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Summary

Tax and service induced mobility of economic agents is one of the most important factors in

shaping regional and economic performances. Indeed, since the fundamental contribution of

Tiebout (1956), it is acknowledged that individuals move among regions and countries to sat-

isfy their preferences with respect to the bundle of tax and services that each jurisdiction is

providing.

With this respect, the mobility of high-skilled individuals is a fundamental public policy issue.

In fact, these agents play a fundamental role in fostering the local development given their

high productivity and their ability to generate positive spillovers within jurisdictions’ territo-

ries. Therefore, governments are incentivized to shape their policies to attract this kind of

individuals and may compete with each other to reach this target. In this context, tax and

services induced mobility of high-skilled individuals become a fundamental driving force that

influences national and regional policies and economic performances. Therefore, understanding

the determinants of economic mobility is paramount.

This doctoral thesis is devoted to investigating empirically the determinants of tax and service

mobility by means of the discrete choice approach considering two specific cases. As for tax in-

duced mobility, the effect of marginal income taxation on European football players’ migration

patterns is investigated in Chapter 2. As for service induced mobility, the effect of financial

and in-kind aid policies on university students’ location decision is considered in Chapter 3.

Chapter one provides an introductory overview of the tax and service induced phenomenon.

The chapter starts by summarizing the theoretical literature regarding tax and service induced

migration and the debate regarding this phenomenon. The second part of the chapter is devoted

to a general discussion of the discrete choice approach in the context of individual economic

mobility.

Chapter two analyzes the tax induced mobility of high-skilled workers from an empirical

point of view. More specifically, the chapter investigates the effect of top marginal tax rates

on turnover and migration patterns of football players in 16 European countries between 2007
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and 2016. The analysis is carried by estimating a two-sided matching model using a maximum

score matching approach. This strategy has permitted to estimate the structural parameters

of the underlying decision process of footballers by accounting for the competition between

agents in the market and get rid of factors affecting both the demand and supply side for which

information is hardly accessible. These parameters are then exploited to quantify the sensitiv-

ity of the population of tax payers to taxation and the heterogeneity of these effects on the

base of players’ abilities and nationalities. Findings indicate a heterogeneous effect of marginal

taxation.

Chapter three analyzes the service-induced mobility of university students by focusing on

the effect of financial and in-kind aid policies on their choices of location. This phenomenon

is analyzed by using a unique dataset with administrative data on Italian university students

enrolled for the first time in the academic year 2014-2015, along with detailed information on

the financial and in-kind policies of the Diritto allo studio universitario program. The analysis

is by considering explicitly the heterogeneity in students’ preferences. Firstly, a Conditional

Logit model is estimated to identify the systematic variation in students’ preferences by in-

teracting individual characteristics with alternatives’ attributes. Secondly, a the Latent Class

Logit model in order to consider explicitly the heterogeneity in students’ preferences. The latter

approach allows to model systematic and random heterogeneity in preferences by exploiting the

individual characteristics of students. The sensitivity of students’ location decisions is quan-

tified by computing willingness to pay and semi-elasticity measures. Findings indicate that

policies that provide scholarships together with places in dormitories are effective in attracting

more students.
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Chapter 1

Discrete choice methods for the analysis of tax

and services induced mobility

1.1 Introduction

Tax and services induced mobility is a fundamental driving force that influences national and

regional economic performances.

Indeed, since the seminal contribution of Tiebout (1956), it is acknowledged that individuals

move across regions and countries on the basis of their preferences regarding the bundle of

tax and government services that the jurisdiction is providing. One of the most important

consequences of this phenomenon is the introduction of inter-jurisdictional competition (IC).

Indeed, in a context with mobile individuals, policymakers may have the incentive to shape

their policies to attract specific groups of people and to expel others (Brueckner, 2000). This is

especially true if we consider the mobility of high-skilled individuals, top incomes and businesses

that can play a fundamental role in fostering the local development.

IC for high-skilled individuals can constrain the actions of independent governments in

many aspects. Firstly, it can reduce the ability of governments to collect fiscal revenues and

redistribute income with progressive taxation. A relatively high tax rate can incentivize top-

incomes and high-skilled workers to leave the jurisdiction, this way reducing the tax base and

fiscal revenues. This can ultimately cause a general setting of tax rates below the optimal level

and reduce substantially the resources available in each jurisdiction. Secondly, it can cause a

suboptimal provision of public goods and government services. Governments can be induced to

over-provide services that attract high-skilled workers and to under-provide others those that

11



can be fundamental for other social groups.

Because of this, a huge body of literature has been focused on the modeling tax and services

induced mobility and its consequences on optimal tax rates and service provision. This has

been done by taking into account several aspects of IC such as strategic interactions between

jurisdictions, behavioral responses of individuals, externalities and spillover effects between

different policies and levels of governments.

The first section of this chapter is devoted to summarizing the debate existing in this

literature, focusing in particular on tax and service competition models that account for the

mobility of workers and high-skilled individuals.

Tax and service induced mobility have been extensively analyzed even from the empirical

point of view. In this respect, a great effort has been devoted to identifying adequate econo-

metric approaches that can help to detect the elements that affect individual mobility and

attractiveness of regions and countries. The discrete choice approaches seem to be among the

most powerful tools available to researchers. These approaches are mainly based on random

utility models (see Section 1.3 below) in which individuals choose their preferred alternatives

by maximizing their utility. The second part of this chapter is dedicated to a general discussion

of these methods in the context of individual mobility and migration.

1.2 Related theoretical literature

Tax and services induced mobility of individuals has been extensively analyzed by the theoret-

ical literature. One of the fundamental contributions in this literature is the original model of

Tiebout (1956). In this model, individuals decide the jurisdiction into which reside based on a

set of fiscal packages that each jurisdiction provides. These fiscal packages are a combination of

public goods, services, and tax rates. Under a set of strong assumptions, this mobility should

be efficiency improving leading to the optimal provision of fiscal packages and a perfect match

between individuals’ preferences and jurisdictions supply.

More recently, some models have relaxed the assumptions of Tiebout’s model leading to

different conclusions. To quote just a few contributions, Wildasin (1988) and Wildasin (1991)

have considered the presence of strategic interactions and fiscal externalities between jurisdic-

tions in a Nash competition framework. They conclude that fiscal competition can lead to the
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underprovision of public goods and social inefficient allocation of labor. The same conclusion is

reached by McGuire (1991), where jurisdictions compete for mobile workers in a context where

individuals have preferences for redistribution. In this model, the competition may lead to a

sort of prisoner dilemma scenario. Each jurisdiction has the same incentive to reduce taxes on

rich individuals to induce them to migrate into their territory. This will result in a destructive

competition with sub-optimal tax rates and the underprovision of public goods.

The overall literature on tax and service induced mobility can be generally related to the

concept of inter-jurisdictional competition (IC). According to the review presented in Kenyon

(1997), the IC can be defined as the competition between governments that try to win some

scarce resource or avoid a particular cost. Free movement of goods, services, and people all

contribute to this competition and can constrain the actions of independent governments.1

At the core of this literature, there is the necessity by jurisdictions to solve a trade-off

between their attractiveness for high-skilled individuals and top incomes and pursue their ob-

jective in terms of public good provision, redistribution, etc. Therefore, the identification of

instruments that allow governments to solve this trade-off is of fundamental importance. In

this respect, a substantial amount of literature has been focused on the definition of optimal

policies that allow solving this trade-off.

With regards to the tax-induced migration, since the seminal contribution of Mirrlees (1982),

it is well known that the ability of countries to redistribute income through taxation and

their optimal level of redistribution is negatively affected by the magnitude of the elasticity of

mobility to taxation. Building on this concept, the literature has investigated different models

of optimal taxation in the presence of migration which has shed some light on the tools available

to countries for balancing the trade-off between redistribution and their attractiveness for top

taxpayers. In particular, Simula and Trannoy (2010) have developed a model that considers

a situation in which one highly redistributive country has to choose its marginal tax rate

considering the presence of one foreign country characterized by a low and constant marginal

tax rate. The model links directly the optimal tax rate schedule to workers’ choices of location

(extensive margin) and their labor supply (intensive margin). A similar situation is investigated

in Piketty and Saez (2013) where a simple and estimable optimal tax rate formula is derived.

The main result of these models is that the optimal tax rate is inversely related to the elasticity

1See Ferreira, Varsano, and Afonso (2005) for an extensive review on fiscal competition.
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of mobility and the elasticity of taxable income.2 These models have been generalized in

Lehmann, Simula, and Trannoy (2014), who consider a framework with competition between

non-symmetric Rawlsian countries, individual heterogeneity in the distribution of tax-payers

skills and simultaneous interactions between government; and in Simula and Trannoy (2017)

allowing the governments to differentiate the tax schedule between native and foreign workers.

Considering revenue-maximizing countries, Kleven, Landais, Saez, and Schultz (2013) have

derived a model of optimal taxation considering that the labor market demand can be either

elastic or rigid. Moreover, considering the optimality degree of regional differentiation in tax

rates, Milligan and Smart (2019) have developed a model considering a federation of states

in which the optimal tax rate is a function of the elasticity of mobility on the state level

and the elasticity of taxable income at the national level. In this framework, regions have the

incentives to compete to attract more tax-payers reducing their tax rates. This competition can

result in a general reduction of tax rates that can be suboptimal from the national perspective.

However, given a set of elasticities of migration at the regional level, countries can internalize

this competition effect and set the federal tax rates maximizing the tax revenues at the federal

level. These studies have in common the importance of the elasticity of mobility as a measure of

the sensitivity of tax-payers location choices to taxation. This fundamental parameter measures

the percentage change in the number of taxpayers in one jurisdiction caused by a one percent

change in the tax rate. It can be estimated through the discrete choice approaches that will be

summarized in Section 1.3 below.

Much less effort has been devoted to the definition of optimal policies that account for

service-induced migration. In this respect, to the best of our knowledge, the literature has

analyzed the role of amenities (i.e. environment conditions, health facilities, teachers/ratio

pupils, etc.) and specific public expenditures in attracting highly skilled workers. For example,

Florida (2002) presented evidence that amenities can attract knowledge workers and affect the

distribution of human capital. These results are then embodied in the theoretical model of

Mathur and Stein (2004) that permits to understand under which conditions policies that aim

to increase local amenities can attract more highly skilled workers and can succeed in fostering

local development.

2See Saez, Slemrod, and Giertz (2012) for a review on the behavioral responses associated with marginal tax
rates that considers various channels such as, for example, labor supply, career choices and tax compliance
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More recently, some papers have started to consider these two instruments together by defin-

ing optimal policies that embody both taxation and public provision of amenities and services.

For example, Krieger and Lange (2010) have developed a model in which revenue-maximizing

governments compete for highly skilled workers suing two strategic variables: income tax rates

and amenities provided to students. Their result suggests that an increase in student mobility

can intensify tax and amenity competition and erode public revenues. Ruiz del Portal (2017)

extends the optimal taxation models in the presence of migration to consider commodity tax-

ation and the provision of public goods that can attract highly skilled individuals. His results

indicate that the provision of such public goods can reduce the migration response of highly

skilled workers and, therefore, permits governments to levy higher income tax rates.

These results depend crucially on the relative importance in individuals’ utility functions of

public goods, tax rates and amenities provided by jurisdictions. Therefore, to find an empir-

ical approach that can quantify the impact of these elements on the attractiveness of regions

and countries is paramount. The next section directly faces this issue discussing the recent

advancements in the empirical approaches that can be used to understand the determinants of

individuals’ migration decisions.
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1.3 The discrete choice approach

This section presents a schematic discussion of the approaches that can be used to understand

the determinants of individuals’ location decision process: the discrete choice approach.

These methods are based upon the Random Utility Models family (RUMs) (Train, 2003).

RUMs assume that a decision maker maximizes her utility by choosing one alternative from a

set of mutually exclusive alternatives that are characterized by their attributes. Formally, let

assume there is a population of agents n ∈ N and a set of alternatives j ∈ J in time t ∈ T . In

the context of individual mobility and migration, these alternatives may be countries, regions

or jurisdictions in general.

If the agent n choose to locate in jurisdiction j at time t she obtains the following utility:

Unjt = β′xjt + εnjt (1.1)

where Unjt indicates the utility of agent n if she decides to locate in j at time t, xjt is the vector

of alternatives’ observed attributes and εnjt captures factors that enter in the utility Unjt but

are not observed by the researcher. To save on notation, we drop the t subscripts in the rest

of the chapter.3. Consisting with the assumption of utility maximization, agent n will choose

alternative j only if:

Unj ≥ max
j′

Unj′ with j 6= j′ (1.2)

therefore only if alternative j is with the highest utility in the choice set.

Given condition 1.2, the probability that agent n to choose alternative j is given by the

following:

Pnj = Prob(Unj > Unj′) ∀ j 6= j′ (1.3)

In order to estimate this probability, researchers can employ different methods and different

assumption. Next sections will discuss some of the available alternatives.

3Without any loss of generality, we let the number of choice situations T to be equal to 1
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1.3.1 The Conditional Logit Model

If we assume that the error term εnj is i.i.d type I extreme value distributed (or Gumbel), the

probability in Eq. (1.3) can be written as (Mcfadden, 1974):

Pnj =
exp(β′xj)∑J
j=1 exp(β

′xj)
(1.4)

this probability can be estimated through a Conditional Logit model (CL) by using a maximum

likelihood approach. The CL is a very powerful tool that allows the researcher to understand

the systematic effects of alternative’s attributes on decision makers’ utilities and her choice

probabilities. This approach can be used to estimate utility functions such as the one presented

in Eq. (1.1). Moreover, the probability formula in Eq. (1.4) exhibits several useful proprieties:

the estimated probabilities are always comprised between 0 and 1, the probability to choose

one alternative is increasing in the utility of the individual and the sum of all the probabilities

attached to each alternative is always equal to 1.

The CL is the most standard discrete choice technique and is widely used in individual mo-

bility literature. As for tax-induced migration, for example, the CL has been used to understand

the effect of taxation on mobility decision of football players in Europe (Kleven et al., 2013) and

on international location decision of top inventors (Stantcheva, Akcigit, and Baslandze, 2016).4

This approach has been applied also in the empirical service-induced migration to analyze the

determinants of location choices of university students in Italy (Pigini and Staffolani, 2015) and

in the US (Long, 2004).5

To give an example of how previous literature has used the CL approach we will draw on

the analysis of tax-induced migration of football players provided by Kleven et al. (2013). In

this case, the utility of a player n in country j at time t is defined as:6

Unjt = α ln(1− τnjt) + α ln(wnjt) + homenj + Znt + µj + εnjt (1.5)

where τnjt is the average tax rate valid in country j for player n at time t, wnjt is the gross wage

4See Chapter 2 for a summary of empirical tax-induced taxation literature
5See Chapter 3 for a summary of the empirical literature regarding the attractiveness of universities.
6We are referring to a different version of equation (3) of the paper. We have modified the original specifi-

cation to better explain the characteristics of the CL approach.
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of player n in country j at time t, homenj is a dummy that takes value 1 if player n is citizen

of country j, Znt are player’s individual characteristics such as age and age-squared, and µj is

a set of country fixed effects.

Therefore, by identifying the parameter α in Eq. 1.5, the researcher can have an estimate of

the sensitivity of football players to income taxation. These parameters can be further exploited

to compute elasticities and estimate an optimal tax rate in the presence of migration.

One particular characteristic of this specification is the definition of Znt. Given that the

parameters are identified by comparing the utilities attached to each alternative we have that

all the determinants used in a CL framework need to vary over alternatives. Nevertheless, this

element can be an issue if we consider decision maker’s attributes included in Znt. In fact, these

variables are likely to do not vary among alternatives. For example, the age of an individual

who is deciding into which country migrates to does not vary among countries. However, it

can be an important driver of individuals’ preferences. In these cases, to account for individual

characteristics, the researcher has to define them in a way that can be handled by the model.

Kleven et al. (2013) have solved this caveat by defining Znt as:

Znt = θ(znt ⊗ µj) (1.6)

where θ is the vector of parameters related to each element in Znt. Therefore, each individual’s

attribute is interacted with the country fixed effects, this way permitting the effect of these

variables to vary over alternatives. The same technique can be used to understand if there is

any systematic variation in individuals’ preferences related to their characteristics. In this case,

assuming that xjt represent alternatives’ characteristics, the variable Znt can be defined as:

Znt = θ(znt ⊗ xj) (1.7)

therefore, each individual’s characteristic is interacted with all the alternatives’ attributes. By

estimating a parameter for each interaction term in Znt, the researcher can have an estimate of

the systematic heterogeneity in individual preferences.7 For example, through this technique,

we can understand how the effect of marginal taxation changes for individuals with different

7See Balia, Brau, and Moro (2020) for an example of the use of this technique in the context of mobility
related to hospital choices.
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age.8

Limits of the Conditional Logit

Along with its useful properties, the CL approach presents several limitations that are relevant

in our context. Drawing on Train (2003), these limitations can be clarified considering three

situations: repeated choices, heterogeneity in preferences and substitution patterns.

i. Repeated choices. The CL assumes that unobserved factors are independent across differ-

ent choices. This assumption can be crucial if the same individual is observed to choose more

than one time. If the unobserved factors are not correlated over time the CL is able to capture

the dynamics of the choice process. However, if the unobserved factors are correlated over time,

the assumption of independence of errors is violated. In this case, the CL is misspecified. This

issue can be overcome by specifying the utility function to model explicitly the correlation be-

tween different choice situations or by using a Mixed Logit approach that is outlined in Section

1.3.3.9

ii. Heterogeneity in preferences. Although the CL is able to represent systematic variation

in tastes by interacting individual variables with alternatives’ attributes, it fails in capturing

the unobserved heterogeneity that depends upon unobserved factors. These factors can be

individuals’ unobservables or idiosyncratic preferences. The existence of such heterogeneity, by

implying a correlation between included regressors and the error term, can result in distorted

estimates of utility parameters. In these cases, the CL is misspecified. For example, let us

consider a simple version of the utility presented in Eq. (1.5) in which the utility of player n

depend only upon the marginal tax rate τnj:

Unj = (α + ηnj) ln(1− τnj) + εnj = α ln(1− τnj) + ηnj ln(1− τnj) + εnj (1.8)

where ηnj is a random variable that affect the preferences of worker n with respect to the

8As we will see in Chapter 3 this strategy can be unfeasible or sub-optimal if xj and znt have many elements.
9With relationship to this limitation, another useful approach is given by the family of Dynamic Discrete

Choice approaches. In these models, the individual’s choice in time t affects her choices in time t+1 by affecting
the utilities attached to the various alternatives or by changing agents’ choice set. For example, if the agent
chooses to enroll in high school at time t, she will have different career alternatives in time t + 1. However,
this work is focused on static discrete choice models, the reader interested in dynamic models should see the
seminal contribution by Rust (1987) and the survey by Arcidiacono and Ellickson (2011) for an overview of
these models. See Declercq and Verboven (2018) for an example of dynamic discrete choice on students’ career
choices.
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marginal tax rate τnj. Given that ηnj is not observe, it will become part of the error term

ε̃nj = εnj + ηnj ln(1 − τnj). Consequently, given that ε̃nj contains the variable of interest

ln(1 − τnj), it is impossible to assume that the error terms are not correlated with included

regressors. This issue can be overcome by applying more sophisticated techniques such as the

Mixed Logit presented in Section 1.3.3.10

iii. Substitution patterns. Given that the sum of choice probabilities is equal to 1, if the

probability of one alternative increases, the probabilities of other alternatives have necessarily

to decrease. The way in which a specific model deals with how alternatives’ choice probabilities

are related to each other is called substitution pattern. CL assumes that substitution patterns

are only one type of substitution pattern: the ‘proportional substitution pattern’. This pattern

is a consequence of a general property of the CL: the Independence from Irrelevant Alternatives

(IIA). IIA states that the probability ratio between alternative j and alternative i is independent

from other alternatives different from i and j. For example, suppose that agent n is choosing

among three jurisdictions A1 and A2 that is located in country j and one jurisdiction B that

is located in country j′. Country j and j′ are very different in terms of language, culture, and

other amenities. Suppose now that a reduction in the tax rate of jurisdiction A1 increases its

choice probabilities by 1%. In this context, given that A1 and A2 are more similar, an increase

in A1 choice probability should cause a stronger reduction in the probability to chose A2 rather

than the one to chose B. However, given that the probability ratios between A2 and B are

not affected by attributes of alternative A1 we will have that their choices probabilities need

to decrease proportionally by the same amount to keep the same probability ratio. Therefore,

we will overestimate the effect on the probability to choose B, and underestimate the effect

on the one to choose A2. This problem can be overcome by using the Nested Logit approach

presented in Section 1.3.2 or by using a specific definition of alternative attributes in the Mixed

Logit outlined in Section 1.3.3.

10The issue of unobserved heterogeneity in preferences can be addressed also by using different techniques
such as the Heteroskedastic Conditional Logit or the Generalized Multinomial Approach. These methods are
supposed to identify two kinds of heterogeneity: scale and taste heterogeneity. The first refers to the situation
in which there is some unobserved factor that affects some individuals in the sample so that their choice process
appears more random from the researcher’s point of view. The second refers to the simple variation of tastes due
to unobserved factors. However, as pointed out by Hess and Train (2017), these two sources of heterogeneity
cannot be separately identified and any estimates of their effect will result in a mix between scale and taste
heterogeneity. The Mixed Logit overcome this problem by allowing to control for any kind of heterogeneity
through a more general definition of estimated parameters.
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1.3.2 The Nested Logit Model

The Nested Logit (NL) model allows the researcher to divide the choice set in subsets called

nests. The nests are constructed by considering that two alternatives in the same nest are more

correlated than two alternatives in different nests. In our previous example, the researcher may

assume that jurisdictions in country j and j′ belong to two different nests. The first contains

A1 and A2, while the second contains B. Given this definition, the NL will be estimated

considering that the IIA property is valid only inside one nest and that is not valid across

nests. Therefore, the substitution patterns inside the same nest will be proportional, whereas

the ones across nests will depend on the attributes of the alternatives in the other nest. For

example, the increase in the choice probability of alternative A1 caused by the reduction of its

tax rate will result in a stronger reduction in A2’s probability than the one estimated for the

alternative B.

It is worth to remark that choices in different sets do not have to be sequentially ordered.

Indeed, the formulation of nests regard only the correlation and the similarities between alter-

natives and does not depend in any way on the timing of the decision process.

Examples of NL can be found in the empirical literature regarding the service-induced

migration of students. Pigini and Staffolani (2013) have applied the NL to understands the

effects of university characteristics on students’ education choices. In particular, they consider

a two-level nested structure. In the first, the high-school leaver decides whether to enroll

at university and the field of study. In the second, she chooses which university to attend.

Kelchtermans and Verboven (2010) have studied the effect of tuition fees on choices regarding

enrollment, the university to attend and the field of study into which enroll of students in

Belgium.

Drawing on Kelchtermans and Verboven (2010), let assume that student n face a choice set

made by k ∈ K universities. Each university provides a set of courses j ∈ J .11 In this case,

we assume a nesting structure in which each university represent a nest that contains all the

courses provided.

11For simplicity we do not consider the choice regarding the enrollment.
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If student n chooses the study option j in university k she will obtain the following utility:

Unkj = θ′Yk + β′kXkj + εkj (1.9)

where Yk are universities attributes and Xkj are the characteristics of each course provided by

university k. For example, the Yk may contain the amount of tuition fees or some characteristics

of the hosting region, whereas Xkj may include the number of professors employed in the course

j by university k.

If we assume that the error term εkj in Eq. (1.9) is distributed following a general extreme

value distribution, we have that the probability that agent n chooses alternative j in nest k ∈ K

is (Mcfadden, 1978; Cameron and Trivedi, 2005):

Pnkj = pk × pj|k =
exp(θ′Yk + ρkIVk)∑K
l=1 exp(θ

′Yl + ρlIVl)
× exp(β′kXkj/ρk)∑Jk

r=1 exp(β
′
kXkr/ρk)

(1.10)

where:

IVk = ln

Jk∑
r=1

exp(β′kXkr/ρk) (1.11)

where pk and pj|k indicate, respectively, the probability to choose university k and the one to

choose course j in university k, ρk is the scale parameter that is a measure of the correlation

between the component of the nest K and IV is the inclusive value. This last term permit to

consider the contribution of the choice regarding the course k in the probability regarding the

choice of university k.

The NL can be generalized in many ways to consider three-level nests and overlapping

nests. These extensions make this approach very flexible and permit researchers to have a

better understanding of phenomenons that have more complex choice structures.

1.3.3 The Mixed Logit Model

The Mixed Logit (ML) model is the most general discrete choice approach, it nests all the mod-

els presented so far and can be used to overcome the CL limitations that we have presented in

Section 1.3.1. McFadden and Train (2000) have shown that ML can be used to approximate

any choice model with any distribution of preferences to any degree of accuracy. This result

implies that the ML is not affected by any theoretical restriction in the definition of prefer-
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ence distributions and correlation structure between parameters. However, the choice of the

distribution of preferences is crucial and will embody some theoretical restrictions.

In the ML framework, the utility that individual n obtains choosing alternative j can be

denoted as (Hess and Train, 2017):

Unj = x′njβn + εnj (1.12)

where, differently from Eq. (1.1), the vector of parameters βn vary randomly over people. This

feature of the ML permits to control for the unobserved heterogeneity, this way solving the CL

limitation regarding the heterogeneity in preferences.

Assuming that the error term εnj is i.i.d. extreme value we can write the probability that

agent n chooses alternative j, conditional on the individual parameter βn, as:

Pnj(βn) =
exp(x′njβn)∑J
j=1 exp(x

′
njβn)

(1.13)

this formula indicates that the conditional choice probability of individual n depends on her

vector of utility coefficient βn. In order to derive the unconditional probability of individual n

the researcher need to specify the cumulative distribution function of utility coefficients in the

population F (β|φ). This distribution depends on the parameter φ that is defined according

to the preferred cumulative distribution. F (β|φ) can be continuous or discrete, differs among

different elements of the vector βn, and allow any type of correlation among parameters. This

flexibility allow the ML to account for the existence of repeated choices, nesting structure and

any kind of heterogeneity in preferences (Train, 2003).

Concerning heterogeneity in preferences, we have that the ML offers various solutions. For

example, if the researcher believes that it exists only for one regressor, she can impose a

random distribution for the respective coefficient and let the others to be fixed. Moreover,

if the researcher believes that two regressors are correlated she can allow this correlation to

be estimated by the ML. For example, suppose that people that are more sensitive to the

jurisdiction tax rate are more sensitive also to jurisdiction’s amenities. In this case, instead of

interacting these two regressors with each other, the researcher can simply allow them to be

correlated.

Furthermore, the individual distribution of parameters can be let to depend on individ-
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ual characteristics, this way allowing the researcher to identify the systematic variations in

individual tastes.

In respect to the nesting structure in agents’ decision process, we have that the ML does not

exhibit the IIA property and can be modeled to approximate any kind of substitution pattern.

The nesting structure can be defined by using a dummy variable that indicates the nest and

letting the coefficients associated with this regressor to be randomly distributed. The only

drawback of this procedure is that the ML is computationally more intensive than the NL.

As we have seen, F (β|φ) can be defined to be continuous or discrete. This difference can

lead to two different models that share all the advantages that we have outlined in this section.

In particular, if F (β|φ) is defined to be continuous we will have an infinite mixture Mixed Logit

or Mixed Logit. By contrast, if F (β|φ) is assumed to be discrete, we will have the finite mixture

Mixed Logit or Latent Class Logit model (LCM). Given that the LCM is at the core of chapter

3, in this chapter we will focus only on the infinite mixture Mixed Logit.

The ML model has been used in health economics literature in order to understand the

preferences of patients in choosing hospitals. For example, Sivey (2012) has applied a LCM

model to understand the effect of travel time and waiting time on patients’ decision regarding

the choice of hospital for cataract operations; Gutacker, Siciliani, Moscelli, and Gravelle (2016)

and Varkevisser, Geest, and Schut (2012) have applied an infinite mixture ML to understand

the effect of hospitals’ quality on patients hospital decisions considering UK and Netherlands.

For example, Balia et al. (2020), have applied an ML in estimating the demand for elective

hospital care. In their model, patient n chooses a hospital j based on the following utility:12

Unj = β′xj + θ(zn ⊗ xj) + εnj (1.14)

where xj include hospitals characteristics (e.g. distance, mortality rate, hospital’s quality and

size) and zn contain observable individual characteristics (e.g. age, education and gender). As

we have seen in Section 1.3.1, this specification can be estimated through a CL. It permits to

understand if the effect of hospital’s characteristics on patient’s demand varies systematically

on the basis of their individual characteristics.

In order to capture also unobserved heterogeneity, the authors have estimated a ML con-

12We refer to a simplified version of equation (1) in the paper.
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sidering that parameters β may have a continuous distribution F (β|φ). In this case, we have

that the βn in Eq. (1.12) can be written as (Greene and Hensher, 2003):

βn = β + Γvn (1.15)

where β is the preference parameter estimated in the sample, and vn is a random term that

enters in the definition of the parameters. This last term is used to account for random variation

in tastes and can be defined to allow for correlation between parameters. This specification has

permitted to relax the IIA property and to derive a set of individual parameters.

Moreover, Eq. (1.15) can be modified in order to have a distribution of individual parameters

that depend upon a vector zn of patient individual characteristics:

βn = β + γzn + Γvn (1.16)

This definition of βn embodies all the features of ML that we have outlined before. In fact,

the individual distribution of parameters will depend on decision makers’ characteristics and

can be defined to allow any type of heterogeneity in preferences. Therefore, this individual

parameter will give information on the effect of the respective regressor accounting for both

random as well as systematic variation in individual tastes.

These parameters can be exploited to compute measures of agent’s sensitivity to alternatives’

attributes such as willingness to pay measures or semi-elasticities.

1.4 Recent advances in modeling mobility

1.4.1 The Maximum Score Matching Estimator

Until this point, we have assumed that individual choices depend only upon alternatives’ and

decision makers’ characteristics. In our logic, for example, workers decide into which jurisdiction

locate simply by comparing the utility that they can gain in each alternative. However, in

reality, we have that workers’ location decisions may depend upon firms hiring decisions. Indeed,

if the worker wants to live in jurisdiction j she will need a firm in that jurisdiction that is willing

to hire her. Moreover, in the same world, there could be other workers that want to be hired
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from the same firm. Therefore, workers will be competing with each other to match their

preferred firm. On the other hand, we have that the same firm will have to choose the worker

based on her characteristics. In this context, if more firms want to hire the same worker, they

will compete with each other to match with their preferred partners.

Therefore, in this context, every workers’ location decision that we observe is the outcome

of a process of market interactions between workers and firms. In this case, using standard

discrete choice approaches may lead the researcher to a wrong interpretation of the results.

Indeed, if we model the choice of the workers without considering explicitly the role of firms,

our estimates will be a mix between firms’ and workers’ behavioral responses (Stantcheva et al.,

2016).

One possible solution to this issue is the Maximum Score Matching (MSM) estimator (Fox,

2018). This approach is presented in detail in Chapter 2.

The MSM is a semi-parametric estimator based on the single-agent multinomial choice max-

imum score developed by Manski (1975) that allows the researcher to estimate the parameters

underlying the matching process between two types of agents in a specific market. In this kind

of model, the agents have a role defined ex-ante (one can be either worker or firm), and the

matches are the outcomes of a process of interaction between agents that take their decisions

interdependently.

The MSM detains various advantages compared to other methods presented so far. First,

it allows the estimation of parameters underlying the matching process without having data

on the transfers that happens between individuals. This characteristic allows controlling for

every transfer between agents that may affect the location decision process even though the

researcher does not have data on them. Second, it allows a more general definition of the error

term than the classical type I extreme value used in Logit models. Third, its computational

simplicity enables the researcher to use a not artificially limited set of alternatives and individual

covariates.

In order to provide a brief outline of this approach, we can take advantage of a simple

example. Suppose that in there is a population of workers n ∈ N and a set of firms a ∈ A.

Each firm is located in one jurisdiction j ∈ J . Suppose to observe, in a market m ∈ M , a

match ωan between worker n and firm a in jurisdiction j. In this case, the local production
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function of the match observed is:

π(ωan) = V (n, a, j) + U(n, a, j) (1.17)

where V (n, a, j) indicates the utility that firm a obtain in matching with n in jurisdiction j and

U(n, a, j) is the utility that worker n obtains by matching with a in jurisdiction j. Therefore,

the local production function is given by the sum of agents’ utilities. Each agent utility depends

on the characteristic of the partner and the jurisdiction considered. The aim of this approach

is to estimate the local production function π(ωan).

Now, suppose that in the market m we observe another match between n′ and a′. In this

case we can write the local production function of the observed set of matches ωm as:

Π(ωm) = π(ωan) + π(ωa′n′) (1.18)

where π(ωa′n′) is the local production function of the match between worker n′ and firm a′.

The last equation helps us to define the equilibrium concept used in the estimation process of

the MSM: the pairwise stability condition (Kim, 2018; Fox, 2018; Kuehn, 2017). This condition

states that the observed set of matches ωm is a pairwise equilibrium if no coalition of agents

prefers to deviate from the observed set of matches. Therefore, the set of matches ωm is a

pairwise equilibrium if:

Π(ωm) ≥ Π(ω̃m) (1.19)

where ω̃m is a counterfactual match where the worker n is matched with firm j′ and worker n′ is

matched with firm j. Therefore, the pairwise stability condition states that the set of matches

ωm is a pairwise equilibrium if the two workers cannot increase their utility by exchanging their

job positions.

This equilibrium concept permits to compare the observed matches with the counterfactual

ones to estimate the local production function of the single match. Moreover, it allows the

estimation of the model without having data on equilibrium transfers between partners and

agent-specific characteristics. In fact, everything that is exchanged between partners is erased

from the equation.13 Moreover, given that the same agent appears both in the real set of

13See Chapter 3 for a detailed explanation.
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matches than in the counterfactual, every variable that is agent-specific and does not depend

on the specific match is erased. Because of this element, the researcher can use only match-

specific variables. However, this strategy allows controlling for unobserved factors that are

agent-specific.

In order to proceed to the estimation we need to define the parametric local production

function as:

Π(ωm) =
∑
ωi∈ωm

π(ωi) =
∑
ωi∈ωm

X(ωi)
′θ + εωi

(1.20)

where ωi is one observed match in the set ωm, X(ωi) are the match-specific variables, θ is

the vector of parameters that measure the effect of the variables on the π(ωi), and εωi
is

the unobservable component of the local production function. Given the parametric local

production function we can rewrite the pairwise stability condition as:

∑
ωi∈ωm

X(ωi)
′θ ≥

∑
ω̃i∈ω̃m

X(ω̃i)
′θ (1.21)

Finally, this condition can be used into the objective function of the MSM in order to estimate

the vector of parameters θ:

max
θ
QM(θ) =

M∑
m=1

Gm∑
g=1

1

[ ∑
ωg∈ωm

X(ωg)
′θ ≥

∑
ω̃g∈ω̃m

X(ω̃g)
′θ

]
(1.22)

where M is the number of observed markets, QM is the score function that we need to maximize

and Gm is the set of pairwise inequalities in each market. This set is constructed comparing in

each inequality one set with two observed matches ωg with another set with two counterfactual

matches ω̃g. The logic behind this maximization is very simple: every time that the pairwise

stability condition in brackets is satisfied we add 1 to the score function. Therefore, when we

reach the maximum of QM we will have identified the parametric local production function and

the set of parameters θ.

The MSM permits the estimation of the matching process behind the location decision of

workers by focusing on the matches utilities. This strategy allows the researcher to have a

better understanding of the phenomenon by accounting for the fact that observed location

choices can be a mix of workers and firm behavioral responses.
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The MSM has been applied in different contexts. Just referring to ‘many-to-one’ applica-

tions, Yang, Shi, and Goldfarb (2009) estimate the brand alliances between basketball players

and teams; Mindruta, Moeen, and Agarwal (2016) compare the MSM with standard discrete

choice estimators in a context of strategic alliances in the biopharmaceutical industry; Baccara,

İmrohoroğlu, Wilson, and Yariv (2012) quantify the effects of network externalities on choices

of faculty regarding offices in a new building; Schwert (2018) investigates the matching process

between firms and bank in the loan market. Moreover, the MSM is analyzed in the survey on

the applications of empirical matching models made by Chiappori and Salanié (2016).

Chapter 3 is the first example of MSM applied to individual location choices. In particular,

MSM is used to understand how marginal income taxation can affect football players’ location

choices.
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Chapter 2

Best Score in the Match: Marginal Taxation and

Labor Mobility in the European Football Mar-

ket

Abstract

The international mobility of high skilled workers represents a crucial public pol-

icy issue, especially when occurring in an environment characterized by low mobility

costs and relevant international differences in top tax rates. In this work, we study

the effect of top marginal tax rates on turnover and migration patterns of football

players in 16 countries between 2007 and 2016. This phenomenon is analyzed both

at the international and inter-regional levels by exploiting national and regional

variations in the effective marginal tax rate. We estimate a two-sided matching

model using a maximum score matching approach. This allows us to account for

the competition on each side of the market, and get rid of factors affecting both the

demand and supply side for which information is hardly accessible (namely, wages

of top-level workers). The structural parameters of the underlying decision process

are exploited to quantify the sensitivity of taxpayers’ equilibrium locations to taxa-

tion, the existence of sorting effects and the heterogeneity of these effects based on

the ability of the player. In a context of elastic labor demand, the elasticity of mi-

gration relative to the net-of-tax rate is between 0.07 and 0.12 for natives, 1.20 and

1.37 for foreigners while it is around 0.22 if when considering the whole population.

The estimated elasticities are higher when considering top-players suggesting that

lower tax rates can increase the average quality of workers in the country by at-

tracting more high-ability players who, in a context of rigid labor demand, displace

low-quality players.

JEL Classification: H30, H21, C14, J61, L83

Keywords: Income taxation, Geographic Labor Mobility, Maximum Score Estimation, Many-

to-One Matching, Superstars
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Introduction

International mobility of high skilled workers (and the related erosion of national tax revenues)

represents a crucial public policy issue, especially when occurring in an environment, such as

Europe, characterized by low mobility costs and relevant differences in top tax rates among

countries.

In this context, governments are poorly able to collect fiscal revenue and redistribute income

with progressive taxation, because ‘best’ taxpayers could leave the country, this way causing

a reduction of the tax base, and ultimately of taxation revenue. On the contrary, countries

and regions could have incentives to attract high skilled workers given their high productivity

and their ability to generate positive spillovers within a country. Moreover, tax differentials

can reduce the market power of firms in high-tax jurisdictions and distort the matching process

between firms and workers. Indeed, Krenn (2017), in his theoretical model on firms competition

for talented CEOs, shows that a large tax differential can induce the worker to match with the

less preferred firm if it is located in a low tax jurisdiction. Therefore, understanding how the

top earners’ equilibrium locations are sensitive to income taxes and which are the determinants

of their patterns of migration is paramount.

The importance of high-skilled migration in general, and its determinants have been high-

lighted in the literature1 that has focused on its effect on both receiving and sending countries

(Stantcheva et al., 2016). Starting from the seminal contribution of Mirrlees (1982), this phe-

nomenon has been deeply analyzed by the theoretical literature in order to derive a model of

optimal taxation in the presence of international migration and tax competition across coun-

tries. In more recent times, Lehmann et al. (2014) have derived a model of tax competition and

international migration considering a framework with costly mobility, non-symmetric countries,

individual heterogeneity in the distribution of workers’ skills and simultaneous interactions be-

tween governments. This model has been further extended in Simula and Trannoy (2017)

allowing governments to differentiate the tax schedule between native and foreign workers.

In spite of the presence of this body of theoretical literature, only recently this phenomenon

has been empirically investigated, because of the lack of good microdata containing information

1See Kerr (2013) for an extensive review of the link between global migration and innovation in the US.
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about the citizenship and work history of workers. Migration choices of highly skilled workers2

have been studied in a few empirical works. Kleven et al. (2013) investigate the role of top

tax rates on the international migration of football players in the European footballers market.

Stantcheva et al. (2016) study the effect of taxation on the location choice of inventors across the

United States and Europe. Preferential schemes for top earners in Denmark and the difference

in the elasticity of mobility to taxation between foreigners and natives are instead the focus of

the study by Kleven, Landais, Saez, and Schultz (2014).

Related to that, a few studies have been focusing more in general on inter-regional migration

of high skilled workers. For example, Moretti and Wilson (2017) analyze the sensitivity of the

migration choices of star scientist to changes in personal and business tax rates across US

states. Agrawal and Foremny (2018) use administrative data to understand the role of taxation

on the choices of migration of the entire universe of top incomes in Spain. All these works

share the expected result that the probability of the worker to locate in one country or region

is negatively affected by the marginal tax rate.3

Starting from this literature, we aim to understand how much migration patterns of top

incomes are sensitive to income taxation using a new dataset on football players’ careers and

marginal taxation on both national and regional levels. In particular, we address two main

empirical challenges pointed out by Kleven et al. (2019) and Stantcheva et al. (2016): i. the

availability of precise data on earnings and tax rates; ii. the role of the firms in the location

decision process. The first issue has been addressed in the literature using data on specific

sectors where these data were available or using administrative data with detailed information

on migration decisions and wages. The second issue is related to the fact that the observed

choices are the outcome of market interactions between workers and firms and, therefore, the

observed elasticities can be a mix between employers the employees’ behavioral responses.

Indeed, income taxation affects the surplus that workers and firms gain from their match on

the base of their market powers and characteristics. For example, as highlighted in Stantcheva

et al. (2016), the firms could have the incentive to internalize all the tax burden in order

to attract star workers. Conversely, workers of poor quality can be more prone to bear all

the cost of taxation. Moreover, workers’ equilibrium locations can be affected also by firms’

2An important share of these top earners are the so-called superstars (Rosen, 1981)
3See Kleven, Landais, Muñoz, and Stantcheva (2019) for a review on the main empirical challenges and

policy implications regarding the effect of personal taxation on the geographic mobility of people
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characteristics that are independent of the taxation that the researcher cannot identify using

data only on the migration decisions of workers in different countries. If it is not accounted for

the firm’s characteristics and agents’ market power our results could be a mix between tax and

non-tax responses and depend on taxation incidence.

We address these two challenges by using an innovative empirical strategy proposed by Fox

(2018): the Maximum Score Matching Estimator. This technique allows us to consider that

all location decisions that we observe are the outcome of market interactions between agents

that compete in each side of the market to match with their preferred partners. With this

modeling strategy, as we will see below, we account explicitly for the fact that income tax rates

have an effect on the surplus arising from the employee-employer match that may impact on

individual’s equilibrium locations. Namely, given that individuals’ migration patterns are the

results of matches between firms and workers, the tax rate, by affecting the utilities related to

these matches, contributes to the determination of individuals’ equilibrium locations.

As a unit of observation, we use players-teams matches. This enables us to control for

the agent-specific characteristics and isolate a pure taxation effect. Incidentally, by exploiting

the matching nature of the phenomenon, this method allows us to get rid off of the lack of

information on earnings, wages, and agent-specific unobservables.

Hence, our contribution is threefold. First, we model the workers’ location process account-

ing even for the role played by firms by solving the problem of availability of precise data on

earnings and agent-specific unobservables. Second, we use both regional and national variation

in top tax rates and the information regarding the preferential schemes that allow specific kinds

of workers to enjoy a reduced tax rate. This has permitted us to have a precise measure of the

tax burden affecting a match in a specific region in Europe. Finally, a dataset on the careers of

football players richer than that used by Kleven et al. (2013) is used. Namely, our dataset con-

tains information on several individuals and team covariates (e.g. individual and team market

value) that permits to identify the distribution of the skills among the top 16 European leagues

over the period 2007-2016.

Our results suggest that the income taxation incentive is an important determinant of top-

earning workers’ migration patterns even when considering a matching model in which labor

demand and supply interact. Indeed, we find evidence that, ceteris paribus, a match is more
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valuable if it happens in a lower tax jurisdiction. By means of a simulation procedure, the

main results in terms of elasticities of mobility to the net-of-tax rates are as follows. The

effect of income taxes is stronger when considering foreigners and top-players. This result has

different consequences depending on the elasticities of labor demand. If we consider an elastic

labor demand, we find an estimate of the elasticity of migration to taxation around 0.22 for the

whole population, between 0.07 and 0.117 when considering natives and between 1.37 and 1.197

for foreigners. These results suggest that foreigners’ equilibrium locations are more sensitive

to the income tax rate than the native ones. Moreover, we find that elasticities are always

positive but much stronger when considering top players. For example, if we consider natives,

the elasticity of the population of bottom quality players ranges from 0.025 to 0.028 whereas the

one estimated for top players ranges from 0.310 to 0.495. This result suggests that a reduction

in the income tax rates can improve the average quality of top earners workers in the country.

This conclusion is confirmed even if we consider a rigid labor demand. In this context, the

elasticities are estimated to be negative at the bottom of the quality distribution and positive,

even though lower in magnitude, for top players. Hence, we find evidence of a displacement

mechanism in which top players migrate into low tax jurisdictions pushing away bottom quality

players.

2.1 Background

2.1.1 Related literature

The importance of migration of talented workers and its consequences on the economy has been

extensively analyzed in the literature (e.g. Kerr, 2013; Clemens, 2011; Freeman, 2006). This

phenomenon has been studied considering its effects on human capital accumulation whether

in sending as well as receiving countries (see, for example, the references in Stantcheva et al.

(2016)) and countries’ ability to attract high-skilled workers. Concerning this last element, this

study tries to understand the determinants of high-skilled migration patterns and, in particular,

the effect of taxation on their equilibrium locations. Indeed, as highlighted in Esteller, Piolatto,

and Rablen (2016), labor mobility is a crucial phenomenon that has to be considered in the

determination of optimal tax schemes. In fact, in a context of free mobility, workers may relocate
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into jurisdictions in which they are more productive on the base of their net-of-tax returns.

