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Müller’s Law of specific nerve energies introduced the idea that
nerves transmit information about specific sensory features. This
concept has been refined by the notion of ‘labeled lines,’ specific
cells that capture sub-features of a sensory or motor stimulus, such
as Hubel and Weisel’s opponent color cells. Such features can be
visualized as representing a signed quantity that has positive and
negative components that are encoded with separate nerve cells.
We show that there are two important consequences when learning
receptive fields using signed codings in circuits. The first is that
in feedback circuits even simple operations need to be distributed
across multiple distinct pathways. The second consequence is that
such pathways are necessarily dynamic. Synaptic weights change
during learning and must break and grow new circuit connections
because the weights need to change sign during receptive field for-
mation.

INTRODUCTION

Animals owe their abilities in large part to their nerve cells that conduct
electric spikes over large distances and allow sensory input to effect distal
motor responses in a timely manner,1 and, over evolutionary timescales, the
coding of these spikes has become increasingly specialized. For example in
visual input, the distribution of light on the mammalian retina is coded by
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individual cells that are each responsible for the sensation in a small retinal
location, which in turn codes the light coming from a small part of distal space.
Müller described this general coding strategy as the Law of specific nerve
energies.20,23 However the coding strategy is even more refined: In both the
retina and the lateral geniculate nucleus (LGN) part of the image code consists
of what are termed ON and OFF cells.38 The former are responsive to a small
spot of light seated in a darker surround and the latter are responsive to a
dark spot in a lighter surround. Hubel and Weisel termed this coding strategy
labeled lines.38 Individual axons of the cells code the the cells’ response, thus
a distal cell that is recipient to this input has only the ‘label’ of the axonal
‘line’ to determinine the meaning of the associated input.

The labeled line coding strategy is ubiquitous in mammalian cortex. The
cortex is characterized by hierarchies, where more and more complex features
of the stimulus are coded from simpler ones.10,35 Classic examples are the
simple cells in primate striate cortex that respond to spatially localized ori-
ented photometric ‘edges’ and ‘bars’ in the visual stimulus. Hubel and Weisel
first suggested that these responses could be constructed from the simpler
and anatomically precedent ON and OFF cell responses by comprising the
explicit collections of them that reflected the response. Subsequent experi-
mental evidence suggests that this original suggestion is correct.2,13,29 When
the connections between the LGN and striate cortex simple cells are tested,
the spatial disposition of the respective ON and OFF inputs to the simple cell
conform to the simple cell’s receptive field. Furthermore feedback connections
also exhibit similar regular structure.21 Sillito has shown that the feedback
connections of cortical simple cells are inhibitory when the ‘ON’ field of a
simple cell feedback connects to its corresponding input ON LGN cell, and
excitatory when it connects to the corresponding OFF LGN cell.36

The labeled line strategy can be viewed from a general perspective and that
is that it is a special way of coding negative numbers. In signaling the value
of a feature, the cortex uses two neurons, one for the positive quantity and
one for the negative quantity. To distinguish this characterization, we use the
phrase signed labeled lines to specifically note that the quantities are part of a
two-cell representation for signed numbers. This strategy is used throughout
visual cortex. Simple edge cells, direction-sensitive cells,25 opponent color
cells,16 disparity cells,15 motion cells,30 as well as many more types, all use
the opponent encoding strategy.

The signed labeled line convention introduces difficulties even in simple
computational algorithms, because the use of signed quantities can interact
with the labeled line representation in unexpected ways. Most neural network
models finesse these complexities since they combine pairs into a single model
‘neuron’ that has a signed output as well as synapses that can change sign.
But the crucial question remains of how the model changes when these issues
are addressed.

