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Abstract

Understanding the binding of small molecules to proteins in atomistic detail is
key for drug design. Molecular docking is a widely used computational method to
mimic ligand-protein association in silico. However, predicting the conformational
changes occurring in proteins upon ligand binding is still a major challenge. Ensemble
docking approaches address this issue by considering a set of different conformations of
the protein obtained either experimentally or from computer simulations, e.g. from
molecular dynamics. However, bound-like (holo) structures prone to host (the correct)
ligands are generally poorly sampled by standard molecular dynamics simulations
of the unbound (apo) protein. In order to address this limitation, we introduce a
computational approach based on metadynamics simulations called ensemble docking
with enhanced sampling of pocket shape (EDES) that allows holo-like conformations of
proteins to be generated by exploiting only their apo structures. This is achieved by
defining a set of collective variables able to sample different shapes of the binding site,
ultimately mimicking the steric effect due to the ligand. In this work, we assessed the
method on re-docking and cross-docking calculations. In the first case, we selected three
different protein targets undergoing different extents of conformational changes upon
binding and, for each of them, we docked the experimental ligand conformation into an
ensemble of receptor structures generated by EDES. In the second case, in the context
of a blind docking challenge, we generated the 3D structures of a set of different ligands
of the same receptor and docked them into a set of EDES-generated conformations
of that receptor. In all cases, for both re-docking and cross-docking experiments, our
protocol generates a significant fraction of structures featuring a low RMSD from the
experimental holo geometry of the receptor. Moreover, ensemble docking calculations
using those conformations yielded in almost all cases to native-like poses among the
top-ranked ones. Finally, we also tested an improved EDES recipe on a further target,
known to be extremely challenging due to its extended binding region and to the large
extent of conformational changes accompanying the binding of its ligands.
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Introduction 1

1.1 Background and motivation

Highly specific and tightly regulated intermolecular interactions among biological
molecules, collectively named “molecular recognition (MR) events”, are the key tools
by which cells control virtually all of their processes [1, 2]. Indeed, the generation of
biological material such as nucleic acids, proteins and lipids, as well as intracellular
communication and metabolism, all rely on the interaction between two or more
biological molecules. A special class of MR events is the one involving the interaction
of small molecules (ligands) with specific regions (binding sites, BSs) of target
macromolecules, such as proteins (the vast majority of interactors [3]) and nucleic
acids. In particular, in the case of proteins, BSs are usually small clefts on protein’s
surface featuring a certain degree of physico-chemical affinity for the ligands.

Quantitative understanding of ligand-receptor MR events is not only of great
importance for basic research in life sciences but also a key prerequisite for modern
drug design efforts. Indeed, despite the mechanisms by which ligands exert their
actions once bound to the receptors are manifold, a common requisite is that
the association is characterised by a good binding affinity. Experimental [3, 4]
and computational [2, 5] studies revealed that the interactions underlying MR
events between small ligands and their receptors are most often non-covalent (also
named weak or non-bonding interactions). Due to these weak interactions, ligand-
receptor association is usually characterised by a transient nature with specific
timescales for the initiation and duration of the binding [6], linked to the intrinsic
dynamical behaviour of macromolecules. Indeed, it has been recognised since long
[7] that proteins are flexible molecular machines that are best described considering
them not in a single static structure, but in an ensemble of energetically accessible
(and interchanging) conformations representing all possible functional states [8–13].
Conformational transitions among those states, usually initiated and/or stabilised by
ligand interactions and occurring also prior to intimate binding, can be considered
at the basis of MR events, as they lead to the physico-chemical correspondences
between partner’s exposed surfaces necessary for their complexation [2, 14].

Concerning the extent of binding-induced conformational changes, it has been
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1. Introduction

shown that is extremely case dependent [15] (Figure 1.1), being sensitive to the
nature of both partners. Most often, rearrangements are limited to the BS region and
involve only sidechain reorientations and/or small hinge movements of the receptor
around the ligand [16]. However, several examples can be found of MR events
accompanied by medium-scale distortions involving loops and/or confined secondary
structure variations and even large-scale motions among (sub)domains (e.g., hinge-
bending or shear motions) leading to an extended reorganisation of the whole protein
structure [16–19]. Cooperative proteins bearing multiple putative binding sites on
different subunits [20, 21] are a typical example of the latter case, where ligand
binding on a subunit alters the affinity of other monomers for the ligand via allosteric
(extended) conformational changes. Examples of such systems, where the binding is
accompanied by extended conformational rearrangements, are considered for example
in refs. [22–25]. Moreover, another common feature in ligand-protein binding is the
partial collapse of the BS upon binding, leading to the compaction of the putative site
around the ligand [26, 27]. Although not completely general but still case dependent
and linked to receptor’s nature and ligand’s size, this behaviour has been observed in
several classes of pharmaceutically relevant proteins (such as kinases [28] transferases
[29] and synthases [30]).

The ability to address dynamic conformational changes taking place in proteins

Figure 1.1: Conformational changes accompanying the binding of small ligands. In the
picture, an example of conformational changes accompanying the binding of a small ligand is
represented. Unbound (apo) and bound (holo) protein conformations are shown as ribbons
colored black and green, respectively; the ligand is shown as stick colored by element.
(a) Overall conformational rearrangements of the protein. (b) Detailed view of the local
rearrangements occurring at the binding site.
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1.1. Background and motivation

upon ligand binding has been one of the most relevant and challenging issues in drug
design since early times. Indeed, it is not known in advance which conformation
flexible targets will adopt in response to the binding of a particular ligand, or how
to design such a ligand for an unknown receptor conformation. To cope with this
issue, several studies attempted to classify protein motions and their structural
diversity (including ligand binding among the triggering events), leading sometimes
to the creation of public databases, such as the “protein structural change upon
ligand binding database” (PSCDB) [31] and the “database of protein conformational
diversity in the native state” (CoDNaS 2.0) [32].

Experimental methods such as X-ray crystallography [33], cryo-electron microscopy
(cryo-EM) [34] and nuclear magnetic resonance (NMR) [35] have been essential in
elucidating the extent and the types of conformational changes accompanying MR
events involving proteins, nucleic acids and other biological macromolecules. In
the last decades, a huge number of protein structures have been determined by
these methods in both their unbound (apo) and bound (holo) conformation, most
of which available in the Protein Data Bank (PDB) [36], allowing for extensive and
systematic studies on the distribution and types of conformational changes occurring
along with MR events [37–39]. Among the above-mentioned experimental techniques,
X-ray crystallography has been the most used technique for structure determination.
While providing very high spatial resolutions for samples of virtually any molecular
weight, crystallography furnishes in most cases only a static picture of the systems,
sometimes also containing structural artefacts due to the intrinsic nature of this
approach, requiring to build the 3D structure based on an electron density map. For
this reason, in case the artefacts interest the putative binding region or this region
presents a marked flexibility crucial for the binding event, X-ray structures alone may
not be suitable to unveil the details of ligand association processes. Furthermore, due
to the requirement of very pure and highly-concentrated samples, their production
and crystallisation can be very challenging, time expensive and costly, particularly for
large-sized proteins or proteins requiring a particular environment to stay in a near-
native conformation (such as membrane proteins). On the other hand, NMR studies
still require a pure and highly-concentrated sample, but they have the advantage
of accessing to macromolecules in solution, thus catching the dynamic nature of
the ensemble of different conformations produced. Finally, cryo-EM requires a
much smaller amount of sample which does not need to be crystallised, making this
technique less sensitive to impurities than X-ray crystallography. Moreover, the
rapid freezing of the sample, prior to the cryo-EM analysis, increases the chances
of the macromolecule to stay near its native-state with respect to crystallisation.
However, its spatial resolution is in general lower than that normally achieved with
X-ray crystallography and NMR (although resolution boosted up in the last decade),
and the need for a high signal to noise ratio makes cryo-EM applicable only to large
proteins [40–44].

As mentioned, while providing a solid framework for understanding the structural
determinants of MR, these methods still present limitations that can prevent them to
be used in specific situation [7, 45–49]. Examples of these cases are studies requesting
to unveil details of the motions accompanying ligand-target interactions (such as the
record of very short-live conformational metastable states) or to study receptors for
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1. Introduction

which the experimental treatment is difficult (e.g. because of difficulties to crystallise
them in conditions resembling the physiological one) [46–48, 50, 51]. Moreover,
the exploration of different conformations in experimental structures is generally
limited and biased toward (often just a few) known ligand-receptor complexes, which
impacts on the chemical diversity of putative lead compounds that can be studied
experimentally [7, 45–47, 49].