However, the presence of tax differentials between jurisdictions can distort workers’ location

choices encouraging migration towards low-tax jurisdictions. Hence, to maximize efficiency, the

optimal taxation models should take into account the tax induced mobility this way reducing

the distortion in location incentives and recover a more efficient distribution of the labor factor.

Therefore, understanding how much workers’ locations choices are sensitive to taxation in

general is paramount.

In this work, we focus on the migration of European football players among European

countries. Regarding this point, the migration of football players and its effect on the quality

of countries’ leagues has been studied also in the sporting economics literature. For example,

Vasilakis (2017) studies the effect of the reduction in mobility restriction followed by the so-

called Bosman rule in 1995 in Europe on the football sector in general.4 In particular, he finds

that the liberalization of football players’ mobility in Europe has increased the scale of the

migration phenomenon and encouraged the production of talent in poor countries. However,

his results suggest that the inequalities in prestige and performances among European countries

have increased. Still regarding the Bosman, rule Balsmeier, Frick, and Hickfang (2018) have

found a positive impact of high-skilled foreign players in Germany on the performances of their

teammates. Finally, Berlinschi, Schokkaert, and Swinnen (2013) find that the migration of

footballers in countries with high-quality teams has a positive effect on the performances of

sending countries’ national teams. Hence, besides the importance of migration of high-skilled

in general, this literature suggests that understanding the effect of taxation on the migration

decisions of football players can be relevant even to understand its role as an attractor for

talents in this sport.

With regards to the tax-induced migration, since the seminal contribution of Mirrlees (1982),

it is well known that the ability of countries to redistribute income through taxation and

their optimal level of redistribution is negatively affected by the magnitude of the elasticity

of mobility to taxation. Building on this concept, the literature has investigated different

models of optimal taxation in the presence of migration which have shed some light on the tools

available to countries for balancing the trade-off between redistribution and their attractiveness

4This rule allowed players to move to a new team at the end of their contracts without paying a fee to their
old team. Indeed, before this rule, players, or their new teams, had to pay a transfer fee even if the contract
between the old team and the player was ended.
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for top tax payers. In particular, Simula and Trannoy (2010) have developed a model that

considers a situation in which one highly redistributive country has to choose its marginal

tax rate considering the presence of one foreign country characterized by a low and constant

marginal tax rate. The model links directly the optimal tax rate schedule to workers’ choices

of location (extensive margin) and their labor supply (intensive margin). A similar situation is

investigated in Piketty and Saez (2013) where a simple and estimable optimal tax rate formula

is derived. The main result of these models is that the optimal tax rate is inversely related

to the elasticity of mobility and the elasticity of taxable income.5 These models have been

generalized in Lehmann et al. (2014), who consider a framework with competition between

non-symmetric Rawlsian countries, individual heterogeneity in the distribution of tax-payers

skills and simultaneous interactions between government; and in Simula and Trannoy (2017)

allowing the governments to differentiate the tax schedule between native and foreign workers.

Considering revenue-maximizing countries, Kleven et al. (2013) have derived a model of optimal

taxation considering that the labor market demand can be either elastic or rigid. Moreover,

considering the optimality degree of regional differentiation in tax rates, Milligan and Smart

(2019) have developed a model considering a federation of states in which the optimal tax rate

is a function of the elasticity of mobility on the state level and the elasticity of taxable income

at the national level. In this framework, regions have the incentives to compete to attract more

tax-payers reducing their tax rates. This competition can result in a general reduction of tax

rates that can be suboptimal from the national perspective. However, given a set of elasticities

of migration at the regional level, countries can internalize this competition effect and set the

federal tax rates maximizing the tax revenues at the federal level.

These studies have in common the importance of the elasticity of mobility as a measure

of the sensitivity of tax-payers location choices to taxation.6 Concerning this point, there is

a growing body of empirical literature that has focused on the estimation of the elasticity of

mobility.7 These studies have been focused on both international and inter-regional migration.

On the international side, the most closely related paper is Kleven et al. (2013) who investigate,

5See Saez et al. (2012) for a review on the behavioral responses associated with marginal tax rates that
considers various channels such as, for example, labor supply, career choices and tax compliance

6Taxes are not the only policy tool that jurisdictions can use to attract high-skilled workers. For example,
Buettner and Janeba (2016) explore the incentives of German jurisdictions to subsidize cultural activities in
order to attract highly educated employee.

7See Esteller et al. (2016) and Kleven et al. (2019) for a review on both theoretical and empirical literature
focused on the link between mobility and the choice of the optimal tax rate
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through a model in which the players choose the country to migrate to, the effect of marginal

income taxation on the migration choices of European football players. They estimate an

elasticity of mobility close to one for foreign players and a smaller estimate (around 0.15) for

natives. Moreover, the elasticities are higher for top-quality players than for the low-quality

ones. This suggests that the tax rate could be a useful tool to attract high-quality foreign

players. Stantcheva et al. (2016) study the effect of taxation on the international mobility of

inventors and scientists finding similar results regarding domestic and foreign inventors. To our

knowledge, this is the first paper that tries to consider the role of companies in the location

decisions of workers in an international context. The authors highlight that tax rates can have

a distortionary effect on the match between firms and workers and, therefore, the results can be

a mix of firm and workers’ behavioral responses. For example, firms could have the incentive

to internalize all the tax burden in order to attract star workers or, conversely, workers of poor

quality can be more prone to bear all the cost of taxation. Moreover, location choices can be

affected by firms’ characteristics that are independent of taxation and that could have effects

that are not identifiable using data only on migration on the national level. With regard to

the possibility for countries to use preferential tax schemes, Kleven et al. (2014) study the

effect of a reduction of tax rates for high-income foreigners implemented in Denmark in 1992

on the immigration of top-tax payers in the country finding that these kinds of tools can be

used by countries to attract more high-skilled workers. These results are confirmed also in the

aforementioned paper by Kleven et al. (2013) that explore the effect of preferential schemes in

several European countries. Top incomes’ migration decisions can be influenced also by capital

taxes. For example, using Forbes Magazine’s data on billionaires and international capital tax

rates, Sanandaji (2014), has found that very rich people are more likely to move to countries

with lower capital taxes and higher per capita incomes.

With respect to the relationship between inter-regional migration and taxation, Moretti and

Wilson (2017) have explored the determinants of migration choices of star scientists among US

states. In particular, they exploit the regional differences in personal and corporate income

taxation to understand the effect of taxation on both the supply and the demand of star

scientists. In a similar context, Moretti and Wilson (2014) have studied the effect of subsidies

and R&D tax credits on the biotech star scientist choices of location. They find that these
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policies have a direct positive effect on the supply of star scientists in the biotech industry.

This positive effect extends indirectly to all the workforce in the sector, employment in local

services and employment in closely related industries. The relationship between innovation

and taxation in the US has been analyzed recently also in Akcigit, Grigsby, Nicholas, and

Stantcheva (2018). Using data on patents dating back to 1920, the authors study the effect

of both corporate and income taxation on the innovation process over the 20th century. In

particular, they find that taxation has a significant effect on the number and the quality of

patents and the supply of inventors at the state level. Interestingly, inventors are affected even

by corporate taxation, especially if they work inside a corporation. This element suggests that

the role of companies and their ability to transfer a part of the tax burden on workers has to

be taken into account in estimating the sensitivity of migration choices to taxation. Although

these papers point to a relevant role of taxation in attracting inventors from other states Bell,

Chetty, Jaravel, Petkova, and Van Reenen (2019a) and Bell, Chetty, Jaravel, Petkova, and Van

Reenen (2019b) have shown that the financial incentives, namely taxation, have a small effect on

aggregate innovation at the country level. This result arises from the fact that these incentives

affect only individuals who have already been exposed to the opportunity of an inventor career

and inventors of marginal quality. The authors suggest that the most relevant tool to foster

aggregate innovation is to increase the exposure to innovation career opportunities of children,

especially if they come from underrepresented groups such as women or low income families.

Extending the focus on the entire universe of tax payers, Agrawal and Foremny (2018)

use Spanish administrative data to understand the migration choices of the residents in Spain

exploiting the variation of income tax rates among Spanish regions. They find that, conditional

on moving, a one percent increase in the net-of-tax rate in a region increases the probability

to move in that region by 1.5%. However, they estimate, on aggregate, an elasticity of top tax

payers of 0.85. This means that an increase in tax rates generates a mechanical increase in tax

revenues that is larger than the loss due to behavioral responses.

This result calls directly the theoretical argument of, among the others, Musgrave (1959) and

Oates (1972) and tested in Feldstein and Wrobel (1998), according to which regions governments

should refrain from redistributive policies because this will result in an out-migration response

from the former, and, consequently, in an erosion of the tax base. This theoretical prediction has
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been tested also in Young and Varner (2011), Varner and Young (2012), and Young, Varner,

Lurie, and Prisinzano (2016) using the natural experiment of the millionaire taxes in New

Jersey, California and among US states.8 The authors find that, in general, an increase in the

top tax rate had little, marginally significant, effect on the migration choices of wealthy people.

Their results show that rich people are less mobile than the general population and embedded

in the regions in which they have success. These results have been confirmed also with respect

to elderly wealthy people in Bakija and Slemrod (2004), who examine the effect of inheritance

taxes in the US finding that there is strong evidence of a behavioral response to these taxes

but that this effect is small in comparison to the mechanical effect given by the rise in tax

revenues. By contrast, Schmidheiny and Slotwinski (2018), exploiting a preferential income tax

regime for foreigners in Switzerland, find a strong response in location and migration choices

for high-income earners and a non-significant effect for low-income earners. Interestingly, they

find a significant effect on location choices and moving probability only for those foreigners that

reside in high tax jurisdiction without finding a significant effect on those who live in low-tax

jurisdictions suggesting that the effects of tax increases and tax decreases can be asymmetric.

2.1.2 Moving a step forward

Kleven et al. (2019) highlight that one of the most important challenges in studying tax induced

migration is the lack of precise information on wages and earnings. This problem has been

addressed previously by focusing on specific sectors where these data are available or using

administrative data.

In this study we aim to overcome this empirical difficulty by using a different empirical

strategy, namely, the Maximum Score Matching estimator (MSM) developed by Fox (2018).

This method, among various advantages9, allows the researcher to estimate a matching model

between agents who compete in a market to match with their preferred partners. The MSM

has been used in the literature in several different fields. Just referring to ‘many-to-one’ appli-

cations, Yang et al. (2009) estimate the brand alliances between basketball players and teams;

Mindruta et al. (2016) compare the MSM with standard discrete choice estimators in a context

8The millionaire tax movement is a trend observed in the US consisting of states that start to raise the
progressivity of their tax systems to compensate the general drop in federal top tax rates.

9See Section 2.4 for details on this estimator.
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of strategic alliances in the biopharmaceutical industry; Baccara et al. (2012) quantify the ef-

fects of network externalities on choices of faculty regarding offices in a new building; Schwert

(2018) investigates the matching process between firms and bank in the loan market. Moreover,

the MSM is analyzed in the survey on the applications of empirical matching models made by

Chiappori and Salanié (2016).

2.1.3 The market of European football players

The European football market is characterized by specific characteristics regarding teams, play-

ers and how their labor contracts are defined.

In each European country, there is one top-national league to which up to the 20 best

football teams in the country take part. Teams can participate even to other competitions such

as national or international cups.10 The season of year t starts usually in August/September

of year t and ends in May/June of year t+ 1.11 Moreover, in each season there are two market

windows, usually in summer and in January, in which teams can buy and sell players. This

calendar poses some difficulties in the definition of the relevant tax rates. Following Kleven

et al. (2013) we assume that the relevant tax rate for the year t season is the year t tax rate

given that most of the teams’ composition is decided before the beginning of the season.

Football teams are firms located in a specific city that use a specific stadium. This partic-

ularity hampers the possibility of relocating to other jurisdictions to take advantage of lower

tax rates or other economic incentives. Hence, each observed migration pattern only depends

on workers’ mobility. Moreover, each team employs about 25-45 players in its squad.12 The

number of players in teams depends upon various factors such as the dimension of the market,

number of fans, financial resources, number of competitions in which the team qualifies, and

country-specific rules regarding the number of youths and national players. This number is

naturally bounded by the fact that teams can employ, in each match, 11 players in the main

line-up plus 3 players from the bench as substitutions. Given that the number of workers is

neither fixed nor totally unbounded, there could be some complications in the definition of the

10In Europe there are two European competitions in which a restricted number of teams participates in, on
the basis of their performances and country rankings: the European League and the Champions League

11This rule is excepted by the northern countries (such as Norway and Sweden) where the year t season starts
in March of year t and ends in November of the same year.

12With ‘squad’ we refer to all the players who are employed by the team
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market structure. Indeed, if the number of players is relatively fixed, we end up with a rigid

labor demand. Conversely, if this number is totally flexible, we have an elastic labor demand.

This has important consequences on both the empirical model to estimate and the choice of the

optimal tax schedule to apply. As explained in Section 2.2, we overcome this problem by using

an empirical approach enabling us to let the market structure to be endogenously determined

in equilibrium. It turns out that our main econometric specification will not depend on any

ex-ante assumption on the elasticity of the labor demand. However, in the computation of the

elasticity of mobility to taxation we will consider two cases: one in which team’s dimension

is kept fixed at the one observed and one in which we let it to be freely determined in the

simulation algorithm on the base of the results coming from the empirical model.

Teams and players sign contracts that define the affiliation duration, salary and other ben-

efits related to players’ performance, sponsorship and image rights on the merchandising sold

by clubs. The combination of these payments makes very difficult to detect the overall com-

pensation earned by the players. Indeed, where data are available, they only cover wages or

provide information only on very important players. Moreover, during the affiliation, if a player

wants to change his team before the end of his contract or, conversely, if a team want to hire

a new player employed by some other teams, the clubs involved can negotiate a transfer and a

transfer fee that is not part of players’ taxable income. These rules have been established after

the so-called ‘Bosman rule’, decided by the European Court of Justice in December 1995.13

Given these characteristics, each contract in the European football market can be seen as

the equilibrium outcome of a many-to-one two sided matching model with transferable utility

(Fox, 2018). In these kinds of models, the agents have a role defined ex-ante (worker or firm)

and the matches are the outcomes of an interaction process between agents that consider the

choices made by other agents (Yang et al., 2009). The maximum score matching estimator

provides an empirical tool consistent with this theoretical framework by means of which to

assess the effects of the marginal income taxation on the relocation and migration patterns of

European football players.

13See note 4
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2.2 Theoretical Framework

Building on Kleven et al. (2013) and Lehmann et al. (2014), let us assume that in Europe there

is a population P of potential football players with an endowment of ability si ≥ 0, in a set of

countries C. The utility of the player to play in country c ∈ C is given by:

U(si, c) = µ(c) + (1− τic)× wi(si, c) (2.1)

where µ(c) measures the preference of the player for country c, τic is the marginal tax rate in

country c, and wi is the wage earned by the player i. Following Lehmann et al. (2014), we refer

to Eq. (2.1) as the ‘gross utility’. This is the utility of player i if he decides to stay in country

c and the level of his net utility if he decides to migrate in country c′ 6= c supporting a cost

of migration m. The cost of migration depends on a variety of underlying factors such as the

home country, the financial cost of migration, the differences in languages and culture, and the

geographical distances. Therefore, the player will choose to migrate from c to c′ only if:

U(si, c
′)−m ≥ U(si, c) with c 6= c′ (2.2)

namely, a migration will take place only when the net utility that the player gains by migrating

in country c′ is bigger than the gross utility gained by staying in country c.

We want now to consider two important elements: the preferences of teams and regions’

characteristics. On the one hand, players’ migration patterns are the outcome of a matching

mechanism in which players and teams are competing on both sides of the market to match

with their preferred partners. On the other hand, each team is attached to a local stadium and

a city and, therefore, the characteristics of the region that hosts the team plays a fundamental

role in this decision process.

To account for these two elements, we assume that in country c there is a set of regions

n ∈ Nc and a set of teams in each region n called An. In this case, the utility of the player i

with ability si to play in team a ∈ An, in region n and in country c is given by:

U(si, n, c, a) = µ(n, c, a) + (1− τin)× wai(si, a, n, c) + I ×m (2.3)
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where µ(si, n, c, a) measures the preference of player i to play in team a, in region n and in

country c, τin is the marginal tax rate in region n for player i, wai is the salary paid by team

a to a player with ability si in region n and in country c, and I is the indicator function that

takes value 1 if the player i is supporting the cost of migration m. Given that the teams are

located in a specific region and in a specific country, we can rewrite the Eq. (2.3) as:

U(si, a) = µ(si, a) + (1− τin)× wai(si, a) + I ×m (2.4)

this include all the informations regarding countries and regions in the subscript that refers to

the team a. A key feature of Eq. (2.4) is that the income tax rate is region-specific. Indeed, as

we will see in Section 2.3.2, we are able to exploit the regional differences in tax rates in many

countries of Europe and, therefore, modelling also the intra-national migration of footballers

along with the international one.

Given Eq. (2.4), the player i is willing to play in team a only if the utility that he receives

is greater than the utility that he can obtain when playing for other teams a′ 6= a. Hence, he

is willing to play for team a only if:

U(si, a) ≥ max
a′

U(si, a
′) with a 6= a′ (2.5)

Therefore, player i decide his best partner comparing each team in the market and considering

the region in which the team is located as well as the tax rate valid in that region. Consequently,

we can indicate the mass of players that are willing to play in team a as:

P̄a(τin, wai) =
∑
i∈P

1
[
U(si, a) ≥ max

a′
U(si, a

′)
]

(2.6)

where 1[.] is the indicator function that takes value 1 if the condition inside the brackets is

satisfied. Hence, P̄a(τin, wai) indicates the mass of players for whom the condition (2.5) is

satisfied.

At this point, we can model the way teams choose their partners from the set of players

P̄a(τin, wai). Let assume that teams An have a defined number of vacancy spots. If the team a
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hires the player i with ability si, it obtains the following net value:

V (si, a) = φ(si, a)− wai(si, a) (2.7)

where φ(si, a) is the value added by the player to the team evaluation function, and wai(si, a)

is the salary paid by the team. With respect to the determinants of V (si, a), two important

elements have to be pointed out. First, the term φ(si, a) depends on the ability of the player si

and on the specific characteristics of team a such as the number of the players that are already

playing for it and their characteristics. Second, the wage wai(si, a) depends on the ability of

the player si, the team a and the region n in which the team is located and can differ from

players’ marginal productivity because of agent’s market power. This market power can be

heterogeneous among players and teams and can derive from various sources: the dimension of

the market in the region or in the country, the prestige of the team, scarcity of the player, the

prestige of the player, etc. For example, with rigid labor demand and an excess in labor supply,

teams can have an higher market power and, therefore, extract a positive surplus from players.

On the other hand, the opposite can occur whether we consider the most talented players. In

fact, in this case, due to the scarcity of talent, players can have an higher market power and

extract a positive surplus from teams. It is worth pointing out that, because our estimation

strategy and the fact that we are observing team-players matches, we do not need to define

explicitly the elasticity of the labor demand or the teams’ market powers. In fact, we can let

the structure of the market to be endogenously determined in the equilibrium.

In this setting, the team a will choose to hire player i with ability si only if the value that

it can gain from the hiring is greater that the one deriving from other players i′ 6= i and only

if it has a vacancy spot. Therefore, it will hire the player i only if:

V (si, a) ≥ max
i′

V (si′ , a) with i 6= i′ (2.8)

However, considering the condition (2.5), we know that only a subset P̄a(τin, wai) of the popu-

lation P is willing to play in team a. Hence, we can rewrite the (2.8) considering the condition

(2.5) as:

V (si, a) ≥ max
i′∈P̄a(τin,wai)

V (si′ , a) with i 6= i′ (2.9)
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The inequality (2.9) shows that the team is actually choosing among the subset P̄a(τin, wai) of

players. In this way, we are accounting for both players and team preferences. Therefore, if the

conditions (2.9) and (2.5) are satisfied, we will observe a match ωai between team a and player

i with an associated utility equal to the the sum of agents’ utilities:

π(ωai) = V (si, a) + U(si, a) (2.10)

where, as seen before, the utilities of players and teams depend on the characteristics of partners,

the region where the match takes place and the tax rate valid in that region.

Using the condition (2.9), we can now define the number of players that are playing in team

a as:

Pa(τin) =
∑

P̄a(τin,wai)

1
[
V (si, a) ≥ max

i′∈P̄a(τin,wai)
V (si′ , a)

]
(2.11)

consequently, the mass of tax payers that are playing in the region n is defined as:

Pn(τin) =
∑
a∈An

Pa(τin) (2.12)

The Eq. (2.12) indicates the sum of the team-players matches that we are observing in one

region n. This number depends on the characteristics of the region n in the country c (such as

market dimension and marginal tax rate τin), the preferences of teams located in n and those

of the players in the market. In this setting we are considering a situation where the players

choose in which team they want to play. However, the results are identical even if we consider a

situation where the teams move first and the players choose in the set of teams that are willing

to hire them.

Finally, from Eq. (2.12) we can derive our parameter of interest: the elasticity of mobility to

taxation. This parameter indicates the sensitivity of tax payers’ migration patterns to marginal

tax rates and can be used to compute the optimal marginal tax rate in the presence of migration.

In particular, the elasticity measures the change in the number of taxpayers caused by a one

percent change in the tax rate and is defined as:

εn =
dPn

d(1− τin)
× 1− τin

Pn
(2.13)
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where (1 − τin) is the net-of-tax rate that measures how much the disposable income of the

players i increases when the wage wai increases by one Euro.

2.3 Data

2.3.1 Football Data

We have collected data on the careers of football players that have played in the first leagues

of 16 European countries: Austria, Belgium, Denmark, England, France, Germany, Greece,

Italy, Netherlands, Norway, Portugal, Russia, Spain, Sweden, Switzerland, and Turkey. These

countries have been chosen to consider all the top-25 European leagues according to the UEFA

ranking.1415 These data are collected from various online sources such as Transfermarkt.com,

UEFA.com, and Footballsquads.co.uk.

The most important source is Transfermarkt.com. This web site is one of the most im-

portant online community of football supporters in which are available data regarding various

characteristics of teams and players that, in some cases, are available from 1996 to 2016. Al-

though we use all the information available in the construction of our variables, we restrict

our analysis to the matches observed between 2007 and 2016 because of the lack of complete

taxation data before 2007. The information available at the player level consist of the name, the

age, the foot, the height, the position in the field, the club affiliation with information on the

data in which the contract has been signed, the nationality and the market value. The market

value is particularly important because is used to assess the quality of the players. However,

this variable has one important characteristic: it is not directly observed. Indeed, the market

value is assessed by the registered users of Transfermarkt.com through a process of collective

judgments (Peeters, 2018). This variable has been used previously in the sports economics

literature. For example, Bryson, Frick, and Simmons (2013) uses this market value as a proxy

for players’ salaries while investigating the salary return to the ability to play soccer with both

feet; Herm, Callsen-Bracker, and Kreis (2014) evaluate the accuracy of this market value in

predicting real transfer fees finding that this community based market value is a good predictor

14The UEFA ranking is a measure of the leagues’ quality based on the past results of the teams
15We do not include countries such as Serbia and Romania because of the scarce availability of marginal tax

data. The data on top tax rates in Russia are available only since 2010.

46



of the fees actually paid by teams; and Peeters (2018) who finds that transfermarkt ’s market

value outperforms other standard predictors such as FIFA ranking in forecasting international

soccer results. Because of these elements, we believe that the market value can be a good proxy

for players’ quality. Moreover, the fact that the market value is not observed allows us to have

a quality indicator even when the player has not changed the team.16 One possible limitation

of this variable is that it does not represent only the intrinsic ability of the player but can

be affected by the quality of the team in which the player is employed. Namely, players with

the same intrinsic ability but in different teams can have different evaluations only because

one of the teams is more prestigious. However, this limitation is common to all the indicators

available and, most importantly, it permits to consider that players in high-quality teams can

have other characteristics besides ability that can be an important element for a team such as,

for example, the experience in European competitions.

At the team level, we observe: the country, the position in the league, the UEFA coefficient

of the league and the city of the stadium were the team is situated. This latter variable is used

to define the regions where the team is located and, therefore, the relevant marginal tax rate.

Following Kleven et al. (2013), we restrict our sample to those players aged between 17 and

43 years and that are citizens of one of the countries in the sample. We exclude the other players

because we cannot observe their work history and, therefore, we cannot compute counterfactual

alternatives for their location choices. Intuitively, this choice is made because, otherwise, the

non-European players would be always foreigners in every country and, therefore, we cannot

identify the effect of their foreigner status on their location choices. Indeed, in that situation,

we cannot compare the country in which they play with their home country and estimate the

cost of migration from their home country. In order to follow this strategy and to have a

complete dataset, we drop also all the players for whom we do not observe the date of birth,

the market value and the starting date of the contracts. This last information is very important

because allow us to identify fake transfers in the dataset. Indeed, another characteristic of our

dataset is that the matches that we observe could be the outcome of some trading strategy of

teams. Namely, one team can buy a player only as a counterpart of some next transfer. In

these cases, we could observe the same player in different teams in the same season. To avoid

16If the player has been playing in the same team for his entire career the real market value is unobservable
since there is not a market transaction that regards the player.
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these issues, we have used the information on the starting date of the contracts keeping only

the last contract signed by the player in each season. We exploit this information even in the

cases when the player changes the team in the middle of the season to impute the right tax

rate. The last step of our strategy regards the nationality of players that have two or more

citizenships. In these cases, we keep the information on the first nationality that is selected in

Transfermarkt.com. This citizenship is the most associated with the player football history.17

Given this strategy, our analysis is based on a dataset with data on 12,380 players and 392

first-leagues teams observing 41,816 team-players matches.

2.3.2 Taxation Data

To choose the correct taxation data we need to solve two caveats: in which country (or region)

the players are taxed and which kind of tax rate is relevant for their migration decisions.

Indeed, the relevant tax rate for the migration decision is the average tax rate (ATR). However,

to use the ATR is problematic because it depends non-linearly on earnings, with the related

endogeneity issues, and because we do not use data on the salaries earned by footballers. To

solve these issues, we exploit two characteristics of our sample. First, given that footballers

have to train daily, it is plausible that they have to live next to the team’s city. Hence, we can

assume that they are taxed on the base of the tax system valid in the country (or the region) in

which they work. Second, considering that footballers earn high salaries compared to countries’

top tax brackets for income taxes and payrolls, we can assume that the relevant tax rate is the

marginal tax rate (MTR).18

To compute the marginal tax rate we have combined three types of taxes: the top marginal

income tax rates, the employer and employee social security contributions, and the value added

tax. Following Kleven et al. (2013) and Mertens and Montiel Olea (2018) we define the marginal

net-of-tax rate as19:

1− τ =
(1− τi)(1− τw)

(1 + τV AT )(1 + τe)
(2.14)

where τi is the top marginal income tax rate, τw is the uncapped social security contribution at

17For instance, the national team of the player.
18Kleven et al. (2013) and Moretti and Wilson (2017) show that their results are similar using ATR instead

of MTR.
19The derivation of the marginal net-of-tax rate is in the Section 2.A of the appendix
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the worker level, τV AT is the Value Added Tax, τe is the uncapped social security contribution

at the employer level and τ is the combined marginal tax wedge. In this way, we can measure

how much the disposable income of the worker increases when the marginal labor cost for the

firm increases by one Euro.

To compute this marginal net-of-tax rate we have collected tax data from various sources:

OECD tax database, European Commission tax databases, the International Bureau of Fiscal

Documentation (IBFD) country surveys, the PriceWatersCoopers on-line sources, KPMG on-

line sources, and various national sources. We cross-checked these sources with the tax rate

time series available in Piketty, Saez, and Stantcheva (2014) in order to have a correct database.

To exploit both international and inter-regional variation, we have collected data on both

national and regional levels. In particular, we observe a regional variation in marginal tax

rates in 6 countries: Denmark, Italy, Norway, Sweden Switzerland, and Spain. Moreover, we

account for preferential taxation schemes for footballers or top earners in many countries: Spain,

Belgium, Netherlands, Denmark, France, and Turkey. In these countries, we observe that the

marginal taxation is different for foreigner football players or football players in general. This

latter characteristic of our dataset permits us to analyze how the preferential schemes affect

the distribution of skills within a country comparing the native and the foreigner elasticities of

migration.

Data on tax rates are combined according to the country-specific rules provided by national

agencies. Moreover, we also cross-checked using the sub-central tax rate series available in the

OECD Tax Database for representative regions and information on tax computations available

in IBFD’s country surveys.

2.3.3 Descriptive Statistics and Graphical Evidence

Table 2.1 reports the descriptive statistics of our sample showing the information on the char-

acteristics of players and marginal tax rates by country. From the first column, we can see that

Italy is the country with the highest number of observed matches (4,056), followed by Turkey

(3,541) and Netherlands (3,336). Regarding the share of foreign players (column 2), we can

notice that England has a share of foreign players which is more than twice the average share
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in the sample (43.05%) followed by Germany (28.53%) and Belgium (24.90%).20 The third and

the fourth column show, respectively, the share of Top and Bottom quality players. These two

groups are identified on the base of players’ locations in the quality distribution computed for

each year and each position in the field. Indeed, we classify the players in four general positions

(goalkeepers, defenders, midfielders and offenders) in order to have a quality indicator that

accounts for the differences existing in the market value distributions among these categories.

The players’ quality is computed as the average of all the market values that we observe during

the players’ career until the year before the observed match. We use this strategy to account for

the possibility that teams may consider players’ entire growth path in term of quality in their

evaluation decision.21 We define as Top players those who are in the top 25% of the position-

year specific quality distribution and as Bottom players those who are below this threshold.

From these data, we can have a glimpse of the difference in quality distribution among coun-

tries. In particular, we can individuate a group of five countries (England, France, Germany,

Italy, and Spain) that have a share of Top players way bigger than the average, confirming

the common knowledge that these leagues are more able to attract the best talented players in

Europe. Columns 5 and 6 report the average top marginal tax rates valid for native players and

foreigners. In particular, we observe a difference between tax rates for foreigners and natives in

Belgium, Denmark, France, Netherlands, and Spain. In these countries there are specific tax

regimes for foreign top earners which aim to attract high skilled workers.22 For example, the

so-called Beckham Law in Spain established a flat tax system with a tax rate 24% for workers

with an income higher than 600,000 Euro from 2004 to 2010.23 24

Table 2.2 shows the variation in marginal top tax rates, the figures in the first three columns

are computed as pooled average considering all the sample period whereas those in the last

three columns are computed as absolute differences over time. We observe regional variation in

6 Countries: Denmark, Italy, Norway, Spain, Sweden, and Switzerland. These differences are

small in all the countries except for Switzerland if we consider the average differences, and are

substantial if we consider the absolute differences computed over time. Even though the differ-

20In Table 2A.1 in the Appendix we present the origin-destination flows by country-pairs.
21This strategy is similar to the one used in Kleven et al. (2013) where players’ quality is computed considering

the quality of teams in which the player has played during his entire career.
22In Figures 2A.1-2A.3 in the Appendix we show the evolution over the period 2007-2016 of top marginal tax

rates for natives and foreigners in the 16 countries of the sample.
23See Kleven et al. (2014) for a comprehensive analysis of the Danish preferential system.
24Turkey has a special tax regime that reduces the income tax rate to 15% for football players in general.
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Table 2.1: Descriptive Statistics

N Foreigners
(%)

Top
(%)

Bottom
(%)

τn τf

(1) (2) (3) (4) (5) (6)

All Countries 41816 18.52 22.76 77.24 57.38 50.76
Austria 1881 11.91 1.06 98.94 58.33 58.33
Belgium 2382 24.90 8.19 91.81 75.24 56.18
Denmark 2147 15.00 1.72 98.28 65.52 40.25
England 2943 43.05 65.92 34.08 59.75 59.75
France 2659 11.36 35.43 64.57 67.03 46.92
Germany 3277 28.53 39.27 60.73 55.86 55.86
Greece 2848 19.14 7.02 92.98 56.04 56.04
Italy 4056 16.07 36.76 63.24 56.37 56.37
Netherlands 3336 22.36 11.15 88.85 60.02 42.02
Norway 1795 15.77 1.39 98.61 60.87 60.87
Portugal 2036 11.94 14.05 85.95 70.97 70.97
Russia 1929 9.54 23.48 76.52 39.36 39.36
Spain 3246 17.50 46.95 53.05 55.64 36.09
Sweden 2202 8.81 1.73 98.27 73.64 73.64
Switzerland 1538 19.05 3.97 96.03 47.16 47.16
Turkey 3541 11.16 18.24 81.76 27.97 27.97

Notes: This table reports summary statistics for our sample covering the period 2007-2016. The sample includes
the players that are citizens of one country in the sample and play in a European top league. Column (1) reports
the number of player-team matches observed. Column (2) reports the percentage of foreign players. Columns
(3) and (4) report the shares of players that are, respectively, in the top 25% and below the top 25% of the
quality distribution computed according to players’ market values. Column (5) and (6) report the average top
marginal tax rate applying, respectively, to native and foreign players.
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Table 2.2: Variation in top tax rates (2007-2016)

Average 2007-2016

Min Max ∆ Min Max ∆

Sweden 72.96 74.81 1.85 72.83 75.07 2.23
Norway 59.33 61.21 1.88 58.29 61.21 2.92
Italy 54.08 57.65 3.56 53.25 59.20 5.95
Spain 52.27 57.15 4.87 34.48 63.64 29.15
Switzerland 42.03 54.93 12.89 27.67 56.52 28.85
Denmark 40.40 57.49 17.09 40.00 70.13 30.13

All Countries 27.97 74.73 46.76 27.67 75.36 47.68

Notes: This table reports the minimum and the maximum of top tax rates observed, and the average difference
between regional and international top tax rates. The figures in columns from 1 to 3 are computed as pooled
averages while the figures in columns from 4 to 6 show absolute differences considering all the sample period.

ences in average are small we need to consider that the migration within countries is likely less

costly than the international one. Therefore, even a smaller difference in tax rates could cause

a significant effect. For example, using administrative data on tax payers in Spain Agrawal

and Foremny (2018) find that, conditional on moving, the probability of moving to one region

increases by 1.5% when its tax rate decrease by 1%.

Figure 2.1 shows some graphical evidence of the relationship between MTR and the out-

migration of native players (Panel A) and between MTR and the in-migration of foreign players

(Panel B). Each plot presents the coefficient associated with MTR coming from a linear regres-

sion between players’ shares, MTR and a constant. This coefficient can be roughly interpreted

as an indicator of the correlation between the two variables. Panel A shows the relationship

between the share of players who are playing in their home country with the MTR valid for

native players. Panel B shows the relationship between the fraction of foreign players in each

country and the MTR on foreign players. Focusing on panel A we can notice that the share

of native players that migrate away from their home country is strongly negatively correlated

with the top tax rates valid in the country. This result suggests that the MTR in the player’s

native country is important in the location decision process of footballers. However, panel B,

shows that the fraction of foreign players in the country is weakly correlated with the top tax

rate valid for foreigners. The difference between these two types of correlation seems to indi-

cate that the players are more interested in the MTR valid in their home country than in the
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Panel A: Out-migration of native players

AT

BE
DK

EN

FR

DE

GRIT

NL

NO

PR

RU

ES

SE

CH

TR

MTR= −.49.7
.8

5
1

F
ra

c
ti
o
n
 P

la
y
in

g
 H

o
m

e

.3 .45 .6 .75

MTR on Native players

Panel B: In-migration of foreigner players
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Figure 2.1: Cross-Country Correlation between Tax Rates and Migration, 2007-2016

Notes: Each dot stands for one country: AT=Austria, BE=Belgium, DK=Denmark, EN=England, FR=France, DE=Germany,
GR=Greece, IT=Italy, NL=Netherlands, NO=Norway, PR=Portugal, RU=Russia, ES=Spain, SE=Sweden, CH=Switzerland,
TR=Turkey. Panel A shows the relationship between the share of players who are playing in their home country with the MTR
valid for native players in that country. Panel B depicts the relationship between the share of foreign players in each country and
the MTR valid for foreign players in that country. In each plot we show the coefficient of the relevant MTR coming from a linear
regression of the shares against MTR and a constant. All the plots refer to pooled averages computed on the entire period between
2007 and 2016.
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Out-migration of native players by quality

Top 25% of the quality distribution Bottom 75% of the quality distribution
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Figure 2.2: Cross-Country Correlation between Tax Rates and Shares of Natives by Quality,
2007-2016

Notes: Each dot stands for one country: AT=Austria, BE=Belgium, DK=Denmark, EN=England, FR=France, DE=Germany,
GR=Greece, IT=Italy, NL=Netherlands, NO=Norway, PR=Portugal, RU=Russia, ES=Spain, SE=Sweden, CH=Switzerland,
TR=Turkey. The two plots show the relationships between the fraction of players playing in their home country and the MTR
valid in the origin country considering players in the top 25% of the quality distribution (on the left) and players in the bottom 75%
of the quality distribution (on the right). The quality distribution is based on market values distribution in each year for each position
in the field. In each plot we show the coefficient of the relevant MTR coming from a linear regression of the shares against MTR and
a constant. All the plots refer to the entire period 2007-2016.

one valid in the destination country. This could be due to the fact that, when deciding where

to locate, the players are always comparing the MTR of the country in which they live with

the one valid in all the possible destination countries and, therefore, the first MTR appears in

every comparison. We account for this in our estimation strategy in two ways. First, we control

for a dummy that indicates whether the player is native of one country or not. Second, our

estimation strategy is based on a comparison between an observed match and all the feasible

counterfactual matches. Hence, the estimator compares the MTR of the country in which the

player is playing with all the MTR that he will face matching with a different team in a coun-

terfactual match.25 The plots of Figure 2.1 shows the average correlation between the effective

tax rates and the migration patterns assuming that the effect is homogeneous among all the

sample. However, as shown in Kleven et al. (2013) and Stantcheva et al. (2016) the effect of

the MTR could differ on the base of the worker’s ability. Hence, in Figure 2.2, we present

the correlation between the share of natives and the MTR in the origin country splitting our

sample in Top players (on the left) and Bottom players (on the right). From Figure 2.2 we can

25These results are symmetric if we consider the fraction of players that play abroad and the share of natives.
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see that the negative relationship between the share of players playing in their home country

and the MTR in these countries depends on the quality of the player and is stronger for players

with higher quality. Moreover, Figure 2.2 shows that Bottom players are less mobile and tend

to stay in their home country more than Top players. This suggests that a higher tax rate

could cause a reduction in league quality encouraging the out-migration of Top players and the

in-migration of Bottom players. This effect could be due to two different causes: the relevance

of the MTR and the market power of the player. Relating to the first, higher market value

could be related to a higher wage for the player (Bryson et al., 2013). Therefore, in this case,

the MTR could be more relevant given that the more is higher the income the more the MTR is

similar to the ATR. Hence, the indicator of the position of the worker in the quality distribution

could be seen as an index of the intensity of the treatment given by the tax rate (Stantcheva

et al., 2016). Relating to the second cause, players with higher quality might have better job

offers in the international market and have more opportunities to avoid a high-MTR country

migrating towards a low-MTR one. Moreover, players with lower quality might be entrapped

in their home country and fill the spots left by the high-quality players. Hence, in a context

of rigid demand there could be a mechanism where the high-quality players that leave the

countries are replaced by the low-quality ones and, on the other hand, the low-quality player

in a country with lower tax rates are displaced by the high-quality foreign players. We account

for this feature in two ways: exploiting the heterogeneity of the effect of marginal taxation

through dummy variables indicating the position in the quality distribution, and estimating

the elasticity of mobility considering that the vacancy spots in each country are fixed.

2.4 Maximum Score Matching Approach

This work takes advantage of the Maximum Score Matching estimator (MSM) developed in

Fox (2018). The MSM is a semi-parametric estimator based on the single-agent multinomial

choice maximum score developed by Manski (1975) that allows the researcher to estimate the

parameters underlying the matching process between two types of agents in a specific market.

This estimator detains various advantages compared to the standard discrete choice approaches

used in the previous literature. First, it allows the estimation of parameters underlying the

matching process without using data on wages. This characteristic is particularly important
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in our case given that the data regarding the players’ wages are hardly accessible considering

our sample of countries. Moreover, football contracts are characterized by various bonuses

and benefits that, even when the information is available, complicate the computation of the

exact total amount of money earned by the worker. Second, it allows a more general definition

of the error term than the classical type I extreme value used in Logit models. Third, its

computational simplicity enables us to use a not artificially limited set of alternatives and

individual covariates. Moreover, it ensures the validity of the estimates in spite of considering

a subset of all potentially available choice alternatives (Fox, 2007).

The MSM is well suited for the estimation of a many-to-one two-sided matching model (Fox,

2018). This model seems to be a good approximation of the European football market because

it considers a market where the agents have a role defined ex-ante (one can be either player

or team) and the matches are the outcomes of a process of interaction between agents that

take their decisions interdependently.26 This model is based on the concept of local production

function that is defined as the sum of the utilities of agents who participate in the match.

For example, if we observe a match between a team a and a player i we have that its local

production function is given by the Eq. (2.10). Now, if we consider that the team a is matching

with a set of players Pa(τin) we can rewrite the local production function of the set of matches

that refers to the team a as:

π(ωa) =
∑
i∈Pa

[
V (si, a) + U(si, a)

]
(2.15)

where the local production function is given by the sum of the value added by the set of

players Pa to team a and the utilities of the players Pa defined using equations (2.4) and (2.7).

Moreover, each team competes in a specific session market for its preferred partners. Therefore,

if we define with m ∈ M a market in which we observe team a and team b we can write the

local production function of the set of matches ωm as:

Π(ωm) = π(ωa) + π(ωb) (2.16)

where π(ωa) and π(ωb) are defined according to Eq. (2.15). π(ωb) is defined considering the

26The many-to-one nature of the model derives simply from the fact that a team can enroll many players
each season but a player can play only for a team at a time.
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matches between team b and the set of players Pb. This last equation helps us to define the

equilibrium concept used in the MSM estimator: the pairwise stability (Kim, 2018; Fox, 2018;

Kuehn, 2017).

The pairwise stability condition states that no coalition of agents prefers to deviate from

the observed matches. In our case, therefore, this condition states that the two teams cannot

increase their utilities or profits exchanging each other two players. This concept of equilibrium

is similar to the best response condition. Indeed, given the rest of the matches, two agents,

when forming the coalition, compare the utility under the current relationship with the one

that they would gain in the counterfactual matches (Kim, 2018). Despite each match is formed

considering the entire assignment of observed matches, this condition is pairwise because it

assumes that, when considering a possible deviation, teams assume that the other rivals stay at

their current matchings (Kuehn, 2017). Formally, to define the condition of pairwise stability

we need to define a counterfactual set of matches ω̃m where at least one player from Pb is

matching with team a and one player from the set Pa is matching with team b. Given this

definition, the set ωm is a pairwise equilibrium if:

Π(ωm) ≥ Π(ω̃m) (2.17)

where Π(ω̃m) is the local production function of the counterfactual set of matches ω̃m. This

stability condition has some important consequences. First, if the condition in Eq. (2.17) is

satisfied we have that a rank order property holds (Fox, 2007):

Pr(ωm|a, b, Pa, Pb,m) ≥ Pr(ω̃m|a, b, Pa, Pb,m) (2.18)

The rank order property states that the probability to observe the actual set ωm is greater than

the one of observing the counterfactual set ω̃m. This useful property can be used to define

the objective function of the MSM in a way that is similar to the usual maximum likelihood

estimator (Fox, 2007). In fact, the identification of the parameters of the local production

function, as we will see below, is based on the pairwise comparison between the local production

function of the actual set of matches ωm with a set of counterfactual matches ω̃m. Moreover,

this equilibrium concept permits to use the inequalities defined in (2.17) to estimate the model
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without using data on the equilibrium wages.

In order to explain this advantage and to save notation let us assume that we observe only

two matches: player i with team a and player j with team b. Recalling Equations (2.4) and

(2.7) we know that, if we observe a match between team a and player i, the agents’ utilities

can be written as:27

U(si, a) = µ(si, a) + (1− τia)× wai (2.19)

V (si, a) = φ(si, a)− wai (2.20)

The pairwise stability condition states that if we are observing the match ωai instead of ω̃aj

must be the case that either team a prefers i to j at the equilibrium salaries or that player j

prefers team b because it offers an higher wage than team a (Kuehn, 2017). However, if team a

prefers j and the second condition is true the team may increase its utility simply increasing its

salary offer to player j. In this case, team a could offer a wage w̃aj to make player j indifferent

between the two teams so that:

µ(sj, b) + (1− τjb)× wbj = µ(sj, a) + (1− τja)× w̃aj (2.21)

taking logs and rearranging the equation we can isolate the counterfactual wage w̃aj as:

ln w̃aj = lnµ(sj, b, τbj) + lnwbj − lnµ(sj, a, τaj) (2.22)

where µ(sj, a, τaj) = µ(sj, a) + (1 − τja) and µ(sj, b, τbj) = µ(sj, b) + (1 − τjb). Given that

the team a can offer w̃aj to player j, in order to not observe a deviation from the equilibrium

matches ωai and ωbj the following condition must hold:

lnφ(si, a)− lnwai ≥ lnφ(sj, a)− ln w̃aj (2.23)

this condition states that the observed matches are a pairwise stable equilibrium if team a

prefers to match with i instead of j even if player j is indifferent between the two teams, i.e. if

team a prefers i at the observed salaries. Now, substituting Eq. (2.22) into Eq. (2.23) we get

27To save notation we write wai instead of wai(si, a).
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the following:

lnφ(si, a)− lnwai ≥ lnφ(sj, a) + lnµ(sj, a, τja)− lnµ(sj, b, τbj)− lnwbj (2.24)

the same equation can be derived considering player i and team b:

lnφ(sj, b)− lnwbj ≥ lnφ(si, b) + lnµ(si, b, τbi)− lnµ(si, a, τai)− lnwai (2.25)

Finally, defining the local production function of a generic match ωai as π(ωai) = φ(si, a) +

µ(si, a, τai) and combining Eq. (2.24) and Eq. (2.25) we get:

π(ωai) + wai − wai + π(ωbj)− wbj + wbj ≥ π(ω̃aj) + π(ω̃bi) (2.26)

π(ωai) + π(ωbj) ≥ π(ω̃aj) + π(ω̃bi) (2.27)

from this equation, since the matches on the right hand side of the inequality are the coun-

terfactual ones, we can cancel out wages and recover the pairwise stability condition showed

in Eq. (2.17). Indeed, Eq. (2.27) states that the sum of the local production function of the

observed matches is greater than the one coming from the counterfactual set. Moreover, this

condition permits us to estimate the local production function constructing a set of inequalities

based on Eq. (2.27) without using data on wages.