This paper introduces a methodology for dealing with signed labeled lines
that explicitly acknowledges the need to represent positive and negative quan-
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tities. This allows us to demonstrate the signed labeled lines’ consequences
by modeling the feedback circuit between the striate cortex and the LGN.
The model feedback circuit learns synaptic weights by training itself on natu-
ral image patches, appropriately filtered to reflect processing in the retina.14

The learning algorithm that we use is based on matching pursuit18 which
has a simple geometric interpretation. This kind of algorithm was originally
demonstrated the formation of simple cell receptive fields24 and has been sub-
sequently extended to cortical hierarchies.27 Its importance is that it does
not have to specify the connections in detail but instead relies on a general
abstract principle that the synapses should be chosen to minimize the spikes
that are need to code any particular input pattern. The algorithm’s feedback
circuit encoding has sometimes been seen as at odds with alternative models
that create receptive fields by competition, but in fact these two models have
been shown to be equivalent if the competition is managed at the level of the
competing neurons’ input rather than by lateral inhibition.12 This connection
makes the matching pursuit algorithm featured here very general.

We show that translating the learning algorithm to this more realistic con-
text of separate signed inputs and synapses places additional demands on the
neural circuitry, but also allows simpler interpretations of experimental results.
Our principal results are twofold. First, although experimental observations
in both the feedforward and feedback pathways have been separately charac-
terized as ‘push-pull,’ we show that they both are direct consequences of an
algorithm for receptive field formation. For feedforward ciruitry, we show that
the push-pull structure reported by13,19 is needed to correctly match the input
to a neuron’s receptive field. For feedback circuitry, complexities reported in
this system21 can be explained by separate feedback pathways necessitated
by the signed labeled line representation. This is a much simpler explana-
tion of observed structure than has so far been offered. The second result is
that, in the feedback circuit learning process, the synaptic weights regularly
change sign. The consequences for neurobiology are that synaptic contacts
must be made or retracted. While the fact of synaptic growth and retraction
is now well established from experiments,7,8, 34 we demonstrate how it needs
to happen in the context of an algorithm for receptive field formation. The
model allows us to study the synapse changes quantitatively and monitor their
progress throughout the receptive field formation process.

RESULTS

The model has a complete set of two-way connections between the LGN and
V1. As described in the Methods section, the model cells are signed labeled
lines in that LGN OFF cells respond only to positive local contrast and OFF
cells respond only negative local contrast. The connections are initially set to
random values but are learned during the course of being exposed to 10,000 -
20,000 image patches. Figure 1 shows the results of the receptive fields of the
V1 cells that are learned.
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To characterize these receptive fields, feedforward connection weights from
ON-center type and OFF-center type LGN cells coding for the same spatial
location are summed for each of the model’s 128 V1 cells. These summed
weights are shown in Fig. 1B. After training, the receptive fields show orien-
tation tuning as found for simple cells in V1.

The model does retain the all-important feature of separate ON and OFF
cells and, as a consequence, important structure emerges. The feedforward
connections to simple cells respect the simple cells’ receptive field2 and the
feedback connections from a simple cell target the appropriate LGN cells.21

Both of these properties are observed as a result of the learning process in our
model. The lower right portion of Figure 1 shows the detailed connectivity
between 16 LGN cells and one simple cell after training. Here the color blue
codes the synaptic strengths between OFF cells and red is used to code for
synaptic strengths between the ON cells and the simple cell. What the figure
shows is that for a representative learned receptive field, all the LGN cells
that connect to it from an 8 × 8 array of OFF cells and an 8 × 8 array of ON
cells connect to the appropriate part of the V1 cell’s receptive field with the
appropriate synaptic strength.

A

B C

Figure 1: Learning receptive fields with signed labeled lines. A) Subset of
natural images used for training. The small square immediate below denotes
model V1 receptive field size. B) V1 receptive fields after training where
ON and OFF responses are combined to produce a gray scale image. Black
depicts off-regions in the model V1 receptive field, white depicts on-regions.
C) A detail from the feed forward connections in the model making the the
connections of different sign explcit. Blue denotes OFF center connections
and red denotes ON center connections.
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One important difference between the model and the cortical circuitry is
that the model agglomerates what are known to be many intermediate con-
nections. Thus the LGN input to V1 terminates in layer IV and the feedback
connections to the LGN originate in layer V and VI. However this important
distinction is glossed over in the model which just has its LGN cells recipro-
cally connected to V1 cells. Furthermore our model uses cells that can have
both excitatory and inhibitory synapses, even though this is not possible bio-
logically. The understanding is that to produce inhibition, there must be an
intermediate stage where the excitatory connection excites an inhibitory cell
and vice versa. Rather than complicate the circuit diagrams, we allow model
cells to have both kinds of connections.