As a complement to experiments, a plethora of theoretical/computational methods
aiming to predict in silico the structures of ligand-receptor complexes have bloomed
up in the recent years [52]. Some of these computational approaches, such as
molecular docking [53, 54], molecular dynamics (MD) [55, 56] and Monte Carlo
(MC) simulations [57, 58], have become key tools of modern structural biology
[2, 54, 56, 59, 60] allowing to overcome some of the intrinsic limitations underlying
experimental settings. In particular, these methods are used (often combined together)
to attempt to describe the dynamics of ligand-receptor MR events, going beyond the
static or limitedly flexible view furnished by atomic resolution experimental methods
[22, 49, 57, 59, 61–63]. For example, advanced MD simulations are able to access at
a relatively low computational cost non-equilibrium conformers of proteins, ligands,
and their complexes (e.g. intermediate states of complexation) [2, 22, 24, 59, 64–
67]. This being relevant as also poorly visited (high energy) (meta)stable states of
(macro)molecules, e.g. proteins, may be crucial for ligand association [2].

Among the above-mentioned methods, molecular docking is by far the most used
computational tool in the field of computer-aided drug design (CADD)[2, 15, 54, 67–
73] with the aim to retrieve ligand-receptor complex structure starting from the
unbound conformations of the binding partners. In the following, we will restrict
our analysis to protein-ligand docking, in which a ligand (typically a small and
low molecular weight organic compound), binds to a protein receptor. In this case,
docking aims at mimicking the binding process between the two partners (i) to predict
if they form a stable complex and (ii) to reproduce the conformation of the bound
complex. In particular, scope of docking algorithms is to characterise the so-called
binding pose (hereafter “pose”) of a ligand into a receptor, identifying ligand’s location
and conformation within receptor’s putative binding pocket [72, 74, 75].

Typically, protein-ligand docking calculations consist of two main steps, which
although formally distinguishable, are intimately related to each other: (i) the
searching (or sampling) step, consisting in the generation of the binding poses
and (ii) the scoring step, consisting in the evaluation of the probability of that
ligand/receptor complex to really occur and be stable, which is therefore ranked
accordingly. Clearly, successful docking calculations strongly depend on how the
conformational rearrangements of the binding partners are accounted as even small
structural changes can seriously affect the quality of results also due to the limitations
of the scoring step [2, 26, 72, 73]. Indeed, several strategies to treat partner’s flexibility
also prior to docking calculations exist, such as ensemble docking [54, 74, 76–79],
in which a set of different receptor and/or ligand geometries, experimentally or
computationally obtained, are used in the docking run, thus accounting for partners’
structural plasticity prior to the docking step.

Within the ensemble-docking framework, here we propose a new approach called
Ensemble Docking with Enhanced sampling of pocket Shape (EDES) [22] exploiting
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1.2. Thermodynamics of ligand binding

relatively short metadynamics simulations [80] of the apo protein to generate a
set of structures resembling its holo conformations [79], without exploiting a priori
information about the holo structure. The method has been tested on three different
target proteins paradigms of systems undergoing different extent of conformational
changes. Moreover, its performance when coupled to a strategy to take care of ligand
flexibility has also been addressed. Finally, we tested an improved EDES recipe
also on a further protein, the adelynate kinase enzyme, presenting a very extended
binding region composed of two (sub)pockets and undergoing the largest structural
rearrangements upon binding among all the other targets addressed in this thesis
[25, 81–83].

1.2 Thermodynamics of ligand binding

In a simple reversible interaction, the formation of the complex (PL) between a
protein (P) and a ligand (L) can be described as a two-step process [2, 84–86] (Eq.
1.1):

P + L
kon


koff

PL (1.1)

where kon (M−1s−1) and koff (s−1) are the kinetic rate constants accounting,
respectively, for the association and the dissociation of the binding partners. At
equilibrium, where the rate of association equals that of dissociation (kon[P ][L] =
koff [PL], with [X] representing the concentration of the “X” chemical species),
the kinetic properties of a system are studied introducing a new set of quantities,
collectively named “equilibrium constants”. Ligand association, in particular, is
typically studied by means of the binding and dissociation constants, respectively
Kb and Kd, defined as in eq. 1.2:

Kb =
[PL]

[P ][L]
=

kon
koff

=
1

Kd
(1.2)

where [PL], [P ] and [L] are, the concentrations of respectively the complex
(PL), the protein (P) and the ligand (L). From a complementary point of view,
binding events can also be explained by the laws of thermodynamics. According
to thermodynamics, a spontaneous reaction, such as ligand binding, at constant
temperature and pressure (as it usually happens in a biological context) and at
equilibrium, will occur only if accompanied by a negative change in the Gibbs
free energy of the system (often named “free energy of binding”). Moreover, if the
complexation occurs under standard conditions (1 atm pressure, 298 K temperature,
and [L] = [P ] =1 M), the change in Gibbs free energy takes the name of “standard
free energy of binding” (∆G◦), which can be easily related to the dissociation constant
Kd using the relationship in eq. 1.3:

∆G◦ = −RT ln(Kd) (1.3)

where R is the gas universal constant and T the absolute temperature. Because
of the link between Kd and ∆G◦, the stability of any ligand-receptor complex is said
to be determined by the (negative) magnitude of ∆G◦.
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1. Introduction

In typical cases, however, ligand binding occurs under non-standard conditions, so
that ∆G◦ doesn’t represent the true free energy of binding. Still a strong relationship
exists between ∆G◦ and ∆G as shown in eq. 1.4, which indicates that the free energy
of binding under non-standard conditions (∆G) can be calculated on the basis of the
one in standard conditions (∆G◦) corrected by an additional term containing the
“reaction quotient” Q, defined as [PL]/[P ][L]. Indeed, at equilibrium, the “reaction
quotient” takes the value Kd reducing thus eq. 1.4 to eq. 1.3.

∆G = ∆G◦ +RT ln(Q) (1.4)

The free energy of binding can also be expressed in a different form, as in eq. 1.5,
in which the molecular determinants of the interaction are highlighted:

∆G = ∆H − T∆S (1.5)

Equation 1.5 shows that the change in Gibbs free energy depends on two different
contributions, an enthalpic (∆H) and an entropic (-T∆S) term, reflecting the
different kinds of interactions involved in binding events [1, 2, 84, 86–88]. The
enthalpic contribution reflects the specificity and strengths of direct protein-ligand
interactions, such as electrostatics, van der Waals and polarisation-induced forces.
Moreover, it also accounts for solvent-mediated interactions between the binding
partners and for the ones between the partners and the solvent [1, 2, 89]. Concerning
water-mediated interactions, such as hydrogen-bonds (H-Bonds), it has been showed
they can be of extreme relevance for ligand-protein complexation [88, 90–92]. In
particular, as discussed for example by Chen et al. [93], H-Bonds facilitate ligand
binding via at least two different mechanisms: (i) by establishing direct ligand-
receptor interactions [94] and (ii) by displacing protein-bound (structural) water
molecules into the bulk solvent [95]. On the other hand, the entropic term ∆S, in
its simplest description, is considered as a measure of the dynamics of the overall
system during the complexation. Changes in the binding entropy usually reflect the
loss of motion associated to the formation of the complex and, in particular, the loss
of available degrees of freedom of the binding partners and of the (structural) water
molecules at the binding interface [89]. Indeed this term is usually modelled as made
up of different contributions, as for example done by Perozzo and coworkers in ref.
[88] and shown in eq. 1.6:

∆S = ∆Ssolv + ∆Sconf + ∆Sr/t (1.6)

where ∆Ssolv accounts for solvent release upon binding, ∆Sconf represents the
conformational entropy change associated to structural re-organizations of partners
before intimate binding, and ∆Sr/t refers to the change (loss) of translational and
rotational degrees of freedom of the binding partners when the complex is formed from
the partners free in solution. Although entropic contributions are usually refereed as
unfavourable for ligand binding, in some cases they, and particularly conformational
entropy contributions, have been discovered to favour the complexation [96]. As both
enthalpic and entropic terms ultimately drive the binding, they are collectively called
the “thermodynamic signature” of the association reaction [1]. Their knowledge is
thus much more informative than just the value of ∆G value alone. Indeed, being
able to distinguish between the two contributions is greatly helpful to shed light
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on the molecular determinants of ligand-receptor association allowing for a direct
comparison between computational and experimental methods for the two terms
separately. Moreover, their knowledge can also improve lead optimisation steps
in drug design (both experimentally and computationally) by giving hints on the
types and extents of lead modifications needed to improve binding affinity between
the compound under study and the target protein(s) [1]. Although different in
origin, these contributions are highly correlated [1, 94], as, for example, partners’
conformational flexibility (contributing to the entropic term) reflects the strength
of non-covalent interactions governing the binding (and giving rise to an enthalpic
contribution). Moreover, the strong connection between the two can also be retrieved
in other two different phenomena, the enthalpy-entropy compensation effect, where
a favourable change (increase) in system’s enthalpy during complexation is often
balanced by a corresponding unfavourable entropy change [94, 97] and hydrophobic
interactions, often seen as the paradigm of water-mediated driving forces [90, 98–101].