A third characteristic of the MSM estimator is that it prevents the use of agent-specific

variables. This can be seen as a drawback of this estimator technique because force the re-

searcher to use only match-specific variables or interactions between agent-specific variables.

On the other hand, this characteristic permits to control for a full set of individual fixed effect

and for all the unobservable that are agent-specific. This feature of the MSM comes directly

from the condition Eq. (2.27). To understand this property of the estimator we need to define

the parametric local production function of a generic match ωai:

π(ωai) = φ(a, i) + µ(a, i, τai) = αXa + βXi + θXai + εai (2.28)

where Xa are the team-specific variables, Xi are the player-specific variables, Xai are the match-
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specific variables and εai is the unobservable component of the local production function. Since

the same agent appears in both sides of inequalities defined using Eq. (2.27), all the agent-

specific variables cancel out and, therefore, we can identify only the parameters associated with

the match-specific variables. Thus, for the match ωai, we can rewrite the Eq. (2.28) as:

π(ωai) = θXai + εai (2.29)

Consequently, if we observe a set of matches ωm in the market m we can write the set’s local

production function as:

Π(ωm) =
∑
ωi∈ωm

(π(ωi)) =
∑
ωi∈ωm

X(ωi)
′θ + εωi

(2.30)

where ωi is one match of the set ωm, X(ωi) is the matrix of match specific variables, θ is

the vector of parameters that measure variables’ effect on π(ωm), and εωi
is the unobservable

component of the local production function of the match ωi.

The MSM assumes that agents have preferences over the observables characteristics of the

partners. This assumption lead to two main consequences. First, the estimate of the local

production function is semi-parametric. This means that we can estimate parametrically the

observable component of the local production function of the set of matches ωm and non-

parametrically its unobservable component. Second, we do not need to define a specific dis-

tribution for the unobservables. This estimator is consistent if observable and unobservable

components are uncorrelated, if the unobservable component is i.i.d. across matches28 and if

the parameter space θ is compact. Given these assumptions and the semi-parametric nature of

this estimator we can rewrite Eq. (2.17) using only the observable components of the parametric

local production function as:

∑
ωi∈ωm

X(ωi)
′θ ≥

∑
ω̃i∈ω̃m

X(ω̃i)
′θ (2.31)

28One consequence closely related to this assumption is that the conditional distribution of the unobserv-
ables conditioned on the observable component F (εωi |X(ωi)) is continuous and exchangeable. F (εωi |X(ωi)) is
exchangeable if F (εωi |X(ωi)) = F (ρ(εωi)|X(ωi)) where ρ is a permutation.
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This last condition is used to define the objective function of the MSM as:

max
θ
QM(θ) =

M∑
m=1

Gm∑
g=1

1

[ ∑
ωg∈ωm

X(ωg)
′θ ≥

∑
ω̃g∈ω̃m

X(ω̃g)
′θ

]
(2.32)

where M is the number of observed markets, QM is the score function that we need to maxi-

mize and Gm is the set of inequalities in each market. Each inequality is constructed defined

by comparing two observed matches ωg with two counterfactual matches ω̃g. The set of pa-

rameters θ is identified by maximizing the objective function adding 1 to the score function

every time that the condition in brackets is satisfied. The most important characteristic of

MSM’s objective function is its computational simplicity. In fact, to evaluate it we do not

need to non-parametrically estimate the choice probabilities, the distribution of unobservables

or to compute integrals used with the maximum likelihood approaches (Fox, 2018). Moreover,

MSM’s objective function is a step function. This feature complicates both its maximization

and computation of the standard errors. These problems are solved by using a differential

evolution algorithm (Storn and Price, 1997) that allows the maximization of a step function

and a subsampling procedure to compute the interval of confidence (Politis, Romano, and Wolf,

1999; Romano and Shaikh, 2008).

We implement the MSM in R using a modified version of the toolkit provided in Santiago

and Fox (2008). The new code is able to handle a huge amount of data more efficiently in order

to allow us to estimate this model in a setting characterized by a huge number of agents on

each side of the market.

2.4.1 Identification strategy

As we have explained in the previous section, the effect of the various determinants of matches

utilities is identified by maximizing the objective function in Eq. (2.32). Namely, we identify

our parameters of interest by comparing actual matches with the counterfactual ones. The

latter matches are defined by constructing a new set of matches in which at least two players

deviate from the observed equilibrium by exchanging their team. Therefore, identification is

given by exploiting the differences between matches’ attributes that agents observe in actual

matches with those that they would observe in counterfactual matches. Nonetheless, there are
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various threats to our identification strategy that we should discuss.

The first threat to this identification strategy is that matches attributes should be not

affected by matching assignments (Schwert, 2018). Indeed, this condition is violated we will

have a very unlikely scenario in which choices in time t− 1 (before the match) are the result of

matches observed in time t (after the match). To avoid this problem we use all the information

available to players one market window preceding the season, i.e. the data are observed in time

t− 1.

A second issue is related to the fact that our measure of MTR might be endogenous. This

condition could be violated because tax policies may depend on the political or economic power

of agents or be decided in response to migration patterns between different kinds of players.

However, we can exploit some advantage of our estimation strategy to reduce this concern.

First, agents’ economic or political power can be seen as an agent-specific unobservable that may

impact on tax rates. However, as explained in the previous sub-section, the MSM permits to

control for all the unobserved agent-specific characteristics by exploiting the pairwise stability

condition stated in Eq. (2.17). Second, as in Kleven et al. (2013), we use various policy

changes in order to have quasi-experimental variations that permit us to identify the causal

link between taxation and migration. We define the MTR that players would face in actual and

counterfactual matches by exploiting: i. spatial and temporal variation across 16 countries; ii.

spatial and time variation in regional tax rates within 6 countries; iii. preferential taxation

schemes for foreigners in 5 countries.29 Moreover, as explained in Section 2.3.2, the use of

MTR instead of ATR has permitted to avoid the endogeneity issues related to the fact that

ATR depend upon workers earnings and need the computation of counterfactual wages in

destination countries.30 31

Another possible limitation of our analysis is that we do not have data on agents that are

outside of our observed market such as players without a contract or that are playing either in

one country outside our sample or in a European lower league. This can be an issue given that,

without this information, we cannot construct the complete set of counterfactual matches that

29Figures 2A.1-2A.3 and Table 2.2 show, respectively, the evolution over time of the MTR valid for native as
well as foreign players across countries and the average variation at the regional level.

30See Kleven et al. (2013) and Agrawal and Foremny (2018) for more details on ATR simulation strategies.
31On top of these elements, more pieces of evidence on the causal link between marginal taxation and migration

has been provided by Kleven et al. (2013) by exploiting exogenous policy changes using a synthetic control
approach.
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agents would face in reality. However, as explained before, the MSM ensures the validity of the

estimates even though when considering a subset of all potentially available alternatives (Fox,

2007).

Therefore, we believe that given the nature of our data and our empirical strategy endo-

geneity is less an issue in our context.

2.4.2 Estimation Procedure

In this section, we describe the estimation procedure followed to estimate the effect of taxa-

tion on the match between players and teams and, consequently, on footballers’ equilibrium

locations. This procedure is defined to account for the specific characteristics of the MSM

estimator.

Market definition

First, we need to define the set of independent markets. These are independent in the sense that

one agent cannot compete in more than one market. Given that the players play in different

positions we separate the players in offenders, defenders, midfielders, and goalkeepers to account

for the fact that players are more likely to compete with players in the same position of the

field.32 Indeed, it is implausible that a goalkeeper or a defender is competing with an offender

to match with its preferred team. However, players can change their role in their careers this

way competing in more than one market.33 To avoid this possible issue we define each season

as a separate market obtaining 40 markets (10 years for 4 positions). In this way each market

will be composed by players of one specific position in a specific season on the supply side and

teams on the demand side.34

Match-specific variables definition

The second step of our estimation procedure concerns the definition of the match-specific vari-

ables that characterize the local production function of the matches. The first determinant

used is the variable Time in the Country indicated as ln(Timecountry). This is defined as the

32A similar strategy is used in Yang et al. (2009) concerning basket players.
33We observe 13 players that change their category in our sample
34Given this definition, the teams are seen as the collection of different position-specific unities.
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logarithm of the number of semesters that one player has spent in one specific country. We

use semesters instead of years to consider that one player can change his team in the middle

of the season. This variable is used to understand the presence of some persistence in players’

choices regarding countries: a positive coefficient would indicate that the match utility increase

when the player has already played in that specific country. Players, in this cases, can have

some advantage in terms of knowledge of the language and the culture, and, especially, a more

precise knowledge about the characteristics of rival teams and league’s style of football.35 The

second and the most important determinant of the local production function is the logarithm of

the net-of-tax rate indicated as ln(1− τ) and computed according to Eq. (2.14). This variable

allows us to understand the effect of the marginal tax rate on matches’ utility. As we have seen

in Section 2.1.3 we use, as year-t season tax rate the tax rate that was valid at the beginning of

the season. A positive coefficient would indicate that matches are more likely to occur, or are

more valuable, in relatively low-tax countries or regions. The third determinant is given by the

logarithm of the Quality of the match indicated as ln(Matchqual). This is computed as the inter-

action between the standardized qualities of players and teams. As explained in Section 2.3.3,

player’s quality is computed as the average of all the market values that we observe during the

player’s entire observable career until the year t− 1, whereas team’s quality is computed as the

sum of the quality of the players that were playing in the team in year t− 1. Moreover, team’s

quality is computed considering even players that are not born in one of the countries of our

sample. This strategy is followed in order to account for the possible fundamental contribution

that this kind of player can have on teams’ performances and quality. In order to have an easier

interpretation of our results, we normalize both quality indicators so that their values are com-

prised between 0 and 100 and we use as maximum for this standardization the highest quality

observed in one specific market. In this way, we have a different quality distribution for each

year-position cell that permits to account for the differences in average market values existing

among different players’ categories. This variable is used to understand if there is some positive

sorting effect between teams and players based on their quality and how these characteristics

influence matches’ local production functions. The last determinant is the variable Prior Rela-

tionship. This is a dummy variable that takes value 1 if the two agents have already matched

35For example, Italian football is known to be more defense-oriented whereas English football is perceived as
more physical.
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in the past. This variable allows us to understand if there is some persistence in the preferences

of both kinds of agents for their partners. Indeed, a positive coefficient would indicate that

the match’s utility increases when it comprises two agents that have already met in the past.

The logic behind this variable is similar to the one explained for the Time in the Country : if

the agents have already matched in the past it may be that the player has a better knowledge

of the environment surrounding the team, the characteristics of other teammates and of the

league in which the team compete. These elements can be very positive in the valuation of

one partner because allow agents to reduce the uncertainty regarding the real quality and the

real characteristics of their partners. To understand if there is heterogeneity in the effects of

these determinants, we estimate a set of interactions that permits us to understand whether

the effects of these determinants differ on the base of players’ characteristics. In particular,

we interact the logarithm of the net-of-tax rate with three dummies: Topyear, Foreigner and

Foreigner×Topyear. The first dummy takes value 1 if the player located above the 25% of the

year-specific quality distribution. These quality distributions are computed following the strat-

egy explained before but without considering the player’s position. This strategy is followed

because the effect of the tax rate is more likely to be heterogeneous on the base of players’

salaries that, as explained in Section 2.1.1, may be more related to the simple market value.

The dummy Foreigner takes value 1 if the player is playing in a foreign country and allow us to

understand whether the effects of the various determinants on matches’ utilities differ between

foreigners and natives. The interactions with Foreigner × Topyear finally are estimated to

understand if the effect of net-of-tax rate on matches’ local production functions differs when

considering a top foreign player. In this way, the baseline match used as a reference for the

interpretation of the results is a match where one generic team is matching with a low-quality

native player. The variables Quality of the match and Prior relationship are interacted with a

slightly different set of dummies: Topmkt, Foreigner and Foreigner×Topmkt. In this case, we

consider the dummy Topmkt which is defined considering the market-specific quality distribu-

tion. This different strategy is used because it is more likely that teams consider the position

occupied by players in the field when evaluating them rather than only their general market

value. All the variables used in the estimation are computed considering the information avail-

able until the market window preceding the season so that agents’ attributes are not affected
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by matching assignments (Schwert, 2018).

Pairwise stability inequalities

The third step regards the definition of the inequalities used in the objective function of the

MSM. These inequalities are constructed on the basis of Eq. (2.31). In particular, for each

observed couple of matches we construct the set of inequalities defining the counterfactual

matches by exchanging two players at a time. For example, if we observe a set of matches in

which Ronaldo is matched with Juventus FC and Neymar is matched with Paris Saint-Germain

FC the counterfactual set will be composed by a match between Neymar and Juventus FC and

another match between Ronaldo and Paris Saint-Germain FC. This logic is followed for each

couple of matches observed and for any possible combination between the observed matches.

The identification of the vector of parameters will be based on the pairwise comparison between

observed and counterfactual matches using the objective function defined in Eq. (2.32). Given

the combinatorial nature of this process, the final set of inequalities can be huge and cause an

increase in the computational burden of the estimation process. However, Fox (2018) suggests

that, when the number of inequalities becomes computationally intractable, is it possible to

use a random subsample of the entire set of inequalities without losing the estimator’s consis-

tency. Therefore, in the estimation sample, we use only a 40% random subsample of the set of

inequalities.36

Estimation of the matches’ local production function

When the set of inequalities is constructed we can estimate the local production function by

maximizing the objective function defined by Eq. (2.32). To maximize this objective function

and identify the vector of parameters we need to fix one coefficient to +1 or -1 (Fox, 2007).

This restriction is due to scale identification. Indeed, given the semi-parametric nature of the

estimator, we can identify the set of coefficient up to an order-preserving transformation of

the parameters (Manski, 1975).37 This means that, as in standard discrete choice approaches,

we can interpret only the relative magnitude of the coefficients and their sign. We choose the

36We have run the estimations several times with sample of different dimensions obtaining always similar
results.

37Namely, the same matching patterns can be generated by an infinite variety of set of coefficients, which
differs only by a constant that multiplies all the coefficients.
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Table 2.3: Single Variable Explanatory Power (Percent)

Normalization θ = +1 θ = −1

ln(TimeCountry) 90.94 0.81

ln(1− τ) 1.65 22.39

ln(MatchQual) 43.02 42.29

PriorRelationship 31.47 0.36

N. of Inequalities used 10274607 10274607

Notes: The column headed θ = +1 and θ = −1 correspond to a positive or negative normalization for
variables. The scores correspond to the percentage of observed inequalities statisfied using the objective
function defined in Eq. (2.32).

variable to use as a reference by computing the objective function of Eq. (2.32) using one

regressor at a time and estimating two models: one with the coefficient fixed to +1 and another

with the coefficient fixed to -1. The choice of the reference variable is based on the model’s

goodness of fit that is given by the ratio between the value of the score function and the number

of inequalities used (Fox, 2007). Table 2.3 shows the results of this procedure displaying the

variables used in each estimation and the percentage of inequalities satisfied fixing the coefficient

θ to +1 or -1. As we can notice the variable with the highest explanatory power is the logarithm

of Time in the Country that satisfies, when considering a positive coefficient, the 90.94% of the

inequalities used in the estimation. Thus, we estimate the local production function maximizing

the objective function (2.32) using as reference regressor the variable Time in the Country.

Finally, we compute the interval of confidence using a sub sample procedure by estimating

the same specification across 200 random samples of 4 markets each time. Given that the

rate of convergence is 3
√
N , the empirical sampling distribution of our vector of parameters is

(Schwert, 2018):

θ̃s =

(
ns
N

)1/3

(θ̂s − θ̂) + θ̂ (2.33)

where θ̂s is the estimate from the subsample s, θ̂ is the estimate from the full sample used in

the estimation, ns is the dimension of the sample s and N is the number of observation in the

estimation sample. For a generic significance level α we construct the interval of confidence

taking, as boundaries, the α
2
th and the (1− α

2
)th percentiles of the empirical distribution of θs.

38

The coefficient will be considered as statistically significant if the constructed interval does not

38Given that the empirical distribution (2.33) is not uniform our interval of confidence can be asymmetric.
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contain the value 0 and, therefore, the two boundaries have the same sign. We construct the

intervals considering the three standard significance levels (1%, 5% and 10%) and we choose

the interval that indicate a significant coefficient considering the lowest level of significance.

If the three intervals contains the value 0 we will show the 10% interval of confidence in the

results.

Given our estimate of the local production function, we are able to understand how the

determinants of migration patterns highlighted previously affect football players’ location de-

cisions and their relative importance.

2.4.3 The Elasticity of Mobility to Taxation

In the previous literature (e.g. Kleven et al. (2013)) the elasticities of migration are computed

using the probabilities estimated through a discrete choice model to estimate the expected

changes in each country’s population deriving from a 1% change in the net-of-tax rate. However,

the semi-parametric nature of the MSM does not allow a direct estimate of the probability

to observe the matches and, therefore, to compute marginal effects and elasticities. In this

cases Manski (1975) suggest two different approaches. The first consists in recovering the

probability to observe a match assuming an ex-post distribution for the error term. However,

this approach will result in a loss of the advantage to use a more general definition of the error

terms. Moreover, it does not ensure that the number of predicted matches will be equal to

the one observed, this way arising complications in the computation of elasticities. Indeed,

in this case, we cannot properly account for the rigidity of the demand and the eventual

displacement effects between different categories of players. The second approach consists in

estimating the probability of the match non-parametrically.39 However, this procedure could

be computationally expensive in our case given the dimension of our sample.

A third possible strategy is to estimate the elasticities through a simulation approach.

This approach consists of using the estimates of the local production function to simulate the

matching assignments. In this way, we can simulate the variation in the number of taxpayers

caused by a change in the net-of-tax rate of 1% and compute the elasticity of mobility using Eq.

(2.13). The matching assignments are simulated using the algorithm used in Schwert (2018).

39In a previous version of Fox (2018) the author suggests to use the sieve methods.
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This procedure is made up of three steps:

1. Compute the local production function for each potential player-team match in each

market according to our estimates;

2. Sort all the possible matches by the estimated local production function values;

3. Select the most valuable matches in descending order.

We repeat this procedure until we reach the number of observed matches and each player is

matched with one team. Differently from Schwert (2018) we apply this procedure considering

two scenarios: one in which teams have a maximum number of vacancy spots and one in which

we let teams match with an indefinite number of players. In both scenarios, we consider that

players can match with only one team at a time. This last assumption makes our strategy

very similar to the one used in the standard conditional logit approach. Indeed, as noted by

Schmidheiny and Brülhart (2011), the conditional logit represents a zero-sum world in which,

despite the elasticity of the demand, the dimension of the supply is kept fixed. We use this

strategy to have results that are comparable with those found in the previous literature and

because we cannot estimate an exit option in which players can decide do migrate outside of

Europe or to do not play at all.

The two scenarios differ in the assumptions regarding the elasticity of the demand and the

dimension in the market. When fixing the number of vacancy spot, we assume that the labor

demand is rigid and that the dimension of the market is fixed to the one observed. In this way,

we can explore the existence of displacement effects between different kinds of players. On the

other hand, in the second scenario, we are not assuming anything about the elasticity of the

labor demand. Indeed, if we let the teams match with an indefinite number of players we are

letting the dimension of the market to depend solely on the results of our estimation model.

The results associated with this second strategy are more comparable with those found in the

literature where the elasticities are usually estimated considering an elastic labor demand.40

40??One exception is, for example, Kleven et al. (2013) where the authors estimate two different specifications
considering both elastic as well as rigid labor demand. In the first case the model used is a conditional logit with
alternative fixed effects that allow to account for the dimension of the market and, therefore, gives estimates
considering a context of perfectly elastic labor demand. In the second case they do not include country-fixed
effects and, therefore, the coefficient are influenced, among the others determinants, by the dimension of the
market in the countries.
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In general, our strategy for the computation of the elasticities has three main advantages:

we do not need to assume any error distribution, the procedure is computationally less costly

than a non-parametric technique and, we can consider different scenarios to better understand

the results of the structural model estimated with the MSM.

This strategy allows us to understand how footballers’ equilibrium locations are affected

by the marginal tax rate and how these elasticities change with respect to players’ nationality

and quality level. In particular, given that our estimates represent the firms’ and workers’

joint responses we can identify the effect on players’ migration patterns by exploiting the fact

that firms cannot migrate in order to avoid income taxation. Therefore, the effect of marginal

taxation on equilibrium locations is identified by simulating its effect on matches utilities and

comparing how these effects impact on players’ migration patterns.

2.4.4 Results

This section shows the results regarding the estimation of matches’ local production function

obtained following the procedure explained in Section 2.4.2 and the results concerning the

elasticity of mobility obtained using the simulation strategy explained in Section 2.4.3. This

paragraph closes explaining the various advantage of the estimation strategy used in this study

in the light of the estimation results.

Point estimates results

Table 2.4 reports the results for 7 different specifications of the match local production function.

The table shows the estimated vector of coefficient, their interval of confidence, the number of

inequalities used in estimation and the percentage of inequalities satisfied. This last element

can be seen as a measure of the goodness of fit of the model (Fox, 2018). As we can notice

all the specifications estimated satisfy a very high percentage of inequalities, always above the

90% of the set of pairwise stability inequalities used in estimation. This suggests that the fit

of the model is very good with a percentage of satisfied inequalities which is higher or similar

than those reported in other studies that use this estimation strategy (e.g. Fox (2018), Yang

et al. (2009), and Schwert (2018)).

The columns (1)-(3) of Table 2.4 present the results of specifications in which matches’
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utility depend only upon the logarithm of the net-of-tax rate (indicated as ln(1 − τ)) and

the logarithm of time in the country (indicated as ln(TimeCountry)) taking into account the

effects of the agent-specific variables.41 The positive coefficient associated with ln(TimeCountry)

indicates that the matches’ utilities are positively correlated with the semesters spent in the

country by the player. This result is not surprising, by spending time in one country the players

can learn more about the specific characteristics of the league and of the country in which they

are playing and, therefore, become more useful for the teams. Moreover, this variable is useful

for the interpretation of MSM’s results. Indeed, as in every discrete choice approach, the

coefficients can be interpreted only in terms of their relative magnitude and, therefore, we can

use this coefficient to translate the effects of the other variables in terms of semesters of life in

one country. For example, a coefficient of +2 indicates that a unitary increase in the variable

gives the same utility to the match as 2 semesters of player’s career in the country.

Turning to the effect of the net-of-tax rate, the first specification considers the effect of this

variable in general (ln(1−τ)) and exploiting the heterogeneity of the effect based on the foreign

status of the player (ln(1− τ)× Foreigner). The positive coefficient associated with ln(1− τ)

indicates that the matches are more valuable if they happen in a country with a relatively

higher net-of-tax rate or a lower tax rate. However, this effect is not the same for every group

of players. Indeed, if the match includes a foreign player, the positive effect of the net-of-tax

rate on the utility of the match decrease by -0.332. This effect is stable in terms of signs across

all the specifications estimated and is related to the fact that, as shown in Table 2.1, the vast

majority of observed matches are between teams and native players.

In specifications (2) and (3) we have added two different interactions terms to understand

if the effect of taxation is different for matches in which the player is a top player ( ln(1− τ)×

Topmkt) or a top foreign player (ln(1 − τ) × Foreigner × Topyear). The preliminary results

of these two models indicate that the effect of taxation increase if the player in the match

is a top-foreign player and that is not statistically different for matches that include a top

player with respect to the baseline given by a low-quality native player. However, these results

can be biased because the specifications examined do not account for the role played in the

local production function by the quality of the match measured as the interaction between

41All the specifications used, as explained in Section 2.4, account for all the possible agent-specific variables
and agent fixed-effects that are erased from the local production function thanks to the pairwise stability
condition.
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players’ and teams’ qualities and the prior relationship between teams and players. Therefore,

in models (4)-(7) we extend the previous specifications considering the regressors ln(MatchQual)

which measures the effect of the quality of the match and PriorRelationship which account

for the effect of the past matches between agents. Moreover, across the different models, we

explore the effects of these variables considering different subgroups of players to understand

if the effect is different when considering foreign and top-quality players. In particular, model

(4) adds to the previous specifications three interactions terms: ln(MatchQual) × Foreigner,

ln(MatchQual) × Topmkt and ln(MatchQual) × Foreigner × Topmkt. These terms measure the

effect on the local production function of match’s quality when it includes, respectively, a foreign

player, a top-quality player, and a foreign top-quality player. As we can notice, the model (4)

does not include the term ln(MatchQual). This is due to the fact that, when including this

variable, the estimation algorithm does not converge, failing in the identifications of the vector

of coefficients. Therefore, in this model, we are assuming that the effect of match’s quality on

the local production function is null when the match includes a low-quality native player and

we can interpret the other coefficients with relation to this baseline.
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Table 2.4: Maximum Score Matching Estimation

(1) (2) (3) (4) (5) (6) (7)

ln(TimeCountry) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Supercons. Supercons. Supercons. Supercons. Supercons. Supercons. Supercons.

ln(1− τ) 2.172*** 2.170*** 2.307*** 2.263*** 2.208*** 2.436*** 2.649***
[1.17 3.21] [1.16 3.58] [1.44 3.55] [1.51 3.15] [1.22 3.07] [1.38 3.43] [1.68 3.82]

ln(1− τ)× Foreigner -0.332*** -0.332*** -0.469*** -0.431*** -0.491*** -0.716*** -0.753**
[-0.36 -0.28] [-0.37 -0.28] [-0.54 -0.41] [-0.48 -0.36] [-0.55 -0.31] [-0.89 -0.42] [-0.92 -0.59]

ln(1− τ)× Topyear -0.002 -0.006 0.283 0.305 0.454* 0.786***
[-0.46 0.46] [-0.25 0.24] [-0.05 0.61] [-0.07 0.68] [0.03 0.88] [0.16 1.55]

ln(1− τ)× Foreigner × Topyear 0.344*** 0.025 0.050 -0.223*** -0.038
[0.26 0.42] [-0.05 0.10] [-0.05 0.15] [-0.48 -0.13] [-0.16 0.08]

ln(MatchQual)× Foreigner 0.184*** 0.168*** 0.268*** 0.179***
[0.14 0.24] [0.11 0.24] [0.24 0.40] [0.07 0.26]

ln(MatchQual)× Topmkt 0.660*** 0.801*** 0.865*** 1.032**
[0.49 0.78] [0.59 0.92] [0.35 1.09] [0.81 1.25]

ln(MatchQual)× F.× Topmkt 0.010 0.015 0.174*** 0.136***
[-0.05 0.07] [-0.06 0.09] [0.05 0.36] [0.00 0.32]

PriorRelationship 1.089** 9.076*** 7.056***
[0.75 1.43] [7.02 12.85] [3.89 9.83]

PriorRelationship× Topmkt -7.867*** -6.387***
[-11.41 -5.51] [-9.19 -3.40]

PriorRelationship× Foreigner 0.785
[-0.08 1.65]

% of Inequalities satisfied 92.42% 92.68% 92.74% 94.88% 96.09% 96.05% 96.05%
N. of Inequalities used 10274607 10274607 10274607 10274607 10274607 10274607 10274607

Notes: The parameter on ln(TimeCountry) is fixed to +1 due to scale identification. The estimates of this paramater in a model with only one regressor finds the point
estimate of +1, instead of -1. Given that the parameter can take only two values (+1, -1) its estimate is superconsistent. See Fox (2018) for details on superconsistency.
All the variables are expressed in natural logarithms. Each estimation uses a 40% random sample of the entire set of inequalities. For each coefficient the table reports
the interval of confidences computed through a sub-sampling procedure across 200 random sample of 4 markets at a time. One coefficient is statistically significant if
its interval does not contain the value 0. The interval of confidence are reported considering the lowest level of significance for which the interval does not contain the
value 0. ***, **, * indicate, respectively, that the coefficient is significant at the 1%, 5% or 10% level. If the coefficient is not significant at these levels the table reports
the interval of confidence computed considering a 10% level of significance.
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The models from (5) to (7) explore the effect of the past relationship between teams and

players adding three regressors: PriorRelationship that indicate the difference in term of utility

between a match including two partners who have already matched and a match in which the

two agents have never met, PriorRelationship× Topmkt and PriorRelationship× Foreigner

that measure how this difference can change when the match includes a top-quality player or a

foreign player.

The first feature that is possible to notice is that the model’s goodness of fit increases when

we control for matches’ quality and prior relationships. This indicates that these variables add

explanatory power to our models. In particular, the model’s goodness of fit increases from the

model (1) to model (5) and remain relatively stable across specifications (5)-(7). These models

satisfy more than the 96% of the pairwise stability inequalities used in estimation. However, if

we compare model (5) with models (6) and (7) is it possible to notice that most of the coefficients

change their magnitude and their signs compared with the previous specifications. This element

suggests that, although the goodness of fit stays almost constant, these last two models are able

to give us more complete information on the relationship between match’s utility and the past

experience of the partners. Therefore, our main result and our considerations will be based on

these two specifications.

As in the previous models the baseline used to interpret these results is a match between

a team and a native low-quality player. As we can see the results of these two models are

qualitatively similar: although the coefficients’ magnitude changes their signs remain the same.

The net-of-tax rate has a positive effect on the matches’ utility in general, the coefficient

associated with ln(1−τ) is positive and statistically significant. The effect of taxation, however,

is weaker for matches with foreigners given that the coefficient of ln(1 − τ) × Foreigner is

negative and significant. As seen before, this effect is related to the fact that the majority of

observed matches include a native player. Moreover, this result is in line with the graphical

evidence presented in Figure 2.1 and it confirms the intuition that players are, in general,

more interested in the tax rates valid in their origin country rather than the one valid in the

destination country. Indeed, the negative coefficient indicates that the net-of-tax rate is less

important for the utility of the match when it includes a foreign player. The coefficient attached

to ln(1− τ)×Topyear is positive and statistically significant in both models indicating that the
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net-of-tax rate is more important when the match includes a top-quality player. This result

is in line with the one presented in Figure 2.2 and can be due to two different reasons. First,

top-players are likely to have a stronger market power than the other players in choosing their

best partners and the country in which they play. Second, top-players have a higher wage and

the marginal tax rate is a better proxy for the income taxation that these players face in reality.

Therefore, this result can be driven by the fact that the taxation treatment is stronger for this

kind of players. The effect of taxation on matches that include a top-quality foreign player

differs across the two models. Indeed, although the sign is always negative the coefficients’

magnitude changes strongly. In general, however, the effect of taxation seems to be weaker for

these players for the same reasons that we have seen for foreigners in general.

Turning on the effect of the quality of the match we can notice that the coefficients associated

with the three interaction terms are always positive and statistically significant. From these

results, and recalling that our baseline is given by a match that includes a low-quality native

player, three main results can be highlighted. First, the match’s quality has a stronger effect

if we consider a foreign player with respect to the baseline. One possible interpretation of this

result is that players that are migrating prefer to match with partners that ensure a career

opportunity and, therefore, are more interested in the resulting quality of the match. However,

given the matching structure of our estimator, this result could indicate that teams are willing

to hire a foreign player only when the resulting quality of the match is higher than the one that

would result from a match with a native player. Therefore, matches that include a foreigner have

a local production function that depends positively on the level of the resulting quality. The

second element is that the role of the quality of the match changes strongly if we consider a top-

player. Indeed, the coefficient associated with the interaction ln(1− τ)× Topmkt has a positive

coefficient which is way bigger in magnitude than the one attached to ln(1 − τ) × Foreigner.

This result is not surprising: a top-player is obviously interested in matching with a very good

quality team and, at the same time, very good quality teams are more interested in hiring

top-quality players. Lastly, these two results are confirmed by the coefficient of the interaction

term ln(1− τ)× Foreigner × Topmkt. This coefficient is positive, indicating that the matches

are more valuable when they include a top-quality foreign player and the resulting quality of

the match increases.
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The results regarding prior relationship indicate that a match is more valuable when the two

partners have already matched in the past but is weaker if we consider top players. Moreover,

we do not find evidence of a difference in this effect between natives and foreigners. These

results depend on two elements: teams are more likely to prefer a player that already knows

their characteristics and their rules and a player is more likely to prefer a known environment

where he has already played. This effect is likely to be weaker for top players because, by

changing teams, they can improve their career outcomes. Indeed, is it plausible that very

good teams hire players only when they are already at the top of the quality distribution and,

therefore, we will observe always very few top players matching with their old teams.

To improve the interpretation of our result in the next subsection we present the results of

our simulation approach.

Simulation results

As explained in Section 2.4.3 our simulation strategy considers two different scenarios. The

first assumes that the labor demand is elastic. This means that teams can match with an

indefinite number of players on the base of the estimated local production function. The

second scenario assumes that the labor demand is rigid and teams have a maximum number of

vacancy spots equal to the number of players observed in the team during the 2016 season. In

both scenarios each player can match with only one team at a time. However, differently from

Kleven et al. (2013), both scenarios are estimated using the same econometric specification for

the local production function. Indeed, one of the advantages of the MSM is that we do not need

to assume a specific elasticity of the labor demand for the estimation and, therefore, all the

coefficients depend on the observed market structure that is let to be endogenous determined

in equilibrium. Therefore, in the first scenario we are not assuming that the labor demand is

perfectly elastic but we are simply letting the number of players that match with each team

to be freely determined on the base of the estimated local production function. On the other

hand, the second scenario is extremely useful to understand the effects of marginal taxation

in the context of rigid demand and competition between players. Indeed, when the number of

vacancy spots is fixed at the team level, players with different quality levels can be affected

differently by the marginal taxation. For example, on the base of the results shown in Table
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2.4, the reduction of the marginal tax rate in one country is likely to attract both top-quality

and low-quality players. However, if the labor demand is perfectly rigid, we will observe a

sorting effect on the base of players’ quality: top-players will enter the country pushing away

low-quality players. Indeed, in this case, teams will have the opportunity to choose among

top-players substituting the low-quality ones. In fact, the results of models (6) and (7) of Table

2.4 suggest that the effect on matches’ utilities of the net-of-tax rate is stronger if they include

a top-quality player.

Table 2.5 reports the results of our simulation approach in terms of models’ goodness of

prediction. This is measured comparing the observed set of matches with the one simulated

considering a scenario in which tax rates are kept fixed. The first two columns of Table 2.5 report

the number of observed and predicted matches. As we can notice, the simulation approach is

able to predict the exact number of observed matches. This is a consequence of the fact that,

as in the conditional logit approach, our simulation strategy represents a zero-sum world in

which the labor supply is perfectly rigid at the European level and the number of players and

matches is kept fixed to the one observed in the data. The columns 3-5 of Table 2.5 present the

percentage of correctly predicted matches considering, respectively, team-player level, regional

level, and country level. A simulated match is considered correctly predicted at the team-player

level if it includes the couple of agents that we observe in the data. In the second and the third

columns the simulated match is correctly predicted if, in the simulated scenario, the player is

assigned to a team in the region or in the country in which he was playing in the observed data

in 2016. In these cases, the regions are defined as the lowest tax decision unit available.42

As we can see the performances in terms of goodness of prediction of the two models are very

similar in the two scenarios considered. In particular, if we consider an elastic labor demand

we have that the algorithm predicts correctly the 38% of observed matches at the team level

and around 60% and 82% of the observed matches on the regional and the country level.

These results are similar in the rigid demand scenario in which the algorithm performs worse

at team-player and country levels. This is somewhat surprising because the second scenario,

by keeping fixed the number of teams’ vacancy spots, should replicate better the observed set

of matches forcing the algorithm to follow the distribution of tax-payers that we observe in

42In countries where tax rates do not vary on regional level the lowest tax decision unit is the country,
conversely, if the country present regional variation in tax rates, we consider the region as the lowest tax
decision unit.
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Table 2.5: Goodness of Prediction

Predicted
Matches

Observed
Matches

% Correct
Matches

% Correct
Regions

% Correct
Countries

Elastic Demand

Model (6) 5014 5014 38.23 60.91 81.89
Model (7) 5014 5014 38.25 60.99 81.93

Rigid Demand

Model (6) 5014 5014 30.73 61.75 79.78
Model (7) 5014 5014 31.35 62.25 80.12

Notes: the table compares the goodness of prediction of the simulation approach based on model (6) and model
(7) of tabel 2.4. Panel Elastic Demand considers a scenario in which a team can match with an indefinite
number of players. Panel Rigid Demand considers a scenario in which the number of players that can match
with the team is fixed to the one observed in the sample. The first and the second columns report, respectively,
the number of observed and predicted matches. The columns 3-5 reports the percentage of correctly predicted
matches considering, respectively, the team-player level, the regional level and the country level. Regions are
the lowest tax decision unit available. The results are based on year 2016.

the data. However, given that our simulation approach is able to predict around the 80% of

the observed country-player matches in all the scenarios considered we are confident that our

specifications are able to describe correctly the phenomenon examined and, therefore, we can

use our simulation approach to estimate the elasticity of mobility to taxation.

The results of this exercise are reported in Table 2.6. In particular, for each model and

scenario considered, we have computed the average elasticity of international mobility to a 1%

increase in the net-of-tax rate in general and considering only natives or foreigners. We have

split our sample in top and low-quality players. Looking at the results of the elastic demand

scenario we can see that, in general, a reduction of 1% in the tax rate can increase the number

of tax payers by around 0.2%. This effect is stronger when considering top players (around

0.7) and weaker with respect to the population of low-quality players (around 0.07). These

results confirm the conclusions drawn on the base of the estimated local production function

and indicate that a reduction in the net-of-tax rate can, ceteris paribus, improve the quality

distribution of players in one country. However, the most interesting results are those regarding

the differences in the effect between natives and foreigners. In general, we have estimated an

elasticity between 0.11 and 0.07 native population and between 1.20 and 1.37 for foreigners.

These results are in line with the previous literature. For example, Kleven et al. (2013) find

a point estimate for the elasticity of the number of native players around 0.15 and around 1

for foreigners. The differences in the results can be explained considering that our elasticity
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Table 2.6: Average Elasticity of International Mobility to Taxation

General Natives Foreigners

Avg Top Low Avg Top Low Avg Top Low

Elastic Demand

Model (6) 0.220 0.758 0.066 0.117 0.495 0.028 1.197 1.655 0.681

Model (7) 0.210 0.710 0.067 0.077 0.310 0.025 1.370 1.817 0.768

Rigid Demand

Model (6) 0.000 0.297 -0.084 -0.016 0.243 -0.082 0.119 0.523 -0.102

Model (7) 0.000 0.442 -0.126 0.036 0.494 -0.080 -0.260 0.240 -0.559

Notes: the table reports the elasticities of mobility to a 1% increase in the net of tax rate computed using the
simulated assignments for the year 2016 based on the results of models (6) and (7) of table 2.4. Panel Elastic
Demand considers a scenario in which a team can match with an indefinite number of players. Panel Rigid
Demand considers a scenario in which the number of players that can match with the team is fixed to the one
observed in the sample. Each elasticity is the weighted average of countries elasticities weighted by the ratio
between the number of players in each group in the country and the number of players in each group in the
sample. The results are shown for the general population of players, for natives and for foreigners. For each
group we computed the average elasticity (Avg), the elasticities for top players (above the 25% of the quality
distribution) and low quality players (below the 25% of the quality distribution).

estimation is computed considering the joint response of players and teams. Moreover, the

difference of the magnitude of the effect between native and foreigner populations is related to

the fact that the base of native players is much larger than the one of foreigners given that most

players play at home (Kleven et al., 2013). These results suggest that a general reduction of the

tax rate is less cost-effective than a reduction that targets only foreign players. Moreover, given

that the effect is stronger when considering top players, we can confirm the previous result:

a reduction in the tax rate can improve the quality distribution in one country, especially for

foreigners.

The results of the rigid demand scenario present evidence of sorting effects given by the fact

that the elasticities present positive values for top players population and negative values for

low-quality players population. This suggests that when one country reduces its marginal tax

rate, the share of top quality players that country increases this way pushing away low-quality

players. This result is valid if we consider all the players as well as if we consider natives and

foreigners. However, our results do not suggest that the foreign players will displace the native

ones. Indeed, the values of the average elasticities for natives and foreigners present different

signs in the two models. Model (6) predicts a negative elasticity of natives’ population and

a positive one for foreigners’ population. This indicates that, according to model (6) foreign
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Table 2.7: Average Elasticity of International Mobility to Taxation: Preferential
Schemes for Foreigners

General Natives Foreigners

Avg Top Low Avg Top Low Avg Top Low

Elastic Demand

Model (6) 0.114 0.369 0.041 0.000 0.000 0.000 1.192 1.619 0.712

Model (7) 0.143 0.495 0.043 0.000 0.000 0.000 1.395 1.859 0.768

Rigid Demand

Model (6) 0.000 0.139 -0.039 -0.054 0.000 -0.068 0.396 0.726 0.217

Model (7) 0.000 0.381 -0.109 -0.079 -0.051 -0.086 0.570 2.031 -0.315

Notes: the table reports the elasticities of mobility to a 1% increase in the net of tax rate valid for foreigners
computed using the simulated assignments for the year 2016 based on the results of models (6) and (7) of table
2.4. Panel Elastic Demand considers a scenario in which a team can match with an indefinite number of players.
Panel Rigid Demand considers a scenario in which the number of players that can match with the team is fixed
to the one observed in the sample. Each elasticity is the weighted average of countries elasticities weighted by
the ratio between the number of players in each group in the country and the number of players in each group in
the sample. The results are shown for the general population of players, for natives and for foreigners. For each
group we computed the average elasticity (Avg), the elasticities for top players (above the 25% of the quality
distribution) and low quality players (below the 25% of the quality distribution).

players, on average, displace natives in the case of a reduction in the tax rates. However, model

(7) predicts the opposite: natives’ population has a positive average elasticity while foreigners’

population have a negative point estimate. Therefore, we do not have conclusive evidence

regarding the existence of a displacement effect between foreigners and natives. This result is

in contrast with the one found by Kleven et al. (2013) that find evidence of displacement effect

in the context of rigid labor demand.

The previous results indicate that the effect of taxation is stronger if we consider foreign

players. Therefore, it can be interesting to simulate the effect of a preferential taxation scheme

that targets only them. The results of this exercise are reported in Table 2.7 where the simu-

lations are carried considering a 1% increase in the net-of-tax rate valid for foreign players.

Looking at the elastic demand scenario we can see that a preferential scheme has affected

the native population of players. Moreover, the results of the effect of the tax rate on foreigners

are very similar to those presented in Table 2.6. This is not surprising because, in this scenario,

the number of vacancy spots in teams is let free and, therefore, we do not have any competition

effect between different kinds of players. Therefore, a policy that targets only foreigners will

not affect the distribution of natives across countries and will affect the foreigners in a way
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similar to the one caused by a general reduction in tax rates. Turning on the results of the

rigid demand scenario we can highlight a very interesting element: the effect of the preferential

scheme is, on average, positive when considering foreigners and negative if we consider natives.

Therefore, we have evidence of a displacement effect between foreign and natives players. With

respect to the sorting effect between foreigners, we can notice that the two models predict a very

different effect of the preferential scheme on this population: model (6) predicts an elasticity

lower than one for top players’ population, while model (7) predicts an elasticity around 2 for

the same population and a negative effect on low-quality foreigners’ population. However, Table

2.7 suggests that a general reduction in the net-of-tax rate is more effective than a preferential

scheme in increasing the number of top players. Indeed, the elasticities of top players following

a general reduction of the marginal tax rate, presented in Table 2.6, are higher than the one

found simulating a preferential scheme.

In conclusion, the results of our simulation approach are mostly in line with the previous

literature even though we have found evidence of displacement effects between natives and

foreigners populations only considering the preferential scheme scenario. Our results, however,

confirm that taxes can be seen as an effective tool to attract highly productive workers that,

depending on the rigidity of the labor demand, can displace low-quality players increasing the

quality level of the country. The elasticities results presented here can also be used to compute

the revenue-maximizing tax rates following the model of optimal taxation in the presence of

migration of Mirrlees (1982) and used by Kleven et al. (2013) in the elastic demand scenario. In

this framework revenue-maximizing tax rate is an inverse function of the elasticity of migration

and can be computed using the formula:

τ ∗ =
1

1− εn
(2.34)

where τ ∗ is the optimal tax rate and εn is the elasticity of mobility to taxation estimated in the

elastic demand scenario. Using this formula our estimates yield an optimal tax rate of around

82%. This result is similar to the one found in Kleven et al. (2013) and is well above the average

marginal tax rate observed in the data. Therefore, our results suggest that the observed tax

rates are suboptimal and that an increase in their values can yield an increase in tax revenues

without causing an excessive loss in terms of the population of highly skilled workers.
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Was it worth?

The previous sections have presented the results of our estimation strategy. Although the

point estimates are slightly different, these results are in line with those found in the previous

literature concerning the effect of marginal tax rates on the mobility choices of footballers and

top earners in general. At this point one question should interest the reader: was it worth to

use this new methodology approach?

