3, AP -0.5, ML 2.5, DV -5.0; site 4, AP -0.5, ML 4.0, DV -6.5.  

Saline was injected into the left striatum with parallel coordinates. Placebo animals 

received saline injections into the right and left striatum with the same regimen.  After 

surgery, animals were kept on heating pad until recovery from surgery and subcutaneous 

saline was given for aid in post-operative recovery.   

Histopathology   Animals were perfused with 4% (wt/vol) paraformaldehyde three days, 

one week, two weeks, and four weeks after LPS injections (n=5-6/group) for 

immunohistochemistry and histopathological examinations.  Coronal sections (30 μm) 

were cut through the entire brain using a sliding microtome.  Immunohistochemistry, 

with slight modifications, was performed as previously described.  We used antibodies to 

TH (1:3,000; Calbiochem, San Diego, CA), OX-6 (1:1,000; Serotec, Raleigh, NC), and 

DARPP-32 (1:1,000; Chemicon, Temecula, CA).  Briefly, every sixth section from the 
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region containing the striatum or substantia nigra were incubated in the following 

sequence of solutions:  blocking buffer (1 hr, at room temperature), primary antibody (24 

hrs at 4°C), and an appropriate secondary antibody (1:1,000; Vector Laboratories, 

Burlingame, CA).  The final antigen-antibody complex was visualized using an Avidin-

biotin complex (ABC kit, Vector laboratories) method and 3,3´-diaminobenzidine 

tetrachloride as a chromagen (Sigma-Aldrich).  Standard Nissl staining was performed to 

assess neuronal morphology and population in the substantia nigra.  The number of TH-

positive or Nissl-stained nigral neurons was determined using the computerized optical 

fractionator method of the Bioquant system, which was described previously26.  

Degenerative neuronal cell bodies and neurites in the substantia nigra and striatum were 

visualized using the FD Neurosilver kit (FD NeuroTechnologies, Ellicott City, MD), 

which was performed according to the manufacturer’s protocol.  Photomicrographs were 

taken by using an Axiocam digital camera connected to a computer equipped with 

Axiovision 3.0 software (Carl Zeiss, Inc., Thornwood, NY).  

HPLC analysis for levels of striatal neurochemicals   Animals were killed four weeks 

following LPS challenge for determination of striatal dopamine, serotonin and their 

metabolites levels (n=7/group).  Levels of striatal dopamine, DOPAC, HVA, serotonin, 

and 5-HIAA were determined by using HPLC.  Analyses were performed as previously 

described48.  Briefly, tissue samples were sonicated in 300 μl of cold 0.1 M perchloric 

acid containing dihydroxybenzylamine as an internal standard.  The supernatant was 

separated by centrifugation at 12,000 g for five minutes, and was transferred to Millipore 

Ultrafree centrifugal filters (pore size, 0.22 μm), and then were spun at 12,000 g for one 

minute.  The filtrate was diluted with HPLC mobile phase, and 50 μl was injected onto 
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the HPLC column.  The HPLC system consisted of a Beckman Model 507 autoinjector, a 

Beckman Model 118 pump, and an ESA Model 5200A Coulochem II electrochemical 

detector with a Model 5011 dual-detector analytical cell (detector 1 set at +350mV and 

detector 2 set at −300mV).  An ESA Hypersil ODS 3 μm particle C18 column (80×4.6 

mm) was used for separations.  Flow rate was 1.4ml/min and the mobile phase was a pH 

4.1, 0.17 M citrate–acetate buffer (containing 5mg/l EDTA, 70–80mg/l octanesulfonic 

acid, and 7–8% methanol).  Chromatograms were recorded from both detectors using two 

dual-channel strip chart recorders.  Retention times of standards were used to identify 

peaks, and peak heights were used to calculate recovery of internal standard and amount 

of dopamine and metabolites.  Tissue monoamine concentrations of dopamine, DOPAC, 

HVA, serotonin, and 5-HIAA are expressed as ng/mg wet tissue.  