Signed Labeled Lines and Projections In Fig. 1 all the feed forward
connections from the LGN to the model V1 cell are trying to make that cell
produce a spike, that is they are all excitatory connections. What about
inhibitory connections? Reid and Alonso29 showed that ON and OFF cells
that did not connect to the appropriate parts of the V1 receptive field did not
make excitatory connections, but there remains the possibility that they may
make, by some route, inhibitory connections. Our model suggests that indeed
this should be the case, and why by using the notation for signed labeled lines
developed in the Methods section.

A basic step in the model is to compute the projection

N∑
i=1

xiwi.

In terms of our new notation this can be rewritten as

N∑
i=1

(x+
i w+

i + x+
i w−

i + x−
i w+

i + x−
i w−

i )

but since all the inputs are treated identically, lets just concentrate on one
such input and drop its subscript, so that the focus is on

x+w+ + x+w− + x−w+ + x−w−.

where in this case w+ is an excitatory synapse and w− is an inhibitory synapse.
Taken at face value, this implies that there are four possible synapses that
could be constructed to represent all the different possibilities for a term in
the original dot product as shown in Fig 2. However when the receptive field
is formed, only one of {x+w+, x+w−} can be non zero, and the desired term in
the dot product is positive. Lets assume that the positive term that maximizes
the projection is x+w+. Then for the projections to be calculated correctly,
there needs to be a subtraction for the incorrect input x−. Thus the synaptic
connection x−w−needs to be included where |w−| = |w+|. If it is not included,
then inputs that should be discounted will not be, and as a consequence, those
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inputs will be recorded as better matches to a neuron’s receptive field than is
in fact the case. These pathways are denoted with red arrows in Figure 2C.
As a side note, this inhibition can be handled in at least two ways. Either
1) the four connections can be present at a single cell or 2) two cells can be
used one collecting x+w+ and the other collecting x−w− followed by each cell
laterally inhibiting the other. Lateral connections between simple cells are
known to exist but the specificity implied by the need to represent the dot
product correctly has not been established. Nonetheless a prediction of the
signed labeled line model is that this specificity has to appear in some form of
which the two possibilities just discussed are the prime candidates and there
is evidence for both.13,19,37

x

w+

w-

w
w+

w-

x+

x-

A B

Figure 2: The feed forward pathway connections. The dot product computa-
tion illustrates the difference between conventional neural models and signed
labeled lines. In the diagram thick lines denote dendrites and thin lines de-
note axons. Green circles = excitatory synapses. Black circles = inhibitory
syanpses. A) If synapses and inputs could change sign then they could be
handled simply with a single contact. B) In the actual case there are four
possibilities, each of which needs a separate synapse. Only one of w+ and w−
can be non-zero at any one time and the same holds for x+ and x−. Comple-
mentary pairs are required be non-zero to faithfully represent a dot product
as shown by red arrows for the case of x+w+ and x−w−.

Signed Labeled Lines in Feedback Circuits The algorithm elaborated
upon in the Methods section represents input by rapidly and sequentially se-
lecting a handful of neurons to represent it. The algorithm is conceptually
simple: one of the neurons that best matches the input is selected first, then
that neuron’s contribution is subtracted from the input via a feedback signal
with the result that the remainder is in the form of new input and the process
is repeated. However handling negative feedback in the signed labeled line
system is far from straightforward and must be handled on a case by case
basis. As will be demonstrated, net result is that the different cases need to

6



be realized in separate circuitry. To illustrate the signed labeled line solu-
tion, consider the central calculation of the matching pursuit circuit described
graphically in Figure 8. In the feed forward pathway the projection of the
input onto the largest vector must be calculated. The result is given by x ·w1

in standard notation and we have termed this quantity β. The feedback is
given by the difference between the input vector x and its projection β into
the closest vector described its synapses. Where w1 is the closest such vector,
this difference is given by:

x − βw1

Note that the need to deal with subtraction is a central requisite of this al-
gorithm but not of course specialized to it. Any algorithm that required
subtraction will have this issue.