First, the results of our approach are similar to those found by Kleven et al. (2013). This

element suggests that our estimation approach is consistent with those used in the previous

literature although we do not use data on agent-specific variables and we do not assume ex-ante

the market structure. Indeed, our simulation approach has allowed us to estimate the elasticities

in the two contexts of rigid and elastic demand without requiring ad hoc specifications for each

scenario but keeping the local production function of the matches unchanged.43 This element

is interesting because we can identify the utility of the match in general and then simulate the

various scenarios to understand how these utilities can cause different matching assignments

on the base of the assumed market structure or by changing the policies without assuming

anything on the market structure and agents’ market powers in the econometric specifications.

Second, the approach used in this study allows identifying directly the effect of the various

determinants on the utility of the match rather than on the utility of the players. This element

is extremely useful in the interpretation of the results. Indeed, in the conditional logit models

all the coefficients are interpreted as the parameter of the worker’s utility function although,

as pointed out by Akcigit et al. (2018), the results could be a mix between firm and workers

behavioral response. Therefore, allowing to explicitly consider the matching nature of the labor

market, our approach permits a more reliable interpretation of the results in terms of matches’

utilities considering the decision process of all the agents that are competing in the market.

Third, this approach allowed us to understand the effects of the various determinants of the

matching process exploiting all the information available at the team level instead of focusing

only on the country level. This permits us to use all the possible sources of variation present in

the data estimating a model with a huge number of alternatives that would be infeasible using

a conditional logit.

43See note ?? for an example of the strategy used in Kleven et al. (2013).
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2.5 Conclusions

In this study, we have investigated the effect of marginal tax rates on equilibrium locations of

highly skilled tax payers using a dataset on European football players between 2007 and 2016

and exploiting regional and national variation of tax rates.

We have analyzed this phenomenon by estimating a two-sided matching model using a

maximum score approach. This strategy has permitted to account for the matching structure

of this labor market and to get rid of factors that affect the matching process but are usually

hard accessible (such as wages and transfers between agents).

With regards to the sorting patterns based on quality, our results indicate that matches’

utilities are positively affected by the resulting quality of the match if it includes a top-quality

player. This effect is stronger if we consider foreign players. The use of these variables has

permitted us to identify the effect of taxation on the utility of the match accounting for the

one deriving from the quality of the match.

Concerning the effect of taxation, our results suggest that the marginal income taxation

incentive is an important determinant of top incomes’ migration patterns even after considering

the matching nature of the labor market. Indeed, the coefficient estimated indicates that

matches’ utilities are positively affected by the net-of-tax rate suggesting that matches are more

valuable in jurisdictions with lower tax rates. This conclusion is confirmed by the estimated

elasticities. Indeed, in a context of elastic demand, the point estimate of the elasticity of

mobility to taxation is always positive and around 0.22 if we consider the whole population of

football players. However, we find that the effect is heterogeneous on the base of the nationality

of the player and his quality. Indeed, the estimated elasticities for the population of natives

range from 0.077 to 0.117 in the two preferred specifications whereas the one of foreigners’

population is always above 1 and comprises between 1.197 and 1.370. The effect of the net-of-

tax rate is estimated to be stronger when considering top-players than bottom quality players.

This result is in line with the one arising from the previous literature and suggests that the

income tax rate can be an effective tool to increase the average workers’ quality in one country.

Moreover, these results are confirmed even considering a rigid labor demand. In this context,

however, we find evidence of a cross-effect between different populations of players. Indeed, the
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elasticity results suggest that an increase in the net-of-tax rate can attract more top players

that displace bottom quality ones through a displacement effect.

Although these results are in line with the one arising from the previous literature the esti-

mation technique used here has proved to be effective in analyzing these kinds of phenomenons

without assuming ex-ante, in the estimation process, the structure of the labor market. Indeed,

our results are obtained using the structural parameters coming from the same model and as-

suming the structure of the market only in the simulation approach. This is a clear advantage

that allows simulating different scenarios without assuming that neither a supply-driven nor a

demand-driven location model. Moreover, the method has allowed the estimation of these fun-

damental parameters without using data on wages, transfers and agent-specific unobservable.

In the future, this method can be applied in different contexts and markets such as CEOs,

academic professors, and inventors.
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Appendix

2.A The Net-Of-Tax Rate

In order to have a comprehensive net-of-tax rate we have collected data on different tax rates:

• τi top marginal income tax rate

• τe social security contributions on employer

• τw social security contributions on employee

• τV AT value added tax

Following Kleven et al. (2013) we define the net-of-tax rate as the increase in the worker’s

consumption when the firm’s labor cost increases by 1 Euro. This rate is given by:

1− τ =
(1− τi)(1− τw)

(1 + τV AT )(1 + τe)
(2.35)

We derive this formula following Kleven et al. (2013) and Mertens and Montiel Olea (2018) and

considering the specific rules that apply in each country. The first step to derive this formula

is to compute the marginal increase in the firm’s labor cost coming from the payroll taxes

(Mertens and Montiel Olea, 2018):

Tp =
τe + τw
1 + τe

(2.36)

where (1+τe) is the labor cost for the employer. Then, the marginal income tax Ti is computed

on net earnings after that the payroll taxes are deducted:

Ti =

(
1− τe + τw

1 + τe

)
× τi (2.37)
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Now we can compute the VAT using the same logic used for the payroll taxes. Indeed, we use

the marginal increase in the VAT measured by:

τV AT
1 + τV AT

(2.38)

Therefore, the marginal VAT tax TV AT is computed as:

TV AT =

[
1− τe + τw

1 + τe
−
(

1− τe + τw
1 + τe

)
× τi

]
× τV AT

1 + τV AT
(2.39)

Now we can derive the marginal tax wedge step by step:

1. Marginal payroll taxes:

τe + τw
1 + τe

2. Marginal payroll taxes plus marginal income tax:

τe + τw
1 + τe

+

(
1− τe + τw

1 + τe

)
× τi =

τe + τw + (1− τw)τi
1 + τe

3. Marginal payroll taxes plus marginal income tax plus marginal VAT tax:

τe + τw + (1 + τw)τi
1 + τe

+

[
1− τe + τw + (1− τw)τi

1 + τe

]
τV AT

1 + τV AT

Rearranging the previous equation we can derive the tax wedge τ ∗:

τ ∗ =
τe + τw + (1− τw)τi + τe + τV AT

(1 + τe)(1 + τv)

Now we can compute the net-of-tax rate:

1− τ ∗ = 1− τe + τw + (1− τw)τi + τe + τV AT
(1 + τe)(1 + τv)

1− τ =
(1− τi)(1− τw)

(1 + τV AT )(1 + τe)

In Figures (2A.1) - (2A.3) we show the evolution over the period 2007-2016 of top marginal tax

rates for natives and foreigners in the 16 countries of the sample.
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Figure 2A.1: Top Marginal Tax Rates in the 5 Top Countries

Notes: Top marginal tax rates include income taxes, payroll taxes and VAT. In case of regional variation the average tax rate is shown.
The five top countries are defined on the base of the average market values of players employed in the country’s first league. In panel
A is plotted the average national top marginal tax rate valid for native players. Panel B shows the evolution of the top marginal tax
rate valid for foreigners that meet the eligibility conditions
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Figure 2A.2: Top Marginal Tax Rates in Northern countries

Notes: Top marginal tax rates include income taxes, payroll taxes and VAT. In case of regional variation the average tax rate is shown.
In panel A is plotted the average national top marginal tax rate valid for native players. Panel B shows the evolution of the top
marginal tax rate valid for foreigners that meet the eligibility conditions. Russian data are available only since 2010.
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Figure 2A.3: Top Marginal Tax Rates in the other small leagues

Notes: Top marginal tax rates include income taxes, payroll taxes and VAT. In case of regional variation the average tax rate is shown.
In panel A is plotted the average national top marginal tax rate valid for native players. Panel B shows the evolution of the top
marginal tax rate valid for foreigners that meet the eligibility conditions
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In-migration of foreign players by quality
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Figure 2A.4: Cross-Country Correlation between Tax Rates and Shares of Foreigners by Quality,
2007-2016
Notes: Each dot stands for one country: AT=Austria, BE=Belgium, DK=Denmark, EN=England, FR=France, DE=Germany,
GR=Greece, IT=Italy, NL=Netherlands, NO=Norway, PR=Portugal, RU=Russia, ES=Spain, SE=Sweden, CH=Switzerland,
TR=Turkey. The three plots show the relationships between the fraction of native players in each quality subgroup and the MTR
valid in the origin country. In each plot we show the coefficient of the relevant MTR coming from a linear regression of the shares
against MTR and a constant. All the plots refers to the entire period 2007-2016.
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Table 2A.1: Origin-Destination flows

Destination

Origin AT BE DK EN FR DE GR IT NL NO PR RU ES SE CH TR

Austria 1657 1 18 23 1 128 22 19 17 7 12 4 3 1 28 37
Belgium 1 1789 5 104 41 46 18 40 265 5 8 19 21 0 6 19
Denmark 9 44 1825 55 33 73 4 30 116 83 1 2 18 64 5 10
England 1 6 7 1676 5 3 12 8 7 1 4 1 1 22 0 7
France 7 282 8 292 2357 74 76 144 33 14 69 20 134 4 73 23
Germany 92 20 22 72 8 2342 27 22 64 10 12 12 36 11 24 83
Greece 6 30 3 22 4 53 2303 52 16 0 11 1 15 1 2 6
Italy 2 7 0 63 31 44 28 3404 9 0 12 17 59 0 45 6
Netherlands 11 77 36 147 18 93 15 50 2590 3 23 20 42 17 11 38
Norway 7 11 60 41 16 33 6 7 30 1512 3 4 2 66 1 7
Portugal 0 18 5 76 58 33 88 54 8 1 1793 26 191 3 45 69
Russia 4 1 2 12 0 19 4 3 6 2 14 1745 6 1 3 1
Spain 49 45 2 237 8 48 199 92 25 1 58 27 2678 2 11 22
Sweden 12 22 152 57 28 41 26 44 121 156 7 19 11 2008 32 56
Switzerland 20 14 0 53 32 150 8 84 4 0 4 2 10 1 1245 11
Turkey 3 15 2 13 19 97 12 3 25 0 5 10 19 1 7 3146

The table shows the number of times when players citizen of one origin country have played in the destination countries considering all the sample period between 2007
and 2016

91



2

92



Chapter 3

The Educated Moves: The Determinants of In-

terregional Mobility of Students In Italy

Abstract

The attractiveness of universities for students represents a crucial public policy

issue given the role that these institutions have in fostering local development. In

this work, we aim to understand the effect of financial and in-kind aid programs on

the location decision process of students. This phenomenon is analyzed by using a

unique dataset with administrative data on Italian university students enrolled for

the first time in the academic year 2014-2015 along with detailed information on

the need-based policies comprised by the Diritto allo studio universitario program.

We consider explicitly the heterogeneity in students’ preferences concerning these

policies. First, we estimate the systematic variation in students’ preferences by

interacting individual characteristics with alternatives’ attributes in a Conditional

Logit framework. Second, we take advantage of the Latent Class Logit model. The

latter approach allows to model systematic and random heterogeneity in preferences

by exploiting the individual characteristics of students. The estimated parameters

are exploited to quantify the sensitivity of student’s location choices by computing

willingness to pay and semi-elasticity measures. Our results suggest that policies

that provide scholarships and places in dormitories together affect positively stu-

dents’ choice probabilities, this way indicating that these policies are effective in

attracting more students in specific universities. Semi-elasticities results indicate

that students with better high school diploma grades are more sensitive to these

policies, this way suggesting that these services can be used as a tool to attract

better students.

JEL Classification: C25, I23, I28

Keywords: Financial and in-kind aid policies, Student mobility, University choice, Geo-

graphical distance, Latent Class Logit, Heterogeneity in preferences.
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3.1 Introduction

In the last decade, the Italian system of higher education has faced a reduction in both the

amount of public fundings as well as the number of students enrollments (EUA, 2019; Viesti,

2016). The entry rate to tertiary education has decreased from 65.8% in 2008 to 49.1% in 2015

and it has started to increase only recently reaching the 50.3% in 2017 (ISTAT, 2019). At the

same time, the migration flows of students from southern to central and northern regions have

increased (Cammelli and Gasperoni, 2015) this way contributing to the widening of the existing

gap between northern and southern regions in terms of economic growth (Fratesi and Percoco,

2014). These phenomenons, along with government policies that incentivize universities to

attract more students, have created an environment in which universities compete for students

(Cattaneo, Malighetti, Meoli, and Paleari, 2017).

The role of universities in fostering the local development has been recurrently studied by

the empirical literature concerning higher education. For example, Salter and Martin (2001)

have reviewed the existing literature regarding the public funding of basic program research

noting that universities play a positive role in the process of knowledge creation at the local

level allowing regions and nations to benefit from the global scientific process. Moreover,

universities contribute to increase the productivity of local workers (Moretti, 2004) and are a

fundamental player in the human capital accumulation process which is a key factor for the

economic competitiveness of regions (Bratti and Verzillo, 2019). From a regional perspective,

the migration of students has been recognized as a potential source of regional disparities

(Krugman, 1991).

These elements have stressed the importance of understanding the determinants of univer-

sities’ and regions’ attractiveness. Indeed, an increasing body of literature has focused on both

international and intra-national migration of students highlighting the role played by universi-

ties and hosting areas characteristics in attracting students and foster the formation of human

capital. For example, Long (2004) has studied the determinants of students’ enrollment and

migration decisions finding that tuition fees have a negative effect on students’ probability to

enroll in a specific university; Bratti and Verzillo (2019) and Biancardi and Bratti (2019) have

investigated the role of quality in determining the attractiveness of universities; Hübner (2012)
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and Dwenger, Storck, and Wrohlich (2012) have analyzed the effect of tuition fees on enrollment

probability in Germany.

In this study, we focus on the role of financial and in-kind aid policies in fostering universities’

attractiveness. Although the Italian education system has been extensively analyzed, to our

knowledge, the role of these policies is still unexplored. The only exception is the work by Pigini

and Staffolani (2015) in which the effect of financial and in-kind aid policies on enrollment as

well as location decisions of students has been investigated. By using survey data on Italian

high school leavers in a Conditional Logit (CL) framework the authors have found that these

policies have a positive effect on the probability to enroll in a specific university.

We aim to enrich this debate by analyzing the effects on Italian students’ location choices

of the financial and in kind policies provided by the Diritto allo Studio Universitario (DSU)

program. This program aims to guarantee the access to the Italian Higher Education System

to less advantaged students by providing different services such as scholarships, places in dor-

mitories and canteens. In the analysis, we take advantage of a unique dataset that includes

administrative data regarding the entire population of students enrolled in the academic year

2014-2015 for the first time along with detailed information regarding universities’ character-

istics and DSU’s policies. In particular, these data have allowed us to exploit the variability

existing in the provision of DSU’s services at the university level to separately identify the

effects of the different policies provided by the program.

The analysis is carried out explicitly accounting for the existence of heterogeneity in stu-

dents’ preferences. This is done by splitting the sample of students considering the field of

study chosen, this way exploring the existence of differences in tastes between different kinds of

students. Moreover, we take advantage of a more sophisticated discrete choice approach that

has not been used for modeling students’ choices: the Latent Class Logit Model (McFadden

and Train, 2000). This technique has permitted to overcome various limitations of the ap-

proaches used previously in the literature. In particular, it allows to model the heterogeneity

in students’ preferences by permitting the estimation of an individual set of taste parameters

that depends on students’ characteristics. This feature of the model allowed us to understand

whether different kinds of students have different tastes with respect to universities as well as

hosting areas characteristics and to identify which kind of students are more affected by the
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aid policies considered. Another distinctive feature of our estimation approach is that it has

permitted to consider a more realistic nested structure in which universities situated in the

student’s province of residence are in a separate nest with respect to those located outside. As

a consequence, we are able to consider more realistic substitution patterns compared with the

ones assumed in the CL approach.

Our results provide clear evidence of the presence of heterogeneity in students’ preferences

among different fields of study and based on students’ characteristics. Moreover, we found

evidence that even students with similar characteristics may react differently to aid policies

and universities’ characteristics depending on the field of study in which they are enrolled.

As for the results of financial and in-kind aid policies in attracting students, we have found

that scholarships that are provided without a place in the dormitory are not effective in at-

tracting students. Our interpretation of these results is that these policies cover only partially

migration and location costs of students. This interpretation is confirmed by the results re-

lated to places in dormitories with and without scholarships. In particular, these policies have

a positive effect on students’ choice probabilities and can be effective in attracting a higher

number of students. Moreover, semi-elasticity results indicate that these effects are stronger

for students with a higher high school diploma grade. This last element suggests that these

policies can be a useful tool in increasing the average quality of students.

However, willingness to travel results indicate that, in order to attract students from distant

areas, DSU’s offices should increase significantly their supply of in-kind benefits.

3.2 Related literature

The attractiveness of universities and hosting areas has been at the core of an increasing body

of literature that has analyzed this phenomenon across different contexts and using different

empirical strategies. In this section we review the existing literature highlighting the various

determinants of universities’ attractiveness that have been studied.

As outlined in Section 3.1, the role of universities in fostering local development has been ex-

tensively analyzed in the previous literature (see for example Salter and Martin, 2001; Moretti,

2004). However, since Krugman (1991), the literature has recognized that the migration of stu-

dents and graduates might increase regional disparities, especially in contexts in which these
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gaps are already relevant such as the Italian one (D’Agostino, Ghellini, and Longobardi, 2019).

In fact, as highlighted in Fratesi and Percoco (2014), the migration of highly educated people in

Italy has caused a brain drain effect that has reduced the stocks of human capital in southern

regions increasing it in central and northern regions. Moreover, students’ migration decisions

are ultimately related to their future choices after graduation. For example, Oggenfuss and

Wolter (2019), analyzing the migration of students and graduated among Switzerland cantons,

have found a strong relationship between location choices at the moment of the enrollment and

the choice of migration after graduation. Their results suggest that, once a student decides to

migrate to enroll at the university is less likely that she will decide to come back to her place of

origin after graduation. Interestingly, this result is even stronger for students with better high

school grades, this way increasing the negative effects of students’ out-migration. In addition,

Valero and Van Reenen (2019), analyzing information on universities in 78 countries between

1950 and 2010, have found evidence that the increase in the number of universities in one re-

gion is positively related to its future growth capacity and that the presence of universities has

positive spillover effects on neighboring regions.

In light of these results, the empirical literature has been focused on understanding which

are the principal determinants of migration and enrollment decisions of students to shed some

light on the elements that affect students’ preferences and universities’ attractiveness.

Since Long (2004), the distance to institutions, tuition fees, and college quality have been

considered the most important determinants of enrollment and mobility decisions. In this work,

the author has studied the determinants of students’ enrollment and location decisions by using

data on US high school graduates between 1972 and 1992. The results suggest that distance

and tuition fees negatively affect the decision on where to study but have a lower effect on the

probability to enroll, while the quality of the college is an important determinant of location

decisions. The second contribution of this paper is the introduction of the CL in analyzing

students’ choices. In particular, the estimation strategy used is based on a multinomial choice

model used to shed light on students’ location decisions and a binary Logit to analyze the enroll-

ment choices. Starting from this paper, the literature has been focused on understanding how

these determinants of universities’ attractiveness and the various hosting areas’ characteristics

affect students’ location preferences using different empirical strategies.
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The role of the distance as a deterrent in the location choices of students has been extensively

analyzed. For example, Kelchtermans and Verboven (2010) studied the effect of distance and

tuition fees on students’ enrollment, location, and field of study decisions using data on the

Belgian region of Flanders in a Nested Logit framework. Their results suggest that travel costs

are an important determinant of the decisions regarding where and what to study but that

they hardly affect the enrollment decision. These results are confirmed also in Gibbons and

Vignoles (2012) who, taking advantage of administrative data regarding UK students, have

found that the distance to the institution has a deterrent effect only on the decision regarding

the university to attend but does not affect the enrollment decisions. By contrast, Spiess and

Wrohlich (2010), focusing on German students, have found that the distance from the closest

university has a negative effect on the enrollment decision by increasing transaction costs such

as transport and housing expenditures. As for the field of study decision, Suhonen (2014) have

found evidence that the choice of a specific field of study is negatively related to the distance

between student’s residence and the first institution which provide a degree in that specific field

using data on a random sample of the Finland population in 2001.

Other works have used different empirical strategies to assess the role of the distance on

the aggregate flows of students between competing regions. For example, Agasisti and Dal

Bianco (2007) have studied the mobility patterns of students in Italy using a gravity model

approach on the aggregate flows of students between Italian provinces. Their results suggest

that once controlling for the distance as a deterrence, the characteristics of universities such

as the amount of resources invested in financial aid programs or the number of professors

per student have a positive role in increasing the aggregate in-flow of students in one specific

province. Cattaneo, Malighetti, Paleari, and Redondi (2016), using a competing destination

model and data on 39 airports in Italy, have analyzed the effect of the presence of airports on

the long-distance mobility decisions of Italian students between 2003 and 2012. They find that

the presence of airports increases the long-distance migration flows of students by reducing the

costs of migration and the deterrence effect of distance in general.

Besides the role of the distance, these papers have highlighted also the one played by char-

acteristics of universities and hosting areas. These elements have been at the core of various

papers in the recent literature. For example, Giambona, Porcu, and Sulis (2017), focusing on
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the Italian context, have analyzed the role of various characteristics of universities and hosting

provinces to assess how much of the differences in attractiveness between different institutions

are related to hosting areas’ characteristics rather than universities’ one. Their results highlight

that the economic features of the hosting areas (e.g. the labor market conditions), along with

the university quality of research, are key determinants of the attractiveness of hosted univer-

sities. These results are confirmed in D’Agostino et al. (2019) who, using a Multilevel Logit

model and micro-data on Italian students, have found that the characteristics of the hosting

provinces are important determinants of the out-migration flows from southern to northern

regions of Italy even after controlling for students’ characteristics.

Another important characteristic of universities that have been explored is the quality of

the research. For example, Ciriaci (2014) have explored the effect of the Italian Evaluation

Research Exercise (VTR) on migration flows from south to north Italy finding that the mi-

gration choices are positively influenced by the quality of research and teaching. Still focusing

on the VTR, Biancardi and Bratti (2019) have found that the results of this exercise have

affected significantly only top-performing universities and that this effect is larger for students

with better high school diploma grades. This result suggests that the effect of the quality

of research may be heterogeneous on the basis of the individual characteristics. Bratti and

Verzillo (2019) have confirmed the positive role of the quality of research by analyzing various

research quality indicators. The authors have found that, although the quality of research has

a positive effect on universities’ attractiveness, the cost of migration for students in Italy is

still the most important determinant of migration decisions. This result suggests that there is

still room for universities and regions to improve their attractiveness by reducing students’ mi-

gration, transportation and accommodation costs that can be potential barriers for students’

mobility. In fact, Lupi and Ordine (2009) have found that students’ mobility decisions are

constrained by family income and that less advantaged students tend to enroll in their region

of residence. Moreover, Türk (2019) has extended the standard gravity approach including,

along with the distance, a set of socio-economic indicators to assess the overall accessibility to

Italian universities. His results highlight that the quality of institutions has a heterogeneous

effect on the base of the socio-economic background of students and that the accessibility to

Italian higher education depends strongly on parents’ income and education. Therefore, the

99



author suggests that a policy targeting less advantaged students with scholarships and grants

could be very effective in increasing the accessibility to tertiary education for less advantaged

students. These results are in line with the one arising from Pigini and Staffolani (2013) who

have analyzed the effect of university quality, migration costs and distance to the institution on

the choices of a sample of Italian high school leavers in 2004. The authors have highlighted the

presence of a strong heterogeneity in the effect of these variables based on the socio-economic

background of students and their performances in high school. In particular, weaker students

are more affected by university costs in general. The framework used is a Nested Logit model

in which students choose in two nests: the first considers together the enrollment and the field

of study decisions; the second considers the university choices. This empirical specification has

allowed the authors to explore the heterogeneity in the effects of these determinants by means

of interaction terms between alternative and individual characteristics. Therefore, this litera-

ture has clearly outlined the presence of a difference in preferences and opportunities between

students with different backgrounds.

In this respect, the literature has focused on two determinants of enrollment and migration

costs: tuition fees and financial aid policies. The effect of tuition fees on the probability to enroll

in a specific university is mixed and depends on the specific characteristics of the education

system considered. For example, Murphy, Scott-Clayton, and Wyness (2019) have analyzed

the effect of the introduction of tuition fees in England finding, surprisingly, that it has caused

an increase in enrollment rates without widening the disparities of access between students

with different economic backgrounds. However, tuition fees can have a fundamental role in

shaping the migration patterns of students. For example, Dwenger et al. (2012), by exploiting

the introduction of tuition fees part of Germany with a difference-in-difference approach, have

found that the introduction of tuition fees in students’ home state can incentivize them to

migrate outside the region. This result is confirmed by Hübner (2012) who, analyzing the

choices of German high school graduates between 2002 and 2008, have found a reduction in the

probability of enrollment in a state which charges tuition fees by 2.74%.1 Despite the presence

of this mixed evidence on tuition fees, the literature has found evidence of the positive effects

related to financial aid policies. For example, considering the US, Deming and Dynarski (2009)

1See Dwenger et al. (2012) for a more detailed analysis of the recent literature on the effect of tuition fees
on enrollment rates.
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have found evidence that these policies can increase college attendance rates. These results are

confirmed in Castleman and Long (2016) who have found, through a regression discontinuity

design approach, a positive effect of the Florida Student Access Grant2 in terms of enrollments,

university outcomes, and degree completion.

Considering the Italian case, we have that very few papers have explicitly analyzed the

role of financial aid policies on students’ behavior. For example, Modena, Rettore, and Tanzi

(2018) have measured the effect of the need-based grants provided by the DSU programs on the

academic achievements of Italian students. They find that first-year students dropout rates are

negatively affected by these policies that can even prevent students from low-income families

to drop out of higher education. Moreover, the impact of these policies is heterogeneous on the

base of student’s residence, type of high school diploma and final grade. Vergolini and Zanini

(2015) have investigated the effect of a provincial program provided by the province of Trento

that had the aim to increase access to higher education of less advantaged students. Using

a regression discontinuity design they have found that the program has incentivized the out-

migration of students from their place of residence without increasing the enrollment rate. The

most closely related work to our research is the one by Pigini and Staffolani (2015). This work

has investigated the effect of the enrollment costs and financial incentives on both enrollment

as well as migration decisions of Italian high school leavers using survey data containing also

information on the social-economic background of students and the data regarding the DSU

program. In particular, the authors have applied a CL estimator assuming that the outside

option (non-enrollment) and the alternative universities belong to the same nest. Their results

indicate that the average number of fees has a negative effect on the probability to enroll and

that the financial incentives have a significant positive effect on the probability of enrollment

in a specific university.

The next section presents the institutional background of our study.

2The Florida Student Access Grant is a need-based grant program with the aim to increase college access
and improve student’s success in higher education.
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3.3 Institutional background

The Italian Higher Education (HE) system, differently from other European countries (e.g. the

UK or Ireland), relies upon an ex-post screening admission procedure.3 In this system, every

high-school graduated can enroll into an Italian university in any subject.4

Therefore, given the minimal selection process of this system, the choices regarding the

enrollment decision, the field of study and the university to attend depend almost solely on

students’ and families’ preferences. In this context, the role played by universities’ attractive-

ness is paramount (Pigini and Staffolani, 2013). Moreover, the Italian HE system is mainly

public and funded by the central government. The shares of public funds to be transferred to

universities are decided on the base of various indicators such as the number of enrollments

and the institutions’ ability to attract more students (Giambona et al., 2017). This feature, as

outlined in Giambona et al. (2017) and Cattaneo et al. (2017), has fostered the competition

between institutions incentivizing them to increase their attractiveness taking into considera-

tion the characteristics embodied in their hosting areas. These elements stress even more the

importance of understanding the determinants of student migration and the various tools that

universities can use to attract more students and, therefore, more resources for their activities.

As outlined in section 3.2, one of the most important determinants of students’ choices is

given by universities’ costs and by the distance between students’ home and the institutions.

Therefore, one of the tools that universities (and regions) can use to improve their attractiveness

is given by policies that aim to reduce these costs such as scholarships and places in dormitories.

In Italy, these policies have been organized inside a financial and in-kind aid program called

Diritto allo studio Universitario (DSU) program. This program has been outlined to encourage

enrollment and attendance by students from disadvantaged families. The DSU program is under

the exclusive competence of regions and has the objective to encourage motivated students to

enroll and obtain higher education regardless of their income (Prime Ministerial Decree, April

9, 2001).

3See Declercq and Verboven (2018) for a comparison between ex-ante and ex-post screening system in the
Belgian context

4This minimal selection process has some exceptions regarding faculties of medicine, health-related profes-
sions, primary education and the five-years bachelor course of architecture. In these courses, the number of
students is defined ex-ante and is evaluated with an entry test. These rules can be extended by universities also
to other subjects that require laboratory activities.
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The DSU program offers students three principal kinds of benefits: scholarships or grants,

places in dormitories without scholarships and places in dormitories with scholarships. The

application for these services is submitted voluntary each year by students to the local DSU

office responsible for the territory in which the chosen university is located.5 At the moment

of the enrollment, all the students that apply are ranked on the basis of the family economic

situation measured with an equivalized economic indicator called the Indicatore della Situazione

Economica Equivalente (ISEE).6 This indicator measures the economic situation of families on

the basis of various family’s socio-economic characteristics such as their income, wealth and

number of family members.

Each student that has applied to the DSU program can be classified into three categories on

the base of their residence: on-site students, commuting students and out-of-site students. The

first category is made up of students who reside in the hosting city. They can be eligible only for

scholarships and canteen services and the amount of the grant is lower than the one available

to other students. Commuting students are those who reside in a city that is close to the

hosting city and can be reached daily with public transportation. They can be eligible only for

scholarships that are higher than the one available for the first category but lower than the one

available to out-of-site students. Out-of-site students are the residual category, they are eligible

for the maximum amount of scholarships and places in dormitories. These services are provided

on the basis of two rankings: one for scholarships, in which all the students are competing, and

one for places in dormitories, in which only out-of-site students compete. Therefore, we can

have three kinds of benefits: scholarships, places in the dormitory and a package that provide

the two services together (Student Package).

If one student applies and wins a student package, the scholarship is reduced by an amount

that varies among DSU offices and that should cover the annual rent of the dormitory. The

minimum amount for the scholarships are decided by the Italian Ministry of Education, Uni-

versity and Research (MIUR) but varies among territories. For example, in 2014 the minimum

amounts proved by the DSU office of the city of Palermo (Sicily) ranged from 1,284 Euro for

5In general each Italian region has one DSU office that is responsible for the regional territory. However, in
some region, these programs are managed at the provincial (e.g. Veneto) or the university level (e.g. Lombardia)

6If two students have the same ISEE the rank is given accordingly to a rule that is decided by each DSU
office. These rules can depend on a patrimonial indicator, students’ age, high school diploma grade or other
information.
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on-site students to 3,909 Euro for off-site students.7 On the other hand, if one student wins

only the place in the dormitory she has to pay a rent accordingly to her ISEE. Even though

students in dormitories have to pay a rent (or a reduction of the scholarship) we have to con-

sider different advantages connected with this service. Indeed, the rent is usually lower than the

market one and is a function of students’ economic situation and it covers all the expenses (e.g.

Internet connection, electricity consumption, etc.). Moreover, students do not have to find an

apartment on their own in a new city and have the opportunity to live in an environment full

of other students.

Another distinctive characteristic of the DSU program is that, for the first year of enrollment,

the rankings are based only on the economic situation of students. Therefore, they do not

depend on a merit or performance measure and is not directly related to the high-school grade

of pupils. To account for this feature, we focus our analysis only on students that are enrolling

for the first year for the first time in an Italian university. Unfortunately, we are not able

to control for the economic situation of students and we treat the benefits connected to DSU

programs as a general characteristic of the university systems considered. However, given the

detail of our dataset, we are able to separately identify the effects of scholarships, places in

dormitories and student packages.

3.4 Data

3.4.1 Students’ Data

The data regarding students’ choices and characteristics are collected from the administrative

archive of the MIUR called Anagrafe Nazionale Studenti (ANS). The ANS contains information

on the entire population of students that have enrolled in an Italian university in 2014.8 This

work focuses on students that have taken their high-school diploma in 2014 and have enrolled

for the first time in an Italian university in the academic year 2014-2015.

The information available at the student level are the city of residence; gender; age; high-

7http://www.vivereateneo.it/bando-ersu-richiesta-borse-studio
8These data have been provided by the University of Cagliari (Italy) and are collected inside the research

project From high school to job placement: micro-data life course analysis of university student mobility and
its impact on the Italian North-South divide. financed inside the projects of relevant national interest (PRIN)
2017.
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school diploma grade and type; chosen university. In particular, for each university chosen we

have information on the city in which the university is situated and the degree course chosen

by the student.

The sample used in this work is selected considering the characteristics of the Italian HE sys-

tem on the bases Italian HE’ characteristics and the information available in the ANS archive as

follows. First, we do not consider the students enrolled in distance learning universities. These

institutions are not considered because they do not require students to live in the hosting area

and allow them to participate in university activities from their home. Therefore, students that

choose to enroll in these universities are not moving or choosing to move and their choice is not

influenced by hosting area characteristics or financial aid offered by universities. Second, we

do not consider students that enroll in courses of medicine, health-related professions, primary

education, sport, and in the field of study architecture. This choice depends on the character-

istics of the admission systems valid in these specific areas. In particular, as shown in Section

3.3 these courses have an ex-ante screening system in which the number of students is chosen

ex-ante on the basis of an entry test. Hence, students that ‘choose’ a specific university in these

fields are less likely to choose freely. For example, medical entry tests are national and the uni-

versity in which the student is enrolled is assigned on the basis of her ranking position. Only

very high-ranked students are able to choose their university and all the others are distributed

on the base of available places in all the national territory. Moreover, we do not consider all the

students that are enrolled in architecture even if they have chosen a course without the ex-ante

screening system. This choice is made to avoid sample selection bias in the results. Indeed, the

five-year course of architecture is the most important degree in this field of study absorbing the

30% of students in our sample.

Moreover, we do not consider students enrolled in agricultural and defense degrees because

these courses are offered by very few institutions in Italy and the choice of enrollment in a

specific region could depend more on the simple availability of the course than on university’s

and hosting area’s characteristics. We further restrict our sample excluding those students for

whom we do not observe the diploma grade. Following this strategy, we have retained a total

of 176,136 students.

Following the recent literature (e.g. D’Agostino et al., 2019; Kelchtermans and Verboven,
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2010), we have grouped the students in different subsamples on the basis of the information

regarding the degree chosen. In particular, we consider 11 fields of study: business & statis-

tics, chemistry & pharmacy, education, engineering, humanities, languages, law, life & natural

sciences, mathematical and physical sciences, psychology, social & political sciences.9 All the

analyses presented in this work are carried considering these groups as separate samples to

consider that students that prefer different fields might have different preferences regarding the

various university’s and hosting region’s characteristics. Moreover, as noted in Biancardi and

Bratti (2019), even the same university can have different characteristics on the base of the

field of study considered. For example, one institution that has a very high-quality research

department in economics may have a poor quality research department in psychology. The

use of different subsamples has two additional advantages. First, it reduces the computational

burden of the estimation by considering that students can choose only among universities that

provide a course in the same field of study.10 The second advantage is related to our sample

selection strategy. Indeed, the arbitrary exclusion of students on the base of the field of study

chosen might introduce selection bias in our results. However, given that we analyze each field

of study separately we have that each subsample represents the entire population of students

that have chosen that specific field. The only exception is given by the subsample of students

enrolled in education in which we have excluded those courses that apply an ex-ante admission

system. In this case, the sample selection bias might be still present but it will affect only the

results related to this specific group.

Moreover, we are not modeling the choices of students’ regarding enrollment and the field

of study decisions. In this respect, we are assuming that there is a fixed overall demand for

education in Italy and that our analysis regards only the choice between different universities

which provide a degree course in the field of study chosen. Therefore, we focus on the third

stage of a three stages decision process in which students decide whether to enroll in the first

stage, the field of study in the second and the university to attend in the third.

9The definition of each field of study is based on the official terminology provided by ISTAT.
10Indeed, if we consider that each student can choose among all the degrees provided the resulting dataset

will be composed by 108,852,048 rows (618 alternatives for 176,136 students).

106



3.4.2 DSU data

The information regarding the DSU program are collected from the open data portal USTAT11

managed by the MIUR. USTAT is made by various sections that contain detailed information

on various areas that characterizing services supplied by universities and DSU offices.

This data contain various information such as the number of scholarships, places in dormito-

ries and canteens, the presence of a college that provides services to universities12, the number

of applications for the different services and the number of accepted applications. Moreover,

these data are provided considering two different levels: DSU offices and universities. In par-

ticular, the information regarding places in dormitories and canteens are available at the DSU

office level, whereas the ones regarding scholarships are available at the university one. There-

fore, it is possible to know exactly how many scholarships are provided by the DSU office in its

territory and the distribution of these scholarships among the different universities.

To account for these features, we have assigned all the information regarding places in

dormitories and canteens at each university on the basis of their geographical position. This is

an important feature of the dataset because some universities have dislocated branches in more

than one province (for example the university of Cattolica). In these cases, we have used the

information regarding the DSU office responsible for the area that is hosting the specific branch

of the university to assign the right amount of places in dormitories and student packages. As

for scholarships, we have exploited the information available at the university level. Moreover,

given that in some cases the scholarships are given together with a place in a dormitory, we have

computed three indicators: the number of scholarships, the number of places in dormitories

without scholarships and the number of places in dormitories that are provided together with

scholarships (student packages). To consider all the possible services offered by local agencies,

we consider even the services that some regions (namely, Trentino Alto Adige and Valle d’Aosta)

provide to students that have their residence in the region but study outside its territory. Using

this strategy we have a very complete and unique dataset that allows us to measure precisely

the effect of these services on the students’ location decisions.

11http://ustat.miur.it/opendata/
12Colleges are a different kind of institutions that are present only in some Italian provinces and provide

different services such as scholarships and places in dormitories on the basis of specific criteria. Given that
these criteria change among the different colleges we use only the information regarding the presence of the
college in the city that hosts the university.
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We have collected DSU data considering the academic year preceding the one for which

we have collected information on students’ choices (2013-2014). This strategy is followed for

two reasons. The first is related to possible endogeneity issues that could arise using the data

regarding the academic year 2014-2015. In that case, the number of applications and services

provided would depend on the number of students enrolled in that specific year, this way

introducing a simultaneity bias. The second is related to the information available to students

before enrollment. In fact, all the information regarding the number of applications received

and services provided in previous years are easily available to students that make expectations

on the probability to win a scholarship or a place in a dormitory. To further control for

this element, the analysis is carried considering the expected number of services available at

the universities computed as the number of places or scholarships available weighted for the

probability to win the service. This probability is computed as the ratio between accepted and

received applications.

3.4.3 Universities’ characteristics and geographical controls

The data regarding universities’ and hosting areas’ characteristics are collected from different

sources.

The information related to the education supply of Italian universities are collected from

USTAT. To follow the sampling strategy outlined in section 3.4.1, we have collected the in-

formation regarding the courses provided by universities and the city that hosts the principal

branch of the university.13 The information regarding the city is used to compute the distance

between students’ city of residence and institutions and to assign the right DSU office to the

university. In order to control for the characteristics of universities’ supply, we have collected

data regarding the number of professors and researchers employed by the university for each

field of study considered, the share of foreign professors and the number of members of the

administrative staff.

The USTAT archive provides also the information related to the average tuition fee paid by

students, and the number of scholarships and places in dormitories provided by the universities

13Some universities have branches in different cities inside the same province that are served by the same
DSU office. In these cases, we have assigned at each university the city that hosts the principal branch defined
as the branch with the highest number of students enrolled in 2013.
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outside the DSU program. The first variable is computed as the total contribution of students

over the number of students enrolled in 2013-2014. It permits to control for differences in

enrollment costs that exist among universities. The information regarding the number of non-

DSU scholarships and places in dormitories are used to control for other kinds of policies that

can be used by universities to foster their attractiveness not comprised in the DSU program.

All the data gathered from the USTAT archive refers to the academic year 2013-2014.

As for the quality of researchers employed at the universities, we have collected the number

of departments that were awarded in the dipartimenti di eccellenza (departments of excellence)

project. This project, managed by the National Agency for the Evaluation of Universities and

Research Institutes (ANVUR), consists in a standardized assessment of the research’s quality

of Italian departments and is based on the results of the third Italian Research Evaluation

Exercise (VQR) which concerned the period 2011-2014.14

The last variable used at the university level is the amount of public funding that the

universities have received in the academic year 2014-2015. This variable is used to further

control for the dimension of universities in terms of resources that they are able to spend

during the academic year. These information are gathered from the tables available from the

MIUR.

Another important determinant of the decision process of students is given by the charac-

teristics of hosting areas such as labor market conditions and cost of life (Dotti, Fratesi, Lenzi,

and Percoco, 2013; Giambona et al., 2017). To control for these variables, we have collected

the data regarding the provincial unemployment rate, the regional value added and the average

provincial housing price. The information regarding value added and unemployment rates are

collected from ISTAT. In particular, unemployment rates are computed as the average rate

between 2011 and 2013. For housing prices, we have collected the average purchase price per

square meter in 2013 from the Real Market Observatory (OMI) database.

From ISTAT we have also gathered the euclidian distance between students’ city of resi-

dence and the city that is hosting the university. This variable is used to control for a possible

deterrence effect connected with the costs of transportations, accommodation and for the psy-

chological costs related to the distance from home.15

14See Biancardi and Bratti (2019) for the evaluation of the effects of the Italian Research Evaluation Exercises
on the students’ enrollment choices.

15See, for example, Cattaneo et al. (2016) on the effect of air transportation services on the mobility of
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Table 3.1: Descriptive statistics on DSU policies

N Scholar.
(Prob)

Scholar.
(Exp. N)

Dormitory
(Prob)

Dormitory
(Exp. N)

Student
Package
(Exp. N)

South 44294
Islands 17914
Centre-North 113928

Social & Political sciences 19739 76.63% 2544 51.82% 87 282
Psychology 5561 84.30% 2607 46.98% 95 244
Math. & Physical sciences 8991 78.36% 2725 55.40% 85 321
Life & Natural sciences 12704 82.88% 2187 50.12% 70 259
Law 18822 80.69% 2533 51.72% 85 266
Languages 16252 80.50% 2113 56.96% 112 245
Humanities 14440 76.88% 3104 54.82% 85 325
Engineering 32628 87.34% 2901 48.44% 110 271
Education 6656 86.75% 2266 52.31% 83 253
Chemistry & Pharmacy 8964 77.15% 2730 52.19% 94 317
Business & Statistics 31379 84.23% 2145 53.34% 130 256

Notes: The table reports descriptive statistics regarding the sample students who have enrolled in an Italian
HEU for the first time in 2014 and the services provided by DSU offices. All the data regarding DSU services refer
to the academic year 2013-2014. Column (1) reports the number of students enrolled; Column (2) reports the
average probability to win a scholarship computed as the ratio between applications and scholarships provided
by the DSU office; Column (3) reports the average expected number of scholarships in destination computed as
the number of scholarships available weighted for the probability to have a scholarship; Column (4) reports the
average probability to obtain a place in one dormitory computed as the ratio between the number of applications
and the number of places in dormitory provided by the DSU office; Column (5) reports the average expected
number of places in dormitories without scholarship in destination computed as the number of places available
weighted for the probability to win a place in a dormitory; Column (6) reports the average expected number
of student packages (places in dormitories with scholarship) in destination computed as the number of student
packages available weighted for the probability to win a place in a dormitory.

All these data are combined into a unique dataset using the information regarding the

geographic position of universities. Moreover, given our sample selection strategy and that

some universities have separate branches in different areas, we define each alternative as a

Higher Education Unit (HEU) to indicate one specific branch of one Italian university in one

specific field of study.

In the next section, we provide some descriptive statistics regarding the variables used in

the estimation and students’ characteristics.

110



3.4.4 Descriptive evidence on students’ choices and main statistics

Table 3.1 reports the number of students and the descriptive statistics regarding the services

provided by the DSU by region of residence and field of study. The majority of students in our

sample reside in one region in the central or northern Italy, the most chosen field of study is

Engineering whereas the least one is Psychology. Concerning the services provided by the DSU,

we can see that the figures are similar among the various fields. In particular, the probability

to win a scholarship ranges between 76.63% for students enrolled in Social & Political sciences

and 87.34% for students enrolled in Engineering. The figures related to the probability to win

places in dormitories are lower in magnitude and range from 46.98% for students enrolled in

Psychology to 56.96% for those in Languages. Therefore, DSU offices are able to satisfy more

efficacy the applications related to scholarships than the ones regarding places in dormitories.

Moreover, it is remarkable that the expected number of scholarships provided is way bigger

than the sum of the places in dormitories with and without scholarships. These differences

can be related to the fact that the provision of places in dormitories is more expensive than

the provision of scholarships and requires the existence of buildings that can be used for this

purpose.

Table 3.2 reports the descriptive statistics regarding the main individual variables used in

the estimation. The first column reports the average distance traveled by students to reach

their chosen HEU measured as the distance between students’ city of residence and HEU’s

hosting city. Students from islands and southern regions of Italy travel, respectively, 4 and 3

times more than students from central or northern regions. These differences are in line with

the findings highlighted in the previous literature regarding the out-migration of students from

southern regions and islands into central and northern regions (e.g. Cammelli and Gasperoni,

2015). We take into account this difference in our empirical strategy by exploiting the role of

the macroregion of residence in shaping the preferences of students.