Immunofluorescent stainings   Colocalization of TH with α-synuclein, or ubiquitin was 

assessed as previously described22.  Briefly, substantia nigra-containing sections were 

incubated with primary polyclonal antibody against α-synuclein (1:500; Sigma-Aldrich) 

or ubiquitin (1:1,000; Sigma-Aldrich) overnight at 4 °C.  The sections were incubated in 

Alexa Fluor 488 goat anti-rabbit secondary antibody (1:1,000; Molecular Probes Inc., 

Eugene, OR) for 1 hr, at room temperature.  The sections were subsequently incubated 

with mouse anti-TH primary antibody (1:1,000; Calbiochem) overnight at 4 °C followed 

by incubation for 1 hr in Alexa Fluor 568 goat anti-mouse IgG secondary antibody 

(1:1,000; Molecular Probes Inc.) at room temperature.  The fluorescent specimens were 

first assessed by an Axioplan 2 microscope (Carl Zeiss, Inc.) and images were acquired 

by using an Axiocam digital camera connected to a computer equipped with Axiovision 

3.0 software (Carl Zeiss, Inc.).  Fluorescent preparations were also examined using the 
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Leica TCS SP laser scanning confocal imaging system (Leica Microsystems, Inc., Buffalo, 

NY).  Images were viewed on a Leica DM RXE upright microscope.  Photomicrographs 

were captured simultaneously for both fluorophores [Alexa Fluor 488 (green) and Alexa 

Fluor 568 (red)] by using argon and krypton lasers, respectively.  Regions exhibiting 

colocalization of the red and green emitters produced yellow fluorescence.   

Behavioral assessment   Test for amphetamine-induced rotational behavior:  This test 

was performed four weeks following LPS injection (n=5-6/group).  For the test, animals 

were placed in a hemispherical bowl immediately after receiving 5 mg/kg amphetamine 

injection (i.p.).  The behavior of each animal was monitored through an automated video-

tracking system, and the number of ipsilateral 360° turns was determined for 90 minutes 

per animal.  Cylinder test: This test is a motor test of forelimb asymmetry, and was 

performed as described previously with slight modifications25.  Briefly, rats were 

individually put into a glass cylinder (20 cm diameter, 34 cm height) and were video 

recorded until they touched the cylinder wall with their forelimbs 20 times.  The 

recordings were analyzed by an investigator who was not aware of the identity of the rats.  

The data are presented as the asymmetric score calculated by the following formula: 

(Right touch - Left touch)/(Right touch + Left touch + Both touch)(n=5-6/group). 

Mitochondrial isolation and measurement of their respiration   Mitochondria were 

isolated using discontinuous Ficoll gradient and differential centrifugation with nitrogen 

disruption, and respiration was assessed as previously described with slight 

modifications49.  Briefly, rats were killed three days after LPS injections and the nigral 

and striatal tissues were immediately and carefully dissected.  Two unilaterally injected 

striata or four nigra, ipsilateral to the injections, had to be pooled to obtain one sample 
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(n=6-9/group).  The tissues were homogenized with ice-cold isolation buffer (pH 7.2, 215 

mM mannitol, 75 mM sucrose, 0.1% bovine serum albumin, 20 mM HEPES, 1 mM 

EGTA) and the crude mitochondrial fraction was obtained by differential centrifugation 

and nitrogen disruption.  Further purification was performed using a Ficoll gradient and 

differential centrifugation.  Mitochondrial oxygen consumption was measured using a 

Clark-type electrode in a sealed and continuously stirred chamber (Oxygraph System; 

Hansatech Instruments Ltd., King's Lynn, Norfolk, UK) at 37 °C.  The results were the 

rates of oxygen consumption in nanoatoms of oxygen/min/mg protein and presented as 

percentage of control. 

Assessment of mitochondrial protein nitration/S-nitrosylation   Approximately, 200 

µg of mitochondrial protein was solubilized in RIPA buffer containing 1% lauryl 

maltoside (Sigma-Aldrich) and centrifuged at 20,000g for 30 min to collect the 

supernatant.  The mitochondrial solution was incubated at 4 °C for 24 hr with 15 µl of 

agarose beads, irreversibly cross-linked to complex I specific antibodies (MitoSciences, 

Eugene, OR).  Otherwise, the mitochondrial solution was incubated with antibody (5 µl) 

against Mn-SOD (Santa Cruz Biotechnology, Santa Cruz, CA) or TRX-2 (Santa Cruz 

Biotechnology) followed by addition of protein G sepharose beads (50 µl, Amersham 

Pharmacia Biotech, Piscataway, NJ).  The beads were collected by centrifugation and 

washed three times with PBS containing 0.05% (wt/vol) laruryl maltoside.  The beads 

were then resuspended in 50 µl of sample loading buffer containing 4% (wt/vol) SDS and 

agitated for 10 min.  After gentle centrifugation, 10 µl of the supernatant was loaded into 

a 12% SDS-PAGE gel and proteins were resolved.   The proteins were transferred to 

PVDF membrane and detected by incubation with a polyclonal antibody against 3-
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nitrotyrosine (Upstate Biotechnology, Lake Placid, NY) or S-nitrosylcystein (Sigma-

Aldrich), which was followed by horseradish peroxidase labeled goat anti-rabbit IgG 

(Sigma-Aldrich).  Chemiluminescent detection with the ECL Plus kit and exposure to x-

ray film was used, and protein levels were quantified by the Scion Image software (Scion 

Corporation, Frederick, MD) (n=4/group). 