Since all the components of the vector are treated identically, for simplicity
of notation, again we will focus on just one vector component. Thus in the
subsequent calculations all the variables are scalars. The difference between
the input and vector projection for a single component can be indicated by
x − βw in standard notation. In signed labeled line notation we have(

x+

x−

)
− β

(
w+

w−

)

where of course only one of x+ and x− can be non zero at any one time.
Similarly only one of w+ and w− can be simultaneously zero. We illustrate
the circuitry for x+ nonzero. The other case is handled symmetrically. For
each case we indicate the resultant circuit pathway with colored arrows as
shown in Figure 3.

Case 1: x+ > βw+

(
x+

0

)
− β

(
w+

0

)
=

(
x+ − βw+

0

)

This is a simple case. The feedback pathway is inhibitory and has value
w+.

Case 2: x+ < βw+

(
x+

0

)
− β

(
w+

0

)
=

(
0

βw+ − x+

)

This case is a little tricky but important. The result uses −x+. To realize
this, x+ has to be fed into the negative side, i.e., the opponent neuron, with
an inhibitory connection, and the feedback to that neuron has to be positive
or excitatory. As shown by,14 this component of the circuit can be a form of
rebound that introduces a temporal transient when the inputs are suddenly
disturbed.

Case 3: w− > 0
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Figure 3: The feedback pathway connections. A) An inhibitory feedback
circuit feedback circuit is simple to describe with signed synapses. However
special care must be taken when using signed labeled lines. Analyzing the
feedback to a single cell requires treating x+ separately from x−, but here only
the three cases for x+ are analyzed (and depicted in red) as the cases for x−

are symmetric. B) Case I: In the simplest to understand case x+ > βw+, the
feed forward circuit computes the projection β and the feedback component
is inhibitory. Case II: When x+ < βw+, things are more complicated as the
feedback must excite the complementary LGN cell. Case III: When w− > 0
the feedback is excitatory also but to the x+ cell.

(
x+

0

)
− β

(
0

w−

)
=

(
x+ + βw−

0

)

This is another simple case. The feedback pathway is excitatory and has
value w+. By considering x−, the need for three more pathways can be demon-
strated for a total of six overall.

With six parallel feedback pathways a concern is whether they would in-
terfere. A case by case analysis conforms that the circuit will function as
desired. Lets examine the x+ three cases. Case I does not interfere with Case
II because when the values are appropriate for Case I, the circuitry on the
complementary side is held off. Similarly when Case II is appropriate, the
circuitry for Case I is held off by virtue of the relative values. As for Case III,
when the synapse w− > 0, its complement w+ is 0 so none of the circuitry is
activated. These relationships might be more complicated if the circuitry had
to operate in parallel with multiple, simultaneous feedback pathways. How-
ever a fundamental property of the algorithm is that only one coding (V1)
neuron is analyzed per iteration. Owing to this property, the cases hold for
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each of the model LGN neurons.
The analysis has revealed six separate cases but one can wonder whether

they are all used by the algorithm. In other words, is image data such that
some of the cases do not occur? The simulation conforms that all six cases are
used. Figure 4 shows this result. Each time a V1 cell is selected, it must send
feedback to each of the 8 × 8 × 2 LGN cells that it is connected to. For each
of those cells, only one of the six cases will come up. For this reason we can
create a color coded image with the rule that, for each V1 coding neuron, the
last time it was selected, for each of its feedback targeted LGN neurons, we can
color code the route that the feedback took. To unpack this explanation a bit
more, imagine that each of the positions in Figure 4 represents all six possible
pathways to the LGN at that location. The color denotes, for a particular
feedback moment in time, which of the six pathways was actually used. The
colors in part A of Figure 4 reveal that typically all six cases are present.
Furthermore they are used extensively. Figure 4B shows a histogram of the
routes over a large sample of cells.