With respect to the gender composition of students, we can see that the majority of students

observed are females. Although the share of female students is very similar among macroregions

it differs when considering the field of study. It ranges from a minimum of 23.7% in Engineering

to a maximum of 93.5% in Education. These differences indicate that females and males have

students in Italy
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Table 3.2: Students’ characteristics by field of study and macroregions

Distance (KM) Diploma Grade (Avg)

Distance
(KM)

Female
(%)

Dip.
Grade
(Avg)

Female Male Female Male

South 144.3 57.0% 81.8 136.4 154.6 82.9 80.2
Islands 212.0 56.3% 80.8 195.6 233.1 81.9 79.3
Centre-North 47.5 54.6% 78.5 48.1 46.7 79.5 77.4

Social & Political sciences 78.0 68.4% 75.7 78.3 77.3 76.8 73.3
Psychology 91.5 80.2% 80.0 91.4 91.7 81.0 75.9
Math. & Physical sciences 74.4 27.5% 80.5 78.3 72.9 84.0 79.1
Life & Natural sciences 78.7 64.9% 80.2 82.1 72.5 81.9 77.0
Law 93.8 63.4% 79.0 90.2 100.0 80.3 76.9
Languages 92.1 83.1% 80.2 91.8 93.5 80.9 76.9
Humanities 80.1 67.4% 79.5 78.9 82.7 80.4 77.7
Engineering 112.8 23.7% 82.5 126.4 108.6 85.9 81.4
Education 53.3 93.5% 74.7 53.0 59.1 74.9 71.9
Chemistry & Pharmacy 80.7 64.5% 81.2 84.1 74.5 82.6 78.8
Business & Statistics 86.1 44.4% 78.9 86.1 86.2 81.7 76.6

Notes: The table reports the descriptive statistics of the sample of Italian university students who have enrolled
for the first time in academic year 2014-2015 divided by fields of study and macroregions. Column (1) reports
average distance traveled by students to reach the HEU chosen from their city of residence in kilometers; Column
(2) reports the average percentage of female students; Column (3) reports the average diploma grade; Column
(4) and column (5) report the average distance traveled considering, respectively, female and male students;
Column (6) and column (7) report the average high school diploma grade considering, respectively, female and
male students.

different tastes regarding the field of study chosen.

The third column of Table 3.2 shows students’ average diploma grades by macroregions and

field of study. Students from southern regions and islands have better grades than the others.

However, this fact can be related to the differences in high school evaluation policies existing

at the regional level. We control for this element controlling for the students’ macroregion of

residence in our empirical specification. The second part of Table 3.2 presents the information

regarding the differences existing between males and females in the average distance traveled

and average diploma grades. It is remarkable to note that, although males in general travel more

than females, we have that this difference is not constant among fields of study. Interestingly,

in all the fields considered female students have a higher diploma grade compared to male

students. Because of these elements, we explore the existence of heterogeneity in preferences

due to differences in taste parameters based on students’ gender in the empirical specification.

Table 3.3 reports the shares of students that have enrolled in their province of residence
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Table 3.3: Shares of stayers and movers students by field of study and macroregions

Movers

Stayers (%) Movers (%) In Region (%) Out of Region
(%)

South 53.37% 46.63% 44.97% 55.03%
Islands 50.94% 49.06% 51.79% 48.21%
Centre-North 50.58% 49.42% 66.72% 33.28%

Social & Political sciences 51.87% 48.13% 60.93% 39.07%
Psychology 39.26% 60.74% 55.03% 44.97%
Math. & Physical sciences 53.72% 46.28% 63.35% 36.65%
Life & Natural sciences 50.31% 49.69% 64.57% 35.43%
Law 56.35% 43.65% 55.31% 44.69%
Languages 43.43% 56.57% 60.26% 39.74%
Humanities 49.29% 50.71% 61.31% 38.69%
Engineering 50.35% 49.65% 58.31% 41.69%
Education 51.92% 48.08% 69.16% 30.84%
Chemistry & Pharmacy 47.87% 52.13% 64.09% 35.91%
Business & Statistics 56.71% 43.29% 57.54% 42.46%

Notes: The table reports the descriptive statistics concerning the shares of stayers and movers students by field
of study and macroregions. Column (1) reports the percentage of students that have enrolled in an HEU located
in their province of residence; Column (2) reports the share of students that have enrolled outside their province
of residence; Column (5) reports the share of students that have enrolled in one HEU situated in their region
of residence but outside their province of residence; Column (6) reports the percentage of students that have
enrolled in an HEU located outside their region of residence.

(Stayers) or outside of it (Movers). With respect to the second group, we have presented also

the shares of students that have enrolled in their region of residence (In Region) or outside

it (Out of Region). From the table, we can see that the majority of students from southern

regions tend to remain in their province of residence while the other students are almost split

equally between movers and stayers. However, considering only the sample of movers, almost

two-thirds of students from Centre-North tend to enroll in their region of residence.

Table 3.4 reports the information regarding the differences in terms of gender composition

and diploma grade between stayers and movers. With respect to the gender composition, it

is possible to remark that, with the exceptions of Engineering, Math & Physical sciences and

Business & Statistics, the share of female students is always higher than the 50%. However, the

shares are highly heterogeneous across groups and tend to be higher when considering students

that move outside their province but inside their region of residence. Concerning the high

school diploma grade, we can see that it tends to be higher in the group of movers, especially

if when considering students that have chosen an HEU outside their region of residence.
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Table 3.4: Characterstics of stayers and movers by field of study and macroregions

Movers

Stayers Movers In Region Out of Region

Female Dip.
Grade

Female Dip.
Grade

Female Dip.
Grade

Female Dip.
Grade

South 55.43% 80.97 58.71% 82.65 60.18% 82.15 57.50% 83.05
Islands 56.57% 79.52 56.09% 82.04 60.40% 80.79 51.45% 83.38
Centre-North 52.70% 77.80 56.55% 79.27 56.69% 78.73 56.27% 80.36

Social & Political sciences 67.41% 75.00 69.57% 76.51 69.66% 75.84 69.42% 77.56
Psychology 79.80% 79.64 80.49% 80.24 80.10% 79.77 80.97% 80.81
Math. & Physical sciences 26.52% 79.92 28.70% 81.09 28.49% 80.68 29.05% 81.81
Life & Natural sciences 64.28% 80.15 65.55% 80.17 64.99% 79.74 66.56% 80.93
Law 62.98% 78.30 64.05% 79.98 66.15% 78.83 61.45% 81.41
Languages 82.11% 79.41 83.79% 80.89 84.55% 80.31 82.65% 81.76
Humanities 66.90% 79.01 67.84% 79.96 68.86% 79.61 66.22% 80.52
Engineering 22.91% 81.52 24.41% 83.51 23.27% 82.15 26.01% 85.41
Education 92.94% 74.39 94.19% 75.09 95.03% 75.27 92.30% 74.69
Chemistry & Pharmacy 62.57% 80.99 66.36% 81.47 66.04% 81.56 66.92% 81.31
Business & Statistics 43.31% 77.90 45.86% 80.20 46.75% 78.79 44.65% 82.10

Notes: The table reports the descriptive statistics concerning the share of female students and the average
diploma grade for stayers (columns 1 and 2) and movers (columns 3 and 4) by field of study and macroregions.
The rightmost part of the table provides information on the share of female students and the average diploma
grade for students that have enrolled outside their province of residence but inside their region (columns 5 and
6) and students that have enrolled in an HEU outside their region of residence (columns 7 and 8).
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Table 3.5 shows the descriptive statistics regarding HEUs’ characteristics by field of study

and hosting macroregions. The first column reports information regarding the average contri-

bution paid by students computed as the ratio between total contributions and the number

of students in 2013. HEUs in Centre-North collect, on average, more resources from students.

Since the tuition fees in Italy are progressive, this element can be related to differences in

income among students. Because of this, we control for housing prices, unemployment and

regional GDP at HEU’s location as well as student’s residence levels in the estimation. The

second column reports the total amount of public funding received on average by HEUs. Uni-

versities in Islands receive a higher share of public funding compared to universities located

in Centre-North and Southern Italy. Moreover, the amount of public funding differs among

fields of study. Indeed, the total amount ranges from 111.2 millions of Euro for Social & Po-

litical sciences to 161 millions of Euro for Chemistry & Pharmacy. However, this difference

is related more to differences in the amount of money received by universities rather than to

actual differences existing between fields of studies. Indeed, the amount of public funding is

observed at the university level and we cannot identify the exact amount of resources that are

dedicated to each field. However, given that our estimates are field-specific, we can exploit this

information to control for the relative differences in terms of resources received from the central

state between universities.

The second part of Table 3.5 presents information on scholarships and places in dormitories

provided by HEUs outside the DSU program. As we can note by comparing Table 3.5 and

Table 3.1, the provision of these services outside the DSU program is residual. Indeed, if we

consider for example Psychology, the number of scholarships provided in the DSU program

is around 132 times the one provided outside the DSU program. The last part of Table 3.5

shows the information concerning the academic staff composed by professors and researchers.

In particular, the table shows the average number of members of the academic staff employed

and its composition in terms of nationality and field of study. It is remarkable to note the very

low percentage of foreign academics in every field of study considered. With respect to the

regional distribution, we can note that universities in the Centre-North employ a higher share

compared to the others.
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Table 3.5: Characterstics of HEU by field of study and macroregions

non-DSU policies Academic staff

Avg
Contr.
(e)

Pub.
Fund.

(Mill. e)

Scholar.
(N)

Dorm.
(Prob)

Dorm.
(Exp. N)

Tot
(N)

Foreign
(%)

Field
(%)

South 934 101.2 33 19.8% 21.2 790 0.8%
Islands 1038 136.1 224 32.6% 26.9 1115 0.7%
Centre-North 1673 134.3 222 20.5% 18.5 1059 1.5%

Social & Political sciences 1453 111.2 162 23.6% 21.3 893 1.3% 3.3%
Psychology 1750 137.7 198 17.0% 15.1 1133 1.1% 9.3%
Math. & Physical sciences 1197 145.0 211 20.3% 17.1 1128 1.5% 10.3%
Life & Natural sciences 1381 125.0 176 23.0% 18.2 979 1.1% 11.6%
Law 1643 117.8 176 20.4% 19.5 940 1.1% 8.8%
Languages 1513 122.3 166 21.2% 16.1 981 1.4% 10.4%
Humanities 1438 126.1 184 25.1% 20.2 1002 1.3% 9.9%
Engineering 1331 137.4 223 26.0% 35.9 1025 1.1% 14.9%
Education 1447 138.3 209 19.9% 15.8 1130 1.2% 9.9%
Chemistry & Pharmacy 1081 161.0 217 19.0% 14.7 1211 1.1% 6.4%
Business & Statistics 1689 116.6 158 19.6% 18.7 955 1.4% 9.0%

Notes: The table reports the descriptive statistics concerning the characteristics of Italian HEUs by field of
study and hosting macroregions. All the data refers to the academic year 2013-2014. Column (1) reports the
average contribution paid by students computed as total contributions over the number of students; Column
(2) reports the total amount of public funding received on average by HEUs for the academic year 2014-2015;
Columns (3)-(5) report information on, respectively, the average number of scholarships, the probability to
obtain a place in a dormitory and the average expected number of available places in dormitories considering
policies provided by HEU outside the DSU program; Columns (7)-(9) show, respectively, the average number
of professors and researchers (academic staff) employed by HEU, the share of non-Italian academics and the
share of academics that are employed in the specific field of study.
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3.5 Empirical framework

3.5.1 The Conditional Logit Model

In order to estimate the various determinants of students’ location decision process, we base

our estimation strategy on the random utility models family (RUMs) (Train, 2003). RUMs

assume that a decision maker chooses one alternative from a definite choice set, by maximizing

her utility. The choice set is composed of mutually exclusive alternatives that are characterized

by their attributes. In our case, decision markers are students who choose the HEU into which

enroll. As explained in section 3.4.1, in this work we are modeling the choices related to the

third choice of a three-stage process in which students choose whether to enroll in the first

stage, the field of study in the second and the university into which enroll in the third stage.

Therefore, students’ choice set is made of all the HEUs that provide a degree in the field of

study chosen.

Formally, let us assume that in Italy there is a population of students n ∈ N and a set of

HEUs j ∈ J . If the student n chooses to enroll into HEU j, she obtains the following utility:

Unj = x′jβ + εnj (3.1)

where Unj indicates the utility of student n if she decides to enroll into HEU j, xj is the vector

of observed attributes of alternative j and εnj captures factors that enter in the utility Unj but

are not observed by the researcher. Consisting with the assumption of utility maximization,

student n will choose to enroll in university j only if:

Unj ≥ max
j′∈J

Unj′ with j 6= j′ (3.2)

therefore, only if the chosen HEU is the one that maximizes her utility. Given this condition,

the probability that student n chooses HEU j is given by the following:

Pnj = Prob(Unj > Unj′) ∀ j 6= j′ (3.3)

if we assume that the error term εnj is i.i.d type I extreme value distributed, the probability
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that student n choose the HEU j is given by the standard Logit formula (Mcfadden, 1974):

Pnj =
exp(x′jβ)∑J
j=1 exp(x

′
jβ)

(3.4)

In the Conditional Logit framework, this probability is estimated using a maximum likelihood

approach. CL has been widely applied in exploring the determinants of students’ choices (e.g.

Pigini and Staffolani, 2015; Long, 2004).

The probability formula in Eq. (3.4) exhibits several useful proprieties: i. the estimated

probabilities are always comprised between 0 and 1; ii. the probability to choose one alternative

is positively related to choice maker’s utility; iii. the sum of all the probabilities attached to

each alternative is always equal to 1. This last propriety derives from the assumption that all

the relevant alternatives are observed and included in the choice set faced by student n.

Another characteristic of CL is that all the elements contained in the vector xj need to

vary over alternatives. This element can be an issue if we consider the student’s attributes.

Given that these characteristics are constant among alternatives, the CL is not able to identify

any parameter associated with them. However, individual characteristics can be an important

driver of students’ preferences. For example, the effect of financial and in-kind policies may

change on the basis of students’ region of residence or high school diploma grade. In these

cases, to consider individual variables in the estimation, the researcher has to define them in

a way that can be handled by the model. One solution is to interact agent’s characteristics

with the alternatives’ attributes, this way obtaining a regressor that depends upon individual

characteristics but varies among alternatives.

However, along with its useful proprieties, CL presents several limitations that are relevant

in our context. Drawing on Train (2003), these limitations can be classified into two categories:

heterogeneity in preferences and substitution patterns.

With respect to the first category, the CL approach permits, by interacting choice-makers’

and alternatives’ attributes, to represent only the systematic variation in decision markers’

preferences that depend upon their observable characteristics. However, CL is not able to

represent the variation in tastes that depends on unobservables or that are purely random from

the researcher’s point of view. This is an important limitation of the CL approach since this

unobserved heterogeneity introduces a correlation between regressors and the error term, this
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way causing an omitted variable bias. In these cases, the CL is misspecified.

The second limitation of the CL approach is related to substitutions patterns. These rep-

resent how the choice probabilities of the alternatives considered in the choice set are related.

Indeed, given that the sum of choice probabilities is equal to 1, if the choice probability of

one alternative increases, those of the other alternatives have necessarily to decrease. The

substitution patterns assumed by the CL are called ‘proportional’ and are a consequence of

the well known Independence from Irrelevant Alternatives (IIA) property. This property states

that the probability ratio between two alternatives j and i depends only on the attributes of

these two alternatives. The consequences of this property can be clarified using the concept

of cross-elasticities. Cross-elasticities measure the percent change in the choice probability of

alternative i when the attribute xj of alternative j changes by 1%. In the case of the CL, these

cross elasticities are given by:

εij = −xjPnjβj (3.5)

as we can see, although the cross elasticity is between alternative i and alternative j, the

formula depends only on attributes of j. This indicates that if the probability of alternative

j increases, the probabilities of all the other alternatives reduce proportionally by the same

amount. However, in reality, one would expect that the cross elasticities between these two

alternatives should depend on their relative similarities and differences. For example, let us

assume that one agent is choosing between three drinks: coke A, coke B, and water. Suppose

that the price of coke A decreases by 1%. In this case, the probability to choose coke B

should decrease more than the one to choose water. However, in the CL framework, the

two probabilities will increase by the same amount, this way overestimating the effect on the

probability to choose water, and underestimating the one on the probability to choose coke B.

To overcome this problem, the researcher needs to define a nesting structure in the choice

decision process by splitting the alternatives into different sub-samples called nests. Each nest

will contain groups of alternatives that are more correlated with each other. In our example,

the researcher can define a nest for the cokes and another nest for the water. However, nesting

structures are not allowed by the CL framework.

To solve these two limits of the CL approach, this work takes advantage of a more sophis-

ticated discrete choice approach: the Latent Class Model.
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3.5.2 The Latent Class Model

The Latent Class Logit model (LCM) belongs to the general class of Mixed Logit (ML) models

and can be used to overcome the limitations of CL that we have summarized in Section 3.5.1.

Indeed, McFadden and Train (2000) have shown that ML can be used to approximate any

choice model with any distribution of preferences to any degree of accuracy. This result implies

that the ML can be specified to control for any source of heterogeneity in preferences and the

presence of nesting structures in the observed choice set.

In the ML model, the utility that individual n obtains choosing alternative j can be denoted

as (Hess and Train, 2017):

Unj = x′njβn + εnj (3.6)

where, differently from Eq. (3.1), we have that the vector of taste parameters βn now varies over

students. This feature allows us to consider explicitly the presence of heterogeneity in individual

preferences by estimating a different vector of preference parameters for each individual.

Assuming that the error term εnj is i.i.d. extreme value we can write the probability that

agent n chooses alternative j, conditional on the student parameter βn as:

Pnj(βn) =
exp(x′njβn)∑J
j=1 exp(x

′
njβn)

(3.7)

this formula indicates that the conditional choice probability of individual n depends on her

vector of utility coefficient βn. To derive the unconditional choice probability of individual

n, the researcher need to specify the cumulative distribution function of utility parameters

in the population F (β|θ). This distribution can be assumed to be continuous or discrete, to

differs among different elements of the vector βn, and to allow any type of correlation among

parameters.

With respect to heterogeneity in preferences, we have that the ML is a flexible method

that, by allowing all the parameters to be randomly distributed and correlated, allows us

to consider any source of preference heterogeneity that may depend on students’ observable

characteristics or be caused by individual’s idiosyncratic preferences.16 Moreover, given that

16ML permits to control also for scale heterogeneity. Scale heterogeneity is a shift in the vector of taste
parameters that is related to some unobserved factor that affects different individuals in different ways. One
consequence of this heterogeneity is that the choices of individuals that are strongly affected by the unobserved
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preference heterogeneity can be let to depend on individual characteristics, the ML permits to

identify the systematic variations in individual tastes.

With respect to the nesting structure in agents’ decision process, we have that the ML

does not exhibit the IIA property and can be modeled to approximate any kind of substitution

pattern and nesting structures. This is done by defining a dummy variable that refers to the

nest and letting the coefficients associated with this regressor to be randomly distributed. In

our case, we can suppose that HEUs located in the student’s region or province of residence are

more correlated with each other compared to all the other alternatives. Hence, in our empirical

strategy, we will control for this nesting structure by inserting a dummy that takes value 1 if

the HEU is in the student’s region or province of residence. This strategy permits to consider

more realistic substitution patterns with respect to the standard CL approach.

The LCM is a special case of the ML. In particular, LCM arises when the cumulative

distribution of individual parameters F (β|θ) is assumed to be discrete. Because of this, LCM

and ML with continuous F (β|θ) may lead to different results. Indeed, the ML permits to

choose various parameter distributions and its results may differ depending on the distribution

chosen. On the other hand, LCM approximates the true distribution of the parameters without

imposing any specific distributional assumptions on coefficients (Sivey, 2012). However, as

outlined in Greene and Hensher (2003), there is no reason to prefer one specification to the

other. In this work, we have chosen the LCM in order to have a more tractable and less

computationally intensive estimation approach.

The LCM assumes that students are sorted in a set of q ∈ Q latent classes. For each latent

class identified, the model estimates a vector of class-specific parameters βq that can be used

to have an estimate of the individual set of taste parameters βn. It is worth noting that latent

classes do not contain any particular individual but that the class membership is probabilistic

and can be defined to depend on the individual’s characteristics.

In the LCM, the probability that student n chooses HEU j, conditional on the fact that she

factor appear more random from the researcher’s perspective (Hess and Train, 2017). In these cases, the ML
allows to put a lower weight on the choices of individuals that are more affected by the unobserved factor, by
letting the scale of their vector of coefficients to be lower in magnitude.
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belong to the latent class q, can be written as:

Pnjq =
exp(x′jβq)∑J
j=1 exp(x

′
jβq)

(3.8)

where βq is the class-specific vector of parameters.

In order to estimate the individual distribution of parameters, we need to define the prob-

ability that one individual belongs to class q. Following Greene and Hensher (2003), this

probability assumes the standard Logit form:

Hnq =
exp(z′nγq)∑Q
q=1 exp(z

′
nγq)

(3.9)

where zn is the vector of individual characteristics of student n that enters in the class mem-

bership probability model and γq are the parameters that links zn to the class membership

probability Hnq. Therefore, for each class, we will have two vectors of parameters: βq and γq.

The first vector contains the taste parameters associated with alternative’s attributes. The

second permits to estimate the class membership probability on the basis of individual charac-

teristics. Given this definition, the unconditional probability that student n chooses alternative

j is given by:

Pnj =

Q∑
q=1

HnqPnjq (3.10)

These elements, along with the information on students’ observed choices, can be used to

estimate the posterior class membership probability:

Ĥq|n =
P̂nqĤnq∑Q
q=1 P̂nqĤnq

(3.11)

where P̂nq denotes the class-specific probability for the specific choice made by student n.

Therefore, student’s posterior class membership probability is estimated conditional on his

own individual characteristics and class-specific choice probabilities. In other words, Ĥq|n is

computed by attaching an higher weight to the latent class that permits to predict the higher

probability to choose the alternative actually chosen by student n.

Given the probability in Eq. (3.11), the set of taste parameters of individual n are defined
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as:

β̂n =

Q∑
q=1

Ĥq|nβ̂q (3.12)

Therefore, the individual set of parameters will depend on decision makers’ characteristics on

the basis of their posterior class membership probabilities.

3.5.3 Endogeneity

In order to interpret our estimates of students’ utilities non-distorted estimates of the effect

that DSU policies have on students’ choice probabilities, we need that all the observed variables

are exogenous. In our case, we have various possible sources of endogeneity sources that need

to be addressed.

The first threat to our identification arises from the fact that DSU offices and HEUs, through

a process of adaptation, could increase their supply in response to a higher demand for services.

For example, the supply of DSU services in time t (2014-2015) can be affected by the demand for

services in time t− 1 (2013-2014). Therefore, changes in the demand can affect the supply, this

way raising endogeneity concerns through inverse causality. However, as explained in Section

3.4, all the information regarding DSU’s supply and HEUs’ characteristics are collected with

respect to academic year t−1 (2013-2014) and should be directly affected by changes in demand

in time t− 2 (2012-2013). Thus, to have a simultaneity bias, changes in demand in time t− 2

should affect supply in time t. This problem is even less problematic if we consider scholarships.

In fact, the data regarding this policy are observed at the universities’ level. Therefore, even if

the DSU offices can discretionally modify their supply, in order to have a simultaneity bias, also

the winning applications in each university have to increase. Ideally, to completely solve this

problem we should observe an exogenous event or collect data referring to previous academic

years. However, in the absence of these possibilities, we believe that the nature of our data is

mostly unaffected by this endogeneity source.

Correlation between the error term and our regressors can arise also in the presence of

unobserved heterogeneity in preferences and omitted variables. If students’ preferences for

DSU’s policies and HEUs’ characteristics are affected by some unobserved factor, we will have

those observationally identical students will take different decisions according to elements for

which we have not accounted for. We first address this issue by using a very rich set of controls

123



variables on both HEUs’ and hosting areas’ characteristics. Second, as extensively explained

in Section 3.5.2, the ML model provides various solutions to account for observed, unobserved

and scale heterogeneity. Namely, the researcher can specify one or more parameters to be

randomly distributed and correlated in order to have an individual set of parameters that will

depend on students’ characteristics and idiosyncratic preferences. In our case, with the LCM,

we semi-parametrically approximate the continuous distribution of students’ preferences using

a discrete one. This permits to avoid assumptions on the functional form of students’ individual

preferences and to control for unobserved heterogeneity that depends also on unobserved factors.

Therefore, these sources of endogeneity should be less of an issue in our case.

3.5.4 Empirical strategy

The first step of our empirical strategy concerns the estimation of a CL in order to have a

preliminary understanding of how HEUs’ and hosting areas’ characteristics affect students’

choices.

In this case, the utility that student n will obtain choosing HEU j is specified as:

Unj = DSUjβDSU +HEU ′jβHEU + AREA′jβAREA + d′njβd + εnj (3.13)

where DSUj denotes the services provided by DSU offices in HEU’s hosting area, HEUj includes

HEUs’ controls, AREAj includes HEU’s hosting area controls, dnj indicates the regressors that

varies among alternatives and individuals, and εnj is the error term.

The vector DSUj contains our main variable of interests: i. the number of scholarships

weighted by the probability to obtain a scholarship; ii. the number of places in dormitories

without scholarships weighted by the probability to obtain a place in a dormitory; iii. the num-

ber of places in dormitories with scholarships (student packages) weighted by the probability

to obtain a place in a dormitory. The probabilities to obtain the services are computed as the

ratio between the number of applications accepted by DSU offices and the number of received

applications. As explained in Section 3.4.2, the indicators concerning dormitories and student

packages vary over DSU offices while the one related to scholarships is computed considering

the information available at the HEU’s level. One important element to note is that we use

expected indicators rather than absolute numbers. This is done to consider the information
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related to the ability of DSU offices to satisfy the demand for these services.

The variables included in vector HEUj are used to control for the various dimensions of

HEUs’ attractiveness that can affect students’ choices other than our variables of interest. We

include in this vector the number of places in canteens and a dummy variable that takes value

1 if there is a college in the HEU’s hosting area. Moreover, given that universities can provide

scholarships and places in dormitories outside the DSU program, we include in HEUj also the

number of non-DSU scholarships and the number of places in dormitories provided outside

the DSU program weighted by the probability to obtain a non-DSU place in a dormitory.

The last group of variables included in HEUj are related to the various dimension of HEU’s

attractiveness that have been outlined in the previous literature summarized in Section 3.2.

In particular, we control for the dimension and the quality of HEUs using: the number of

excellence departments; the number of professors and researchers (academics) employed by

the HEU; the share of foreign academics; the number of members of administrative staff; the

number of academics employed in the field of study considered; the amount of public funding

received by the HEU. Furthermore, we control for the effect of tuition fees and enrollment

costs using the average tuition fee computed as the total students’ contribution divided by the

number of enrolled students.

Given the role highlighted in the previous literature of hosting areas’ characteristics such

as labor market conditions or life costs, we have included in vector AREAj the information

relative to: the average unemployment rate between 2011 and 2013 in HEU’s hosting province;

the average housing purchase price per square meter in 2013 in hosting provinces; the GDP in

HEU’s hosting region in 2013.

Finally, the variables contained in dnj are: a quadratic polynomial of the distance between

student’s city of residence and HEU’s hosting city; a dummy variable that indicates if the HEU

is located in student’s province of residence; a dummy variable that indicates if the HEU is

located in student’s region of residence. These variables are used to control for student’s cost

of migration.

Table 3.6 presents the list of variables used in estimation along with their definition. The

results related to the CL estimates are presented in Section 3.6.1 below.

The second step of our estimation strategy regards the estimation of the LCM outlined in
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Section 3.5.2. In this case the utility of student n in latent class q is the defined as:

Unj|q = DSUjβDSU |q +HEU ′jβHEU |q + AREA′jβAREA|q + d′njβd|q + εnj|q (3.14)

Eq. (3.14) differs from Eq. (3.13) for the presence of the subscript q in all the coefficients. This

indicates that we are estimating a different utility function for each latent class q identified.

These parameters are then used to estimate a set of individual coefficients on the basis of the

posterior class membership probability defined in (3.11).

Recalling Eq. (3.9), the unconditional class membership probability is defined as:

Hnq =
exp(z′nγq)∑Q
q=1 exp(z

′
nγq)

(3.15)

where the vector zn contains the set of individual characteristics that we use to determine the

probability of class assignment. In particular, zn contains a set of individual characteristics and

a set of variables that gives information on the student’s region or province of residence. The

first set of variables contains: a constant; one dummy that takes value 1 if the student resides in

a northern or central region of Italy; student’s high school diploma grade; a dummy that takes

value 1 if the student is female; one dummy that takes value 1 if student’s city of residence hosts

at least one HEU. These variables are exploited to understand how individual characteristics

shape students’ preferences. The second set of variables contains: the average unemployment

rate between 2011 and 2013 in students’ province of residence; the GDP of students’ region of

residence in 2013; the average housing purchase price per square meter in student’s province

of residence. These variables are used in order to partially control for students’ socio-economic

background.

Table 3.6 presents the list of variables used in estimation along with their definition. The

results of LCM estimates are presented in Section 3.6.2 below.

Since the utilities estimated using the discrete choice approach presented are identified only

up to a constant, the coefficients can be interpreted only in respect of their relative magnitude

and sign. Therefore, to ease interpretation, we present the results in terms of semi-elasticities

and willingness to travel (WTT).

The semi-elasticities are defined as the percentage change in the probability that student n
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Table 3.6: Definitions of variables used in estimation

Variable Definition

Characteristics of Higher Education Units

E(Scholarship)
Number of scholarships weighted by the probability to obtain a schol-
arship.

E(Dormitory)
Number of places in dormitories without scholarship weighted by the
probability to obtain a place in a dormitory.

E(Student Package)
Number of places in dormitories with scholarships weighted by the
probability to obtain a place in a dormitory.

Places in Canteen Number of places in canteens.

College 1 if a college serves the HEU

non-DSU Scholarship Number of scholarships provided outside the DSU program.

E(non-DSU Dormitory)
Number of places in dormitories provided outside the DSU program
weighted by the probability to obtain a non-DSU place in a dormitory.

Excellence Departments Number of department of excellence.

Academics Number of professors and researchers employed by the HEU.

Share of Intern. Academics Share of foreigner professors and researchers.

Administrative staff Number of administrative staff employed by the HEU.

Field of study Academics
Number of professors and researchers employed in the field of study
considered.

Public funding (Mill.) Amount of public funding received by the HEU in millions of Euro.

Average contribution
Average tuition fee computed as the total students’ contribution di-
vided by the number of enrolled students.

Distance Distance between student’s city of residence and HEU’s hosting city.

Distance2 Distance between student’s city of residence and HEU’s hosting city
squared.

HEU in province 1 if the HEU is in the student’s province of residence.

HEU in region 1 if the HEU is in the student’s region of residence.

Unemployment Average provincial unemployment rate between 2011 and 2013.

Housing price Average provincial housing purchase price per square meter.

Regional GDP Regional GDP.

Student’s individual characteristics

Diploma Grade High school diploma grade.

CentreNorth 1 if the student resides in a central or northern region of Italy

Housing price in residence
Average housing purchase price per square meter in student’s province
of residence

Unemployment in residence
Average unemployment rate between 2011 and 2013 in student’s
province of residence.

Regional GDP in residence GDP of student’s region of residence

HEU in residence 1 if student’s city of residence hosts one HEU.

Female 1 if student is female

The table reports the definitions of the variables used in estimation. The first panel contains the definitions of
student’s utility determinants. The second panel contains informations on the student’s characteristics used to
explore the existence of heterogeneity in students’ preferences.
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chooses alternative j when the service indicator in j increases by 1%. In the LCM model, the

individual semi-elasticities with respect to the regressor xj are computed as follows:

εnj =

Q∑
q=1

Ĥq|nεnjq =

Q∑
q=1

Ĥq|nxj(1− Pnjq)βq (3.16)

where Ĥq|n is the posterior probability of individual n to belong to class q computed using Eq.

(3.11), Pnjq is the probability for student n to choose alternative j given the class q computed

using Eq. (3.8), and εnq is the semi-elasticity of the individual n for the latent class q. As we can

note, Eq. (3.16) indicates that individual semi-elasticities are computed as the average of each

latent class semi-elasticity weighted by individuals posterior class membership probabilities.

This feature allows us to have individual estimates for semi-elasticities that will depend on the

entire vector of individual characteristics zn.

The WTT is defined as the additional number of kilometers that student n is willing to

travel for a 1% increase in one of the service indicators. The WTT for a student n in the latent

class q for one of the DSU services is computed as:

WTTn = −∂Unj/∂DSUj
∂Unj/∂dnj

= − βDSU,n ×∆DSUj
2βd2,ndistnj + βd1,n

(3.17)

where ∆DSUj denotes the 1% change in DSU service indicator and βDSU,n, βd1,n, βd2,n, indicate,

respectively, the individual coefficients associated with the DSU indicator considered and the

linear and quadratic terms of the polynomial of distance. Namely, the WTT measures the

marginal rate of substitution between DSU’s services and distance. This is given by the ratio

between student’s marginal utility for the service over her marginal utility for the distance.

Each WTT estimates will be based on the individual set of parameters obtained through Eq.

(3.12).

The results related to these two measures of students’ sensitivity are visually explored

through non-parametric regressions to explore the existence of heterogeneity between different

groups of students. In particular, for each variable of interest, we have estimated a local poly-

nomial regression to estimate the relationships existing between students’ sensitivity to DSU’s

policies and their characteristics (e.g. distance traveled and high school diploma grade). Local

polynomial regressions are techniques that permit to estimate the relationship between two
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variables y and x without assuming its functional form. For a given point x0, the relationship

is estimated by regressing the realizations of y on a constant and a polynomial of the differ-

ence between x0 and one x in its neighborhood. The width of this neighborhood is chosen by

deciding a bandwidth. Larger bandwidths permit more smoothing but less resolution, whereas

smaller ones give more resolution but higher variability in the results. In our case, we have

chosen the asymptotic optimal bandwidth provided in Fan and Gijbels (1996). This bandwidth

is chosen to solve the trade-off between resolution and smoothing by minimizing the conditional

mean integrated square error of the regression. Another element to choose is the degree of the

polynomial. After various tests with higher degrees we have opted for a degree 3 polynomial.17

3.6 Results

3.6.1 Baseline: Conditional Logit estimates

Table 3.7 reports CL estimates of the utility function defined in Eq.3.13 in Section 3.5.4 for

each field of study considered.

Given that utility functions are identified only up to a constant, we cannot compare the

magnitude of coefficients across different specifications. Nevertheless, we can infer the effects

of universities’ attributes on students’ choices by comparing coefficients’ signs and relative

magnitude in each field. By applying this logic, we can highlight various interesting results.

Since coefficients’ signs change across fields of study, we have found evidence of the existence

of heterogeneity in students’ preferences among fields of study. If we consider our variables

of interest, we can note that DSU’s policies have different effects depending on the field of

study. Indeed, the effect of E(Scholarships) is positive and significant in 5 out of 11 fields

considered, whereas E(Dormitory) and E(StudentPackage) have a positive significant effect

in 7 fields. These results suggest that policies that provide places in a dormitory are more

effective in attracting students. Moreover, if we look at coefficients’ relative magnitude, we can

see that these policies have, in most of the cases, much stronger effects than the ones associated

with scholarships. This element suggests that in-kind policies play a major role in attracting

students. For example, the effect of one additional expected student package in Engineering is

17See Fan and Gijbels (1996) for details on the local polynomial regression approach.
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almost 8 times the negative effect of one additional expected scholarship. These results can be

related to the fact that, although scholarships can reduce students’ cost of living, they do not

cover housing and accommodations costs related, for example, to the research of an apartment.

We have evidence of heterogeneity in preferences even considering places in canteens and

colleges. In fact, places in canteens have a positive, although smaller compared with other

variables, in 5 of the fields considered while colleges have a stronger positive effect in 7 fields.

Since colleges provide places in their dormitories to particular kinds of students, this result

confirms the importance of in-kind policies.

Concerning the effect of non-DSU policies we can note that, in the majority of the fields,

these policies have a negative effect on students’ choice probabilities that, in general, is stronger

than the one of DSU’s policies. Moreover, signs of coefficients associated with non-DSU policies

are in general different from those of our variable of interest. This element suggests that these

policies are a poor substitute for DSU’s policies.

Turning on the effect of the HEU’s attributes we can remark some interesting elements. The

number of excellence department is positive in the majority of fields, this way suggesting that

HEU’s quality of research is an important determinant of students’ utility functions. Concerning

the effect of variables related to the academic staff, we can see that the number of academics

has always a negative or non-significant effect on choice probabilities whereas the number of

academics employed in the specific field of study has a positive effect in all the fields considered.

This element suggests that students are more interested in the staff employed in their field

than on the number of academics in general. As for public fundings and average students’

contributions we can see that, as expected, students are more attracted by universities with

more resources and that require them a lower contribution in terms of taxes.

With respect to the effect of variables related to HEUs’ hosting areas, we can see that,

as expected, students tend to choose universities in their region or province of residence and

their utility is negatively affected by the distance between the university and their residence.

Moreover, our results suggest that students prefer universities in areas with lower unemployment

and higher GDP and housing prices. These results indicate that socio-economic conditions of

hosting areas are an important determinant of the demand for education in one specific HEU.

Although these results are interesting, they are only a partial picture of the phenomenon.
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Table 3.7a: Conditional Logit Estimates

Chemistry
&

Pharmacy

Business
&

Statistics

Life &
Natural
sciences

Law EngineeringEducation

E(Scholarship)/100 0.030*** -0.009*** 0.011*** -0.016*** -0.027*** 0.027***
(0.002) (0.001) (0.002) (0.001) (0.001) (0.003)

E(Dormitory)/100 0.111*** 0.028*** -0.044*** 0.132*** 0.153*** 0.166***
(0.015) (0.009) (0.013) (0.012) (0.010) (0.058)

E(Student Package)/100 0.109*** 0.025*** 0.126*** 0.043*** 0.214*** -0.076***
(0.014) (0.006) (0.010) (0.007) (0.008) (0.026)

Places in Canteen/100 -0.008*** 0.029*** 0.008*** 0.015*** -0.003*** 0.007***
(0.002) (0.001) (0.001) (0.001) (0.001) (0.002)

College -0.039 0.168*** -0.314*** 0.092*** 0.820*** -0.009
(0.043) (0.019) (0.033) (0.028) (0.023) (0.059)

non-DSU Scholarship/100 -0.134*** -0.072*** -0.019*** -0.0002 0.144*** -0.012
(0.009) (0.004) (0.007) (0.0064) (0.006) (0.016)

E(non-DSU Dormitory)/100 -1.909*** 0.180*** -0.530*** 0.589*** -0.235*** 0.489***
(0.100) (0.019) (0.058) (0.026) (0.012) (0.100)

Excellence Departments -0.290*** 0.145*** 0.234*** 0.219*** 0.109*** -0.043
(0.028) (0.010) (0.016) (0.015) (0.017) (0.041)

Academics/100 -0.090*** 0.004 -0.242*** -0.101*** -0.147*** -0.123***
(0.031) (0.008) (0.014) (0.011) (0.011) (0.037)

Share of Intern. Academics -0.468*** 0.034*** -0.062*** 0.096*** -0.201*** -0.621***
(0.034) (0.006) (0.018) (0.011) (0.011) (0.035)

Administrative staff -0.157*** -0.018*** 0.013* 0.078*** 0.168*** -0.005
(0.014) (0.005) (0.008) (0.006) (0.006) (0.022)

Field of study Academics/100 2.107*** 0.818*** 1.057*** 0.693*** 0.141*** 0.447***
(0.109) (0.027) (0.048) (0.044) (0.016) (0.127)

Public funding (Mill.) 0.011*** 0.0005 0.007*** 0.003*** -0.001** -0.0006
(0.003) (0.0004) (0.001) (0.001) (0.001) (0.0024)

Average contribution 0.063*** -0.007*** -0.017*** -0.016*** -0.094*** -0.062***
(0.010) (0.001) (0.002) (0.001) (0.003) (0.004)

Distance -0.022*** -0.019*** -0.021*** -0.018*** -0.018*** -0.031***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

Distance2/100 0.002*** 0.001*** 0.002*** 0.001*** 0.002*** 0.002***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

HEU in province 1.331*** 1.599*** 1.266*** 1.847*** 1.602*** 1.183***
(0.043) (0.019) (0.032) (0.028) (0.020) (0.054)

HEU in region 1.117*** 1.470*** 1.269*** 1.344*** 1.504*** 1.043***
(0.047) (0.029) (0.039) (0.038) (0.026) (0.061)

Unemployment -0.100*** 0.034*** -0.065*** -0.041*** -0.043*** -0.273***
(0.012) (0.004) (0.007) (0.006) (0.005) (0.015)

Housing price 0.049*** 0.018*** 0.018*** 0.115*** 0.090*** 0.166***
(0.008) (0.003) (0.005) (0.004) (0.003) (0.010)

Regional GDP 0.100*** 0.136*** 0.053*** 0.122*** 0.069*** -0.0007
(0.009) (0.004) (0.006) (0.005) (0.004) (0.0097)

Observations 376488 2478941 724128 1355184 2022936 279552
Pseudo R2 0.65 0.56 0.60 0.59 0.59 0.71
Log Likelihood -11821.1 -59900.4 -20681.1 -32732.1 -55065.4 -7106.7

Notes: Conditional Logit regression by field of study estimated on the sample of Italian student enrolled for the
first time in academic year 2014-2015. Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01.
Variable definitions are reported in Table 3.6.
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Table 3.7b: Conditional Logit Estimates

Humanities Languages Social &
Political
sciences

Psychology Math. &
Physical
sciences

E(Scholarship)/100 -0.023*** 0.00009 -0.007*** 0.018*** 0.021***
(0.001) (0.00099) (0.001) (0.002) (0.002)

E(Dormitory)/100 -0.037*** -0.025* 0.090*** 0.209*** -0.050***
(0.013) (0.013) (0.012) (0.028) (0.019)

E(Student Package)/100 0.035*** -0.159*** -0.008 -0.262*** 0.218***
(0.009) (0.008) (0.008) (0.016) (0.012)

Places in Canteen/100 0.002 -0.002** 0.018*** -0.012*** -0.007***
(0.001) (0.001) (0.001) (0.003) (0.002)

College 0.150*** 0.240*** 0.289*** -0.405*** 0.210***
(0.034) (0.026) (0.025) (0.056) (0.045)

non-DSU Scholarship/100 0.125*** 0.012* -0.025*** 0.104*** -0.128***
(0.007) (0.006) (0.006) (0.013) (0.010)

E(non-DSU Dormitory)/100 0.252*** -0.262*** -0.363*** -1.241*** -0.331***
(0.055) (0.046) (0.029) (0.084) (0.076)

Excellence Departments -0.214*** -0.013 0.474*** -0.182*** 0.171***
(0.018) (0.034) (0.033) (0.069) (0.031)

Academics/100 -0.095*** -0.071*** -0.097*** 0.006 -0.028
(0.012) (0.011) (0.012) (0.038) (0.021)

Share of Intern. Academics 0.079*** -0.033*** 0.016* 0.422*** -0.094***
(0.015) (0.012) (0.009) (0.036) (0.021)

Administrative staff 0.064*** 0.091*** -0.035*** -0.178*** -0.094***
(0.008) (0.008) (0.007) (0.016) (0.011)

Field of study Academics/100 0.964*** 1.208*** 1.551*** 1.265*** 1.511***
(0.040) (0.034) (0.085) (0.131) (0.074)

Public funding (Mill.) 0.004*** -0.006*** 0.011*** 0.008*** -0.0002
(0.001) (0.001) (0.001) (0.001) (0.0012)

Average contribution -0.029*** -0.031*** 0.014*** 0.010*** 0.010
(0.002) (0.002) (0.001) (0.002) (0.008)

Distance -0.019*** -0.021*** -0.021*** -0.020*** -0.023***
(0.000) (0.000) (0.000) (0.000) (0.000)

Distance2/100 0.002*** 0.002*** 0.002*** 0.001*** 0.002***
(0.000) (0.000) (0.000) (0.000) (0.000)

HEU in province 1.169*** 0.906*** 1.131*** 0.912*** 1.530***
(0.032) (0.028) (0.026) (0.058) (0.046)

HEU in region 1.368*** 1.017*** 1.053*** 0.935*** 1.366***
(0.038) (0.033) (0.032) (0.060) (0.052)

Unemployment -0.107*** -0.221*** -0.108*** -0.262*** -0.155***
(0.007) (0.008) (0.007) (0.013) (0.011)

Housing price 0.117*** 0.095*** 0.028*** 0.078*** 0.081***
(0.005) (0.004) (0.004) (0.010) (0.006)

Regional GDP 0.013** -0.055*** 0.056*** -0.163*** -0.030***
(0.006) (0.005) (0.005) (0.011) (0.009)

Observations 880840 845104 1440947 172391 422577
Pseudo R2 0.61 0.54 0.59 0.59 0.65
Log Likelihood -23362.1 -29312.0 -35075.5 -7774.8 -11958.7

Notes: Conditional Logit regression by field of study estimated on the sample of Italian student enrolled for the
first time in academic year 2014-2015. Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01.
Variable definitions are reported in Table 3.6.
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As explained in section 3.5.1, the CL model is not able to capture random heterogeneity in

preferences that can be important in this context. Moreover, these results do not give any

information on the effect of these variables on the utilities of more narrowly defined groups

of students. For example, if we want to know the effect of scholarships on female students

with high Diploma Grades that reside in a southern region we should estimate the model with

three sets of interaction terms and with all their combinations. In Tables 3A.1 and 3A.2 in

Appendix we have reported the results related to a specification in which universities’ attributes

are interacted with all individuals’ observed characteristics. As we can see, besides the issues

related to unobserved heterogeneity in preferences, the results of this approach are very hard

to interpret. Indeed, we should combine all the coefficients related to interaction terms in order

to have an understandable estimate for specific groups of students.