Western blot analysis   Animals were sacrificed six hours, one day, and three days after 

LPS or saline injections.  The striatum and substantia nigra were dissected out on ice.  

Tissues were homogenized in ice-cold lysis buffer and centrifuged (10,600 g) to collect 

the supernatant.  All of the samples were kept at -70 °C until they were used for analysis. 

Next, 15 μg of protein from each sample were aliquoted, and after addition of loading 

buffer, the protein was loaded and resolved using a 10% or 12% SDS-PAGE gel.  Protein 

on the gel was transferred to a nitrocellulose membrane, which was blocked in 5% fat-

free milk at 4 °C overnight.  The membrane was incubated in primary antibodies to iNOS, 

(1:1,000; Upstate Biotechnology) or DARPP-32 (1:4000) at room temperature for one 

hour.  Then, the membrane was rinsed with tris-buffered saline three times for 15 min 

each before incubation in secondary antibody (goat anti-rabbit, 1:2,000; Sigma-Aldrich) 

for one hour.  This was followed by treatment with the ECL chemiluminescent reagents 

(Amersham Biosciences, Piscataway, NJ) and exposure to film.  A density measurement 

for each band was performed with the Scion Image software (Scion Corporation).  

Background values from an equivalent area near each lane were subtracted from each 

band to calculate mean band density and  iNOS or DARPP-32 immunoreactivity was 

normalized by density of β-actin bands in the same membrane to correct loading error 

(n=3-4/group). 
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Statistical analysis   Animals were randomly selected for each group and tests of 

variance homogeneity, normality, and distribution were performed to ensure that the 

assumptions required for standard parametric analysis of variance (ANOVA) were 

satisfied.  The Systat 10 software (SPSS Inc., Chicago, IL) was used to perform statistical 

analyses by using the linear correlation unpaired test, Student’s t-test or ANOVA 

followed by a protected least significant differences post hoc test only following a 

positive F test result.  Statistical significance was set at p<0.05.  The linear correlation 

unpaired test was performed to analyze correlation between loss of nigral TH-positive 

cells and time.  The ANOVA was used for analysis of the stereological cell counts, 

mitochondrial respiration data, RNase protection assay, and western blot.  The Student’s 

t-test was used to analyze HPLC and behavioral data.  Data are expressed as means ± 

s.e.m. 
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Figure legends 
 

Figure 1.  Progressive degeneration of the nigral dopaminergic neurons after intrastriatal 

LPS.  (a) Representative TH immunostaining of coronal midbrain sections demonstrate 

that the numbers of dorsolateral substantia nigra pars compacta TH-positive neurons and 

fibers are gradually reduced by intrastriatal LPS injection.  Note that TH-positive neurons 

in the medial substantia nigra pars compacta and ventral tegmental area are spared; scale 

bar: 200 μm. (b) Stereological cell counts of the TH-positive neurons in the substantia 

nigra pars compacta (n=5-6/group, ** p<0.01, *** p<0.001). (c) The linear correlation 

unpaired test shows a significant correlation between deletion of the nigral dopaminergic 

neurons and time (r=0.643, p=0.007).  (d) The substantia nigra pars compacta is outlined 

with an orange dashed line (top).  High magnification image of Nissl stainings suggest 

loss of the nigral dopaminergic neurons, at four weeks following LPS injection (bottom); 

scale bar: 200 μm.  (e) Silver staining is hardly seen in the substantia nigra ipsilateral to 

vehicle treatment.  However, abundant silver grain-deposits are observed in the neurons 

(arrows) and fibers (arrow heads) in the substantia nigra ipsilateral to the intrastriatal LPS 

injections, indicating there is ongoing neurodegenerative process in the region.  Scale bar: 

20 μm. 

 

Figure 2.  Axonal terminal degeneration in the striatum following intrastriatal LPS.  (a) 

Silver staining reveals that there is no silver-positive stained fibers in the vehicle treated 

striatum while an abundance of  silver grain-deposits are observed in the LPS injected 

striatum, suggesting the degeneration of axonal fibers (arrows).  Scale bar: 20 μm.  (b) 

Immunostaining for DARPP-32 shows that the GABAergic neurons are intact following 
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LPS injections.  Western blot for DARPP-32 indicates that there is no significant 

alteration in the expression of DARPP-32 after LPS challenge.  Scale bar: 200 μm.  (c) 

HPLC analysis shows that intrastriatal LPS injection depletes 58% of the striatal 

dopamine relative to control at four weeks.  The DOPAC level is not affected; however, 

HVA is significantly increased.  The turnover ratios of DOPAC/dopamine and 

HVA/dopamine are dramatically increased (n=7/group; ** p<0.01, *** p<0.001).    