Although several works in the last decades addressed this topic, helping to
shed light on the intricate world of ligand binding energetics, a clear a complete
picture is still missing. Among the reasons, the lack of strong theoretical models to
quantitatively account for (de)solvation and entropic contributions being one of the
most critical ones. However, as a rigorous treatment of the topic is out of the scope
of this thesis, the interested reader is refereed to some recent literature on the field,
such as refs. [2, 43, 89, 99].

1.3 Mechanisms of molecular recognition

Historically, the first mechanism to explain MR was the “lock-and-key model” pro-
posed by Fisher in 1894 [102] and based on the matching between the binding surfaces
of (virtually) rigid interacting partners (Figure 1.2). Thus, only the right ligand is
able to enter and bind to receptor’s BS, in the same way in which a key complements
a lock. Although quite simplistic, a number of experimental evidences supported this
model. For example, the binding determinants for the first X-ray resolved antibody-
protein complex were understood by means of a static picture of the interacting
partners [103]. Moreover, also the mechanism of action of chymotrypsin [104] was
initially understood without considering protein flexibility. However, it was soon
realised that for a deep understanding of biological interactions it was essential
to account for the flexibility of (macro)molecules. Before introducing molecular
plasticity in MR, it is interesting to mention that, as noted by Vogt et al. [10], using
static models to understand ligand binding processes can still be appropriate in some
cases, also in the framework of the overall intrinsic conformational flexibility of macro-
molecules. For instance, in the case of proteins exploring different conformations on
a faster time scale compared to the time required for the binding process to occur,
the equilibrium kinetics of the process would appear indistinguishable from the one
associated to a static receptor, although eventual structural rearrangements can still
occur after the binding event making, in that case, unsuitable the usage of a static
model of the protein. This also explains why, as for the cases cited above, invoking
protein plasticity is not always needed to understand shape fitting between ligand
and receptor involving no or very minor conformational rearrangements, although
the static picture of the binding event is rarely able to unveil the dynamics detail of
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the interaction. The first mechanism of MR accounting in an explicit way protein
plasticity was the “induced fit model”, introduced more than 60 years after Fisher’s
seminal work by Koshland [105] to explain enzyme catalysis (Figure 1.2). According
to this model, the increasing interactions between approaching partners induces
complementary structural adaptations in both the receptor and the ligand, leading
to optimal matching of their binding surfaces. The induced fit model has been
extremely useful to elucidate the binding dynamics of a large number of protein
classes [16, 106–108]. Furthermore, it gives a theoretical basis to understand the
evidence of proteins binding multiple ligands [109]. However, it still does consider
proteins as represented by a single binding-incompetent conformation in the absence
of interacting ligands, and accounts for their flexibility only limitedly to their binding
site(s) [2, 105, 110].

Figure 1.2: Main models of molecular recognition: lock and key, induced fit, and selective
fit (a.k.a. conformational selection or dynamic fit). Proteins are represented in cyan,
while red blocks indicate a generic partner (here a ligand), whose possible conformational
transitions occurring upon binding are not reported for simplicity. In the lock and key model,
no structural rearrangements occur upon ligand interaction and binding. In the induced
fit model, the ligands bind the receptor in a weak conformation, inducing afterwards a
conformational transition towards the tight conformation to maximise favourable interactions.
In the selective fit model the receptor (and the ligand) adopts several substates in dynamical
equilibrium, and only one of them is selected and stabilised upon ligand binding.

The “selective fit model” (aka “dynamic fit model” or “conformational selection
model”, Figure 1.2), at opposite, is based on the observation that proteins in their
biological environment (also in the absence of a specific ligand) are intrinsically
dynamic, assuming an ensemble of different (meta)stable states [2, 8, 110–112]. This
model, firstly introduced in the 1960s by Straub and Szabolcsi [113] became widely
accepted and broadly referenced by the scientific community around the 1980s, thanks,
among the others, to the contributions by Nussinov and coworkers [114]. Notably, the
model was then further improved and reshaped when Frauenfelder and coworkers [12]
coupled the idea of protein intrinsic flexibility with the “free energy landscape (FEL)
theory” [8, 12, 59, 115]. According to the FEL theory, the rich topology of proteins,
coupled with the intrinsic nature of non-bonded interactions governing their dynamics,
gives rise to a very complex free-energy landscape [13, 116–118] corresponding to
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large ensembles of conformational (sub)states (hence conformers) coexisting with
different population distributions in dynamic equilibrium [12, 119, 120]. Barriers
comparable to the thermal energy will allow for the interconversion among different
conformers, leading to a significant population also of (relatively) high-energy states.
Indeed, several studies on protein-ligand interactions and enzymatic catalysis showed
that, in certain cases, ligands can bind not only to the lowest energy state of a
receptor (preferred by the protein in the absence of ligands) but also to higher
energy conformations resembling its ligand-bound form, resulting in a subsequent
population shift toward the latter conformational states [59, 115, 121]. The last
decades have seen numerous efforts to combine the above models into a unified
theory of protein-ligand binding. Models have been proposed in which a first step of
weak ligand binding to the most complementary receptor geometry (according to the
conformational selection theory) is followed by reciprocally induced conformational
rearrangements so as to tighten the interactions [122, 123]. However, the relative
importance of the two mechanisms involved in the unified model is still under debate,
as it appears that the balance depends on the specific binding partners and on
the details of the environment in which the binding takes place (e.g. on ligand
concentration) [59, 123–125]. Finally, in the more recent years, also models trying
to explain MR events only by means of the conformational selection theory, thus
reconsidering the importance and predominance of an induced fit mechanism, have
been proposed, as done in ref. [10].

1.4 Thesis outline

Aim of this thesis is to present the recently developed Ensemble Docking with
Enhanced Sampling of pocket Shape (EDES) method aiming to sample holo-like
structures of a protein receptor given its apo form. The method will be described
in details, explaining the reasons why it can positively contribute to the scientific
community working in the field of basic research in life sciences and in the field of
rational drug design. Its performance will be tested in different scenarios, under-
standing its strength points but also pinpointing its weak spots. Conclusions will be
then drawn highlighting possible directions for a further development of the method.

This thesis is organised as follows:

Chapter 2 is divided in two parts. In the first one, an overview of the theoretical
background needed to understand EDES implementation will be given. The concepts
of molecular dynamics simulations, metadynamics, docking calculations and cluster
analysis will be addressed. In the second part, the details of EDES methodology will
be discussed.

Chapter 3 deals with EDES performance in the context of re-docking and cross-
docking calculations. In the first case, re-docking calculations on EDES-generated
receptor conformations are performed for three different protein receptors being
paradigms of targets undergoing different extents of conformational changes. In the
second one, EDES performance in cross-docking calculations is addressed via our
participation to the D3R Grand Challenge 4, a blind docking challenge where the
participants are requested to predict the binding poses of a set of ligands on a protein
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receptor for which only the amino acid sequence is known. Finally, we also tested
an improved EDES recipe on a further target, known to be extremely challenging
due to its extended binding region and to the large extent of conformational changes
accompanying the binding of its ligands.

Chapter 4 draws some general conclusions on the results obtained, framing this
work into a wider project. In this chapter we also discuss the perspectives of future
works and possible directions of improvement of the method presented.
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Over the years, the approaches used to investigate molecular recognition events have
changed. The development of new computer technology and of new computational
techniques has considerably increased the accuracy of computational studies of
biological systems. Computational methods have thus become an important tool
in biomedicine. In particular, in addition to the experimental techniques, several
computational methods have been applied at different stages of the drug-design
processes [49, 126].

The work presented in this thesis is based on computational simulations. In
this chapter an overview is given of the main computational methods used, such as
classical molecular dynamics (MD), metadynamics, molecular docking and cluster
analysis.

2.1 Molecular dynamics (MD) simulations

Molecular dynamics (MD) simulations have provided to be extremely useful to address
problems with many degrees of freedom, and they have become one of the principal
tool of the theoretical study of biological molecules and reactions. At a molecular
level, life can be regarded as a complex network of chemical and physical interactions
between (bio)chemical entities. In this context, MD simulations provide a practical
and less expensive way to study the dynamic behaviour of (macro)molecules. Two
main families of MD approaches have been developed over the years: classical MD
and quantum mechanics (QM) MD.

In the QM approach, the quantum nature of bonds is explicitly considered.
Electronic density functions are used to compute the dynamics of the valence electrons,
while ions and inner electrons are still treated classically [55, 127–132]. However,
quantum mechanics simulations need more computational resources and so they are
usually used to simulate small portion of a biological system in the ps time scale,
although approaches allowed to reach the ns scale [133, 134].

In classical MD simulations, on the other hand, atoms and bonds are treated
classically: the electronic distributions of atoms are approximated considering fixed
partial charges on them and by approximate models for polarisation effects, while
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bonds are treated like springs, with empirical values for the force constants. In this
way the dynamics of the system is defined by the laws of classical mechanics.