To overcome these issues and shed some light on understanding how these elements affect

students’ utility in the next section we apply the LCM outlined in Section 3.5.2.

3.6.2 Latent Class Logit estimates

Table 3.8 shows the results of LCM estimates of the utility function defined in Eq. (3.14) for

each field of study. For each latent class identified we report two vectors of coefficients. The

first indicates the random utility parameters that enter in student’s utility function. The second

indicates the parameters that enter in the class membership probability model. This second

vector informs on the contribution that individual characteristics give on the probability of

student n to belong to the class q. In order to have an average estimate of students’ preferences,

we report also the mean parameter computed by weighting each class-specific parameter for

the average class membership probability.

For each field of study, we have estimated the model considering specifications with from

2 to 5 latent classes. Then, following the suggestion of Greene and Hensher (2003) and Hole

(2008), we have chosen the model on the basis of Akaike (AIC) and Bayesian (BIC) information

criteria and convergence results. In particular, we have chosen the specifications that reports

the lower values for AIC and BIC and that identify statistically significant differences between

the class-specific vectors of coefficients. With this strategy, we have chosen a specification with

2 latent classes for all the fields considered except for Engineering for which we have estimated
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a 4-class model. For each class, we report the average class membership probability that can

be used as a measure of the importance of the specific latent class in the sample. Even though

these values can be small in some cases, it is worth remembering that the weight of these

classes in computing the distribution of individual coefficients can be still important for some

individuals.
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Table 3.8a: Latent Class Logit results by field of study

Chemistry & Pharmacy Business & Statistics

Class1 Class2 Mean Class1 Class2 Mean

Random Utility Par. β
E(Scholarship)/100 0.075*** 0.015*** 0.048 0.013*** -0.029*** 0.002

(0.007) (0.003) (0.002) (0.002)
E(Dormitory)/100 0.166*** 0.170*** 0.168 0.124*** -0.077** 0.068

(0.051) (0.026) (0.013) (0.031)
E(Student Package)/100 0.709*** 0.006 0.389 0.002 0.043*** 0.013

(0.062) (0.019) (0.010) (0.013)
Places in Canteen/100 -0.007 -0.022*** -0.014 0.033*** 0.034*** 0.033

(0.007) (0.003) (0.002) (0.002)
College 0.041 0.118 0.076 -0.027 0.614*** 0.150

(0.171) (0.075) (0.030) (0.057)
non-DSU Scholarship/100 -0.432*** 0.010 -0.230 -0.123*** 0.065*** -0.071

(0.030) (0.016) (0.008) (0.011)
E(non-DSU Dormitory)/100 -4.173*** -1.221*** -2.827 -0.030 0.091*** 0.003

(0.317) (0.159) (0.057) (0.035)
Excellence Departments -1.141*** -0.004 -0.623 0.079*** 0.283*** 0.135

(0.113) (0.050) (0.016) (0.027)
Academics/100 0.984*** -0.288*** 0.404 0.229*** -0.295*** 0.084

(0.112) (0.050) (0.014) (0.024)
Share of Intern. Academics -0.449*** -0.539*** -0.490 0.050*** 0.130*** 0.072

(0.087) (0.067) (0.015) (0.016)
Administrative staff -0.523*** -0.032 -0.299 -0.101*** 0.271*** 0.002

(0.048) (0.024) (0.011) (0.017)
Field of study Academics/100 3.209*** 1.319*** 2.347 0.645*** 0.405*** 0.578

(0.380) (0.191) (0.046) (0.081)
Public funding (Mill.) -0.044*** 0.017*** -0.016 -0.012*** 0.004*** -0.007

(0.009) (0.004) (0.001) (0.001)
Average contribution 0.035 0.003 0.020 -0.069*** 0.022*** -0.044

(0.029) (0.016) (0.003) (0.002)
HEU in province -0.283** 2.095*** 0.802 0.436*** 2.894*** 1.117

(0.126) (0.098) (0.033) (0.094)
HEU in region 0.663*** 1.278*** 0.943 0.832*** 0.928*** 0.859

(0.125) (0.104) (0.039) (0.085)
Unemployment 0.428*** -0.273*** 0.109 0.127*** -0.033*** 0.083

(0.044) (0.021) (0.008) (0.011)
Distance -0.076*** -0.013*** -0.047 -0.055*** -0.006*** -0.041

(0.003) (0.001) (0.001) (0.000)
Distance2/100 0.006*** 0.0007*** 0.003 0.004*** 0.0004*** 0.003

(0.000) (0.0001) (0.000) (0.0000)
Housing price -0.054** 0.128*** 0.029 0.031*** 0.005 0.024

(0.024) (0.014) (0.004) (0.006)
Regional GDP 0.085*** 0.016 0.053 0.063*** 0.068*** 0.065

(0.024) (0.015) (0.007) (0.008)
Class Probability Par. θ
Const. -1.361** Fixed 4.353*** Fixed

(0.656) Fixed (0.289) Fixed
Diploma Grade 0.010** Fixed -0.053*** Fixed

(0.004) Fixed (0.002) Fixed
CentreNorth 1.568*** Fixed 0.748*** Fixed

(0.268) Fixed (0.115) Fixed
HEU in residence 0.092 Fixed -0.614*** Fixed

(0.170) Fixed (0.047) Fixed
Housing price in residence 0.033** Fixed 0.022*** Fixed

(0.013) Fixed (0.006) Fixed
Unemployment in residence 0.027 Fixed -0.003 Fixed

(0.021) Fixed (0.009) Fixed
Regional GDP in residence -0.048** Fixed 0.008 Fixed

(0.021) Fixed (0.009) Fixed
Female 0.330*** Fixed 0.341*** Fixed

(0.091) Fixed (0.038) Fixed

Class membership prob. 0.544 0.456 0.723 0.277

BIC/N 2.520 3.426
Mc Fadden Pseudo R2 0.670 0.610
AIC/N 2.480 3.412
Log Likelihood -11064.9 -53490.2
N 8964 31379

N. Classes 2 2

Notes: Latent Class Logit regressions estimated on the sample of Italian students enrolled for the first time in the academic year
2014-2015. Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. For each field, the table reports the set of
class-specific random utility parameters (β) and the class membership probability parameters θ. The mean parameter is computed
as the average of class-specific parameter weighted for the class membership probability. Variable definitions are reported in Table
3.6. 135



Table 3.8b: Latent Class Logit results by field of study

Life & Natural sciences Law

Class1 Class2 Mean Class1 Class2 Mean

Random Utility Par. β
E(Scholarship)/100 0.010** 0.015*** 0.012 -0.023*** -0.028*** -0.025

(0.004) (0.004) (0.003) (0.002)
E(Dormitory)/100 -0.090*** 0.111*** -0.041 0.184*** -0.041 0.108

(0.024) (0.027) (0.027) (0.034)
E(Student Package)/100 0.038* 0.173*** 0.071 0.059*** 0.104*** 0.074

(0.020) (0.020) (0.021) (0.015)
Places in Canteen/100 0.031*** -0.005** 0.022 0.030*** 0.010*** 0.024

(0.004) (0.003) (0.003) (0.002)
College -0.094 -0.911*** -0.295 0.335*** 0.084 0.251

(0.081) (0.106) (0.057) (0.070)
non-DSU Scholarship/100 0.010 0.019 0.012 -0.096*** 0.131*** -0.020

(0.012) (0.029) (0.014) (0.015)
E(non-DSU Dormitory)/100 0.021 -1.403*** -0.329 0.906*** 0.538*** 0.782

(0.113) (0.371) (0.106) (0.053)
Excellence Departments 0.213*** 0.160*** 0.200 0.017 0.348*** 0.129

(0.041) (0.034) (0.038) (0.036)
Academics/100 -0.151*** -0.277*** -0.182 -0.439*** 0.072*** -0.267

(0.027) (0.042) (0.034) (0.025)
Share of Intern. Academics 0.024 -0.252*** -0.044 -0.220*** 0.183*** -0.084

(0.056) (0.053) (0.046) (0.020)
Administrative staff 0.017 -0.030 0.006 0.044*** 0.125*** 0.071

(0.015) (0.036) (0.012) (0.016)
Field of study Academics/100 0.955*** 1.212*** 1.018 1.434*** -0.102 0.917

(0.105) (0.116) (0.098) (0.110)
Public funding (Mill.) 0.002 0.010*** 0.004 0.028*** -0.008*** 0.016

(0.003) (0.002) (0.003) (0.001)
Average contribution -0.028*** 0.019*** -0.017 -0.079*** 0.006** -0.050

(0.008) (0.007) (0.009) (0.003)
HEU in province 0.796*** 0.673 0.766 1.115*** 1.599*** 1.278

(0.115) (0.473) (0.057) (0.107)
HEU in region 0.510*** 2.149*** 0.914 0.675*** 1.287*** 0.881

(0.168) (0.112) (0.082) (0.079)
Unemployment 0.029** -0.135*** -0.011 -0.067*** 0.047*** -0.029

(0.014) (0.019) (0.013) (0.014)
Distance -0.048*** -0.008*** -0.038 -0.059*** -0.010*** -0.042

(0.006) (0.001) (0.002) (0.000)
Distance2/100 0.004*** 0.0006*** 0.003 0.005*** 0.0006*** 0.003

(0.000) (0.0001) (0.000) (0.0000)
Housing price -0.029*** -0.0004 -0.022 0.061*** 0.177*** 0.100

(0.010) (0.0188) (0.010) (0.008)
Regional GDP 0.013 0.015 0.014 0.016 0.111*** 0.048

(0.013) (0.022) (0.013) (0.011)
Class Probability Par. θ
Const. -5.181*** Fixed 2.243*** Fixed

(0.880) Fixed (0.333) Fixed
Diploma Grade 0.008** Fixed -0.032*** Fixed

(0.004) Fixed (0.002) Fixed
CentreNorth -1.459*** Fixed -0.096 Fixed

(0.430) Fixed (0.141) Fixed
HEU in residence 0.168 Fixed -0.0009 Fixed

(0.315) Fixed (0.0605) Fixed
Housing price in residence 0.248*** Fixed 0.068*** Fixed

(0.047) Fixed (0.009) Fixed
Unemployment in residence 0.027 Fixed -0.005 Fixed

(0.022) Fixed (0.012) Fixed
Regional GDP in residence 0.166*** Fixed 0.009 Fixed

(0.048) Fixed (0.011) Fixed
Female -0.303*** Fixed 0.287*** Fixed

(0.113) Fixed (0.048)

Class membership prob. 0.754 0.246 0.663 0.337

BIC/N 3.131 3.257
Mc Fadden Pseudo R2 0.617 0.622
AIC/N 3.102 3.236
Log Likelihood -19655.0 -30405.3
N 12704 18822

N. Classes 2

Notes: Latent Class Logit regressions estimated on the sample of Italian students enrolled for the first time in the academic year
2014-2015. Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. For each field, the table reports the set of
class-specific random utility parameters (β) and the class membership probability parameters θ. The mean parameter is computed
as the average of class-specific parameter weighted for the class membership probability. Variable definitions are reported in Table
3.6.. 136



Table 3.8c: Latent Class Logit results by field of study

Humanities Education

Class1 Class2 Mean Class1 Class2 Mean

Random Utility Par. β
E(Scholarship)/100 -0.039*** -0.017*** -0.030 0.043*** 0.022*** 0.038

(0.003) (0.003) (0.006) (0.004)
E(Dormitory)/100 -0.166*** 0.060* -0.070 0.404*** 0.233*** 0.365

(0.033) (0.034) (0.144) (0.075)
E(Student Package)/100 0.187*** -0.007 0.105 0.041 -0.115*** 0.005

(0.024) (0.020) (0.050) (0.044)
Places in Canteen/100 0.017*** -0.021*** 0.0008 0.026*** -0.0006 0.020

(0.004) (0.003) (0.004) (0.0048)
College -0.008 1.508*** 0.633 0.945*** -0.886*** 0.528

(0.074) (0.114) (0.107) (0.132)
non-DSU Scholarship/100 0.050*** 0.184*** 0.106 -0.097*** 0.123*** -0.047

(0.019) (0.013) (0.029) (0.030)
E(non-DSU Dormitory)/100 0.888*** -0.422** 0.334 1.850*** -0.351** 1.348

(0.122) (0.203) (0.196) (0.166)
Excellence Departments -0.591*** 0.053 -0.318 -0.586*** 0.273*** -0.390

(0.043) (0.042) (0.087) (0.093)
Academics/100 0.210*** -0.194*** 0.039 -0.088 -0.054 -0.080

(0.035) (0.037) (0.075) (0.071)
Share of Intern. Academics -0.032 0.084** 0.017 -0.642*** -0.534*** -0.618

(0.044) (0.034) (0.063) (0.088)
Administrative staff 0.064*** 0.076** 0.069 -0.198*** -0.033 -0.160

(0.018) (0.033) (0.042) (0.040)
Field of study Academics/100 1.194*** 1.442*** 1.299 0.949*** -0.720** 0.568

(0.105) (0.099) (0.249) (0.286)
Public funding (Mill.) -0.017*** 0.006*** -0.007 0.009* 0.004 0.008

(0.002) (0.001) (0.005) (0.005)
Average contribution -0.140*** -0.006 -0.083 -0.083*** -0.041*** -0.073

(0.011) (0.004) (0.008) (0.012)
HEU in province 0.592*** 1.035*** 0.780 0.466*** 1.317*** 0.660

(0.070) (0.097) (0.075) (0.136)
HEU in region 0.927*** 1.423*** 1.137 0.718*** 1.249*** 0.839

(0.088) (0.074) (0.092) (0.160)
Unemployment 0.067*** -0.286*** -0.082 0.083*** -0.583*** -0.069

(0.016) (0.015) (0.025) (0.041)
Distance -0.055*** -0.011*** -0.037 -0.053*** -0.026*** -0.047

(0.002) (0.000) (0.001) (0.001)
Distance2/100 0.004*** 0.0008*** 0.003 0.004*** 0.001*** 0.003

(0.000) (0.0000) (0.000) (0.000)
Housing price 0.039*** 0.289*** 0.144 0.056*** 0.113*** 0.069

(0.014) (0.013) (0.017) (0.031)
Regional GDP -0.003 -0.132*** -0.057 -0.018 -0.003 -0.015

(0.014) (0.014) (0.019) (0.017)
Class Probability Par. θ
Const. 1.562*** Fixed -6.187*** Fixed

(0.395) Fixed (1.613) Fixed
Diploma Grade -0.008*** Fixed -0.007 Fixed

(0.002) Fixed (0.010) Fixed
CentreNorth 0.376** Fixed -4.741*** Fixed

(0.155) Fixed (0.987) Fixed
HEU in residence -0.469*** Fixed 0.895* Fixed

(0.076) Fixed (0.498) Fixed
Housing price in residence 0.043*** Fixed 0.676*** Fixed

(0.010) Fixed (0.083) Fixed
Unemployment in residence 0.023* Fixed -0.382*** Fixed

(0.013) Fixed (0.084) Fixed
Regional GDP in residence -0.068*** Fixed 0.330*** Fixed

(0.013) Fixed (0.072) Fixed
Female 0.175*** Fixed 1.504*** Fixed

(0.059) Fixed (0.466) Fixed

Class membership prob. 0.577 0.423 0.772 0.228

BIC/N 3.050 2.017
Mc Fadden Pseudo R2 0.633 0.739
AIC/N 3.024 1.965
Log Likelihood -21783.8 -6490.8
N 14440 6656

N. Classes 2 2

Notes: Latent Class Logit regressions estimated on the sample of Italian students enrolled for the first time in the academic year
2014-2015. Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. For each field, the table reports the set of
class-specific random utility parameters (β) and the class membership probability parameters θ. The mean parameter is computed
as the average of class-specific parameter weighted for the class membership probability. Variable definitions are reported in Table
3.6. 137



Table 3.8d: Latent Class Logit results by field of study

Math. & Physical sciences Languages

Class1 Class2 Mean Class1 Class2 Mean

Random Utility Par. β
E(Scholarship)/100 0.016*** 0.012*** 0.014 0.016*** -0.025*** -0.007

(0.005) (0.004) (0.004) (0.002)
E(Dormitory)/100 -0.055 0.033 -0.018 0.141*** -0.010 0.054

(0.048) (0.037) (0.037) (0.026)
E(Student Package)/100 0.351*** 0.153*** 0.267 -0.462*** -0.128*** -0.269

(0.040) (0.024) (0.046) (0.012)
Places in Canteen/100 0.015** -0.011*** 0.004 -0.025*** 0.005*** -0.008

(0.006) (0.003) (0.004) (0.002)
College -0.251** 0.847*** 0.213 0.147 0.207*** 0.182

(0.125) (0.112) (0.092) (0.048)
non-DSU Scholarship/100 -0.253*** -0.010 -0.151 -0.046** 0.086*** 0.030

(0.025) (0.023) (0.020) (0.012)
E(non-DSU Dormitory)/100 0.315 -0.412** 0.009 0.505*** 0.028 0.230

(0.205) (0.161) (0.187) (0.077)
Excellence Departments 0.443*** 0.112 0.303 -0.824*** -0.210*** -0.470

(0.078) (0.073) (0.115) (0.060)
Academics/100 0.422*** -0.204*** 0.158 -0.050 -0.095*** -0.076

(0.069) (0.038) (0.038) (0.021)
Share of Intern. Academics -0.022 -0.100** -0.055 -1.097*** 0.194*** -0.352

(0.060) (0.041) (0.091) (0.020)
Administrative staff -0.088*** -0.078*** -0.084 0.038 0.121*** 0.086

(0.027) (0.028) (0.030) (0.014)
Field of study Academics/100 1.070*** 1.497*** 1.250 1.051*** 1.541*** 1.334

(0.190) (0.171) (0.120) (0.065)
Public funding (Mill.) -0.030*** 0.013*** -0.012 -0.003** -0.004*** -0.004

(0.004) (0.003) (0.001) (0.001)
Average contribution -0.142*** 0.053*** -0.060 -0.056*** -0.016*** -0.033

(0.023) (0.015) (0.005) (0.002)
HEU in province 0.412*** 2.074*** 1.114 -0.100 0.917*** 0.487

(0.124) (0.144) (0.091) (0.056)
HEU in region 1.714*** 1.491*** 1.619 0.228*** 1.098*** 0.730

(0.151) (0.106) (0.086) (0.054)
Unemployment -0.046* -0.157*** -0.093 -0.491*** -0.184*** -0.314

(0.028) (0.028) (0.042) (0.013)
Distance -0.072*** -0.013*** -0.047 -0.075*** -0.015*** -0.040

(0.003) (0.001) (0.003) (0.000)
Distance2/100 0.005*** 0.001*** 0.004 0.006*** 0.001*** 0.003

(0.000) (0.000) (0.000) (0.000)
Housing price 0.101*** 0.141*** 0.118 0.107*** 0.153*** 0.134

(0.016) (0.013) (0.015) (0.007)
Regional GDP -0.234*** -0.072*** -0.166 -0.164*** -0.066*** -0.108

(0.031) (0.022) (0.020) (0.010)
Class Probability Par. θ
Const. 2.399*** Fixed 0.926** Fixed

(0.640) Fixed (0.429) Fixed
Diploma Grade -0.025*** Fixed -0.033*** Fixed

(0.004) Fixed (0.003) Fixed
CentreNorth -0.114 Fixed 1.534*** Fixed

(0.244) Fixed (0.188) Fixed
HEU in residence -0.222 Fixed -0.217** Fixed

(0.147) Fixed (0.100) Fixed
Housing price in residence 0.009 Fixed -0.067*** Fixed

(0.016) Fixed (0.010) Fixed
Unemployment in residence -0.024 Fixed 0.032** Fixed

(0.022) Fixed (0.015) Fixed
Regional GDP in residence 0.010 Fixed 0.030** Fixed

(0.021) Fixed (0.012) Fixed
Female -0.121 Fixed 0.046 Fixed

(0.091) Fixed (0.077) Fixed

Class membership prob. 0.578 0.422 0.423 0.577

BIC/N 2.537 3.455
Mc Fadden Pseudo R2 0.677 0.567
AIC/N 2.498 3.431
Log Likelihood -11178.3 -27831.3
N 8991 16252

N. Classes 2 2

Notes: Latent Class Logit regressions estimated on the sample of Italian students enrolled for the first time in the academic year
2014-2015. Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. For each field, the table reports the set of
class-specific random utility parameters (β) and the class membership probability parameters θ. The mean parameter is computed
as the average of class-specific parameter weighted for the class membership probability. Variable definitions are reported in Table
3.6. 138



Table 3.8e: Latent Class Logit results by field of study

Social & Political sciences Psychology

Class1 Class2 Mean Class1 Class2 Mean

Random Utility Par. β
E(Scholarship)/100 -0.033*** 0.014*** -0.016 0.093*** -0.010*** 0.021

(0.002) (0.002) (0.017) (0.004)
E(Dormitory)/100 0.151*** -0.044 0.083 2.301*** 0.131*** 0.787

(0.022) (0.046) (0.475) (0.043)
E(Student Package)/100 0.026 0.013 0.021 -1.735*** -0.335*** -0.758

(0.019) (0.016) (0.375) (0.027)
Places in Canteen/100 0.034*** -0.002 0.021 -0.033* -0.011*** -0.018

(0.003) (0.002) (0.017) (0.004)
College 0.269*** 0.453*** 0.333 -0.256 0.291*** 0.126

(0.050) (0.064) (0.571) (0.096)
non-DSU Scholarship/100 0.024* -0.088*** -0.016 -1.176*** 0.278*** -0.161

(0.012) (0.013) (0.317) (0.028)
E(non-DSU Dormitory)/100 0.219** -1.105*** -0.243 -6.482*** 0.215 -1.807

(0.092) (0.049) (1.032) (0.168)
Excellence Departments -0.024 1.022*** 0.341 2.456** -0.086 0.682

(0.081) (0.078) (1.024) (0.090)
Academics/100 -0.327*** 0.228*** -0.133 0.054 0.134** 0.110

(0.032) (0.033) (0.186) (0.056)
Share of Intern. Academics -0.227*** 0.146*** -0.097 0.805*** 0.553*** 0.629

(0.031) (0.018) (0.221) (0.062)
Administrative staff 0.035** -0.207*** -0.050 -0.609*** -0.124*** -0.270

(0.015) (0.022) (0.093) (0.026)
Field of study Academics/100 2.578*** 1.419*** 2.173 0.879 0.992*** 0.958

(0.207) (0.211) (0.732) (0.173)
Public funding (Mill.) 0.023*** 0.0002 0.015 0.028*** 0.0008 0.009

(0.002) (0.0017) (0.009) (0.0022)
Average contribution -0.068*** 0.068*** -0.020 0.037*** -0.015*** 0.0010

(0.006) (0.003) (0.008) (0.005)
HEU in province 0.245*** 1.398*** 0.648 1.368*** 0.723*** 0.918

(0.054) (0.085) (0.340) (0.108)
HEU in region 0.527*** 1.139*** 0.740 3.452*** 0.946*** 1.703

(0.065) (0.070) (0.799) (0.082)
Unemployment -0.038*** -0.158*** -0.080 -0.946*** -0.409*** -0.571

(0.013) (0.017) (0.214) (0.031)
Distance -0.054*** -0.011*** -0.039 -0.048*** -0.021*** -0.029

(0.001) (0.000) (0.010) (0.001)
Distance2/100 0.004*** 0.0006*** 0.003 0.003*** 0.002*** 0.002

(0.000) (0.0000) (0.001) (0.000)
Housing price 0.023*** 0.061*** 0.036 0.426*** 0.133*** 0.221

(0.009) (0.008) (0.077) (0.017)
Regional GDP 0.082*** -0.060*** 0.033 -0.337*** -0.302*** -0.312

(0.011) (0.014) (0.091) (0.024)
Class Probability Par. θ
Const. 0.320 Fixed 4.946*** Fixed

(0.358) Fixed (0.905) Fixed
Diploma Grade -0.023*** Fixed -0.065*** Fixed

(0.002) Fixed (0.006) Fixed
CentreNorth 0.147 Fixed -0.813* Fixed

(0.167) Fixed (0.448) Fixed
HEU in residence -0.194*** Fixed 0.142 Fixed

(0.059) Fixed (0.176) Fixed
Housing price in residence 0.061*** Fixed -0.078*** Fixed

(0.008) Fixed (0.023) Fixed
Unemployment in residence 0.078*** Fixed -0.027 Fixed

(0.013) Fixed (0.028) Fixed
Regional GDP in residence 0.018 Fixed 0.010 Fixed

(0.012) Fixed (0.033) Fixed
Female 0.032 Fixed 0.904*** Fixed

(0.051) Fixed (0.156) Fixed

Class membership prob. 0.651 0.349 0.302 0.698

BIC/N 3.418 2.726
Mc Fadden Pseudo R2 0.605 0.614
AIC/N 3.398 2.667
Log Likelihood -33488.1 -7364.6
N 19739 5561

N. Classes 2 2

Notes: Latent Class Logit regressions estimated on the sample of Italian students enrolled for the first time in the academic year
2014-2015. Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. For each field, the table reports the set of
class-specific random utility parameters (β) and the class membership probability parameters θ. The mean parameter is computed
as the average of class-specific parameter weighted for the class membership probability. Variable definitions are reported in Table
3.6. 139



Table 3.8f: Latent Class Logit results by field of study

Engineering

Class1 Class2 Class3 Class4 Mean

Random Utility Par. β
E(Scholarship)/100 -0.066*** -0.045*** 0.023*** -1.409*** -0.024

(0.008) (0.006) (0.004) (0.018)
E(Dormitory)/100 2.438*** 1.532*** 0.523*** 3.143*** 1.154

(0.141) (0.070) (0.023) (0.153)
E(Student Package)/100 -0.075 0.866*** 0.095*** 14.398*** 0.393

(0.078) (0.063) (0.018) (0.095)
Places in Canteen/100 -0.103*** -0.079*** -0.018*** -0.087*** -0.050

(0.013) (0.005) (0.002) (0.008)
College -5.841*** 4.006*** 1.445*** 15.830*** 0.919

(0.332) (0.181) (0.051) (0.256)
non-DSU Scholarship/100 0.196*** 0.688*** -0.113*** 3.102*** 0.179

(0.064) (0.049) (0.014) (0.064)
E(non-DSU Dormitory)/100 1.367*** -0.132** 0.064 -3.629*** 0.216

(0.191) (0.062) (0.039) (0.306)
Excellence Departments -0.852*** -0.659*** 1.007*** 2.314*** 0.251

(0.192) (0.118) (0.048) (0.198)
Academics/100 0.173 0.413*** 0.026 -1.550*** 0.139

(0.153) (0.069) (0.019) (0.117)
Share of Intern. Academics -0.101 -0.323** -0.897*** 0.281 -0.593

(0.094) (0.145) (0.029) (0.242)
Administrative staff 0.227*** 0.305*** -0.176*** -2.356*** 0.002

(0.036) (0.066) (0.020) (0.055)
Field of study Academics/100 0.942*** 1.778*** -0.362*** -7.464*** 0.364

(0.213) (0.126) (0.045) (0.280)
Public funding (Mill.) -0.015* -0.057*** 0.004*** 0.387*** -0.012

(0.009) (0.007) (0.001) (0.010)
Average contribution 0.029*** -0.669*** -0.400*** 0.706*** -0.382

(0.007) (0.027) (0.009) (0.011)
HEU in province 0.941*** 1.370*** 1.509*** 5.863 1.409

(0.103) (0.082) (0.032) (5.902)
HEU in region 1.952*** 1.523*** 1.606*** 17.108*** 1.787

(0.315) (0.088) (0.045) (0.450)
Unemployment 0.559*** -0.345*** -0.412*** 4.579*** -0.174

(0.037) (0.054) (0.015) (0.054)
Distance -0.114*** -0.014*** -0.024*** -0.008*** -0.038

(0.006) (0.001) (0.000) (0.002)
Distance2/100 0.008** 0.0009*** 0.002*** 0.003*** 0.003

(0.003) (0.0000) (0.000) (0.000)
Housing price 0.075** 0.498*** 0.234*** 0.425*** 0.275

(0.036) (0.024) (0.007) (0.044)
Regional GDP -0.026 -0.235*** 0.038*** 2.579*** -0.022

(0.035) (0.045) (0.009) (0.038)
Class Probability Par. θ
Const. -2.126 -5.361*** 7.686*** Fixed

(1.433) (1.391) (1.423) Fixed
Diploma Grade 0.0001 0.067*** -0.034*** Fixed

(0.0084) (0.008) (0.009) Fixed
CentreNorth -1.849*** -1.042** 0.332 Fixed

(0.553) (0.500) (0.509) Fixed
HEU in residence 1.413*** 1.255*** 2.118*** Fixed

(0.331) (0.329) (0.330) Fixed
Housing price in residence 0.565*** 0.508*** 0.541*** Fixed

(0.045) (0.045) (0.045) Fixed
Unemployment in residence 0.054 -0.025 -0.244*** Fixed

(0.037) (0.036) (0.039) Fixed
Regional GDP in residence 0.080* 0.047 -0.070 Fixed

(0.047) (0.043) (0.044) Fixed
Female -2.761*** -2.803*** -3.327*** Fixed

(0.204) (0.203) (0.207) Fixed

Class membership prob. 0.181 0.259 0.551 0.009

BIC/N 3.052
Mc Fadden Pseudo R2 0.634
AIC/N 3.024
Log Likelihood -49222.9
N 32628

N. Classes 4

Notes: Latent Class Logit regressions estimated on the sample of Italian students enrolled for the first time in the academic year
2014-2015. Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. For each field, the table reports the set of
class-specific random utility parameters (β) and the class membership probability parameters θ. The mean parameter is computed
as the average of class-specific parameter weighted for the class membership probability. Variable definitions are reported in Table
3.6. 140



These results confirm the heterogeneity in students’ preferences based on the field of study

chosen. Moreover, LCM’s estimates suggest that there is substantial heterogeneity between

different groups of students that depends upon students’ characteristics. Indeed, the sign and

the relative magnitude of random utility parameters change on the basis of the latent class

estimated.

Focusing on the effect DSU’s policies we can see that E(Scholarship) has a positive coef-

ficient in 6 fields considered while E(Dormitory) and E(StudentPackage) have, respectively,

positive coefficients in 8 of the fields considered.18 Moreover, the relative magnitude of the

coefficients associated with places in-kind policies is most of the cases much higher than the

one associated with E(Scholarships). These results confirm our interpretation of CL results

about the importance of places in dormitories and student packages in reducing substantially

the costs sustained by students. Interestingly, we have that the effect of these policies changes

among classes on the basis of individual characteristics. For example, considering Business &

Statistics the estimated coefficient of E(Dormitory) is positive for 72.3% of students whereas

is negative for the remaining 27.7%. Moreover, if we consider the individual characteristics,

we can note that this parameter is more likely to be positive if the student is female, resides

in a region in the Centre-North and does not have an HEU in her city of residence. In the

next section, we present a further interpretation of the relationship between our main variable

of interest and individual characteristics of students. In this section, we focus on the average

effect of the various determinants of students’ utility analyzed.

With regards to non-DSU policies we can note that, differently from the CL estimates, LCM

results indicate that the E(non − DSUDormitory) have a positive effect in the majority of

the field considered. However, non −DSUScholarships have still a negative effect in 7 of 11

fields. Another difference between CL and LCM is related to the effect of colleges. Indeed,

although the effect is heterogeneous among classes, we have that the presence of one college

has a positive effect in all the fields considered except for Life & Natural Sciences.

With relationship to the other determinants of students’ utility, we can highlight some

interesting elements. Differently from the CL, the LCM estimates a positive and heterogeneous

effect of the number of academics in 6 fields. However, the number of academics employed in

the specific field is still more important than the general one and has a positive and very strong

18The coefficients related to E(StudentPackage) in Social & Political sciences is not significant in both classes
identified
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effect in all the fields considered. Moreover, the results regarding the number of departments

of excellence and the average contribution are confirmed: students tend to prefer universities

with a higher quality of research and lower average contributions.

Concerning hosting areas’ characteristics we have that LCM’s results are, in general, in line

with the one presented in the previous section. In particular, we have that students prefer

HEUs located in their region or their province of residence or HEUs closer to their residence.

Moreover, we can see that, in general, students prefer to locate in areas with a higher housing

price, a lower unemployment rate, and a higher GDP. These elements confirm that students

tend to locate in areas with better socio-economic conditions.

In the next sections, we further explore the effect of our main variable of interest exploiting

the individual distribution of parameters to better understand the effect of these policies on

specific groups of students.

Semi-elasticity results

Table 3.9 shows the results regarding the sensitivity of students’ choice probabilities to DSU’s

indicators in terms of semi-elasticities computed according to Eq. (3.16) by considering the

individual distribution of parameters. Each semi-elasticity measures the percentage change in

students’ choice probabilities caused by a 1% increase in the service indicator.

The results in Table 3.9 confirm the presence of heterogeneity in preferences that depend

on the field of study chosen. Moreover, if we consider the average effect we can see that the

results of CL and LCM are confirmed: only places in dormitories and student packages have

a positive effect on students’ choices probabilities. Indeed, a 1% increase in E(Scholarship)

is associated with an average decrease in choice probabilities of -0.125%. Another element to

note is that the figures in the row Average are computed on the basis of the distribution of

individual parameters using the entire sample of students. Therefore, although the results are

heterogeneous in each field, these elasticities can be used to infer the behavioral response of the

majority of students in our sample.

Given the individual distribution of parameters, we can explore how the effects of these

policies change on the basis of individual characteristics. In this respect, Figure 3.1 reports

the results of non parametric regressions between individual semi-elasticities and the percentile
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Table 3.9: Average semi-elasticities to DSU policies

Expected
Scholarships

Expected Places in
Dormitory

Expected Student
Packages

Average -0.125 0.176 0.163

Social & Political sciences -0.203 0.036 0.034
Psychology 0.310 0.430 -0.984
Math. & Physical sciences 0.199 -0.003 0.389
Life & Natural sciences 0.141 -0.006 0.116
Law -0.388 0.048 0.122
Languages -0.124 0.043 -0.395
Humanities -0.564 -0.024 0.179
Engineering -0.415 0.716 0.756
Education 0.399 0.156 0.009
Chemistry & Pharmacy 0.573 0.073 0.502
Business & Statistics -0.002 0.055 0.025

Notes: The table reports the average individual semi-elasticities computed using the parameters estimated with
the Latent Class Logit model by field of study. Columns 1, 2 and 3 report the semi-elasticities with respect to
a 1% increase in, respectively, Expected Scholarships, Expected Places in Dormitories and Expected Student
Packages. Each semi-elasticity is computed according to formula (3.16).

distribution of high school diploma grades for female and male students. Figures 3A.1-3A.3 in

the Appendix report the results of this exercise for each field of study considered.

The results in Figure 3.1 evidences a clear path. Indeed, the effect of these policies is always

stronger in absolute terms for students with higher diploma grades. Moreover, we can note that

male students are, on average, more interested in these policies. In fact, even though the semi-

elasticities for scholarships are always negative, we can see that the effect is weaker for these

students. This element is even clearer if we consider places in dormitories.

These results are very interesting. In fact, while confirming the positive effect of in-kind

policies, these results highlight also that these policies are more effective in attracting students

with better grades and, therefore, in increasing the average quality of students. For example,

the semi-elasticity for students package range from 0.1 for male students at the bottom of

diploma grades distribution to around 0.5 if we consider students at the top. Although there

are differences in magnitude, this effect is confirmed for male and female students.

Willingness to travel results

In this section, we give a further interpretation of the results with respect to the effect of

distance on students’ utility and their willingness to travel (WTT). Table 3.10 reports the

143



-.4
-.3

-.2
-.1

0
Se

m
i-e

la
st

ic
ity

.6 .7 .8 .9 1
Percentile distribution of Diploma Grade

Female Male
Female: kernel = epanechnikov , degree = 3, bandwidth = 0.20, pwidth = 0.30.
Male: kernel = epanechnikov , degree = 3, bandwidth = 0.17, pwidth = 0.25.

Expected Scholarships

.1
.2

.3
.4

.5
.6

Se
m

i-e
la

st
ic

ity

.6 .7 .8 .9 1
Percentile distribution of Diploma Grade

Female Male
Female: kernel = epanechnikov , degree = 3, bandwidth = 0.14, pwidth = 0.21.
Male: kernel = epanechnikov , degree = 3, bandwidth = 0.16, pwidth = 0.24.

Expected Student Packages

0
.1

.2
.3

.4
.5

Se
m

i-e
la

st
ic

ity

.6 .7 .8 .9 1
Percentile distribution of Diploma Grade

Female Male
Female: kernel = epanechnikov , degree = 3, bandwidth = 0.19, pwidth = 0.29.
Male: kernel = epanechnikov , degree = 3, bandwidth = 0.14, pwidth = 0.21.

Expected Places in Dormitory

Figure 3.1: Individual semi-elasticities with respect to High School Diploma Grade

Notes: The figure reports the results of non parametric regressions between semi-elasticities with respect to DSU’s policy indicators
and the percentile distribution of high school diploma grade. The regressions are estimated considering the samples of male and
female students. Semi-elasticities measure the percentage change in students’ choices probabilities caused by a 1% increase in the
DSU indicator. Each semi-elasticity is computed on the basis of the individual distribution of parameters estimated with the LCM.
In each plot we report the information regarding the kernel function used, the degree of the polynomial and the bandwidth chosen.
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Table 3.10: Average willingness to travel for a 1% increase in DSU indicators

Expected
Scholarships

Expected Places in
Dormitory

Expected Student
Packages

Average -0.1890 0.0474 0.0258

Social & Political sciences 0.0174 0.0249 0.0057
Psychology 0.1570 -0.6906 0.2536
Math. & Physical sciences 0.1089 0.1956 0.0004
Life & Natural sciences 0.1325 0.1200 0.0063
Law -1.8494 0.7203 -0.0765
Languages -0.2462 -0.2687 0.0077
Humanities -0.2774 0.0670 -0.0045
Engineering 0.2300 -0.1501 0.0934
Education 0.2568 -0.0280 0.0992
Chemistry & Pharmacy 0.3905 0.2149 0.1004
Business & Statistics -0.2255 0.0450 -0.0094

Notes: The table reports the average individual willingness to travel (WTT) computed according to the pa-
rameters estimated with the Latent Class Logit model by field of study. Each WTT measures the number of
additional kilometers that the student is willing to travel from the chosen distance for a 1% increase in DSU
indicators. Columns 1, 2 and 3 report the results with respect to, respectively, Expected Scholarships, Expected
Places in Dormitories and Expected Student Packages. Each WTT is computed according to formula (3.17).

results regarding the average WTT of students for a 1% increase in DSU indicators. These

measures are estimated according to the individual distribution of parameters using Eq. (3.17).

Each WTT measures the additional number of kilometers that the student is willing to travel

considering the chosen distance.

The figures in Table 3.10 confirm our previous results regarding the effect in terms of signs

of our variables of interest. However, by comparing Tables 3.10 and 3.9 we can notice that

the negative effect of E(Scholarship) is stronger than the positive effect of E(Dormitory) and

E(StudentPackage). This result is confirmed also by looking at the values for each field of

study. For example, we have that the students’ WTT for E(StudentPackage) is lower than

0.001 (1 meter) in 5 fields considered. This result can be related to the disutility of distance.

Indeed, the students that are more likely to be interested in these in-kind policies are those

who have already traveled outside of their city to reach the university (out-of-site students).

Therefore, given that the disutility of distance si increasing in the number of kilometers, we

have that the ratio in Eq. (3.17) assumes lower values. This effect is clear if we look at Figure

3.2.

The first plot in Figure 3.2 reports the results of non parametric regressions estimated be-
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tween individual WTT for DSU’s indicators and the distance between students’ city of residence

and HEU’s hosting city. The second plot reports the information regarding a non paramet-

ric regression of the estimated utility of distance. Figures 3A.4-3A.7 in Appendix report the

results for each field of study considered. These plots are computed by using the individual

distribution of parameters estimated with the LCM.

Results in Figure 3.2 confirm those of Table 3.10. Indeed, we can see that the effect of

E(Scholarship) is negative whereas those of E(Dormitory) and E(StudentPackage) are posi-

tive. Moreover, the effect related toE(Dormitory) is stronger than the one of E(StudentPackage)

and the difference between their magnitude grows with the distance. Although the results for

in-kind benefits are expected, the one related to scholarships is still counterintuitive. Indeed,

the negative effect of this policy is stronger for students that have already traveled to reach

their university. However, if we consider the absolute change in DSU indicators we can have a

clearer picture. Indeed, as we can see from Table 3.1, a 1% increase in E(Scholarship) indicate

25 additional scholarships whereas a 1% increase in E(Dormitory) and E(StudentPackage)

means, respectively, 0.87 and 3.21 additional places. Therefore, if we consider the unitary effect

we can see that, although negative, the effects related to E(Scholarship) are much lower than

those of in-kind benefits.

Figure 3.3 reports the result of non parametric regressions between individual WTT and dis-

tance by splitting the sample on the basis of students’ macroregion of residence. The results of

these regressions confirm those shown in Figure 3.2. Indeed, the effect related to E(Dormitory)

and E(StudentPackage) is positive in all the sample considered. Moreover, we can see that the

magnitude of WTTs associated with the former policy is stronger than those associated with

E(StudentPackage). With respect to the macroregion of residence, we can see that DSU’s

policies have a stronger effect on students in Centre-North. This difference increases with the

number of kilometers traveled by the students.

Although the magnitude of the effects is small, these results indicate that in-kind policies

can be more attractive for students who reside in Centre-North that have already traveled more

than 200 kilometers. Therefore, these policies can be a useful tool to attract students that have

already decided to move outside their region. However, the magnitude of the WTTs suggests

that, to have a relevant effect on these students, DSU offices need to strongly increase their
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Figure 3.2: Individual willingness to travel and utility of distance

Notes: The first plot of the figure reports the result of a non parametric regression between individual WTT to DSU’s policies
indicators and the distance between students’ city of residence and HEU’s hosting city. The second plot reports the result of a non
parametric regression between individual utility functions and the distance between students’ city of residence and HEU’s hosting
city. Each regression is estimated using the individual distribution of parameters estimated through the LCM. Each WTT measures
the number of additional kilometers that the student is willing to travel with respect to the chosen HEU for a 1% increase in DSU
policy indicators. In each plot we report the information regarding the kernel function used, the degree of the polynomial and the
bandwidth chosen.
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Figure 3.3: Individual willingness to travel by macroregion of residence

Notes: The figure reports, for each student’s macroregion of residence, the result of a non parametric regression between individual
WTT with respect to DSU’s policy indicators and the distance between students’ city of residence and HEU’s hosting city. Each
regression is estimated using the individual distribution of parameters estimated through the LCM. Each WTT measures the
number of additional kilometers that the student is willing to travel with respect to the chosen HEU for a 1% increase in DSU’s
services supply. In each plot we report the information regarding the kernel function used, the degree of the polynomial and the
bandwidth chosen. 148



supply of in-kind benefits.

3.7 Conclusion

In this study, we have investigated the effect of financial and in-kind aid programs on the loca-

tion decision process of Italian high school leavers that decide to enroll in an Italian university.

The phenomenon has been analyzed by using administrative data regarding the entire pop-

ulation of students enrolled in an Italian university in the academic year 2014-2015 for the

first time. This data has been linked with a dataset containing detailed information regard-

ing the financial and in-kind aid program called Diritto allo studio universitario. This unique

dataset has permitted to separately consider the effects of the different services provided by

the program.

The empirical analysis has been carried by accounting explicitly for the existence of hetero-

geneity in students’ preferences. In particular, we have split the entire sample of Italian students

according to their field of study in 11 groups: business & statistics, chemistry & pharmacy,

education, engineering, humanities, languages, law, life & natural sciences, mathematical and

physical sciences, psychology, social & political sciences. Moreover, we have taken advantage

of a discrete choice Latent Class Logit model. This approach has permitted to explore the

heterogeneity in students’ preferences caused by differences in individual characteristics. This

is the first work that considers this approach in modeling students’ location choices.

The estimates have been exploited by computing students’ willingness to travel measures

and semi-elasticities, this way allowing for a better interpretation of Latent Class Logit results.

Our results provide clear evidence of the existence of heterogeneity in students’ preferences

regarding aid policies and university characteristics among different fields and with respect

to their individual characteristics. This result calls for further investigation into students’

preferences heterogeneity in order to have a better understanding of the elements that affect

universities’ attractiveness. In this way will be possible to target the policies to more sensitive

groups and to have more effective instruments to improve universities’ attractiveness.

With respect to the effect of financial and in-kind aid policies, our results suggest that

scholarships alone are not an effective instrument in attracting more students at the destination

universities. In fact, willingness to pay estimates indicate that students are almost insensitive
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or negatively affected by the number of expected scholarships. This result can be related to

the fact that these policies are not able to cover the entire students’ migration and locations

costs. These results are confirmed by semi-elasticity results. In fact, we have found that choice

probabilities are negatively affected by scholarships. Moreover, this effect is stronger for female

students and students at the top of the diploma grade distribution.

Concerning places in dormitories with and without scholarships we have a different picture.

In this case, we have found that in-kind policies have a positive effect on students choice

probabilities. These results are confirmed both using semi-elasticities measures and WTT.

However, the magnitude of WTTs suggest that DSUs offices should increase significantly their

supply of in-kind services in order to attract students that reside in very distant areas. With

respect to the results in terms of semi-elasticities we can highlight some interesting elements.

First, the effect of in-kind policies is stronger for male students than for female students. Second,

the effect of these policies increase when student’s diploma grade increases. This last effect is

even clearer if we consider student packages.