 

Figure 3.  Cytoplasmic accumulation of α-synuclein and ubiquitin in the nigral TH-

positive neurons at four weeks after intrastriatal LPS.  (a) Photomicrograph of double 

immunofluorescent labeling with antibodies against TH (red) and α-synuclein (green) 

show that intrastriatal LPS mediates marked TH-positive cell loss in the substantia nigra 

ipsilateral to the injection.  Scale bar: 100 μm. (b) High magnification images of the top 

photograph demonstrate that some of the spared TH-positive neurons have accumulated 

α-synuclein in their cytoplasm (arrow heads). Scale bar: 20 μm. (c) Immunofluorescent 

staining displays ubiquitin accumulation in the cytoplasm of the nigral TH-positive 

neurons (arrow heads).  Scale bar: 20 μm.  

 

Figure 4.  Behavioral deficits following intrastriatal LPS.  (a) Ipsilateral rotational 

behavior in the unilateral LPS-injected animals is significantly increased relative to 

vehicle-treated animals when amphetamine was administered (n=5-6/group; * p<0.05).  

(b) The cylinder test revealed that asymmetric forelimb use is increased significantly 

after intrastriatal LPS and was sustained for four weeks (n=5-6/group; ** p<0.01). 
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Figure 5.  LPS impairs nigrostriatal mitochondria respiration.  (a) Functional impairment 

occurs in the nigral mitochondria as LPS significantly decreases state III and state V 

respiration when driven by both complex I and complex II substrates.  Treatment of L-

NIL, an iNOS inhibitor prevents LPS-induced mitochondrial dysfunction (n=6/group; * 

p<0.05, ** p<0.01 vs. saline+saline, # p<0.05, ## p<0.01 vs. saline+LPS).  (b)  It appears 

that there is a significant decrease in state III and state V respiration of striatal 

mitochondria when driven by both complex I and complex II substrates in the striatum 

ipsilateral to LPS injection.  L-NIL efficiently blocks the neuroinflammation-mediated 

defect in striatal mitochondrial respiration (n=9/group; * p<0.05, ** p<0.01 vs. 

Saline+Saline, # p<0.05, ## p<0.01 vs. Saline+LPS). 

 

Figure 6. Mitochondrial protein nitration and S-nitrosylation after intrastriatal LPS. 

Nitration or S-nitrosylation of complex I has been shown to be related to mitochondrial 

dysfunction.  Manganese superoxide dismutase (Mn-SOD) and thioredoxin (TRX)-2 are 

essential mitochondrial antioxidant enzymes. Decrease of Mn-SOD or TRX-2 activity 

occurs by nitration resulting in elevation of oxidative stress in the mitochondria. 

Intrastriatal LPS injection increases 3-nitrotyrosine (3-NT) in complex I, Mn-SOD, and 

TRX-2 three days after LPS injection.  Treatment with L-NIL appears to prevent the 

LPS-induced elevation of mitochondrial protein nitration (a,b). Isolated nigral and striatal 

mitochondria complex I proteins have an increase in S-nitrosylation three days after LPS 

injection.  L-NIL treatment appears to prevent the LPS-induced increase of S-

nitrosylation (c,d). S+S: saline treated and saline injected; S+L: saline-treated and LPS-

injected; N+S: L-NIL-treated and saline-injected; and N+L: L-NIL-treated and LPS-
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injected; SN: substantia nigra (n=4/group; * p<0.05 vs. S+S, and # p<0.05, p<0.01 vs. 

S+L). 

 

Figure 7.  Microglial activation and elevation of iNOS expression in both the substantia 

nigra and striatum following intrastriatal LPS injection.  The increased iNOS expression 

occurs at 6 hr post LPS injection, which is sustained for three days in the striatum, and 

one day in the substantia nigra (n=3/group, * p<0.05, ** p<0.01 vs. control) (a,b).  The 

OX-6 immunoreactivity in the LPS-injected striatum is markedly increased one week 

after LPS injections compared to control or the naïve side, and immunoreactivity of OX-6 

gradually decreased over time.  However, the immunoreactivity is still positive four 

weeks after LPS (c, top).  OX-6-positive microglia appear in the substantia nigra one 

week after intrastriatal LPS injection, and the immunoreactivity peaks at two weeks and 

then decreases to some extent at four weeks (c, bottom).  Scale bar: 50 μm.  
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