ON input ON fb ex

ON input OFF fb ex

ON input ON fb inh

OFF input OFF fb ex

OFF input ON fb ex

OFF input OFF fb inh

A B

Figure 4: Tracking instantaneous feedback routes. Colors denote the six dif-
ferent routes that feedback can travel. A) For each model neuron, the last
time it was chosen its feedback pathway for each of its synapses is labeled
with a color denoting the route to each of the LGN neurons selected. The
colors show that all six cases are realized. B) A histogram of the frequency of
usage of the different cases.
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Dynamic Synapses Given that we can explicitly represent signs of synapses,
one very important consideration is; Do the connections in the circuitry need
to change from one polarity to another? Recent research on the formation
of synapses is showing that their formation and maintenance is very dy-
namic.7,8, 34 The simulations show that this is indeed the case; connections can
be required to change from inhibitory to excitatory and vice versa through-
out the learning process . In the model, all possible connections are present
initially and just their strength is modulated by the algorithm. Perhaps quite
naturally, in the course of learning their final values, the synaptic weights
change sign fairly often.

Figure 5 shows this by testing the polarity of the weights every 3,000 image
samples. As is evident, a large fraction of the synapses change their values.
During the first 3,000 iterations about 4,000 of the total of 8,192 feedforward
synapses change their values. If they are not needed they drift towards zero,
but if they are needed an excitatory contact may have to be replaced by an
inhibitory contact or vice versa. The figure shows the change from excitatory
to inhibitory as black and the opposite change as white. Most of the changes
are in the early stages, but the synapses can change even near the end of the
learning process. The model is noncommittal as to how synapse changes are
accomplished. The synapses need to change throughout the learning process,
but the number decreases to less than .05% per learning rule update (An
update refers to the selection of a neuron in the matching pursuit process -
See Methods). However at the beginning the rate of sign changes may seem
low at 5%, but remember that this is for each neuron that is selected, so in
fact the cortical connection process needs to be very dynamic. What perhaps
might have been expected, but nonetheless is very interesting to observe, is
that the progress of receptive field formation is highly correlated (r=0.97) with
the number of polarity changes, as shown in Figure 5F. This hints that the
rate of polarity change could be a highly informative developmental measure.

Figure 6 summarizes the average rate of polarity change per iteration for all
the synapses for a single V1 cell. That is each time any neuron is updated the
number of sign changes in its synapses are recorded. Thus the figure reflects
the average behavior of all the neurons in the model. However the model
allows us to be much more specific about these changes. To demonstrate this
capability, we track the behavior of an individual neuron’s synapse as is done
for model neuron #54 (out of 128) in Figure 6 which shows the course of
each of its 64 synapses. The x-axis records the updates, that is each time
that particular neuron was selected for modification (In the course of the
learning algorithm there were intervening periods where other neurons were
chosen). The simulation data for model neuron #54 shows that for the first
100 updates, 19 of 64 synapses changed from one polarity to another. For
example synapse location (4,3) started out as excitatory (+1), switched to
inhibitory (-1) around update 50 and then switched back to excitatory and
finished as an inhibitory connection. By comparison, synapse (4,4) was always
inhibitory and synapse (1,6) was always excitatory.
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Figure 5: The changes in polarity of receptive fields during learning. A change
from positive to negative is denoted by black and a change from negative to
positive is denoted by white. A) After the first 3000 image patches B) After
the second 3000 image patches C) After the third 3000 image patches D)
After the forth 3000 image patches. E) The points plotted show the average
number of synapses that had to change from a base of 256. Fifty samples are
used in computing the standard error bars. Thus initially, on every learning
update, about 5% of the synapses need to change signs. At the end of learning
this number is down to less than .5%. F) The change in synapse polarity is
tightly correlated with the residual error in fitting receptive fields ( r = 0.97),
suggesting that the changes in polarity can be used to track the progress of
receptive field formation.
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Number of updates

History of
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Excitatory
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B

Figure 6: Tracking the polarity of connections to a single cell. A) The black
portion of the legend denotes the polarity of a synapse (in this case inhibitory)
as a function of the number of updates. B) The state of all 128 possible
synapses for a particular model simple cell as a function of the times that it
was chosen to represent an input image stimulus. The figure represents two
possible synapses at each location. Most locations can be represented by a
single synapse that does not change sign, but at 19 positions the synapses need
to change sign during the computation, some several times such as synapse
position (8, 7).
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DISCUSSION