Therefore, this study has provided evidence on the effectiveness of financial and in-kind

services in attracting high school leavers that decide to enroll in an Italian university. Our

results suggest that scholarships alone are not enough but that they need to be provided along

with places in dormitories to be effective. Moreover, this combination is stronger for students

with better grades, this way suggesting that an increase in DSU’s service supply can improve

the average quality of the students in the area in which the services are provided.

3.7.1 Scope for future research

This study has provided evidence of the presence of heterogeneity in students’ preferences.

However, a better understanding of this phenomenon could be reached by considering more

detailed information on students’ individual characteristics and university characteristics. In

particular, a better proxy of students’ performances in high school could be useful to understand

the effect of DSU policies on the average quality of students.

Moreover, one clear step forward in the understanding the determinants of students’ loca-

tion choices could be to model the possibility for students to opt-out from the Italian Higher

Education system. These choices can be investigated by using accessible administrative data
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regarding Italian high school leavers in general and their family background.19

19e.g. see Dardanoni, Laudicella, and Li Donni (2018) that have investigated patients’ hospital choices in the
National Health Service system in England.
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Appendix

3.A Appendix

Table 3A.1: Conditional Logit Estimates: Interactions with individual variables

Chemistry &

Pharmacy
Business &
Statistics

Life &
Natural sciences Engineering Law Education

E(Scholarship)/100 0.005 0.065*** -0.003 -0.020 0.025* 0.005
(0.018) (0.009) (0.016) (0.013) (0.013) (0.042)

E(Scholarship)/100 × CentreNorth -0.031 -0.040*** 0.0008 -0.213*** -0.006 0.002
(0.023) (0.011) (0.0191) (0.028) (0.017) (0.049)

E(Scholarship)/100 × Female 0.017*** 0.002 -0.002 0.0010 0.003 -0.019
(0.004) (0.002) (0.003) (0.0027) (0.002) (0.012)

E(Scholarship)/100 × Higher Unemp. in res. 0.025 -0.069*** 0.0004 -0.016 -0.042*** 0.046
(0.017) (0.009) (0.0161) (0.013) (0.013) (0.040)

E(Scholarship)/100 × Higher GDP in res. 0.040** 0.004 0.011 0.241*** -0.006 0.040
(0.016) (0.007) (0.011) (0.026) (0.010) (0.042)

E(Scholarship)/100 × Higher Housing Price in res. -0.011 -0.009*** -0.013** 0.027*** -0.012*** 0.004
(0.008) (0.003) (0.006) (0.005) (0.003) (0.017)

E(Scholarship)/100 × HEU in residence 0.012 -0.009*** 0.010** 0.009*** -0.002 -0.003
(0.008) (0.002) (0.004) (0.003) (0.003) (0.014)

E(Scholarship)/100 × Grade: 76-85 0.005 -0.009*** 0.003 -0.002 -0.008*** -0.0004
(0.005) (0.002) (0.004) (0.003) (0.003) (0.0069)

E(Scholarship)/100 × Grade: 86-95 0.006 -0.013*** 0.005 -0.012*** -0.008*** -0.001
(0.006) (0.003) (0.004) (0.003) (0.003) (0.009)

E(Scholarship)/100 × Grade: 96-102 0.005 -0.011*** 0.010** -0.015*** -0.018*** -0.044***
(0.007) (0.003) (0.005) (0.003) (0.004) (0.015)

E(Dormitory)/100 0.241 0.559*** 0.176 0.606*** 0.100 -0.619
(0.208) (0.110) (0.141) (0.101) (0.187) (1.098)

E(Dormitory)/100 × CentreNorth -0.399 -0.498*** 0.096 -0.965*** 0.112 -0.115
(0.283) (0.123) (0.171) (0.154) (0.231) (1.109)

E(Dormitory)/100 × Female 0.122*** 0.024 -0.009 -0.071*** 0.001 -0.018
(0.035) (0.020) (0.028) (0.025) (0.028) (0.255)

E(Dormitory)/100 × Higher Unemp. in res. 0.100 -0.534*** -0.027 -0.431*** -0.007 0.381
(0.203) (0.108) (0.139) (0.099) (0.185) (1.065)

E(Dormitory)/100 × Higher GDP in res. 0.163 0.036 -0.315*** 0.436*** -0.229 1.592**
(0.199) (0.072) (0.103) (0.128) (0.139) (0.623)

E(Dormitory)/100 × Higher Housing Price in res. -0.012 -0.065*** -0.098*** 0.101*** 0.141*** 0.209
(0.045) (0.023) (0.038) (0.033) (0.034) (0.315)

E(Dormitory)/100 × HEU in residence 0.153** 0.077*** -0.016 0.122*** 0.136*** -0.539
(0.068) (0.027) (0.042) (0.031) (0.038) (0.339)

E(Dormitory)/100 × Grade: 76-85 -0.029 0.049** -0.005 0.116*** 0.052 0.401***
(0.041) (0.023) (0.032) (0.028) (0.032) (0.136)

E(Dormitory)/100 × Grade: 86-95 -0.025 0.039 0.028 0.163*** 0.070* 0.484***
(0.047) (0.028) (0.038) (0.031) (0.038) (0.183)

E(Dormitory)/100 × Grade: 96-102 -0.052 0.047 0.082* 0.314*** 0.166*** 0.556**
(0.053) (0.033) (0.043) (0.032) (0.044) (0.284)

E(Student Pkg)/100 -0.278** -0.221*** -0.131* 0.234*** 0.113 -0.244
(0.113) (0.051) (0.073) (0.066) (0.073) (0.256)

E(Student Pkg)/100 × CentreNorth 0.470** 0.256*** 0.549*** 1.017*** 0.063 0.832**
(0.190) (0.061) (0.099) (0.124) (0.122) (0.366)

E(Student Pkg)/100 × Female -0.0002 0.018 -0.030 -0.034* 0.002 -0.185*
(0.0314) (0.012) (0.021) (0.019) (0.016) (0.105)

E(Student Pkg)/100 × Higher Unemp. in res. 0.360*** 0.362*** 0.344*** 0.229*** -0.032 0.321
(0.108) (0.050) (0.071) (0.064) (0.072) (0.236)

E(Student Pkg)/100 × Higher GDP in res. 0.133 -0.059 -0.329*** -0.919*** -0.092 -0.385
(0.161) (0.043) (0.077) (0.110) (0.101) (0.352)

E(Student Pkg)/100 × Higher Housing Price in res. -0.031 -0.069*** -0.145*** -0.392*** -0.045** -0.116
(0.037) (0.020) (0.043) (0.025) (0.020) (0.134)

E(Student Pkg)/100 × HEU in residence -0.029 -0.055*** 0.042 -0.041* -0.064*** 0.165
(0.064) (0.014) (0.030) (0.023) (0.021) (0.129)

E(Student Pkg)/100 × Grade: 76-85 -0.026 -0.051*** -0.007 -0.026 0.018 0.023
(0.037) (0.014) (0.024) (0.021) (0.019) (0.060)

E(Student Pkg)/100 × Grade: 86-95 -0.045 -0.025 0.005 0.032 -0.016 -0.011
(0.041) (0.017) (0.028) (0.023) (0.022) (0.086)

E(Student Pkg)/100 × Grade: 96-102 -0.017 -0.040** -0.056* -0.006 -0.071*** -0.106
(0.044) (0.019) (0.031) (0.024) (0.026) (0.125)

Pl. in Canteen/100 0.018 0.055*** -0.031*** 0.025*** 0.004 0.061**
(0.016) (0.005) (0.011) (0.005) (0.009) (0.024)

Pl. in Canteen/100 × CentreNorth -0.060*** -0.014** 0.013 -0.076*** -0.029** -0.073**
(0.021) (0.007) (0.013) (0.008) (0.013) (0.031)

Pl. in Canteen/100 × Female -0.002 -0.002 -0.001 -0.002 -0.00007 0.006
(0.005) (0.002) (0.003) (0.002) (0.00247) (0.010)
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Chemistry &

Pharmacy
Business &
Statistics

Life &
Natural sciences Engineering Law Education

Pl. in Canteen/100 × Higher Unemp. in res. -0.033** -0.004 0.035*** -0.009* 0.014 -0.080***
(0.015) (0.005) (0.011) (0.005) (0.009) (0.022)

Pl. in Canteen/100 × Higher GDP in res. 0.036** -0.008 0.044*** 0.014** 0.036*** 0.034
(0.015) (0.005) (0.008) (0.007) (0.009) (0.027)

Pl. in Canteen/100 × Higher Housing Price in res. -0.015** 0.0005 0.001 0.018*** -0.002 0.006
(0.006) (0.0025) (0.005) (0.003) (0.003) (0.012)

Pl. in Canteen/100 × HEU in residence -0.018** -0.015*** -0.004 -0.007*** -0.018*** 0.014
(0.009) (0.003) (0.005) (0.003) (0.003) (0.012)

Pl. in Canteen/100 × Grade: 76-85 0.008 -0.001 -0.004 0.002 0.004 -0.0008
(0.005) (0.002) (0.003) (0.002) (0.003) (0.0062)

Pl. in Canteen/100 × Grade: 86-95 0.009 -0.006** -0.008* 0.005* 0.006* 0.007
(0.006) (0.003) (0.004) (0.003) (0.003) (0.009)

Pl. in Canteen/100 × Grade: 96-102 0.014** -0.005* 0.003 0.009*** 0.003 0.005
(0.007) (0.003) (0.005) (0.003) (0.004) (0.016)

College -1.058** 0.081 -1.405*** 0.748*** 0.067 -4.660***
(0.465) (0.151) (0.277) (0.162) (0.332) (0.723)

College × CentreNorth 0.223 0.309 0.382 1.660*** 1.443*** 5.269***
(0.776) (0.239) (0.420) (0.292) (0.503) (0.823)

College × Female -0.424*** -0.026 -0.048 0.108** -0.069 0.019
(0.096) (0.040) (0.070) (0.052) (0.058) (0.248)

College × Higher Unemp. in res. 0.847* 0.224 0.553** -0.116 -0.530 3.506***
(0.450) (0.143) (0.265) (0.154) (0.327) (0.660)

College × Higher GDP in res. 1.501** -0.737*** 0.818** -0.908*** -1.054*** 0.113
(0.640) (0.202) (0.337) (0.261) (0.386) (0.843)

College × Higher Housing Price in res. 0.249** 0.258*** 0.078 -0.336*** 0.651*** -0.138
(0.122) (0.052) (0.100) (0.065) (0.070) (0.285)

College × HEU in residence 0.028 0.178*** -0.139 0.205*** -0.494*** 0.868***
(0.176) (0.051) (0.098) (0.063) (0.081) (0.289)

College × Grade: 76-85 0.178 0.160*** 0.043 0.049 0.042 -0.118
(0.112) (0.046) (0.081) (0.057) (0.067) (0.140)

College × Grade: 86-95 0.071 0.344*** 0.476*** 0.240*** 0.118 0.148
(0.128) (0.057) (0.095) (0.064) (0.079) (0.200)

College × Grade: 96-102 0.277* 0.474*** 0.572*** 0.531*** 0.230** 0.239
(0.144) (0.066) (0.106) (0.068) (0.095) (0.319)

non-DSU Scholar./100 -0.178* -0.303*** -0.208*** 0.078** -0.236*** 0.325**
(0.108) (0.037) (0.065) (0.039) (0.072) (0.159)

non-DSU Scholar./100 × CentreNorth 0.434*** -0.005 -0.029 0.296*** 0.248*** 0.034
(0.134) (0.045) (0.073) (0.071) (0.092) (0.201)

non-DSU Scholar./100 × Female -0.121*** -0.030*** 0.014 0.006 0.0006 0.047
(0.021) (0.010) (0.015) (0.013) (0.0147) (0.072)

non-DSU Scholar./100 × Higher Unemp. in res. -0.058 0.247*** 0.151** 0.122*** 0.269*** -0.297**
(0.104) (0.035) (0.062) (0.035) (0.071) (0.138)

non-DSU Scholar./100 × Higher GDP in res. -0.352*** 0.124*** 0.302*** -0.358*** -0.162*** -0.345*
(0.086) (0.032) (0.041) (0.064) (0.060) (0.197)

non-DSU Scholar./100 × Higher Housing Price in res. 0.045 0.024** 0.021 0.048** 0.103*** -0.117
(0.028) (0.012) (0.022) (0.020) (0.020) (0.075)

non-DSU Scholar./100 × HEU in residence -0.078** 0.043*** -0.040** -0.032** -0.012 0.094
(0.035) (0.012) (0.019) (0.015) (0.019) (0.074)

non-DSU Scholar./100 × Grade: 76-85 -0.025 0.076*** -0.011 0.015 0.003 -0.053
(0.024) (0.011) (0.017) (0.015) (0.017) (0.040)

non-DSU Scholar./100 × Grade: 86-95 -0.017 0.154*** -0.021 0.029* 0.020 -0.0005
(0.028) (0.014) (0.020) (0.016) (0.020) (0.0590)

non-DSU Scholar./100 × Grade: 96-102 -0.004 0.156*** -0.026 0.012 0.040* 0.051
(0.033) (0.016) (0.022) (0.017) (0.023) (0.088)

E(non-DSU Dorm.)/100 0.480 0.324** 3.610*** -0.504*** 0.490** 1.494
(1.082) (0.127) (0.395) (0.117) (0.200) (1.350)

E(non-DSU Dorm.)/100 × CentreNorth -0.476 0.142 -4.681*** 0.882*** -0.374 -1.161
(1.437) (0.154) (0.589) (0.171) (0.272) (1.443)

E(non-DSU Dorm.)/100 × Female -0.675*** -0.065 -0.181 -0.034 0.008 1.270***
(0.229) (0.040) (0.124) (0.032) (0.056) (0.404)

E(non-DSU Dorm.)/100 × Higher Unemp. in res. -2.636** -0.064 -3.705*** -0.229** -0.109 -2.836**
(1.052) (0.119) (0.380) (0.112) (0.192) (1.286)

E(non-DSU Dorm.)/100 × Higher GDP in res. -1.719* -0.660*** 1.132** -0.504*** 0.210 -1.008
(1.044) (0.115) (0.486) (0.140) (0.203) (1.354)

E(non-DSU Dorm.)/100 × Higher Housing Price in res. 0.867** 0.479*** 0.040 -0.075* 0.224*** 1.848***
(0.393) (0.059) (0.237) (0.039) (0.085) (0.488)

E(non-DSU Dorm.)/100 × HEU in residence -0.602 0.289*** -0.100 0.270*** 0.220*** 0.157
(0.419) (0.046) (0.175) (0.038) (0.070) (0.502)

E(non-DSU Dorm.)/100 × Grade: 76-85 -0.124 0.057 0.050 0.136*** 0.173** -0.076
(0.270) (0.048) (0.147) (0.039) (0.069) (0.220)

E(non-DSU Dorm.)/100 × Grade: 86-95 -0.082 -0.079 0.286* 0.227*** 0.247*** 0.065
(0.301) (0.054) (0.162) (0.042) (0.079) (0.301)

E(non-DSU Dorm.)/100 × Grade: 96-102 -0.512 -0.216*** 0.308* 0.391*** 0.373*** 0.343
(0.333) (0.061) (0.181) (0.041) (0.087) (0.461)

Excellence Dept. -0.905*** 0.797*** 1.060*** 0.703*** 0.390*** -0.751
(0.301) (0.093) (0.147) (0.151) (0.125) (0.716)

Excellence Dept. × CentreNorth 1.108*** -0.230** -0.600*** 2.467*** -0.018 0.004
(0.377) (0.105) (0.162) (0.293) (0.136) (0.705)

Excellence Dept. × Female -0.298*** -0.036 -0.101*** -0.092** -0.006 -0.303*
(0.062) (0.023) (0.034) (0.043) (0.032) (0.179)

Excellence Dept. × Higher Unemp. in res. 0.252 -0.322*** -1.004*** -0.724*** -0.112 1.455**
(0.289) (0.089) (0.143) (0.145) (0.118) (0.689)

Excellence Dept. × Higher GDP in res. -0.652*** -0.408*** -0.388*** -2.585*** -0.206*** 0.648
(0.248) (0.068) (0.084) (0.270) (0.076) (0.491)

Excellence Dept. × Higher Housing Price in res. 0.215** -0.453*** -0.039 -0.290*** -0.172*** -0.131
(0.085) (0.030) (0.046) (0.059) (0.046) (0.203)

Excellence Dept. × HEU in residence -0.122 -0.075*** -0.061 -0.002 0.518*** -0.556***
(0.103) (0.029) (0.045) (0.050) (0.038) (0.202)

Excellence Dept. × Grade: 76-85 0.023 -0.079*** 0.127*** 0.086* 0.005 0.205**
(0.071) (0.027) (0.039) (0.048) (0.038) (0.096)

Excellence Dept. × Grade: 86-95 0.125 -0.067** 0.228*** 0.278*** 0.041 0.012
(0.086) (0.033) (0.046) (0.054) (0.046) (0.135)

Excellence Dept. × Grade: 96-102 -0.007 -0.056 0.298*** 0.316*** -0.011 0.365*
(0.099) (0.039) (0.054) (0.056) (0.053) (0.219)

Academics/100 0.255 0.120** -0.194* -0.528*** 0.262** 0.667
(0.326) (0.061) (0.107) (0.064) (0.124) (0.469)

Academics/100 × CentreNorth -0.223 0.028 -0.024 -0.607*** -0.474*** -0.281
(0.419) (0.080) (0.130) (0.109) (0.153) (0.466)

Academics/100 × Female 0.202*** 0.003 -0.022 0.079*** 0.007 -0.215
(0.069) (0.017) (0.031) (0.024) (0.024) (0.157)
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Academics/100 × Higher Unemp. in res. -0.710** -0.178*** -0.116 0.397*** -0.296** -0.488
(0.317) (0.057) (0.099) (0.057) (0.121) (0.442)

Academics/100 × Higher GDP in res. 0.035 0.152** 0.161* 0.628*** 0.301*** -0.158
(0.299) (0.063) (0.090) (0.101) (0.101) (0.330)

Academics/100 × Higher Housing Price in res. -0.181 -0.064*** -0.009 0.351*** -0.111*** -0.284
(0.121) (0.023) (0.045) (0.038) (0.031) (0.176)

Academics/100 × HEU in residence -0.202* -0.088*** -0.098** -0.165*** 0.014 -0.028
(0.119) (0.021) (0.039) (0.026) (0.031) (0.199)

Academics/100 × Grade: 76-85 0.062 -0.016 0.042 -0.011 -0.048* -0.061
(0.082) (0.021) (0.038) (0.027) (0.029) (0.092)

Academics/100 × Grade: 86-95 0.019 -0.034 0.007 -0.042 0.008 -0.062
(0.092) (0.025) (0.043) (0.030) (0.034) (0.134)

Academics/100 × Grade: 96-102 -0.054 -0.022 0.139*** -0.098*** -0.020 -0.079
(0.098) (0.029) (0.042) (0.031) (0.039) (0.221)

Share of Intern. Acad. -0.434 -0.268*** -0.425** 0.047 -0.657*** -1.714***
(0.486) (0.054) (0.177) (0.096) (0.107) (0.297)

Share of Intern. Acad. × CentreNorth -0.689 0.113* 0.425** -0.526*** 0.362*** 0.851***
(0.654) (0.061) (0.197) (0.143) (0.131) (0.299)

Share of Intern. Acad. × Female -0.255*** 0.002 -0.071* 0.072** -0.005 -0.110
(0.075) (0.013) (0.042) (0.033) (0.023) (0.146)

Share of Intern. Acad. × Higher Unemp. in res. -0.067 0.143*** -0.034 -0.303*** 0.517*** 0.800***
(0.475) (0.051) (0.168) (0.090) (0.104) (0.220)

Share of Intern. Acad. × Higher GDP in res. 1.015** -0.022 0.129 -0.013 0.122 0.830***
(0.450) (0.040) (0.102) (0.118) (0.082) (0.257)

Share of Intern. Acad. × Higher Housing Price in res. -0.211** 0.040** -0.124** -0.053 0.075** -0.666***
(0.091) (0.017) (0.055) (0.036) (0.030) (0.130)

Share of Intern. Acad. × HEU in residence -0.408*** 0.091*** 0.157*** -0.136*** -0.017 0.349**
(0.143) (0.015) (0.056) (0.042) (0.029) (0.154)

Share of Intern. Acad. × Grade: 76-85 -0.055 0.157*** -0.038 -0.054 0.201*** 0.003
(0.085) (0.016) (0.048) (0.034) (0.031) (0.085)

Share of Intern. Acad. × Grade: 86-95 -0.295*** 0.261*** -0.001 -0.069* 0.286*** 0.085
(0.110) (0.019) (0.057) (0.040) (0.034) (0.121)

Share of Intern. Acad. × Grade: 96-102 -0.178 0.360*** 0.067 -0.041 0.406*** 0.194
(0.132) (0.021) (0.064) (0.041) (0.037) (0.182)

Admin. staff -0.250** -0.147*** 0.115* -0.081* -0.191*** -0.136
(0.116) (0.047) (0.060) (0.044) (0.064) (0.237)

Admin. staff × CentreNorth 0.216 0.066 -0.040 0.419*** 0.269*** -0.022
(0.135) (0.063) (0.075) (0.099) (0.093) (0.237)

Admin. staff × Female -0.097*** -0.006 -0.009 -0.023* -0.003 0.172**
(0.033) (0.011) (0.017) (0.014) (0.013) (0.086)

Admin. staff × Higher Unemp. in res. 0.075 0.201*** -0.070 0.184*** 0.229*** -0.121
(0.109) (0.046) (0.056) (0.042) (0.063) (0.214)

Admin. staff × Higher GDP in res. -0.017 -0.192*** -0.122** -0.303*** -0.172** -0.364*
(0.097) (0.047) (0.056) (0.094) (0.074) (0.191)

Admin. staff × Higher Housing Price in res. 0.080* 0.044*** 0.099*** 0.028* 0.049*** 0.121
(0.046) (0.015) (0.024) (0.016) (0.018) (0.099)

Admin. staff × HEU in residence 0.142** 0.064*** -0.029 0.084*** 0.013 0.129
(0.058) (0.014) (0.023) (0.019) (0.019) (0.108)

Admin. staff × Grade: 76-85 -0.012 -0.0006 -0.037* 0.064*** 0.052*** -0.106**
(0.038) (0.0130) (0.019) (0.016) (0.016) (0.051)

Admin. staff × Grade: 86-95 0.028 0.001 0.004 0.092*** 0.061*** -0.149*
(0.043) (0.016) (0.022) (0.018) (0.018) (0.076)

Admin. staff × Grade: 96-102 -0.050 -0.022 -0.002 0.172*** 0.105*** -0.029
(0.047) (0.018) (0.024) (0.018) (0.021) (0.115)

Field Academics/100 1.538* -0.148 1.390*** -0.289*** 1.345*** 1.329
(0.828) (0.247) (0.325) (0.082) (0.358) (1.692)

Field Academics/100 × CentreNorth -2.452** 1.073*** -0.802** -0.937*** -0.535 -0.110
(1.034) (0.297) (0.392) (0.163) (0.435) (1.770)

Field Academics/100 × Female 0.269 0.103** -0.065 -0.009 -0.080 0.111
(0.214) (0.048) (0.074) (0.020) (0.093) (0.422)

Field Academics/100 × Higher Unemp. in res. 0.236 0.649*** -0.602* 0.402*** -0.632* -1.905
(0.786) (0.241) (0.318) (0.080) (0.344) (1.641)

Field Academics/100 × Higher GDP in res. 1.921*** -0.431** 0.318 1.010*** -0.168 -2.534**
(0.742) (0.206) (0.249) (0.148) (0.296) (1.112)

Field Academics/100 × Higher Housing Price in res. -0.144 0.633*** -0.654*** 0.171*** 0.111 1.389***
(0.325) (0.059) (0.122) (0.027) (0.135) (0.470)

Field Academics/100 × HEU in residence 1.590*** 0.031 0.391*** -0.044* 0.276** 0.218
(0.389) (0.058) (0.099) (0.025) (0.122) (0.477)

Field Academics/100 × Grade: 76-85 0.008 -0.044 -0.008 0.026 -0.106 -0.181
(0.249) (0.058) (0.085) (0.023) (0.110) (0.248)

Field Academics/100 × Grade: 86-95 0.377 -0.293*** 0.036 -0.015 -0.343*** -0.361
(0.284) (0.068) (0.101) (0.026) (0.127) (0.352)

Field Academics/100 × Grade: 96-102 0.181 -0.511*** -0.100 0.017 -0.546*** -0.910
(0.315) (0.081) (0.114) (0.026) (0.145) (0.587)

Pub. funding (Mill.) 0.005 -0.003 -0.015* 0.044*** -0.008 -0.048
(0.030) (0.003) (0.008) (0.005) (0.007) (0.044)

Pub. funding (Mill.) × CentreNorth 0.003 -0.006* 0.019** 0.030*** 0.013* 0.013
(0.036) (0.004) (0.009) (0.009) (0.008) (0.045)

Pub. funding (Mill.) × Female -0.008 -0.0007 0.003 -0.002 0.00003 0.008
(0.007) (0.0008) (0.002) (0.002) (0.00112) (0.012)

Pub. funding (Mill.) × Higher Unemp. in res. 0.033 0.0001 0.026*** -0.040*** 0.011 0.043
(0.029) (0.0033) (0.007) (0.005) (0.007) (0.043)

Pub. funding (Mill.) × Higher GDP in res. -0.016 0.004* -0.010 -0.053*** -0.006 0.060**
(0.025) (0.002) (0.006) (0.008) (0.004) (0.025)

Pub. funding (Mill.) × Higher Housing Price in res. 0.008 0.001 0.006** -0.024*** 0.005*** -0.0005
(0.012) (0.001) (0.003) (0.002) (0.001) (0.0117)

Pub. funding (Mill.) × HEU in residence -0.007 0.003*** 0.006** 0.005** -0.002 -0.008
(0.011) (0.001) (0.003) (0.002) (0.001) (0.014)

Pub. funding (Mill.) × Grade: 76-85 -0.003 0.003*** 0.0004 -0.004** 0.0005 0.014**
(0.008) (0.001) (0.0026) (0.002) (0.0013) (0.006)

Pub. funding (Mill.) × Grade: 86-95 -0.004 0.006*** -0.002 -0.004** -0.003** 0.019**
(0.009) (0.001) (0.003) (0.002) (0.002) (0.009)

Pub. funding (Mill.) × Grade: 96-102 0.008 0.008*** -0.009*** -0.006*** -0.002 0.024
(0.009) (0.001) (0.003) (0.002) (0.002) (0.016)

Avg contribution 0.010 0.003 -0.055*** -0.009 0.021* 0.040
(0.075) (0.006) (0.017) (0.018) (0.012) (0.067)

Avg contribution × CentreNorth -0.021 -0.008 0.003 -0.489*** -0.007 -0.088
(0.084) (0.007) (0.024) (0.041) (0.014) (0.063)

Avg contribution × Female 0.057** -0.008*** 0.020*** 0.030*** -0.005* -0.0004
(0.022) (0.002) (0.005) (0.006) (0.003) (0.0256)
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Avg contribution × Higher Unemp. in res. 0.092 -0.0003 0.032** -0.079*** -0.008 -0.045
(0.066) (0.0057) (0.016) (0.018) (0.011) (0.061)

Avg contribution × Higher GDP in res. -0.067 -0.001 0.00003 0.385*** -0.025*** 0.014
(0.054) (0.005) (0.01842) (0.038) (0.009) (0.057)

Avg contribution × Higher Housing Price in res. -0.060* -0.018*** -0.005 -0.001 -0.019*** -0.049
(0.033) (0.002) (0.006) (0.012) (0.003) (0.030)

Avg contribution × HEU in residence -0.036 0.0008 0.017*** 0.038*** 0.010*** -0.004
(0.041) (0.0019) (0.005) (0.009) (0.003) (0.022)

Avg contribution × Grade: 76-85 0.061** 0.005*** 0.018*** -0.012** -0.003 0.011
(0.026) (0.002) (0.005) (0.006) (0.003) (0.014)

Avg contribution × Grade: 86-95 0.083*** 0.016*** 0.014** -0.061*** -0.004 0.019
(0.030) (0.002) (0.006) (0.010) (0.003) (0.021)

Avg contribution × Grade: 96-102 0.125*** 0.023*** 0.023*** -0.066*** -0.011*** 0.009
(0.035) (0.003) (0.006) (0.010) (0.004) (0.041)

Distance -0.016*** -0.022*** -0.005 -0.019*** -0.022*** -0.020**
(0.004) (0.002) (0.003) (0.002) (0.003) (0.009)

Distance × CentreNorth -0.012** -0.006*** -0.022*** -0.0002 -0.018*** -0.013
(0.005) (0.002) (0.004) (0.0018) (0.004) (0.009)

Distance × Female -0.001 -0.0007 0.001* 0.002*** -0.003*** -0.005**
(0.001) (0.0004) (0.001) (0.000) (0.001) (0.002)

Distance × Higher Unemp. in res. -0.0004 0.002 -0.012*** 0.001 0.002 -0.010
(0.0043) (0.002) (0.003) (0.001) (0.003) (0.008)

Distance × Higher GDP in res. -0.007** -0.007*** -0.006*** -0.016*** 0.014*** -0.021***
(0.003) (0.001) (0.002) (0.001) (0.003) (0.005)

Distance × Higher Housing Price in res. -0.001 0.003*** -0.002 0.002*** -0.003*** 0.007***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

Distance × HEU in residence 0.006*** 0.008*** 0.006*** 0.005*** 0.006*** 0.010***
(0.002) (0.001) (0.001) (0.001) (0.001) (0.003)

Distance × Grade: 76-85 -0.003*** 0.003*** -0.0006 0.001** 0.002** 0.002
(0.001) (0.001) (0.0008) (0.001) (0.001) (0.001)

Distance × Grade: 86-95 -0.003** 0.005*** 0.0008 0.003*** 0.003*** 0.003
(0.001) (0.001) (0.0009) (0.001) (0.001) (0.002)

Distance × Grade: 96-102 -0.002* 0.007*** -0.003** 0.004*** 0.005*** 0.002
(0.001) (0.001) (0.001) (0.001) (0.001) (0.003)

Distance2/100 0.0009 0.001*** -0.0009** 0.001*** 0.002*** 0.0008
(0.0007) (0.000) (0.0005) (0.000) (0.000) (0.0013)

Distance2/100 × CentreNorth 0.002*** 0.002*** 0.004*** 0.0005** 0.003*** 0.002*
(0.001) (0.000) (0.001) (0.0003) (0.001) (0.001)

Distance2/100 × Female 0.0001 0.00005 -0.00006 -0.0002*** 0.0002*** 0.0005**
(0.0001) (0.00004) (0.00007) (0.0000) (0.0001) (0.0002)

Distance2/100 × Higher Unemp. in res. -0.0001 0.0002 0.002*** 0.0004* -0.0005 0.001
(0.0007) (0.0002) (0.000) (0.0002) (0.0004) (0.001)

Distance2/100 × Higher GDP in res. -0.0007 -0.0003 -0.0001 0.001*** -0.003*** 0.0008
(0.0005) (0.0002) (0.0003) (0.000) (0.000) (0.0009)

Distance2/100 × Higher Housing Price in res. 0.00009 -0.0002*** 0.0001 -0.0002*** 0.0005*** -0.0006**
(0.00017) (0.0001) (0.0002) (0.0001) (0.0001) (0.0003)

Distance2/100 × HEU in residence -0.0006*** -0.0007*** -0.0005*** -0.0004*** -0.0005*** -0.0010***
(0.0002) (0.0000) (0.0001) (0.0001) (0.0001) (0.0003)

Distance2/100 × Grade: 76-85 0.0003*** -0.0002*** 0.00003 -0.0001** -0.0001** -0.0002*
(0.0001) (0.0000) (0.00008) (0.0001) (0.0001) (0.0001)

Distance2/100 × Grade: 86-95 0.0003** -0.0004*** -0.0001 -0.0002*** -0.0003*** -0.0003
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

Distance2/100 × Grade: 96-102 0.0003** -0.0006*** 0.0002* -0.0004*** -0.0005*** -0.0004
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0004)

HEU in province 1.750*** 1.913*** -154.308*** 2.776*** 1.560*** -15519.109***
(0.128) (0.137) (0.090) (0.146) (0.357) (0.231)

HEU in province × CentreNorth -0.706*** -0.490*** 155.179*** -1.516*** -1.299*** 15519.981***
(0.184) (0.154) (0.116) (0.173) (0.387) (0.314)

HEU in province × Female -0.423*** -0.023 -0.069 -0.089* -0.208*** 0.322
(0.097) (0.040) (0.072) (0.048) (0.061) (0.204)

HEU in province × Higher Unemp. in res. -0.060 155.747 -1.126*** 0.241 15518.998
(0.129) (0.000) (0.139) (0.351) (0.000)

HEU in province × Higher GDP in res. -0.328* -0.445*** -0.133 -0.059 1.356*** -1.107***
(0.191) (0.094) (0.125) (0.109) (0.169) (0.309)

HEU in province × Higher Housing Price in res. 0.369*** 0.067 -0.407*** -0.069 -0.098 0.319*
(0.121) (0.053) (0.103) (0.057) (0.080) (0.167)

HEU in province × HEU in residence 0.594*** 0.693*** 0.473*** 0.514*** 0.962*** 0.437*
(0.171) (0.056) (0.105) (0.058) (0.092) (0.250)

HEU in province × Grade: 76-85 -0.187* 0.026 -0.043 -0.007 -0.085 0.162
(0.112) (0.047) (0.081) (0.052) (0.071) (0.128)

HEU in province × Grade: 86-95 -0.100 0.091 0.180* 0.108* -0.166** 0.165
(0.129) (0.057) (0.097) (0.059) (0.084) (0.193)

HEU in province × Grade: 96-102 0.128 0.160** -0.002 0.145** -0.139 0.345
(0.148) (0.067) (0.111) (0.062) (0.097) (0.312)

HEU in region 0.852* 2.133*** 4.189*** 2.289*** 2.781*** 2.545***
(0.486) (0.178) (0.383) (0.171) (0.271) (0.608)

HEU in region × CentreNorth 0.882* 0.420* -3.195*** -0.569*** 0.195 -1.031*
(0.520) (0.237) (0.399) (0.191) (0.406) (0.547)

HEU in region × Female -0.014 0.020 0.085 0.058 0.057 -0.146
(0.103) (0.058) (0.085) (0.064) (0.078) (0.245)

HEU in region × Higher Unemp. in res. 0.184 -0.419*** -2.830*** -0.129 -1.076*** -0.930*
(0.468) (0.161) (0.370) (0.149) (0.255) (0.531)

HEU in region × Higher GDP in res. -1.046*** -1.876*** -0.067 -0.603*** -2.046*** -0.833**
(0.232) (0.177) (0.155) (0.130) (0.317) (0.345)

HEU in region × Higher Housing Price in res. -0.017 0.466*** 0.204* -0.045 -0.428*** 0.619***
(0.139) (0.073) (0.117) (0.076) (0.096) (0.206)

HEU in region × HEU in residence 0.308 -0.210*** 0.317** 0.049 -0.701*** 0.011
(0.219) (0.078) (0.138) (0.091) (0.115) (0.298)

HEU in region × Grade: 76-85 -0.070 0.166** -0.031 0.015 0.160* 0.076
(0.118) (0.069) (0.095) (0.071) (0.090) (0.153)

HEU in region × Grade: 86-95 0.195 0.132 0.015 0.067 0.133 0.450*
(0.139) (0.082) (0.116) (0.079) (0.105) (0.236)

HEU in region × Grade: 96-102 0.239 0.094 -0.229* 0.041 0.074 0.062
(0.155) (0.097) (0.131) (0.083) (0.125) (0.364)

Unemployment 0.202** 0.210*** -0.221*** 0.252*** -0.071 0.301
(0.101) (0.033) (0.055) (0.030) (0.051) (0.191)

Unemployment × CentreNorth -0.643*** -0.325*** 0.059 -0.308*** -0.410*** -0.574***
(0.132) (0.041) (0.065) (0.044) (0.078) (0.184)

Unemployment × Female 0.062** 0.016* 0.047*** -0.012 0.003 0.014
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(0.025) (0.009) (0.016) (0.012) (0.013) (0.053)
Unemployment × Higher Unemp. in res. -0.307*** -0.181*** 0.172*** -0.183*** 0.0007 -0.868***

(0.097) (0.032) (0.053) (0.028) (0.0495) (0.183)
Unemployment × Higher GDP in res. 0.665*** 0.312*** 0.068 0.081** 0.553*** 0.226*

(0.092) (0.028) (0.045) (0.038) (0.062) (0.119)
Unemployment × Higher Housing Price in res. -0.248*** -0.040*** 0.041* -0.120*** -0.108*** 0.005

(0.031) (0.012) (0.022) (0.016) (0.018) (0.043)
Unemployment × HEU in residence -0.060 0.020* 0.102*** 0.038*** 0.074*** 0.063

(0.044) (0.012) (0.022) (0.014) (0.018) (0.055)
Unemployment × Grade: 76-85 0.029 -0.005 -0.005 0.010 0.048*** 0.074**

(0.029) (0.011) (0.018) (0.014) (0.015) (0.031)
Unemployment × Grade: 86-95 -0.039 -0.005 -0.048** 0.018 0.040** 0.052

(0.033) (0.013) (0.021) (0.015) (0.018) (0.046)
Unemployment × Grade: 96-102 0.040 -0.013 -0.075*** -0.011 0.006 0.058

(0.037) (0.015) (0.025) (0.015) (0.021) (0.074)
Housing price 0.004 0.095*** 0.173*** 0.108*** 0.111*** -0.449***

(0.070) (0.017) (0.046) (0.019) (0.038) (0.134)
Housing price × CentreNorth 0.062 -0.088*** -0.165*** 0.262*** 0.260*** 0.347**

(0.087) (0.023) (0.056) (0.029) (0.056) (0.138)
Housing price × Female 0.007 -0.002 -0.019* -0.006 0.014 0.066

(0.017) (0.005) (0.011) (0.007) (0.009) (0.042)
Housing price × Higher Unemp. in res. 0.037 -0.073*** -0.116*** -0.079*** 0.022 0.693***

(0.066) (0.016) (0.044) (0.018) (0.037) (0.126)
Housing price × Higher GDP in res. -0.052 0.057*** -0.054 -0.100*** -0.282*** 0.025

(0.058) (0.019) (0.037) (0.024) (0.043) (0.108)
Housing price × Higher Housing Price in res. 0.121*** -0.060*** 0.049*** -0.052*** 0.091*** 0.063*

(0.024) (0.007) (0.017) (0.008) (0.013) (0.036)
Housing price × HEU in residence 0.011 0.025*** -0.056*** 0.024*** 0.012 -0.079

(0.031) (0.007) (0.016) (0.008) (0.013) (0.051)
Housing price × Grade: 76-85 -0.016 -0.005 0.009 0.005 -0.0008 -0.030

(0.020) (0.006) (0.013) (0.008) (0.0110) (0.023)
Housing price × Grade: 86-95 -0.008 -0.013* 0.035** 0.012 0.014 -0.054

(0.023) (0.008) (0.016) (0.009) (0.013) (0.035)
Housing price × Grade: 96-102 -0.055** -0.047*** 0.041** 0.019** 0.028* -0.079

(0.027) (0.009) (0.018) (0.009) (0.015) (0.057)
Regional GDP 0.196** 0.158*** -0.097* 0.107*** 0.006 0.353***

(0.093) (0.022) (0.050) (0.022) (0.038) (0.104)
Regional GDP × CentreNorth -0.245** -0.004 0.175*** 0.298*** -0.157** -0.408***

(0.113) (0.032) (0.056) (0.045) (0.062) (0.112)
Regional GDP × Female 0.029 0.004 0.007 -0.022** -0.001 -0.010

(0.019) (0.008) (0.013) (0.010) (0.011) (0.040)
Regional GDP × Higher Unemp. in res. -0.027 -0.032 0.185*** -0.021 0.102*** -0.423***

(0.090) (0.021) (0.049) (0.020) (0.037) (0.095)
Regional GDP × Higher GDP in res. 0.185*** 0.010 -0.103*** -0.283*** 0.293*** 0.082

(0.069) (0.026) (0.032) (0.042) (0.051) (0.085)
Regional GDP × Higher Housing Price in res. -0.197*** -0.073*** -0.038** -0.130*** -0.086*** -0.103***

(0.024) (0.010) (0.019) (0.012) (0.015) (0.040)
Regional GDP × HEU in residence -0.059* -0.041*** -0.012 -0.019 -0.025* -0.133***

(0.035) (0.010) (0.019) (0.012) (0.015) (0.050)
Regional GDP × Grade: 76-85 0.019 0.006 -0.008 0.002 0.036*** 0.030

(0.022) (0.009) (0.015) (0.011) (0.013) (0.023)
Regional GDP × Grade: 86-95 -0.011 -0.021* -0.025 0.009 0.017 0.0006

(0.026) (0.011) (0.018) (0.012) (0.015) (0.0363)
Regional GDP × Grade: 96-102 -0.015 -0.017 -0.037* -0.028** 0.012 0.027

(0.029) (0.013) (0.020) (0.013) (0.018) (0.057)

Observations 376488 2478941 724128 2022936 1355184 279552

Pseudo R2 0.67 0.60 0.54 0.63 0.62 -37.91
Log Likelihood -10894.7 -54458.5 -23755.8 -49197.1 -30504.9 -968117.7

Notes: Conditional Logit regression by fields of study estimated on the sample of Italian students enrolled for the first time in the academic year 2014-2015.
Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. All the variables referring to HEUs’ and areas’ characteristics are interacted with in-
dividual variables. Variable definitions are reported in Table 3.6. In particular, Higher unemp. in res. indicates students that reside in provinces with an
unemployment rate higher than the average; Higher GDP in res. takes value 1 if the student lives in a region with a GDP higher than the average GDP; Higher
Housing Price indicates students that reside in provinces with a housing price higher than the national average; Grade: 76-85, Grade: 86-95, and Grade: 96-102
indicate students that have obtained a high school diploma with a final grade in the specified bracket.
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Table 3A.2: Conditional Logit Estimates: Interactions with individual variables

Humanities Languages
Social &

Political sciences Psychology
Math.