2.2 Classical MD

In classical MD, the potential energy of the system is computed by means of empirical
energy functions which, together with the numerical parameters used, are collectively
refereed as “force fields” (FF). Force fields are based upon the Born-Oppenheimer
approximation and they are also refereed as atomistic models since the smallest
particles involved in these functions are atoms, rather than electrons as in QM
calculations [55, 56, 127]. The distances used in the calculations are only refereed to
the positions of atoms (i.e. of nuclei) and electron motions are not taken into account
explicitly but rather considered by an adjustment of the parameters used [135].

Within FF the interactions governing the structure and the evolution of the system
are modelled by simple mathematical terms and, together with their functional form,
FF contain a set of parameters for each type of atoms. More atom types than
elements are present, since the properties of an atom is strongly influenced by its
chemical environment. As an example, force fields include different parameters for a
carbon atom according to its hybridisation (e.g. a sp carbon would have different
parameters than a sp2 one) [52, 135].

Several force fields exist and, although the functional form of many of them is
very similar, the main differences arise in the parameters used and in the way in
which the value of parameters are determined.

FF typically compute the conformational energy of a system as a summation of
the contributes of the so called “bonded interactions” (covalent bonds) and of the
“non-bonded interactions” (non covalent bonds), as described in equation 2.1:

Etotal = Ecovalent + Enon−covalent (2.1)

where the two contributes are usually expressed as follows:

Ecovalent = Ebond + Eangle + Edihedral (2.2)

Enon−covalent = Eelectrostatic + EV DW (2.3)

The terms shown in equations 2.2 and 2.3 are used in MD simulations to calculate
the force acting on every particle in the system as follows:

Fi = −∇Ui, i = 1, 2, ..., N (2.4)

with Ui the potential energy associated to every of the N particles of the system.
Considering all the contributes discussed so far, the functional form of the potential
energy of a particle i due to the interactions with the other particles of the system
reads:

Ui =
∑
k

U bondsi,k +
∑
k

Uanglesi,k +
∑
k

Udihedralsi,k +
∑
j

U electrostatici,j +
∑
j

UvdWi,j (2.5)
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Where, the index k indicates the particles covalently bound to the particle i while
the index j refers to the non-bonded atoms. As clear from the above equation, the
total potential energy is computed as a sum of pairwise interactions. It is worth
keeping in mind that the functional form of equation 2.5 and the mathematical
expression of the terms contained may slightly differ according to the specific force
field considered. What is presented here the semi-empirical energy function used in
the AMBER force field [136].

Bonded terms are associated with the covalently bound atoms (equation 2.6).
Their functional forms is given by equations 2.7, 2.8 and 2.9:

U bonded = U bonds + Uangles + Udihedrals (2.6)

U bonds =
∑
bonds

Kb(r − req)2 (2.7)

Uangles =
∑
angles

Kθ(θ − θeq)2 (2.8)

Udihedrals =
∑

dihedrals

Kχ(1 + cos(nφ− φeq)) (2.9)

Before analysing each contribution, it is important to stress the difference between
the experimentally obtained values and the FF-dependent parameters used in the
equations above. The terms associated with the 3D structure of molecules, which are
typically determined experimentally (by techniques such as X-ray crystallography
and NMR spectroscopy) but also by means of high-level quantum calculations, are
the bond lengths, req, the valence angles, θeq, and the torsion or dihedral angles, φeq.
The numerical values of the other parameters might vary for different force fields. As
already pointed out, both experimentally determined terms and parameters depend
not only on the chemical element involved but also on its chemical environment.
For example, a C-C single bond may have req =1.53 Å and Kb = 225 kcal/(mol Å2)
while a C=C group will have shorter bonds, e.g. req=1.33 Å , and a stronger bond
constant, e.g. Kb = 500 kcal/(mol Å2). Note that the simple form of the equations
above represents a compromise between accuracy and computational costs [52, 135].

The bond stretching term and the angular vibrations are treated harmonically,
which is a good approximation for a system at room temperature, where both the
bonds and the angles stay close to their equilibrium position. A more physically
accurate treatment would require the usage of the Morse potential, resulting in an
increase of the computational cost associated. However, the Morse potential would
give significantly better results only at high temperatures (which are almost never
used for biological systems) and for this reason it is rarely used.

The dihedral or torsion angles are associated with rotations around a covalent
bond as shown in figure 2.1. This oscillatory terms contains the force constant Kχ,
which indicates the height of the rotational barrier, the periodicity of the rotation
n and the equilibrium angle φeq. It is important to note that rotating around a
covalent bond can eventually result in a dramatic conformational energy change of
the structures, due eventually induced steric clashes between different groups of the
structures [135].
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Figure 2.1: Bonded interactions: A) the equilibrium bond length req and valence angle
θeq for a simple molecule. B) a schematic representation of a protein with its three torsion
angles ω, φ and ψ. Traditionally, torsion angles in proteins have different names according
to the specific covalent bond to which they are refereed. They are all computed by eq. 2.9.

Non-bonded interactions are what drives almost every process of molecular recog-
nition. Interestingly, although the proper physical treatment of these interaction can
be very complex, it has been shown that accurate results can be obtained treating
these interactions with a relatively simple mathematical model [130, 135].

Equations 2.10 and 2.11 show the simple models which are commonly used in
almost all FF to compute these interactions:

U electrostatic =
∑
i<j

qiqj
4πεdrij

(2.10)

UV DW =
∑
i<j

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(2.11)

The electrostatic interaction (eq. 2.10) is modelled by means of a Coulombic term.
This term involves an interaction between the partial charges qi and qj of atoms i and
j divided by the distance between them and by the appropriate dielectric constant of
the medium. Even if the system is globally neutral, the usage of partial charges is a
way to include in the electrostatic term also the displacement of electronic densities,
which leads to dipoles and multipoles.

Van der Waals interactions are described by the term shown in equation 2.11. This
term is described by a semi-empirical potential refereed as the Lennard-Jones (figure
2.2). It is composed of two terms, one representing the repulsive interactions due to
electron clouds overlapping, and the other one indicating the attractive interaction,
typical of induced dipoles interactions. The repulsive term is proportional to r−12 and
its effect is relevant only at very short distances. The attractive term is proportional to
r−6 and it is negative, which indicates its favourable nature. The VDW term contains
two parameters: εij which indicates the magnitude of the interaction (i.e. the depth of
the potential well) and σij , indicating the (finite) distance at which U electrostatic = 0.
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Figure 2.2: A representation of the Lennard-Jones 12-6 potential. Note the equilibrium
distance rmin between two chemical entities in which the potential energy has a minimum.

Moreover, σij is related to the distance between two interacting atoms at which
interaction is most favourable: rminij = 2

1
6σij . Typically the parameters εii and σii

are determined for individual atom types and then combined via the rules1 shown
in equations 2.12 and 2.13 to obtain the parameters used in the potential function
[52, 135, 137, 138].

σij =
σii + σjj

2
(2.12)

εij =
√
εiiεjj (2.13)

The correct choice of the parameters involved in equations 2.10 and 2.11 allows to
accurately reproduce all the complex panorama of non-bonded interactions, including
also hydrogen bonds and hydrophobic interactions, although they are not taken into
account explicitly [135, 138].

2.3 MD algorithms

The idea behind MD simulations is to study the time evolution of a physical system
by integrating Newton’s motion equation for each particle contained in the system.
In this scheme, an approximate potential is used to mimic the interactions in the
system and the integration is performed with an appropriate algorithm. The equation
of motion for a system of N particles can be written as:

mr̈i(t) = Fi(t), i = 1, ..., N (2.14)

1Different combining rules exist for the LJ potential. Here we refer to the Lorentz-Berthelot rules, which
are the simplest and the most used in this context [135, 137, 138].
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where, at time t, the force Fi(t) acting on particle i depends on the position
of the other N-1 particles. This can be explicitly shown writing equation 2.4 in a
different form:

Fi = −∇i
N∑
i=1

N∑
j>i

U(rij(t)) (2.15)

with rij(t) = |ri(t)− rj(t)|. So, after specifying the initial conditions for positions
and velocities of each particle, the trajectory can be easily calculated. The force on
each particle can be computed using equation 2.15 and the position of the particle
can be calculated from equation 2.14.
However, computing the position ri(t) requires the integration of equation 2.14 and
several fast and robust algorithms have been developed for this scope [55, 56, 132, 139].
Here only the simplest of them is presented, known as the Verlet algorithm [131, 140,
141], which derives from the Taylor expansion about time t of the coordinate ri(t) of
a particle:

ri(t+ ∆T ) = ri(t) + vi(t)∆t+
Fi(t)
2m

∆t2 +

...r i
3!

∆t3 +O(∆t4). (2.16)

Similarly,

ri(t−∆T ) = ri(t)− vi(t)∆t+
Fi(t)
2m

∆t2 −
...r i
3!