Most neural network simulations ignore the detailed constraints of real neu-
rons, blithely assuming that synapses can change signs and that huge precision
is available in the intracellular signaling. The assumption is that the math-
ematics is important and the implementational issues are just unimportant
details. Our simulations support this by showing that when these details are
taken into account, the results that have been obtained with the more abstract
models do indeed extend to the more detailed setting. However the labeled
line model provides an important new vista into neural coding of dynamical
circuits in at least several aspects.

Multiple, separate feedback pathways Surprisingly, from the stand-
point of the model its feedback travels along different pathways depending on
whether the it is negative or positive. This is at least testable and may have
already been tested. Sillito et al21 has observed that cortical feedback to the
LGN is phase reversed, meaning that if the cortical simple cell connects back
to an LGN cell of the opposite polarity as measured with respect to the cor-
tical cell’s receptive field, then that connection is excitatory. They recognize
that this is a push-pull circuit, and speculate on its function as “gain control
and linearity in the transfer of input to the cortex,” but from our perspective a
potential function is much simpler. The phase- reversed connections occur as
Case II of our signed labeled lines feedback, and thus are a direct consequence
of an algorithm which is trying to represent stimuli in an economical way and
compute synapse strengths via negative feedback.

Excitatory and inhibitory synapses are exchanged in receptive
field formation Learning in the labeled line model can require that an
excitatory synapse be replaced by an inhibitory one and vice versa. This
means that these synapses must be coupled somehow, so that the state of one
can be available in some form to its complement. The simulations herein do
not address the mechanism for accomplishing this but it needs to be done.
This observation is not as evident from signed representations. Furthermore
the number of synapses that have to change sign form iteration to iteration is
significant, being about 3 %. and, if there were a way of measuring synaptic
dynamics en mass, this could be tested.

One issue that is not simple to explain is that the synapses can be set with
so few updates. After about 400 updates per model neuron the synapses have
converged to their final values. Given that an update in our simulation might
only take 20 ∼ 100 ms, it is hard to explain why the biological process seems to
take much longer. One way this could arise is if there were overhead in setting
up the synapses in the first place; our model does not represent this difficulty.
Another slowdown factor might be that the amount a synapse can change
per update is much less than assumed by the model. In any case the model
provides the beginning of a processes of simulating alternate hypotheses.

Signed labeled lines and squaring Some abstract models of motion de-
tection require a squaring function to overcome the fact that while the signed
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signal may be uncorrelated, its absolute value is usefully correlated.33 How-
ever, just how does neurobiology come up with such a function? In the labeled
line representation, this is much less of a problem than in signed representa-
tions as the signal is easily rectified by treating the ‘negative’ part of the signal
as positive.

Summary New techniques that allow the elucidation of the details of
cortical circuitry are showing that the cortical matrix of cells is very com-
plex,17,22,39 so to decipher it, its is likely that all useful constraints will need
to be brought to bear. We show here that the interaction of a standard algo-
rithm with the basic cortical coding of signed information can explain experi-
mental observations of push-pull circuitry in both feed forward and feedback
pathways. as to the One important thing to keep in mind is that although
the model is much more detailed than the majority of neural models that
used signed representations for synapse and neuronal outputs, it is still very
abstract in that it ignores many of the still more detailed aspects of cortical
architecture.28,32 This architecture is obviously used for many functions in the
course of implementing complex behaviors and those functions must be rep-
resented in additional circuitry to that assumed by our model. Furthermore
it is well known that the feedback loop from striate cortex to LGN is com-
plicated by many intermediate connections. For example the input to striate
cortex terminates in layer IV whereas the output to the LGN originates from
layers V and VI. In our model this complexity is summarized in single model
neurons that receive both input and provide output. Along these lines there
is another area in the simulation would need to be refined, and that is the fact
that in the cortex the number of excitatory synapses outnumbers the number
of inhibitory synapses. One estimate32 is that the ratio of excitatory synapses
to inhibitory synapses is on the order of 84:16. Since the ratio in the model is
very close to 1:1, this means that there must be a pooling of inhibition where
by multiple network inhibitory connections are handled by registering them as
excitatory on an intermediate cell that then has a single inhibitory connection
of the net value on the original destination cell.