& Physical sciences

E(Scholarship)/100 -0.010 0.026** 0.007 0.067*** 0.007
(0.014) (0.010) (0.011) (0.022) (0.016)

E(Scholarship)/100 × CentreNorth -0.026* -0.005 -0.007 -0.062* -0.006
(0.016) (0.015) (0.013) (0.032) (0.019)

E(Scholarship)/100 × Female 0.000002 -0.002 0.010*** 0.017*** -0.003
(0.002417) (0.003) (0.002) (0.006) (0.004)

E(Scholarship)/100 × Higher Unemp. in res. -0.010 -0.013 -0.012 -0.028 0.001
(0.014) (0.010) (0.010) (0.021) (0.016)

E(Scholarship)/100 × Higher GDP in res. 0.033*** 0.023* 0.018** 0.015 0.041***
(0.008) (0.014) (0.009) (0.026) (0.013)

E(Scholarship)/100 × Higher Housing Price in res. -0.013*** -0.023*** -0.025*** -0.009 -0.005
(0.003) (0.003) (0.003) (0.009) (0.005)

E(Scholarship)/100 × HEU in residence 0.0002 -0.009*** -0.006** -0.014** -0.014***
(0.0029) (0.003) (0.002) (0.006) (0.005)

E(Scholarship)/100 × Grade: 76-85 -0.001 -0.011*** -0.006*** -0.023*** -0.005
(0.003) (0.002) (0.002) (0.005) (0.004)

E(Scholarship)/100 × Grade: 86-95 -0.003 -0.029*** -0.006** -0.042*** -0.014***
(0.003) (0.003) (0.003) (0.006) (0.005)

E(Scholarship)/100 × Grade: 96-102 -0.003 -0.026*** -0.013*** -0.048*** -0.020***
(0.004) (0.003) (0.004) (0.007) (0.005)

E(Dormitory)/100 0.608*** 0.376*** 0.444*** -0.165 0.037
(0.154) (0.120) (0.143) (0.274) (0.186)

E(Dormitory)/100 × CentreNorth -0.980*** 0.211 -1.097*** 0.347 -0.796***
(0.172) (0.146) (0.173) (0.349) (0.298)

E(Dormitory)/100 × Female -0.033 0.018 0.028 0.032 0.180***
(0.030) (0.036) (0.026) (0.074) (0.046)

E(Dormitory)/100 × Higher Unemp. in res. -0.365** -0.633*** -0.152 0.234 -0.185
(0.151) (0.116) (0.140) (0.224) (0.179)

E(Dormitory)/100 × Higher GDP in res. 0.089 -0.458*** 0.777*** 0.205 0.458*
(0.109) (0.112) (0.117) (0.244) (0.252)

E(Dormitory)/100 × Higher Housing Price in res. 0.143*** -0.145*** -0.166*** -0.109 0.008
(0.036) (0.035) (0.031) (0.096) (0.068)

E(Dormitory)/100 × HEU in residence 0.045 0.181*** 0.110*** 0.304*** -0.108
(0.039) (0.042) (0.031) (0.087) (0.076)

E(Dormitory)/100 × Grade: 76-85 0.023 -0.015 0.002 -0.224*** 0.193***
(0.034) (0.031) (0.028) (0.069) (0.059)

E(Dormitory)/100 × Grade: 86-95 0.080** 0.029 0.019 -0.313*** 0.233***
(0.040) (0.037) (0.038) (0.088) (0.063)

E(Dormitory)/100 × Grade: 96-102 0.143*** 0.051 0.018 -0.353*** 0.500***
(0.043) (0.044) (0.054) (0.114) (0.064)

E(Student Pkg)/100 -0.113 -0.163** -0.099 -0.514** 0.142
(0.074) (0.064) (0.066) (0.215) (0.122)

E(Student Pkg)/100 × CentreNorth 0.366*** -0.294*** 0.137* 0.530* -0.075
(0.090) (0.089) (0.082) (0.292) (0.155)

E(Student Pkg)/100 × Female -0.023 0.012 -0.013 -0.023 -0.179***
(0.020) (0.022) (0.017) (0.042) (0.028)

E(Student Pkg)/100 × Higher Unemp. in res. 0.199*** 0.029 0.021 0.128 0.172
(0.072) (0.061) (0.065) (0.209) (0.119)

E(Student Pkg)/100 × Higher GDP in res. -0.081 0.245*** 0.031 -0.436** 0.048
(0.067) (0.083) (0.058) (0.212) (0.123)

E(Student Pkg)/100 × Higher Housing Price in res. -0.078** -0.116*** 0.074*** -0.022 0.118**
(0.035) (0.029) (0.025) (0.051) (0.050)

E(Student Pkg)/100 × HEU in residence -0.020 0.037 -0.004 0.048 0.104***
(0.024) (0.026) (0.021) (0.053) (0.039)

E(Student Pkg)/100 × Grade: 76-85 -0.023 0.036* -0.022 0.084** -0.075**
(0.023) (0.020) (0.018) (0.040) (0.032)

E(Student Pkg)/100 × Grade: 86-95 -0.034 0.042* -0.042* 0.101** -0.070*
(0.026) (0.023) (0.023) (0.047) (0.036)

E(Student Pkg)/100 × Grade: 96-102 -0.017 -0.046* -0.053* 0.147** -0.117***
(0.028) (0.026) (0.031) (0.060) (0.038)

Pl. in Canteen/100 -0.005 0.024*** 0.008 0.002 -0.006
(0.010) (0.007) (0.007) (0.030) (0.015)

Pl. in Canteen/100 × CentreNorth -0.029** -0.032*** -0.012 0.014 -0.065***
(0.012) (0.009) (0.010) (0.056) (0.019)

Pl. in Canteen/100 × Female 0.006** 0.005 -0.005* -0.009 -0.004
(0.003) (0.003) (0.002) (0.007) (0.004)

Pl. in Canteen/100 × Higher Unemp. in res. 0.013 -0.004 0.010 -0.015 0.008
(0.009) (0.006) (0.007) (0.029) (0.014)

Pl. in Canteen/100 × Higher GDP in res. 0.016* -0.015** 0.005 -0.006 0.050***
(0.008) (0.007) (0.008) (0.049) (0.015)

Pl. in Canteen/100 × Higher Housing Price in res. 0.006 0.011*** 0.011*** -0.001 -0.0006
(0.004) (0.003) (0.003) (0.010) (0.0055)

Pl. in Canteen/100 × HEU in residence -0.013*** -0.004 -0.001 0.006 -0.003
(0.004) (0.004) (0.003) (0.009) (0.006)

Pl. in Canteen/100 × Grade: 76-85 0.002 -0.002 0.003 -0.011* 0.007
(0.003) (0.003) (0.003) (0.007) (0.005)

Pl. in Canteen/100 × Grade: 86-95 0.008** -0.002 0.008** -0.004 0.017***
(0.004) (0.003) (0.003) (0.008) (0.005)

Pl. in Canteen/100 × Grade: 96-102 0.011*** 0.0009 0.018*** -0.004 0.034***
(0.004) (0.0037) (0.005) (0.011) (0.006)

College -0.072 0.823*** 0.339 -1.073 -0.623
(0.276) (0.191) (0.243) (0.879) (0.522)

College × CentreNorth 1.683*** -1.729*** -0.333 0.419 1.956**
(0.359) (0.290) (0.358) (1.447) (0.834)

College × Female -0.408*** 0.184*** 0.075 -0.034 -0.366***
(0.075) (0.070) (0.058) (0.149) (0.104)

College × Higher Unemp. in res. -0.031 -0.669*** -0.523** 0.377 0.660
(0.264) (0.175) (0.235) (0.857) (0.513)

College × Higher GDP in res. -1.349*** 0.894*** 0.135 -0.001 -0.744
(0.272) (0.269) (0.286) (1.207) (0.703)

College × Higher Housing Price in res. 0.873*** 0.351*** 0.372*** -0.344 0.173
(0.113) (0.082) (0.076) (0.331) (0.150)

College × HEU in residence 0.148 -0.042 0.099 0.198 0.115
(0.095) (0.088) (0.070) (0.188) (0.147)

College × Grade: 76-85 0.172** 0.047 0.177*** 0.342** -0.058
(0.083) (0.063) (0.061) (0.143) (0.119)

College × Grade: 86-95 0.165* 0.129* 0.149* 0.523*** 0.189
(0.097) (0.073) (0.081) (0.168) (0.134)

157



Humanities Languages
Social &

Political sciences Psychology
Math.

& Physical sciences

College × Grade: 96-102 0.465*** 0.083 0.337*** 0.898*** 0.504***
(0.105) (0.085) (0.110) (0.211) (0.144)

non-DSU Scholar./100 -0.062 -0.219*** -0.200*** -0.283* -0.258***
(0.071) (0.060) (0.050) (0.172) (0.097)

non-DSU Scholar./100 × CentreNorth 0.169** 0.261*** 0.249*** 0.561** 0.707***
(0.081) (0.097) (0.062) (0.250) (0.134)

non-DSU Scholar./100 × Female -0.033** -0.009 -0.064*** -0.073* 0.032
(0.015) (0.017) (0.012) (0.037) (0.021)

non-DSU Scholar./100 × Higher Unemp. in res. 0.162** 0.174*** 0.136*** 0.162 0.282***
(0.069) (0.057) (0.048) (0.167) (0.095)

non-DSU Scholar./100 × Higher GDP in res. 0.007 -0.174** -0.199*** -0.205 -0.629***
(0.048) (0.086) (0.044) (0.195) (0.107)

non-DSU Scholar./100 × Higher Housing Price in res. 0.032* 0.087*** 0.130*** 0.150*** -0.041
(0.019) (0.018) (0.017) (0.053) (0.030)

non-DSU Scholar./100 × HEU in residence 0.015 0.047** 0.035** -0.030 0.072***
(0.018) (0.019) (0.014) (0.048) (0.027)

non-DSU Scholar./100 × Grade: 76-85 -0.005 0.040*** 0.042*** 0.102*** 0.063**
(0.017) (0.015) (0.013) (0.036) (0.025)

non-DSU Scholar./100 × Grade: 86-95 -0.004 0.082*** 0.051*** 0.122*** 0.118***
(0.020) (0.017) (0.017) (0.042) (0.028)

non-DSU Scholar./100 × Grade: 96-102 -0.062*** 0.070*** 0.051** 0.217*** 0.099***
(0.022) (0.021) (0.023) (0.054) (0.030)

E(non-DSU Dorm.)/100 0.654 -0.635* -0.190 -0.668 1.415**
(0.431) (0.365) (0.202) (2.020) (0.709)

E(non-DSU Dorm.)/100 × CentreNorth 0.054 -0.020 -0.227 -4.661 -2.390***
(0.461) (0.467) (0.244) (3.802) (0.918)

E(non-DSU Dorm.)/100 × Female -0.105 0.245** -0.131** -0.060 0.599***
(0.126) (0.122) (0.063) (0.240) (0.173)

E(non-DSU Dorm.)/100 × Higher Unemp. in res. -0.042 -0.717** -0.209 -1.089 -1.824***
(0.416) (0.342) (0.191) (2.007) (0.694)

E(non-DSU Dorm.)/100 × Higher GDP in res. -2.402*** -0.439 -0.823*** 5.044 0.524
(0.307) (0.398) (0.189) (3.293) (0.704)

E(non-DSU Dorm.)/100 × Higher Housing Price in res. 1.531*** 0.372** 0.346*** -2.119*** 0.129
(0.250) (0.186) (0.099) (0.625) (0.332)

E(non-DSU Dorm.)/100 × HEU in residence 0.086 0.238 0.313*** 0.325 -0.653***
(0.162) (0.151) (0.075) (0.316) (0.251)

E(non-DSU Dorm.)/100 × Grade: 76-85 -0.003 0.325*** 0.223*** 0.029 0.413**
(0.140) (0.117) (0.068) (0.223) (0.194)

E(non-DSU Dorm.)/100 × Grade: 86-95 0.119 0.915*** 0.249*** 0.472* 0.124
(0.158) (0.127) (0.090) (0.252) (0.226)

E(non-DSU Dorm.)/100 × Grade: 96-102 -0.089 1.164*** 0.468*** -0.108 0.476**
(0.177) (0.141) (0.109) (0.346) (0.240)

Excellence Dept. 0.243 -0.085 1.716*** -2.309*** 0.694**
(0.180) (0.284) (0.252) (0.831) (0.278)

Excellence Dept. × CentreNorth -0.495** -0.671* -1.874*** 0.870 -0.392
(0.199) (0.401) (0.297) (1.438) (0.490)

Excellence Dept. × Female -0.016 0.096 0.266*** 0.065 0.032
(0.041) (0.101) (0.072) (0.202) (0.074)

Excellence Dept. × Higher Unemp. in res. -0.403** -0.608** -0.524** 1.528* -0.715***
(0.173) (0.259) (0.237) (0.793) (0.268)

Excellence Dept. × Higher GDP in res. 0.139 0.633* 0.848*** 0.971 -0.318
(0.116) (0.351) (0.206) (1.221) (0.441)

Excellence Dept. × Higher Housing Price in res. -0.155*** -0.179* -0.638*** -0.474* 0.186
(0.056) (0.097) (0.099) (0.268) (0.122)

Excellence Dept. × HEU in residence 0.067 0.212* -0.004 0.257 -0.276**
(0.052) (0.119) (0.087) (0.247) (0.109)

Excellence Dept. × Grade: 76-85 0.079* 0.002 -0.134* -0.415** 0.112
(0.046) (0.090) (0.077) (0.203) (0.086)

Excellence Dept. × Grade: 86-95 0.060 0.381*** 0.034 -0.563** 0.131
(0.054) (0.105) (0.102) (0.246) (0.095)

Excellence Dept. × Grade: 96-102 0.025 0.119 -0.338** -0.084 -0.194**
(0.061) (0.123) (0.140) (0.340) (0.099)

Academics/100 -0.159* 0.033 0.172** -0.336 -0.145
(0.092) (0.071) (0.086) (0.333) (0.189)

Academics/100 × CentreNorth 0.464*** -0.229** 0.029 -0.095 0.320
(0.107) (0.115) (0.117) (0.519) (0.258)

Academics/100 × Female -0.003 0.016 -0.0010 0.074 0.012
(0.028) (0.032) (0.0248) (0.091) (0.050)

Academics/100 × Higher Unemp. in res. 0.008 -0.028 -0.171** 0.454 0.265
(0.083) (0.061) (0.080) (0.313) (0.182)

Academics/100 × Higher GDP in res. -0.189** 0.481*** -0.031 0.405 0.260
(0.076) (0.107) (0.093) (0.430) (0.211)

Academics/100 × Higher Housing Price in res. -0.182*** -0.408*** -0.170*** -0.169 -0.365***
(0.038) (0.038) (0.033) (0.131) (0.068)

Academics/100 × HEU in residence -0.027 -0.136*** -0.034 -0.260** -0.088
(0.033) (0.035) (0.028) (0.112) (0.062)

Academics/100 × Grade: 76-85 -0.019 -0.075*** -0.023 0.065 0.026
(0.032) (0.028) (0.027) (0.085) (0.057)

Academics/100 × Grade: 86-95 -0.066* -0.046 -0.0008 -0.102 0.002
(0.038) (0.033) (0.0358) (0.106) (0.065)

Academics/100 × Grade: 96-102 -0.033 -0.069* -0.090* -0.048 -0.262***
(0.042) (0.039) (0.051) (0.144) (0.068)

Share of Intern. Acad. 0.263 0.122 -0.242*** 0.110 -0.522**
(0.168) (0.096) (0.089) (0.355) (0.261)

Share of Intern. Acad. × CentreNorth 0.079 -0.678*** 0.348*** 0.381 0.172
(0.190) (0.137) (0.102) (0.468) (0.318)

Share of Intern. Acad. × Female 0.030 0.008 -0.033 -0.261*** -0.196***
(0.036) (0.037) (0.021) (0.094) (0.053)

Share of Intern. Acad. × Higher Unemp. in res. -0.233 -0.030 0.255*** 0.147 0.169
(0.162) (0.087) (0.085) (0.335) (0.248)

Share of Intern. Acad. × Higher GDP in res. -0.301*** 0.413*** -0.275*** 0.192 0.349
(0.110) (0.119) (0.073) (0.336) (0.251)

Share of Intern. Acad. × Higher Housing Price in res. -0.039 -0.083** 0.103*** 0.172* 0.083
(0.039) (0.032) (0.023) (0.094) (0.063)

Share of Intern. Acad. × HEU in residence 0.015 0.010 0.059*** 0.080 0.086
(0.042) (0.041) (0.023) (0.112) (0.066)

Share of Intern. Acad. × Grade: 76-85 0.013 0.014 0.070*** 0.136 -0.130**
(0.040) (0.032) (0.023) (0.091) (0.057)

Share of Intern. Acad. × Grade: 86-95 0.048 0.087** 0.122*** 0.305*** -0.097
(0.048) (0.038) (0.030) (0.109) (0.065)
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Share of Intern. Acad. × Grade: 96-102 0.084 0.011 0.158*** -0.034 -0.196***
(0.053) (0.047) (0.037) (0.149) (0.076)

Admin. staff -0.124* -0.212*** -0.214*** -0.051 -0.242**
(0.067) (0.055) (0.057) (0.148) (0.106)

Admin. staff × CentreNorth 0.081 0.219*** 0.205*** 0.058 0.520***
(0.077) (0.074) (0.072) (0.257) (0.148)

Admin. staff × Female 0.042** 0.013 -0.004 -0.081* 0.035
(0.019) (0.024) (0.016) (0.042) (0.027)

Admin. staff × Higher Unemp. in res. 0.110* 0.214*** 0.111** -0.222 0.041
(0.063) (0.048) (0.054) (0.140) (0.103)

Admin. staff × Higher GDP in res. -0.072 -0.286*** -0.312*** -0.178 -0.611***
(0.054) (0.070) (0.055) (0.224) (0.123)

Admin. staff × Higher Housing Price in res. 0.132*** 0.400*** 0.195*** 0.113** 0.010
(0.025) (0.031) (0.021) (0.048) (0.033)

Admin. staff × HEU in residence -0.017 0.043 0.018 0.080 0.100***
(0.025) (0.029) (0.019) (0.052) (0.036)

Admin. staff × Grade: 76-85 0.048** 0.052** 0.025 0.056 0.097***
(0.021) (0.022) (0.018) (0.038) (0.031)

Admin. staff × Grade: 86-95 0.080*** 0.071*** 0.049** 0.190*** 0.227***
(0.024) (0.025) (0.023) (0.047) (0.034)

Admin. staff × Grade: 96-102 0.056** 0.082*** 0.092*** 0.238*** 0.431***
(0.027) (0.028) (0.031) (0.065) (0.037)

Field Academics/100 -0.064 0.592** 1.250** 4.169*** 1.014**
(0.299) (0.231) (0.540) (1.006) (0.512)

Field Academics/100 × CentreNorth 1.431*** 1.632*** 1.559** -1.596 -1.033*
(0.346) (0.361) (0.620) (1.657) (0.620)

Field Academics/100 × Female 0.170** -0.162* -0.136 -0.102 -0.158
(0.078) (0.088) (0.141) (0.260) (0.118)

Field Academics/100 × Higher Unemp. in res. 0.592** 0.805*** -1.013** -2.335** -0.203
(0.281) (0.209) (0.513) (0.947) (0.494)

Field Academics/100 × Higher GDP in res. -0.451* -1.622*** -2.356*** -1.421 0.577
(0.238) (0.327) (0.400) (1.384) (0.486)

Field Academics/100 × Higher Housing Price in res. 0.263*** 0.467*** 0.860*** 0.042 0.248
(0.100) (0.084) (0.183) (0.375) (0.175)

Field Academics/100 × HEU in residence -0.058 0.029 0.236 0.063 0.292*
(0.090) (0.091) (0.162) (0.322) (0.166)

Field Academics/100 × Grade: 76-85 0.013 0.118 0.372** 0.411 -0.026
(0.088) (0.076) (0.151) (0.252) (0.137)

Field Academics/100 × Grade: 86-95 -0.036 0.042 0.250 0.957*** -0.065
(0.106) (0.087) (0.204) (0.314) (0.156)

Field Academics/100 × Grade: 96-102 -0.189 0.167 1.031*** 0.341 0.914***
(0.116) (0.107) (0.287) (0.443) (0.165)

Pub. funding (Mill.) 0.029*** 0.012*** 0.004 0.007 0.021*
(0.007) (0.005) (0.006) (0.013) (0.011)

Pub. funding (Mill.) × CentreNorth -0.044*** -0.009 -0.020*** 0.011 -0.053***
(0.008) (0.006) (0.007) (0.019) (0.018)

Pub. funding (Mill.) × Female -0.004** -0.001 -0.0008 -0.002 -0.0010
(0.001) (0.002) (0.0011) (0.003) (0.0028)

Pub. funding (Mill.) × Higher Unemp. in res. -0.013* -0.018*** 0.010* -0.002 -0.019**
(0.007) (0.004) (0.006) (0.012) (0.010)

Pub. funding (Mill.) × Higher GDP in res. 0.015*** -0.007 0.029*** -0.005 0.020
(0.005) (0.005) (0.004) (0.014) (0.016)

Pub. funding (Mill.) × Higher Housing Price in res. 0.002 -0.002* -0.003** 0.005 0.024***
(0.002) (0.001) (0.001) (0.005) (0.004)

Pub. funding (Mill.) × HEU in residence 0.003* 0.007*** 0.0007 0.013*** -0.002
(0.002) (0.002) (0.0013) (0.004) (0.004)

Pub. funding (Mill.) × Grade: 76-85 -0.002 0.001 -0.0003 -0.008** -0.008***
(0.002) (0.001) (0.0012) (0.003) (0.003)

Pub. funding (Mill.) × Grade: 86-95 0.00004 0.0009 -0.003* -0.006 -0.015***
(0.00189) (0.0016) (0.002) (0.004) (0.004)

Pub. funding (Mill.) × Grade: 96-102 0.0006 0.0007 -0.002 -0.012** -0.019***
(0.0020) (0.0020) (0.002) (0.005) (0.004)

Avg contribution -0.0010 0.006 0.017 0.007 0.013
(0.0326) (0.010) (0.011) (0.034) (0.056)

Avg contribution × CentreNorth 0.010 -0.004 0.011 0.0002 -0.234***
(0.033) (0.015) (0.014) (0.0456) (0.070)

Avg contribution × Female -0.005 -0.003 0.0009 0.005 -0.008
(0.004) (0.004) (0.0027) (0.005) (0.018)

Avg contribution × Higher Unemp. in res. -0.027 -0.012 0.020* 0.036 -0.060
(0.032) (0.009) (0.011) (0.033) (0.051)

Avg contribution × Higher GDP in res. -0.013 -0.025* 0.011 -0.0003 0.141**
(0.011) (0.014) (0.010) (0.0324) (0.055)

Avg contribution × Higher Housing Price in res. -0.033*** -0.025*** -0.020*** 0.020* 0.162***
(0.006) (0.005) (0.003) (0.010) (0.029)

Avg contribution × HEU in residence 0.004 0.006 -0.001 0.011* -0.014
(0.005) (0.005) (0.003) (0.006) (0.026)

Avg contribution × Grade: 76-85 -0.005 0.001 -0.003 -0.019*** -0.036*
(0.005) (0.004) (0.003) (0.005) (0.021)

Avg contribution × Grade: 86-95 0.003 0.004 -0.003 -0.038*** -0.076***
(0.006) (0.005) (0.004) (0.007) (0.023)

Avg contribution × Grade: 96-102 0.015** -0.004 -0.010* -0.059*** -0.123***
(0.006) (0.006) (0.005) (0.013) (0.024)

Distance -0.016*** -0.021*** -0.019*** -0.027*** -0.028***
(0.003) (0.002) (0.002) (0.005) (0.004)

Distance × CentreNorth -0.012*** -0.013*** -0.006** -0.003 -0.006
(0.003) (0.002) (0.003) (0.006) (0.005)

Distance × Female 0.0001 0.00009 -0.0005 0.0004 -0.0005
(0.0007) (0.00071) (0.0006) (0.0012) (0.0010)

Distance × Higher Unemp. in res. -0.008*** 0.002 -0.004* 0.011** 0.008**
(0.003) (0.002) (0.002) (0.005) (0.004)

Distance × Higher GDP in res. 0.0008 0.005*** -0.006*** 0.002 0.0006
(0.0020) (0.002) (0.002) (0.004) (0.0031)

Distance × Higher Housing Price in res. -0.0007 -0.002** 0.003*** -0.002 -0.003**
(0.0010) (0.001) (0.001) (0.002) (0.001)

Distance × HEU in residence 0.007*** 0.008*** 0.006*** 0.005*** 0.008***
(0.001) (0.001) (0.001) (0.002) (0.002)

Distance × Grade: 76-85 0.002** 0.0010 0.0009 -0.001 0.00009
(0.001) (0.0007) (0.0006) (0.001) (0.00117)

Distance × Grade: 86-95 0.003*** 0.002** 0.003*** -0.003* 0.002
(0.001) (0.001) (0.001) (0.001) (0.001)
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Distance × Grade: 96-102 0.006*** 0.002*** 0.005*** 0.00004 0.005***
(0.001) (0.001) (0.001) (0.00170) (0.001)

Distance2/100 0.0008 0.002*** 0.001*** 0.003*** 0.003***
(0.0005) (0.000) (0.000) (0.001) (0.001)

Distance2/100 × CentreNorth 0.002*** 0.002*** 0.002*** 0.0004 0.002***
(0.001) (0.000) (0.000) (0.0010) (0.001)

Distance2/100 × Female -0.00002 0.000007 -0.00002 -0.00010 -0.00000001
(0.00007) (0.000064) (0.00005) (0.00011) (0.00009433)

Distance2/100 × Higher Unemp. in res. 0.001** -0.0004* 0.0005 -0.001** -0.0010*
(0.000) (0.0002) (0.0003) (0.001) (0.0005)

Distance2/100 × Higher GDP in res. -0.0008** -0.001*** -0.0003 -0.0005 -0.002***
(0.0003) (0.000) (0.0003) (0.0007) (0.000)

Distance2/100 × Higher Housing Price in res. 0.00003 0.0002** -0.0003** 0.0003 0.0003*
(0.00012) (0.0001) (0.0001) (0.0002) (0.0002)

Distance2/100 × HEU in residence -0.0006*** -0.0007*** -0.0005*** -0.0004** -0.0007***
(0.0001) (0.0001) (0.0001) (0.0002) (0.0002)

Distance2/100 × Grade: 76-85 -0.0002*** -0.0001** -0.00005 0.00008 -0.00002
(0.0001) (0.0001) (0.00006) (0.00012) (0.00011)

Distance2/100 × Grade: 86-95 -0.0003*** -0.0002*** -0.0002*** 0.0002* -0.0002
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Distance2/100 × Grade: 96-102 -0.0005*** -0.0003*** -0.0004*** -0.000005 -0.0006***
(0.0001) (0.0001) (0.0001) (0.000159) (0.0001)

HEU in province 1.009** 0.056 0.245 1.521*** 0.663
(0.423) (0.258) (0.299) (0.199) (1.043)

HEU in province × CentreNorth 0.199 1.046*** 0.527* -0.142 0.411
(0.429) (0.256) (0.314) (0.308) (1.050)

HEU in province × Female -0.259*** -0.146* -0.098* -0.044 -0.276***
(0.075) (0.081) (0.059) (0.159) (0.105)

HEU in province × Higher Unemp. in res. 0.211 1.047*** 1.302*** 0.739
(0.413) (0.236) (0.292) (1.042)

HEU in province × Higher GDP in res. 0.247 -0.298* 0.146 0.103 0.435*
(0.164) (0.156) (0.126) (0.334) (0.224)

HEU in province × Higher Housing Price in res. -0.828*** -0.242*** -0.444*** -1.305*** -0.475***
(0.099) (0.079) (0.073) (0.196) (0.136)

HEU in province × HEU in residence 0.240** 0.737*** 0.423*** 0.342* 0.856***
(0.096) (0.100) (0.074) (0.198) (0.170)

HEU in province × Grade: 76-85 0.021 -0.119* -0.068 -0.011 0.039
(0.082) (0.070) (0.063) (0.147) (0.120)

HEU in province × Grade: 86-95 0.117 -0.032 0.025 -0.145 0.030
(0.096) (0.083) (0.084) (0.170) (0.136)

HEU in province × Grade: 96-102 0.250** -0.014 0.013 0.235 0.090
(0.110) (0.102) (0.118) (0.219) (0.143)

HEU in region 2.260*** 1.566*** 2.507*** 1.754*** 2.231***
(0.277) (0.212) (0.233) (0.591) (0.392)

HEU in region × CentreNorth -0.185 -0.847*** -0.021 -0.947 0.226
(0.333) (0.219) (0.274) (0.626) (0.472)

HEU in region × Female 0.012 0.079 -0.047 -0.084 -0.086
(0.082) (0.089) (0.072) (0.155) (0.116)

HEU in region × Higher Unemp. in res. -0.963*** -0.273 -1.260*** 0.391 -0.029
(0.255) (0.178) (0.214) (0.553) (0.361)

HEU in region × Higher GDP in res. -1.188*** 0.085 -1.698*** -0.538* -1.733***
(0.216) (0.163) (0.195) (0.287) (0.328)

HEU in region × Higher Housing Price in res. 0.032 -0.140 0.073 0.633*** -0.173
(0.106) (0.091) (0.087) (0.172) (0.156)

HEU in region × HEU in residence 0.204* -0.118 0.027 -0.095 -0.346*
(0.114) (0.124) (0.091) (0.251) (0.200)

HEU in region × Grade: 76-85 -0.029 0.024 -0.019 -0.266* 0.269**
(0.091) (0.079) (0.076) (0.148) (0.132)

HEU in region × Grade: 86-95 -0.045 -0.089 0.053 -0.030 0.170
(0.107) (0.093) (0.102) (0.177) (0.149)

HEU in region × Grade: 96-102 -0.028 -0.084 -0.120 -0.315 0.363**
(0.123) (0.110) (0.138) (0.235) (0.163)

Unemployment 0.009 -0.041 -0.003 -0.334 0.113
(0.056) (0.044) (0.037) (0.218) (0.105)

Unemployment × CentreNorth -0.709*** -0.283*** -0.106** 0.482 -0.902***
(0.073) (0.056) (0.052) (0.380) (0.156)

Unemployment × Female 0.065*** 0.028 -0.016 -0.029 -0.020
(0.017) (0.021) (0.014) (0.034) (0.026)

Unemployment × Higher Unemp. in res. -0.097* -0.150*** -0.132*** 0.009 -0.151
(0.053) (0.038) (0.034) (0.215) (0.103)

Unemployment × Higher GDP in res. 0.623*** 0.285*** 0.133*** -0.540* 0.774***
(0.056) (0.050) (0.044) (0.323) (0.131)

Unemployment × Higher Housing Price in res. -0.105*** -0.102*** -0.009 0.081 0.013
(0.023) (0.022) (0.018) (0.068) (0.037)

Unemployment × HEU in residence 0.049** 0.062** 0.053*** -0.008 0.112***
(0.020) (0.025) (0.018) (0.040) (0.036)

Unemployment × Grade: 76-85 -0.010 -0.025 -0.002 0.004 -0.088***
(0.019) (0.019) (0.015) (0.031) (0.029)

Unemployment × Grade: 86-95 -0.027 -0.037* 0.015 0.010 -0.078**
(0.021) (0.022) (0.020) (0.038) (0.034)

Unemployment × Grade: 96-102 0.003 -0.069*** 0.033 0.021 -0.043
(0.024) (0.025) (0.026) (0.052) (0.036)

Housing price 0.097** -0.054* 0.118*** 0.057 0.126**
(0.045) (0.030) (0.031) (0.134) (0.061)

Housing price × CentreNorth 0.170*** 0.223*** -0.008 -0.019 0.270***
(0.051) (0.035) (0.040) (0.221) (0.078)

Housing price × Female -0.053*** -0.015 -0.009 0.0005 0.055***
(0.011) (0.012) (0.009) (0.0254) (0.016)

Housing price × Higher Unemp. in res. 0.111*** 0.052** -0.051* 0.041 -0.069
(0.042) (0.027) (0.029) (0.131) (0.059)

Housing price × Higher GDP in res. -0.177*** 0.0010 -0.029 0.026 -0.314***
(0.033) (0.0304) (0.030) (0.180) (0.059)

Housing price × Higher Housing Price in res. 0.128*** -0.005 -0.035*** 0.024 0.036*
(0.015) (0.013) (0.011) (0.034) (0.019)

Housing price × HEU in residence 0.033** 0.021 0.037*** -0.014 -0.074***
(0.014) (0.014) (0.010) (0.030) (0.022)

Housing price × Grade: 76-85 0.007 0.018* 0.011 0.037 0.061***
(0.013) (0.011) (0.009) (0.023) (0.017)

Housing price × Grade: 86-95 -0.012 0.024* 0.003 0.001 0.022
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(0.015) (0.013) (0.012) (0.029) (0.020)
Housing price × Grade: 96-102 -0.028* 0.064*** -0.002 0.010 0.007

(0.017) (0.015) (0.017) (0.037) (0.021)
Regional GDP 0.088** 0.003 0.116*** -0.106 0.150

(0.042) (0.032) (0.027) (0.158) (0.098)
Regional GDP × CentreNorth -0.431*** -0.206*** -0.136*** 0.164 -0.517***

(0.058) (0.044) (0.041) (0.285) (0.124)
Regional GDP × Female 0.029** 0.022 -0.006 -0.040 0.018

(0.014) (0.015) (0.012) (0.029) (0.022)
Regional GDP × Higher Unemp. in res. -0.021 -0.058** -0.057** -0.079 -0.120

(0.039) (0.027) (0.024) (0.156) (0.096)
Regional GDP × Higher GDP in res. 0.346*** 0.190*** 0.188*** -0.291 0.334***

(0.047) (0.041) (0.036) (0.242) (0.097)
Regional GDP × Higher Housing Price in res. -0.099*** -0.067*** -0.091*** 0.019 -0.118***

(0.019) (0.016) (0.014) (0.042) (0.030)
Regional GDP × HEU in residence 0.008 -0.014 -0.026* -0.068** 0.051*

(0.017) (0.019) (0.014) (0.035) (0.029)
Regional GDP × Grade: 76-85 -0.016 0.001 -0.020 0.056** -0.019

(0.015) (0.014) (0.012) (0.026) (0.025)
Regional GDP × Grade: 86-95 -0.043** 0.002 -0.004 0.106*** -0.008

(0.017) (0.016) (0.017) (0.033) (0.028)
Regional GDP × Grade: 96-102 -0.032* -0.026 -0.013 0.122*** 0.089***

(0.020) (0.019) (0.022) (0.044) (0.031)

Observations 880840 845104 1440947 172391 422577

Pseudo R2 0.63 0.57 0.60 0.63 0.69
Log Likelihood -21946.1 -27870.1 -33683.4 -7137.9 -10891.5

Notes: Conditional Logit regression by field of study estimated on the sample of Italian students enrolled for the first time in the academic year
2014-2015. Standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. All the variables referring to HEUs’ and areas’ characteristics are
interacted for individual variables. Variable definitions are reported in Table 3.6. In particular, Higher unemp. in res. indicates students that reside
in provinces with an unemployment rate higher than the average; Higher GDP in res. takes value 1 if the student lives in a region with a GDP higher
than the average GDP; Higher Housing Price indicates students that reside in provinces with a housing price higher than the national average; Grade:
76-85, Grade: 86-95, and Grade: 96-102 indicate students that have obtained a high school diploma with a final grade in the specified bracket.
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Figure 3A.1: Individual semi-elasticities to expected Scholarships with respect to High School
Diploma Grade
Notes: The figure reports the results of non parametric regressions between semi-elasticities with respect to E(Scholarships) and
percentile distribution of high school diploma grade by field of study. Semi-elasticities measure the percentage change in students’
choices probabilities caused by a 1% increase in the DSU indicator. Each semi-elasticity is computed on the basis of the individual
distribution of parameters estimated with the LCM. In each plot we report the information regarding the kernel function used, the
degree of the polynomial and the bandwidth chosen.
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Figure 3A.2: Individual semi-elasticities to expected places in Dormitories with respect to High
School Diploma Grade
Notes: Notes: The figure reports the results of non parametric regressions between semi-elasticities with respect to E(Dormitory)
and percentile distribution of high school diploma grade by field of study. Semi-elasticities measure the percentage change in
students’ choices probabilities caused by a 1% increase in the DSU indicator. Each semi-elasticity is computed on the basis of the
individual distribution of parameters estimated with the LCM. In each plot we report the information regarding the kernel function
used, the degree of the polynomial and the bandwidth chosen.
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Figure 3A.3: Individual semi-elasticities to expected Student Packages with respect to High
School Diploma Grade
Notes: The figure reports the results of non parametric regressions between semi-elasticities with respect to E(StudentPackage)
and percentile distribution of high school diploma grade by field of study. Semi-elasticities measure the percentage change in
students’ choices probabilities caused by a 1% increase in the DSU indicator. Each semi-elasticity is computed on the basis of the
individual distribution of parameters estimated with the LCM. In each plot we report the information regarding the kernel function
used, the degree of the polynomial and the bandwidth chosen.
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Figure 3A.4: Utility of distance
Notes: The figure reports the results of a non parametric regression between individual utility functions and the distance between
students’ city of residence and HEU’s hosting city by field of study. Each regression is estimated using the individual distribution
of parameters estimated through the LCM. In each plot we report the information regarding the kernel function used, the degree
of the polynomial and the bandwidth chosen.
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Figure 3A.5: Individual willingness to travel to a 1% increase in expected Scholarships
Notes: The figure reports the results of a non parametric regression between individual WTT with respect to E(Scholarships)
and the distance between students’ city of residence and HEU’s hosting city. Each regression is estimated using the individual
distribution of parameters estimated through the LCM. Each WTT measures the number of additional kilometers that the student
is willing to travel with respect to the chosen HEU for a 1% increase in DSU policy indicators. In each plot we report the information
regarding the kernel function used, the degree of the polynomial and the bandwidth chosen.
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Figure 3A.6: Individual willingness to travel to a 1% increase in expected Places in Dormitories
Notes: The figure reports the results of a non parametric regression between individual WTT with respect to E(Dormitory) and the
distance between students’ city of residence and HEU’s hosting city. Each regression is estimated using the individual distribution
of parameters estimated through the LCM. Each WTT measures the number of additional kilometers that the student is willing to
travel with respect to the chosen HEU for a 1% increase in DSU policy indicators. In each plot we report the information regarding
the kernel function used, the degree of the polynomial and the bandwidth chosen.
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Figure 3A.7: Individual willingness to travel to a 1% increase in expected Student Packages
Notes: The figure reports the results of a non parametric regression between individual WTT with respect to E(StudentPackage)
and the distance between students’ city of residence and HEU’s hosting city. Each regression is estimated using the individual
distribution of parameters estimated through the LCM. Each WTT measures the number of additional kilometers that the student
is willing to travel with respect to the chosen HEU for a 1% increase in DSU policy indicators. In each plot we report the information
regarding the kernel function used, the degree of the polynomial and the bandwidth chosen.
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Kleven, H., Landais, C., Muñoz, M., and Stantcheva, S. (2019). ‘Taxation and Migration:

Evidence and Policy Implications’. NBER Working Papers 25740.

Kleven, H. J., Landais, C., Saez, E., and Schultz, E. A. (2013). ‘Taxation and International

Migration of Top Earners: Evidence from European Football Market’. American Economic

Review 103.5, 1892–1924.

Kleven, H. J., Landais, C., Saez, E., and Schultz, E. (2014). ‘Migration and Wage Effects of

Taxing Top Earners: Evidence from the Foreigners’ Tax Scheme in Denmark’. The Quarterly

Journal of Economics 129.1, 333–378.

KPMG - International (2018). Tax Insights.

Krenn, P. (2017). ‘The Impact of Taxes on Competition for CEOs’. European Accounting Review

26.3, 503–530.

Krieger, T. and Lange, T. (2010). ‘Education policy and tax competition with imperfect student

and labor mobility’. International Tax and Public Finance 17.6, 587–606.

Krugman, P. (1991). ‘Increasing returns and economic geography’. Journal of Political Economy

99.3, 483.

Kuehn, J. (2017). ‘The Effect of Competition on the Demand for Skilled Labor: Matching with

Externalities in the NBA’. SSRN Electronic Journal.

Lehmann, E., Simula, L., and Trannoy, A. (2014). ‘Taxmeif You Can! Optimal Nonlinear Income

Tax Between Competing Governments’. Quarterly Journal of Economics 129.4, 1995–2030.

Long, T. B. (2004). ‘How have college decisions changed over time? An application of the

conditional logistic choice model’. Journal of Econometrics 121.1-2, 271–296.

173



Lupi, C. and Ordine, P. (2009). ‘Family Income and Students’ Mobility’. Giornale degli Economisti

e Annali di Economia 68.1, 1–23.

Manski, C. F. (1975). ‘Maximum score estimation of the stochastic utility model of choice’.

Journal of Econometrics 3.3, 205–228.

Mathur, V. K. and Stein, S. H. (2004). ‘Do amenities matter in attracting knowledge workers

for regional economic development?*’. Papers in Regional Science 84.2, 251–269.

Mcfadden, D. (1974). ‘Conditional logit analysis of qualitative choice behavior’. in P. Zarembka,

ed., Forntiers in Econometrics, 105–142.

— (1978). ‘Modeling the choice of residential location’. in A. Karlqvist, L Lundqvist, F. Snickars,

and J. Weibull, eds., Spatial Interaction Theory and Planning Models, 75–96.

McFadden, D. and Train, K. (2000). ‘Mixed MNL models for discrete response’. Journal of

Applied Econometrics 15.5, 447–470.

McGuire, T. J. (1991). ‘Federal Aid to States and Localities and the Appropriate Competitive

Framework’. Competition among States and Local Governments: Efficiency and Equity in

American Federalism. Ed. by D. A. Kenyon and J. Kincaid. Urban Institute Press.

Mertens, K. and Montiel Olea, J. L. (2018). ‘Marginal Tax Rates and Income: New Time Series

Evidence’. The Quarterly Journal of Economics 133.4, 1803–1884.

Milligan, K. and Smart, M. (2019). ‘An Estimable Model of Income Redistribution in a Fed-

eration: Musgrave Meets Oates’. American Economic Journal: Economic Policy 11.1, 406–

434.

Mindruta, D., Moeen, M., and Agarwal, R. (2016). ‘A two-sided matching approach for partner

selection and assessing complementarities in partners’ attributes in inter-firm alliances’.

Strategic Management Journal 51.37, 206–231.

Mirrlees, J. A. (1982). ‘Migration and optimal income taxes’. Journal of Public Economics 18.3,

319–341.

Modena, F., Rettore, E., and Tanzi, G. M. (2018). ‘The Effect of Grants on University Drop-

Out Rates: Evidence on the Italian Case’. Temi di discussione (Economic Working Papers),

Bank of Italy.

Moretti, E. (2004). ‘Estimating the social return to higher education: evidence from longitudinal

and repeated cross-sectional data’. Journal of Econometrics 121.1-2, 175–212.

174



Moretti, E. and Wilson, D. J. (2014). ‘State incentives for innovation, star scientists and jobs:

Evidence from biotech’. Journal of Urban Economics 79, 20–38.

— (2017). ‘The effect of state taxes on the geographical location of top earners: Evidence from

star scientists’. American Economic Review 107.7, 1858–1903.

Murphy, R., Scott-Clayton, J., and Wyness, G. (2019). ‘The end of free college in England:

Implications for enrolments, equity, and quality’. Economics of Education Review 71, 7–22.

Musgrave, R. (1959). The theory of public finance : a study in public economy. New York:

McGraw-Hill.

Oates, W. E. (1972). Fiscal federalism. Harcourt Brace Jovanovich, p. 256.

Oggenfuss, C. and Wolter, S. C. (2019). ‘Are they coming back? The mobility of university

graduates in switzerland’. Review of Regional Research, 1–20.

Organization for Economic Cooperation and Development (OECD) (2018). Taxing wages. Paris.

Peeters, T. (2018). ‘Testing the Wisdom of Crowds in the field: Transfermarkt valuations and

international soccer results’. International Journal of Forecasting 34.1, 17–29.

Pigini, C. and Staffolani, S. (2013). ‘Enrollment costs, university quality and higher education

choices in Italy’. MPRA Paper.

— (2015). ‘The effect of university costs and institutional incentives on enrolments: Empirical

evidence for italian regions’. AIEL Series in Labour Economics 8, 261–282.

Piketty, T. and Saez, E. (2013). ‘Optimal Labor Income Taxation’. Handbook of Public Eco-

nomics. Vol. 5. Elsevier, pp. 391–474.

Piketty, T., Saez, E., and Stantcheva, S. (2014). ‘Optimal Taxation of Top Labour Incomes: A

Tale of Three Elasticities’. American Economic Journal: Economic Policy 6.1, 230–271.

Politis, D. N., Romano, J. P., and Wolf, M. (1999). Subsampling. Springer Series in Statistics.

New York, NY: Springer New York.

PriceWaterhouseCoopers (PwC) (2018). Worldwide Tax Summaries.

Romano, J. and Shaikh, A. M. (2008). ‘Inference for identifiable parameters in partially iden-

tified econometric models’. Journal of Statistical Planning and Inference 138.9, 2786–2807.

Rosen, S. (1981). ‘The Economics of Superstars’. The American Economic Review 71.5, 845–

858.

175



Ruiz del Portal, X. (2017). ‘Optimal mixed taxation, public goods and the problem of high-

skilled emigration’. Journal of Economics 122.2, 97–119.

Rust, J. (1987). ‘Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold

Zurcher’. Econometrica 55.5, 999.

Saez, E., Slemrod, J., and Giertz, S. H. (2012). ‘The Elasticity of Taxable Income with Respect

to Marginal Tax Rates: A Critical Review’. Journal of Economic Literature 50.1, 3–50.

Salter, A. J. and Martin, B. R. (2001). ‘The economic benefits of publicly funded basic research:

A critical review’. Research Policy 30.3, 509–532.

Sanandaji, T. (2014). ‘The international mobility of billionaires’. Small Business Economics

42.2, 329–338.

Santiago, D. and Fox, J. T. (2008). ‘A Toolkit for Matching Maximum Score Estimation and

Point and Set Identified Subsampling Inference’. Working paper, Rice University.

Schmidheiny, K. and Brülhart, M. (2011). ‘On the equivalence of location choice models: Con-

ditional logit, nested logit and Poisson’. Journal of Urban Economics 69.2, 214–222.

Schmidheiny, K. and Slotwinski, M. (2018). ‘Tax-induced mobility: Evidence from a foreigners’

tax scheme in Switzerland’. Journal of Public Economics 167, 293–324.

Schwert, M. (2018). ‘Bank Capital and Lending Relationships’. Journal of Finance 73.2, 787–

830.

Simula, L. and Trannoy, A. (2010). ‘Optimal income tax under the threat of migration by

top-income earners’. Journal of Public Economics 94.1-2, 163–173.

— (2017). ‘The Dark Side of Tax Breaks for Foreigners’. Working Paper.

Sivey, P. (2012). ‘The effect of waiting time and distance on hospital choice for English cataract

patients’. Health economics 21, 444–456.

Spiess, C. K. and Wrohlich, K. (2010). ‘Does distance determine who attends a university in

Germany?’ Economics of Education Review 29.3, 470–479.

Stantcheva, S., Akcigit, U., and Baslandze, S. (2016). ‘Taxation and the International Mobility

of Inventors’. American Economic Review 106.10, 2930–2981.

Storn, R. and Price, K. (1997). ‘Differential Evolution – A Simple and Efficient Heuristic for

global Optimization over Continuous Spaces’. Journal of Global Optimization 11.4, 341–359.

176



Suhonen, T. (2014). ‘Field-of-Study Choice in Higher Education: Does Distance Matter?’ Spatial

Economic Analysis 9.4, 355–375.

Tiebout, C. (1956). ‘A Pure Theory of Local expenditures’. Journal of Political Economy 64.5,

416–424.

Train, K. E. (2003). Discrete choice methods with simulation. Vol. 9780521816, pp. 1–334.

Türk, U. (2019). ‘Socio-Economic Determinants of Student Mobility and Inequality of Access

to Higher Education in Italy’. Networks and Spatial Economics 19.1, 125–148.

Valero, A. and Van Reenen, J. (2019). ‘The economic impact of universities: Evidence from

across the globe’. Economics of Education Review 68, 53–67.

Varkevisser, M., Geest, S. A. van der, and Schut, F. T. (2012). ‘Do patients choose hospitals with

high quality ratings? Empirical evidence from the market for angioplasty in the Netherlands’.

Journal of Health Economics 31.2, 371–378.

Varner, C. and Young, C. (2012). ‘Millionaire Migration in California: The Impact of Top Tax

Rates’. Working paper, Stanford University Center on Poverty and Inequality.

Vasilakis, C. (2017). ‘Does talent migration increase inequality? A quantitative assessment in

football labour market’. Journal of Economic Dynamics and Control 85, 150–166.

Vergolini, L. and Zanini, N. (2015). ‘Away, but not too far from home. The effects of financial

aid on university enrolment decisions’. Economics of Education Review 49, 91–109.
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