∆t3 +O(∆t4). (2.17)

Adding these equations gives:

ri(t+ ∆T ) ≈ 2ri(t)− ri(t−∆T ) +
Fi(t)
2m

∆t2 (2.18)

Which leads to an error on position of the order ∆t4. This integration procedure
is repeated iteratively each ∆T and the system is evolved in time. In this context
the choice of the time step is crucial and it depends on the system in study. A
large ∆t will result in an unrealistic evolution of the system, causing instabilities
in the simulation, while a time step which is too small can result in a “waste” of
computational resources to perform a too long simulation to observe meaningful
events. For classical MD simulations an appropriate time step is of the order or 1-2
fs [142, 143], although more sophisticated strategies exist to allow the use of larger
time steps [144].

Although equation 2.18 can be used to compute the trajectory of a set of particles,
it has a major drawback: it doesn’t explicitly compute the velocities of the particles.
In fact, explicitly computing velocities, although not necessary to calculate the
trajectory, allows to calculate the total kinetic energy of the system. Over the
years, several variations of the original Verlet algorithm have been proposed in order
to introduce an explicit evaluation of the velocity of particles. Examples include
the so called “velocity Verlet” algorithm [131, 140, 145] and the “Leapfrog” method
[131, 140, 146].

2.3.1 The ergodic hypothesis

In classical statistical mechanics, a macroscopic system is represented as an en-
semble of N particles, interacting according to the laws of classical mechanics. An
instantaneous state of the system, called microstate, is represented by a point in the
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phase-space as follows:

(r(t)N , q(t)N ) = (
−−→
r(t)1,

−−→
r(t)2, ...,

−−→
r(t)N ;

−−→
q(t)1,

−−→
q(t)2, ...,

−−→
q(t)N ) ≡ Γ(t) (2.19)

The evolution of the system is then described by the trajectory in the phase-space
Γ(t)A → Γ(t)B . However, when dealing with a real system, we are usually interested in
measuring macroscopic properties of the system, namely the observables of the system.
It’s important to note that macroscopic time scales are larger than microscopic ones.
It means that during a macroscopic measurement of the observable O, the system
passes through several different microstates. The link between the observed value
of O and its values explored during the observation time is represented by equation
2.20, where the observed value is calculated as the time average of the observable on
long times related to the microscopic time scales of the system [131, 132, 135]:

O(t0, T ) =
1

T

∫ t0+T

t0

O(Γ(t))dt (2.20)

However, the computation of the integral in the above equation would require
a detailed knowledge of the microscopic state of the system at time t0 and of its
trajectory during its evolution for the time T . Those requirements are hardly satisfied
for large systems and, if the time evolution of a system strongly dependent on its
initial state, it would be very hard to make statistical previsions on its evolution.
The ergodic hypothesis allows to overcome this obstacle. It basically postulates that
every hyper-surface (on the phase space) of fixed energy E is completely accessible to
every particle having the right energy. This means that if we observe a system for a
sufficiently long time T (e.g. during a MD simulation), the time average in equation
2.20 will depend only on the energy of the system and it will assume the same value
for every trajectory of energy E, independently from the microscopic state of the
system at t0. So, for an ergodic system, we can state that:

O = lim
T→+∞

1

T

∫ t0+T

t0

O(Γ(t))dt =

∫
O(Γ)ρmc(Γ)dΓ = 〈O〉 (2.21)

where ρmc(Γ) is the probability density of each microstate of energy E [131].
This hypothesis has two important advantages for MD simulations [147]:

• The statistically averaged properties of the system in study are accessible
through MD simulations, that are aimed to generate trajectories;

• If the simulation is long enough, the time averaged properties become indepen-
dent from the initial conditions of the system.

Although it is a plausible hypothesis, which is assumed to be valid for the majority
of biological systems, there are cases in which this hypothesis is not satisfied [131, 132].

2.3.2 Periodic boundary conditions

Usually, MD simulations are performed to study the properties of a system in bulk,
or, more formally, in the thermodynamic limit N → ∞. However, only systems
with a finite and usually relatively small number of atoms (normally less than 106,
although this limit has recently been pushed up to a billions of atoms [148]) can
be simulated, in order to contain the computational effort of the simulation. This
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Figure 2.3: PBC: Figure A) shows a 2D lattice, highlighting the particles in the original
box and their images in the surrounding boxes. Figure B) is a 2D representation of periodic
simulation boxes of a protein. The aqueous environment is showed for one of the boxes.

raises the problem of surface effects, which are substantially due the fact that surface
molecules interact with less molecules than bulk ones. To ensure that edge effects
will affect to a minor extent the bulk properties of the system, different strategies
have been developed. One of the most used is simulating the system under periodic
boundary conditions (PBC) [131].
The idea is to simulate the original (finite) simulation box surrounded by a series
copies of it, arranged in a three-dimensional infinite lattice, as shown in figure 2.3.

Particles of the surrounding boxes, refereed as images, moves in the exactly same
way of those in the original box. In this way, when, during a simulation, a particle
moves out from the original box, a particle from one of its images enters the box
on the opposite side, assuring that the total number of particles in the original
box is conserved. When performing a simulation under PBC, however, long-ranged
interactions between the system in the central box and its periodic images should
also be taken into account. VDW interactions decay very rapidly and so they can be
cut at a given cutoff (typically 9-12 Å) and the regions beyond the cutoff treated
as homogeneous medium by employing averaged LJ parameters [131]. Electrostatic
interactions, on the contrary, are long-ranged and the usage of a cutoff is very likely to
introduce serious errors in the force calculation. Instead, it is important to include the
force contribution from all the particles involved: the ones in the original simulation
box as well as their images in the surrounding boxes [131, 132, 135]. One of the most
used method to deal with this issue is the so-called Ewald summation [149], which
will be addressed in the following section.

2.3.2.1 The Ewald summation

Let’s consider a system of N interacting particles under periodic boundary conditions
in a cubic box of diameter L (V = L3) and suppose we are interested to evalutate the
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total potential energy of the system. Under PBC conditions equation 2.10 becomes:

U electrostatic =
1

2

N∑
i,j=1

∑
m∈Z

u(rij +mL) (2.22)

where u(rij + mL) indicates the potential energy on the particle i due to the
electrostatic interaction with the other particles [131, 132, 135]. The radius rij =
ri − rj indicates the distance between the two interacting particles (the case with
i = j should be omitted) and m is an index used to consider the periodic images of
the particle of the original box (for which m = 0).

Writing explicitly the form of u(rij +mL) in the previous equation leads to:

U electrostatic =
1

2

N∑
i,j=1

∑
m∈Z

qiqj
|rij +mL|

(2.23)

Equation 2.23 represents a well-defined electrostatic problem, however, such compu-
tation is not trivial. The first problem in the summation above is that the series is
not absolutely convergent, meaning that it is not well-defined unless we specific the
way in which the calculation is performed (i.e. the order in which we sum up the
terms). A natural choice could be to take the simulation boxes as (roughly) spherical
layers but this choice leads to an extremely slow convergence which is not desirable.
The second problem is that eq. 2.23 is a sum over N(N − 1)/2 terms, which, in the
case of biological systems, results in an enormous computational cost to perform that
calculation, scaling as O(N2).

To overcome this limitation, the summation in the equation 2.23 can be split into
two components, using the identity:

1

x
=
f(x)

x
+

1− f(x)

x
(2.24)

with x = |rij +mL|.

In this way, the initial slowly conditionally convergent series has been converted
into two quickly convergent terms: a term which quickly converges in the real space
and a term which can be accurately treated in Fourier space.

The idea behind this method can be explained as follows: f(x), which is a generic
function of the coordinate x, can be chosen so that f(x)

x is negligible beyond a given
(small) cutoff rmax while 1−f(x)

x will be a slowly varying function of x, which means
that its Fourier transform can be well represented by only a few reciprocal vectors
[131, 132, 135]. The usual choice for f(x) is the complementary error function erf(x)
= (2/

√
π)
∫∞
x exp(−t2)dt.

This method not only resolves the convergence problem but it also reduces the
computational cost of eq. 2.23, which, in this way, scales as O(N3/2). For large
systems, however, this approach is still expensive and more sophisticated methods
are available to deal with long-range interactions. An example is represented by
the Particle-Mesh Ewald method [150] in which the computational cost scales as
O(N logN).