METHODS

The model consists of two layers shown by Figure 7. The first layer, which
would correspond to the lateral geniculate nucleus, consists of on-center type
and off-center type units. Similar to geniculate cells, on-center type units code
for brighter stimulus regions and off-center type units code for darker regions.
We assume that either the on-center unit or its off-center counterpart coding
for the same spatial location is active at any given time step in the model.
The model’s next higher level, which corresponds to an orientation column in
primary visual cortex, receives input from model LGN through feedforward
connections. In each feedforward-feedback cycle of the model, the feedforward
receptive field that best matches the input, or equivalently the most likely
prediction, is selected with high probability. The selection is made on the basis
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of the projections of the image, seen as a vector onto the synaptic weights,
also see as vectors. A specific projection between an input I = (x1, . . . , xn)
and a neuron with synapses w = (w1, . . . , wn) can be expressed as

N∑
i=1

xiwi

or more compactly as the dot product I · w. This expression has some re-
cent experimental evidence.3,4 Variations impose some non-linearity on the
result.26,31

Once a neuron with weights w is chosen on the basis of its projection, the
learning rule moves it a little closer to the input vector i.e.

Δw = α(I − (I · w)w)

The repeated application of the learning rule produces the receptive fields
shown in Fig. 1.

The selected neuron spikes and feeds its prediction back to model LGN.
Weights of feedback connections follow the structure of feedforward connec-
tions, as has been found experimentally.21,36 LGN neurons then compute the
error between the higher-level prediction and the actual input, and the pro-
cess is repeated in the next feedforward-feedback cycle. Thus, lower-level error
detectors correct higher-level predictions, while higher-level responses update
lower-level error signals in each feedforward-feedback pass of the model.

W W

Figure 7: Hierarchical model for predictive coding. A) Higher-level units
attempt to predict the responses of units in the next lower level via feedback
connections, while lower-levels signal the difference between the prediction
and the actual input. Feedforward connections encode the synaptic weights
represented by a matrix W T . Higher-level units maintain the current estimate
of the input signal r and convey the top-down prediction Wr to the lower level
via feedback connections. Difference detectors compute the difference I−Wr
between current activity I and the top-down prediction Wr.
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Each cell in the model encodes scalar information using one spike only,
where the time from spike arrival to a reference signal is the information car-
rier. We do not implement the reference signal explicitly but argue that the
model could easily be amplified to take this into account. Model activity
is updated every 20 milliseconds. As the model does not incorporate neural
structures earlier than the LGN, we add 30 milliseconds to the input to account
for the delays before the LGN.6 Connection weights of the model are adapted
to the input by minimizing the description length of the joint distribution of
inputs and neural responses.14 This not only improves the sparseness of the
neural code, but also tends to optimally capture input statistics. Thus, for any
given input, the model converges to a set of connection weights that are opti-
mal for predicting that input. The model is trained on image patches extracted
from natural scenes, the motivation being that receptive field properties might
be largely determined by the statistics of their natural input.5,9, 11,27

The feed forward connections from 64 cells in the LGN to a single cell
in V1 are depicted in Figure 1. The learning algorithm connects a complete
set of synapses to the V1 cell initially, that is 128 synapses altogether, half
from the ON calls and half from the OFF cells. However after learning only
the appropriate set of LGN cells have large weights as shown in the Fig-
ure. This replicates the experimental finding of Alonso and Reid.29 They
used antidromic simulation in paired recordings to confirm this connection ar-
rangement. The experimental finding is very significant since it confirms the
original suggestion by Hubel and Weisel that the connections could be formed
in this manner. What our work shows is that a Hebbian learning rule based
on sparse coding principles is able to produce this arrangement.