19



2. Computational Methods

2.4 Enhanced sampling simulations

As discussed above, classical MD simulations applied to biological systems are a
powerful tool to explore the microscopic behaviour of complex systems and important
successes have been achieved in the last decades. However, this technique may not
be suitable to study phenomena which involve transitions in a complex free energy
landscape (FEL)2. If a system displays a FEL featuring a series of disconnected basins
with a high occupancy probability, separated by regions in which the probability of
occupancy is very low, the system is defined metastable [80, 152–154]. Meta-stable
systems spend the majority of time in the disconnected regions with high occupancy
probability (i.e. in a sharp minimum, but not necessarily the lowest energy one), with
slow-rate transitions allowing the system to explore other regions. Transitions of this
kind are collectively named rare events. Examples of biological systems featuring rare
transitions include protein-folding, gating mechanisms for ionic channels, protein-
ligand interactions, etc.
In our case of interest, namely protein-ligand interactions, MD limitations are manly
related to the sampling of conformational changes of receptor’s structure since some
conformational states can be separated by energetic barriers much greater than the
energy associated to thermal fluctuations.

To overcome this limitation, several strategies have been developed to accelerate
the observations of these rare events by forcing proteins to explore larger portions of
its conformational space, discouraging the sampling of already visited regions (and
thus helping the system to escape from energy basins in which it was eventually
trapped) [66, 155, 156]. The choice of the strategy to use strictly depends on the
specific problem to address and on our knowledge of the system [59, 74].

A large class of such methods works by adding a fictitious potential to the real
(free) energy landscape of the system, reducing the depth of its minima. In this
way, the energy landscape felt by the system is flattered compared to the real one,
allowing thermal fluctuations to easily overcome smaller energy barrier of basins
in which the system gets stuck. Examples of these strategies include accelerated
molecular dynamics (aMD) [62] and metadynamics [80]. Other methods, such as
simulated annealing [157, 158], work by raising the temperature of the system so
that the increased thermal energy will (more) easily trigger the transitions. In this
panorama, a widespread method is the temperature replica-exchange MD (T-REMD),
in which a set of MD simulations are run at different temperatures and at predefined
time intervals, conformations sampled in neighbouring pairs of replicas are exchanged
[159–161]. Still in the context of REMD, approaches based on different schemes are
also possible, such as the Hamiltonian REMD (H-REMD), in which the replicas are
run with different force-fields [162–164].
In the following, however, we’ll focus on metadynamics, which is the strategy used
in the works presented here.

2The free energy surface can be simply thought as a multi-dimensional free energy profile of a system.
See refs. [129, 147, 151] for details.
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2.4.1 Dimensional reduction

Let us consider a system of particles of coordinates x in the space Ω, where x can be
the usual cartesian coordinates ~r or some other coordinate, coupled with a thermostat
bath at temperature T. The system evolves according to the laws of thermodynamics
following the canonical equilibrium distribution [131, 147, 165]:

P (x) =
1

Z
e−βV (x) (2.25)

Where β = 1
KBT

with KB the Boltzmann constant and Z =
∫
dxe−βV (x) the partition

function of the system. Biological systems are characterized by a large number of
atoms, meaning that P (x) has a huge dimensionality. To overcome this problem, what
can be done is to consider some reaction coordinate, namely some collective variable
(CV) instead of the coordinate x [152]. The idea is to study the system through some
“collective coordinates” which provide a coarse-grained characterization of the system.
In this way, if the proper CVs are chosen (i.e. able to describe the transition(s) under
investigation), the evolution of the system can be well described using few suitable
parameters instead of the huge number of coordinates x, reducing the computational
cost of the simulation. Thus, instead of monitoring the full trajectory x = x(t) of
the system, only the reduced trajectory s(t) = s(x(t)) is analyzed. Instead of P (x),
the probability P (s) can be computed:

P (s) =
1

Z

∫
dxe−βV (x)δ(s− s(x)) (2.26)

For an infinitely long trajectory, equation 2.26 can be evaluted by the histogram
of s [166]:

P (s) = lim
t→∞

1

t

∫
dtδ(s− s(t)) (2.27)

which, for real applications, becomes:

P (s) ≈ 1

n∆s

n∑
t=1

χs(s(t)) (2.28)

where χs(x) = 1 if x ∈ [s, s+∆s] and zero otherwise, n is the number of histograms
and ∆s is the width of each of them. If the system is ergodic and it is in equilibrium
at temperature T, we can define the Helmholtz free energy of the system in terms of
the collective variable s:

F (s) = − 1

β
ln(P (s)) (2.29)

Equation 2.29 shows that it is possible to enhance the sampling of rare events by
acting of F (s) via P (s). Moreover, since a strong link exists between P (s) and the
FEL (eq. 2.31), a straightforward way to enhance the sampling is to bias the plain
dynamics of the system by flattening its FEL. This is typically done by a properly
chosen bias potential VB(s(x)), depending on the coordinate x via the collective
variable s(x). So a fictitious potential term VB(s(x)) can be added to the potential
V (x) allowing the system to “jump” between states separated by higher energetic
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barriers. A biased probability distribution can be defined in the same fashion of eq.
2.25:

PB(x) =
1

ZB
e−β(V (x)+VB(s)) (2.30)

where ZB is the canonical partition function for the new potential V (x) + VB(s).
With the same approach used for eq. 2.26, PB(s) can be computed and then related
to P (s) as follows [80, 131, 154, 165]:

PB(s) =
1

ZB

∫
dxe−β(V (x)+VB(s))δ(s− s(x)) = (2.31)

=
Z

ZB
e−βVB(s) 1

Z

∫
dxe−βV (x)δ(s− s(x)) = (2.32)

=
Z

ZB
e−βVB(s)P (s) (2.33)

In this way, P (s) can be evalutated as:

P (s) =
ZB
Z
eβVB(s)PB(s) (2.34)

Finally, using eq. 2.29, the free energy F (s) can now be calculated with respect to the
biased probability PB(s). In order to accelerate the sampling of rare events, the idea
would be to find a suitable VB(s) so that the free energy profile becomes flat [154].
Indeed, the height of the maxima of F (s) is related to the rate of interconversions
between the different states of the system. Higher maxima (i.e. higher barriers)
are associated to a lower interconversion rate, while lower barriers result in faster
interconversions. If a proper bias potential is found and the energy profile becomes
ideally flat, the so-called rare events will become accessible also to MD simulations of
finite time. It can be shown that a flat free energy profile can be obtained choosing
VB(s) = −F (s), allowing, diffusive transitions in a barrierless conformational space.
However, for real systems F (s) is rarerly known a priori, so the main problem is
how to construct VB(s) without a detailed knowledge of the energetic profile of the
system.

2.4.2 Metadynamics

Metadynamics (META) [152, 154], is a computational technique which aims to
enhance the sampling of rare events and to yield, at least in principle, to the exact
free energy profile along the trajectory of one or more CVs.

META acts by flattening the effective free energy of the system during the
simulation, preventing the system to be trapped in local minima and being able to
explore the entire free energy surface, leading, at least in principle, to a diffusive
behaviour of the system in the CV(s) space. Over the years, different groups applied
META approaches to unveil details of (macro)molecules dynamics in a variety of
different problems [152, 154, 167, 168].

Conceptually, the idea is to enhance the sampling by adding to the potential of
the system a bias potential VB(s) acting on a small number of parameters, namely
the collective variables. In the case of metadynamics, the bias potential has the form
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Figure 2.4: Schematic representation of the progressive free energy profile filling in a
typical META simulation. At t = 320τ the profile has been completely overcompensated
and the system is allowed to make diffusive transitions between the states. Image adapted
from ref. [80].

of a history-depend potential built up as a sum of Gaussian distributions centered
along the trajectory of the CVs. For a single CV, the bias potential takes the form:

VB(s(x), t) = w

t∑
t′=τ,2τ,...

exp

(
−(s(x)− s(x(t′)))2

2σ2
s

)
(2.35)

where w is the height of the Gaussian distributions, τ−1 is the frequency at which
the distributions are added, σs is their width and t is the total simulation time. In
metastable systems, the probability that a system is in a minimum is higher than
elsewhere and so, during the simulations, several Gaussian hills are added around
the basin in which the system is stuck. In so doing, the hills will increasingly fill
the minimum allowing the system to “jump”, due to thermal fluctuations, into a
close local minimum. Here, the accumulation of hills starts again. In this way, in
a sufficiently long simulation, the bias potential compensates all the free energy
profile of the system. The novel idea of this method is to use a history-depend
potential which keeps memory of all the positions in which the hills have been
deposited in order to reconstruct a negative image of the “underlying” free energy
(Figure 2.4). More precisely, the important assumption made in this case is that the
history-depend bias potential made up of the Gaussians deposited up to the time t
is an unbiased estimator for the free energy in the regions explored. It means that,
after a transient time teq needed for the potential to fill all the free energy minima of
the system, the bias potential VB(s, t) will show deviations from −F (s) which will
become increasingly smaller as t increases, so that V (s, t→∞) = −F (s) +C, where
C is an irrelevant additive constant (which increases with time) [152, 154, 169].

However, although empirically verified for several systems and also formally proved
[64], in actual facts the previous assumption remains an approximation. Since a com-
pletely flat free energy profile is very unlikely to be achieved using gaussians of fixed
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height, hills are continuously added and the bias potential doesn’t exactly converge
to −F (s), but it rather oscillates around it. In particular, the accuracy of the free
energy (approximative) reconstruction depends on the choice of the three parameters
discussed above, w, τ and σs [170]. If the Gaussians are large, the exploration of the
free energy surface will be fast but at the same time the reconstructed profile will
be affected by large errors. On the contrary, if the Gaussians are sharply peaked
(small width) or infrequently deposited, the simulation will take a longer time but
the reconstruction will be more accurate [170]. Typically, to choose the width of the
hills, an unbiased preliminary MD simulation is performed and σs is chosen to be
of the same order of the standard deviation of the CV in that simulation, in order
for the hills to be as large as a fraction of the bottom of the local minima in which
the system is trapped. More precisely, in refs. [154, 168] it has been shown that
the error on the reconstructed free energy profile depends on the ratio ω = w/τ ,
named deposition stride, and not on w and τ separately. Moreover, another major
disadvantage of standard metadynamics is that the computational cost increases
exponentially with the number of CVs and it has been proven using a large number
of CVs has negative consequences on the systematic error as well [152, 154]. So, as a
rule of thumb, no more than 3 CVs can be used together in a simulation. On the
other hand, neglecting a relevant CV in the simulation can lead to instabilities in
the system and in large errors in the reconstruction of the free energy profile.
To overcome the two main limitations described above, two different different ap-
proaches have been developed: the well-tempered metadynamics [66, 171] and the
bias-exchange metadynamics [66, 169, 172]. They will be briefly overviewed in the
following sections.

2.4.2.1 Well-tempered metadynamics

Well-tempered metadynamics (WT-META) provides a solution to the convergence
problem. In this scheme, the bias deposition rate decreases with time. In order to
achieve this, a different expression for the bias potential is used compared to standard
metadynamics:

VB(s, t) = kB∆T ln

(
1 + ωN(s, t)

kB∆T

)
(2.36)

where ∆T is an input parameter with the dimension of a temperature and N(s, t)
is the histogram of the collective variable s collected during the simulation, namely
N(s, t) =

∫ t
0 δs,s(t′)dt

′.
The time derivative of VB(s, t) reads:

V̇B(s, t) =
ωδs,s(t)

1 + ωN(s,t)
kB∆T

= ωe
−VB(s,t)

kB∆T δs,s(t) (2.37)

So, the addition of new hills is exponentially switched off by the growth of the
bias potential, as shown in eq. 2.37. This new strategy can be implemented in the
standard metadynamics by rescaling the height of the Gaussians deposited so that it
is decreased as time increases. In standard metadynamics we saw that the height of
the hills was a constant, while, in this case, it becomes time dependent as follows:
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W (t) = wτ exp

(
−VB(s, t)

kB∆T

)
(2.38)

In this way, ∂VB(s,t)
∂t → 0 with t→∞.

The different choice for the bias potential gives to well-tempered metadynamics
two important key features with respect to standard metadynamics [152, 154]:

• The deposition rate decreases as 1/t and the bias potential converges to its
limiting value in a single run:

VB(s, t→∞) = − ∆T

T + ∆T
F (S) + C

with C an immaterial constant. The factor γ = T+∆T
T is often refereed as bias

factor.

• In the long time limit, the probability distribution of the CVs becomes

P (s) ∝ e−
F (s)

kB(T+∆T )

allowing to control the extent of the FES exploration by tuning the bias factor.
For ∆T → 0 the system behaves as in ordinary MD simulations, while the limit
∆T →∞ corresponds to the standard metadynamics, since the scaling factor
vanishes.

2.4.2.2 Bias-exchange metadynamics

Bias-exchange metadynamics (BE-META) is based on the combination of the stan-
dard metadynamics and replica exchange method and it allows to use a large set
of CVs, overcoming the limits of standard metadynamics. The idea is to perform
multiple standard metadynamics simulations (called walkers) in parallel and at the
same temperature, where each replica is biased with a history-depend potential acting
on one or more CVs. The sampling is enhanced by attempting, at fixed time intervals,
exchanges between the bias potentials of two different replicas. The exchanges are
then accepted or rejected according to the Metropolis criterion, with a probability
[154, 169, 172]

min

{
1, exp

[
1

kBT
(V a
B(xa, t) + V b

B(xb, t)− V a
B(xb, t)− V b

B(xa, t))

]}
(2.39)

where xa and xb are the coordinates of the two walkers and V a(b)
B is the potential

energy of the system a(b). If the move is accepted, the trajectory that was biased
on one of the two coordinates, continues its evolution biased on the other one. The
great improvement of this strategy compared to the standard approach is that it
allows each run to benefit of the enhancing power of all the CVs used in the different
runs, without affecting significantly the speed of sampling since in this case the
computational cost increases linearly with the number of CVs and not exponentially,
as in the standard approach [66, 172]. However, a major drawback of this method
is that the result of a simulation is not a free energy (hyper)-surface in several
dimensions but several, less informative, projections of the free energy surface along
each of the CVs [66, 152, 168, 172]

25



2. Computational Methods

2.5 Molecular docking

As already discussed, the success of docking calculations depends on both the search
algorithm and the scoring step. In the following, both aspects will be briefly discussed.
Specifically, regarding the searching step, the different methods to treat receptor’s
flexibility will be addressed in some details.

2.5.1 Partner’s flexibility in docking algorithms

The searching step determines the number and the quality of the poses generated in
a docking run [2, 69, 72]. It is during this process, indeed, that ligand and receptor
structures associate to form a complex. As protein-ligand association involves a
huge number of degrees of freedom (DoFs), this is a very delicate step, since an
inadeguate treatment of these DoFs will likely lead to the inability of the algorithm to
retrieve native-like ligand poses. In general terms, the DoFs involved in protein-ligand
association can be categorised as follows: (i) the roto-translation between two rigid
molecules, involving six degrees of freedom for each molecule; (ii) the conformational
degrees of freedom of both partners, reflecting their geometrical fluctuations during
the binding process and thus related to their intrinsic and induced flexibilities
[2, 15, 59, 173, 174]; (iii) the position and displacement of solvent molecules, that
have been proved to play often a crucial role in determining the correct protein-ligand
geometry [175–177] also and contributing to the stability of the pose. According to
how the conformational changes are treated, docking strategies are typically classified
into three classes [67, 71, 178–180]: (i) rigid-body docking, that according to the
lock-and-key model, considers both binding partners as rigid bodies, and thus includes
only the roto-traslational DoFs in search step. Clearly, this strategy typically works
only for cases in which the bound conformations of both the partners are available;
(ii) semi-flexible docking, in which one of the partners is kept rigid and only the
flexibility of the other one is considered. For example, if the true bound ligand
conformation is known, this strategy is suitable to account for receptor plasticity; (iii)
full flexible docking, in which the flexibility of both partners is considered. However,
also in the case of full flexible docking, an exhaustive treatment of all DoFs is out of
reach even for most advanced and dedicated settings, and heuristic strategies are
generally used to reduce the dimensionality of the problem.

While the inclusion of small ligands flexibility in molecular docking is nowadays
relatively straightforward and encoded within several software packages, accounting
for protein plasticity has proven to be a much more challenging task, particularly when
rearrangements involving subtle, large, or even secondary structure conformational
changes accompany the formation of the complex (Figure 1.1). In the following,
we give an overview of some of the most commonly used techniques to account for
receptor flexibility in molecular docking, adopting the classification proposed by
Antunes and coworkers in ref. [15], and represented in Figure 2.5.

• Soft docking
The idea behind soft docking (Figure 1.1) is to account for protein plasticity
in an implicit way, allowing for small ligand-receptor steric clashes during
the search for possible binding poses [54, 77, 174]. This is typically achieved
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Figure 2.5: Classification of different approaches to include receptor flexibility in docking
algorithms. From top to bottom: approaches including flexibility in an implicit/explicit way.
From left to right: approaches including partial/full flexibility. Image taken from ref. [15].

by “softening” the van der Waals (vdW) potentials of a (sub)set of receptor
atoms in its putative binding region. VdW potentials in docking algorithms
are usually modelled through a Lennard-Jones semi-empirical function (V (r))
increasing very rapidly at short inter-atomic distances. The functional form of
V (r) is shown in eq. 2.40, where A and σ are known parameters for each pair of
interacting atoms, r represents their interatomic distance andm and n determine
the slope of the potential. Standard values of the latter parameters are 12 and 6,
respectively [181]. For this reason such a potential is also named the “12-6 law”.
Typical soft-docking approaches consist in introducing a smoother potential
with respect to the standard 12-6 LJ potential. For this reason the values of m
and n are usually set to smaller numbers, such as 9-6 as done by Ferrari et al.
in ref. [76], or 8-4 as implemented for example in the GOLD software [54, 182].
This reduces the penalties associated to steric clashes allowing for small (≈ 1
Å) ligand-receptor overlaps.