Signed Labeled Line Encoding Notation The response of an cell can be
characterized mathematically in terms of a function of the inputs multiplied
by synaptic ‘weights,’ numbers representing the strength of a synapse. Thus
if the input to such a cell is represented by a vector x and the synapses as a
vector w, the the response β can be given by

β = f(x · w) (1)

where f is a function that captures any nonlinearities in the response and w ·x
is the projection of x onto w or equivalently, the dot product between x and
w given by

w · x =
N∑

i=1

xiwi

While the above expression models neuronal responses, and has experimen-
tal support for at least excitatory synapses,3,4 it is cast at a level of abstraction
that avoids the crucial issue associated with labeled lines and that is the rep-
resentation of positive and negative coefficients. Let us illustrate these issues
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1w1 + 2w2 + 3w3 + 4w4

w1

w2

Figure 8: A geometrical explanation of the matching pursuit learning model.
A) An 8 × 8 filtered image patch can be represented as a blue vector with
128 coordinate values (in our notation). The neuron whose receptive field is
most like the patch, in this case w1, is chosen to represent the patch. Since
there are also 128 synapse strengths, or weights, these can be represented as
a vector also. The difference between them is termed the residual (green) and
is sent back to the LGN as feedback and the process repeats. A very small
number of repetitions produces an accurate representation. B) Four steps in
the vector approximation. C) The evolution of the approximation in pictorial
terms. The green vector is also the basis for the learning algorithm. After
each vector is chosen, it is moved closer to the input by adding the residual
into its synaptic weight vector. The weight vectors are normalized to unity,
reflecting a constraint that limits the total strength of the synapses.
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with the example of a single term in the expression in Equation 1 above. Sup-
pose a neuron is receiving input at a single synapse that can be expressed
mathematically as the product wx. Figute 2A shows how this multiplication
would be implemented with signed quantities. Both the axonal input x and
the synaptic strength w can be signed quantities, so a single ‘synapse’ suffices
to represent the calculation. However in the more detailed model that re-
spects the representation of positive and negative quantities by separate cells
the calculation cannot be done so easily. Besides the separate inputs, a fur-
ther complication ( from the standpoint of mathematical operations) is that
synapses cannot change sign. An inhibitory synapse cannot become excita-
tory and vice versa. Let us illustrate this complication in detail. Now x can
be either positive or negative, denoted with {x+, x−} as can w, denoted with
{w+, w−}. Thus to compute the product, four connections are required, rep-
resenting all the combinations of positive and negative signs. Figure 2B shows
these possibilities. Note that the figure is still a level of abstraction above
the biological implementation of this relationship since a given set of synapses
from any one neuron can only be excitatory or inhibitory. Thus at least one
additional cell is required to change the inhibition to a an excitation of an
inhibitory cell. Note also that the ± notation is an algebraic device for keep-
ing track of opponent quantities. For example w+ denotes a the strength of a
synapse. Whether or not it turns out to be excitatory or inhibitory depends
on circuit and algorithm details.

When using signed labeled lines, the realization of elementary operations is
not so straightforward and requires some care. To see this it helps to develop
a notation for signed labeled line vectors. In standard vector notation, an

example of a vector with two components is: x =

(
x1

x2

)
. A simple example

showing the subtraction of two vectors is shown as follows,(
1
−2

)
−

(
3
1

)
=

(
−2
−3

)

This is standard vector mathematics, but now lets introduce a convention
that allows us to keep track of the fact that positive and negative components
are represented by different cells. To express the subtraction in terms of
labeled line notation, lets use a separate component for each of the positive
and negative side, as illustrated in the dot product example. Thus

x =

⎛
⎜⎜⎜⎝

x+
1

x−
1

x+
2

x−
2

⎞
⎟⎟⎟⎠

and the above example becomes
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⎛
⎜⎜⎜⎝

1
0
0
2

⎞
⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎝

3
0
1
0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
2
0
3

⎞
⎟⎟⎟⎠

Note that each vector component must be either positive or negative so
that in the labeled line notation, one of the two corresponding pairs is always
zero. Furthermore note that in subtracting two vectors the result can be
arbitrary in the sense that the resultant component that is non-zero depends
on the signs and magnitudes of the vectors.
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