V (r) = A
[(σ
r

)m
−
(σ
r

)n]
(2.40)

As such, despite not adding any computational cost with respect to rigid docking,
it is typically used only to account for small conformational changes, such as of
small side-chains reorientations or very limited backbone motions, while remains
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hardly able to reproduce major conformational changes involving larger protein
backbone motions and/or extended secondary structure rearrangements [174,
183]. For this reason, when adopted for cases in which the details of the binding
event are not known a priori, it is usually encoded as preliminary step within
more complex approaches [184, 185]. Finally, since the favoured ligand/receptor
overlaps may create structural artefacts in the generated complexes, several
reports shown that this approach can increase the number of false positives
with respect to standard rigid docking [15].

• Selective Docking

Selective docking (Figure 1.1) is another strategy to include target flexibility in
docking calculations in a computationally treatable way, by explicitly exploring
only a few critical DoFs of the receptor [186]. In a typical selective docking
run, the location of the BS in known in advance, a common choice is to
limit the accounted DoFs only to rotations of dihedral (torsional) angles of
selected side chains receptor’s putative site. In earlier implementations, these
DoFs were explored through a so-called “discrete” approach, using specific
rotamer libraries containing a set of predetermined values for the allowed
dihedral angles [15, 180, 187, 188]. Those libraries were usually built on the
analysis of experimental data so only the most frequent (low-energy) side-chains
conformations were included. For this reason, libraries appear well suited to
identify binding poses of compounds congeneric or having a similar binding
modes to the ones for which structural experimental information is available. On
the other hand, the use of rotamer libraries will also inherently bias the results
in favour of binding modes compatible with the rotations encoded in the dataset,
affecting the search for new or rare ones [45]. To cope with this issue, some
authors used a discrete and uniform set of angle values, equally space and not
weighted by the statistical occurrence in known structures [189–191]. To reduce
the computational cost of this procedure the search (sub)space is also usually
restricted according with geometrical constraints imposed by the structure of
the BS. Current implementations of selective docking allow the user to select the
DoFs to be explicitly (and in a virtually continuous way) accounted for during
the calculation. It is also typical to include (small) backbone rearrangements
of the whole protein or of specific regions [192] or to explicitly treat hydrogen
orientations as it is well-known that H-bonds play a crucial role in binding
events [15].

• On-the-fly docking

At odd with the two previously addressed methods, this class of methods
aims to explicitly account for the (virtually) full receptor flexibility during
docking (Figure 1.1). Due to the extremely high dimensionality of the problem,
heuristic strategies are used in order to limit the associated computational cost.
Over the years, a huge number of different on-the-fly approaches have been
developed; in the following we describe only two among the most frequently
adopted strategies, referring the interested reader to more exhaustive works on
the subject [15, 59, 193, 194].

28



2.5. Molecular docking

Induced-fit docking. Built according to the induced fit mechanism of MR [15, 184],
the induced-fit docking typically involves [2, 15, 173, 184, 195]: (i) a first step in
which soft-docking calculations are performed to place the ligand into receptor’s
BS; (ii) a second step of structural optimisation, usually involving reorientations
of selected side-chains by means of rotamer libraries or by means of Molecular
Mechanics [196], Monte Carlo [58], or Molecular Dynamics [128] calculations.
Induced fit docking has been successfully used in several studies, becoming a
very powerful tool in the field of ligand-receptor association [15, 173]. Specific
recipes developed by different groups generally differ in the implementation
details of these steps and often include several additional intermediate ones (see
e.g. refs. [184, 195, 197, 198]).

Molecular-relaxation docking. Following this approach, docking is treated as a
molecular relaxation problem. Starting from a certain structure of the ligand-
receptor complex, generally obtained by means of rigid/soft-body docking,
molecular optimisation [15, 193] can be performed by means of a plethora of
different techniques, such as energy minimization [178], Monte Carlo [199] or
Molecular Dynamics [59, 60, 200, 201]. For an example of one of such approaches
employed in the context of the blind docking challenge D2R Grand Challenge
2, see for instance ref. [202].

• Ensemble docking

At odd with all the other methods discussed so far, in this approach full
receptor’s flexibility is accounted prior to docking calculations (Figure 1.1).
Instead of a single structure, a set of different receptor conformations is given
to the docking algorithm. In so doing, this approach follows is based on what
predicted by the “conformational selection” model, that ligand bind will occur
on conformation already featuring the “right” (i.e. near-holo) conformation.
For this reason, receptor is usually treated as rigid during the docking stage of
ensemble docking calculations, as its flexibility has been already addressed in a
previous step.

Over the years, a number of works shown that, in absence of the true holo-
like receptor conformation with respect to the ligand of interest, ensemble-
docking approaches, either with experimentally or computationally determined
conformations, improved docking and virtual screening performances with
respect to using a single-structure docking calculations [59, 60, 74, 78, 203].

In the case of experimentally-derived conformations, a common strategy is to
use receptor holo structures complexed with ligands similar to the one in study,
as this has been proved to increase docking performance with respect of using
unbound protein conformations [7]. However, since ligand-induced/recognised
rearrangements are extremely ligand-specific, the improvement is not guaran-
teed when the included receptor structures are obtained from complexes with
ligands belonging to different chemotypes than the one of interest [7, 59, 72, 203].
Moreover, compared to the druggable genome [60, 204], accounting to around
the 20% of all protein coding genes [205], the experimentally-determined bound
complexes are limited and biased toward a small number of studied cases, for
example involving pharmaceutically relevant receptors [45], having a dramatic
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impact on the chemical diversity of putative lead compounds that can be suc-
cessfully studied in virtual screening campaigns. Furthermore, it is important
to mention that using an ensemble of structures coming from complexes with
ligands similar to the one in study, also requires that the scoring function used
to rank the generated poses is competent to discriminate between biologically
active/inactive binding modes. Unfortunately this is hardly guaranteed as
currently used scoring functions are not usually sufficiently reliable to provide
accurate ranks for different binding modes associated to slightly different pro-
tein/ligand conformers, as it can happen with ensemble docking calculations,
where the aim is to have a native-like pose of certain ligand ranked on top but
using a pool of receptor conformations coming from complexes with different
ligands [7, 59, 60, 74, 203].

On the other hand, computational strategies have been developed to generate
protein conformations, such as Monte Carlo [58, 199], Molecular dynamics [60],
and Normal mode analysis [185, 206], making ensemble docking by far the most
widely used strategy to account for receptor plasticity in SBDD approaches
[59, 110, 173, 207].

One of the main recipes used for SBDD calculations is the Relaxed Complex
Scheme (RCS) introduced by Lin et al. [208] whereby a multiple-run docking
calculation is performed on a pool of receptor conformations of the unbound
protein generated by MD simulations. Although the efficiency of this strategy
in improving docking performance and VS efforts has been largely demonstrated
[59, 74, 174, 201, 209], a central issue is how to determine the optimal number of
structure to include in the ensemble [59, 201]. In principle using large ensembles
or even the whole generated MD trajectory might appear reasonable, however
this has been linked to the severe risk of generating many false positives/neg-
atives [59, 74], due to the (already mentioned) limits of the current SFs to
discriminate between biologically relevant native-like poses and inactive ones,
as reported and discussed in refs. [2, 69, 72, 73].

For this reason and to reduce the computational cost of the calculations, typical
RCS approaches involve the selection of a (small) number of MD snapshots either
in a (pseudo)casual way or by means a cluster analysis (CA) [174, 210, 211].
Common cluster-analysis techniques involve the use of the RMSD (Root Mean
Square Deviation) metrics evaluated on the putative receptor BS, either coupled
with agglomerative [210, 212–215] or divisive [210, 213, 216–219] clustering
approaches. However, for successful docking calculations the morphology of the
pocket is essential, meaning the volume of the pocket together with the exact
location and orientation of all the interacting side-chains of the BS residues.
For this reason, as highlighted by others and shown also in this thesis, the
usage of RMSD-based cluster analysis is not always the best strategy to capture
efficiently the structural diversity sampled during the MD [24, 220]. Other
clustering metrics developed include the ones developed by Motta and Bonati
[24] and Osguthorpe and coworkers [220] in which the conformations are grouped
on the basis of the volume of the putative site and the one addressed in this
work in which the clustering is based on the usage of 3D shape descriptors of
the binding pocket [22].

30



2.5. Molecular docking

Figure 2.6: Typical timescales associated to protein dynamics. Large conformational
changes, usually associated to ligand binding events, involve time-scales going from microsec-
onds to seconds. Taken from ref. [59].

Another important issue when dealing with MD-derived ensembles, is how
long MD simulations should last to obtain a statistically converged set of
conformational states. Already simulations of tenths of nanoseconds has been
proven to be effective for some applications [74], although the at least the
(micro)second scale is typically needed to observe large conformational changes
as ligand-induced/recognised ones (Figure 2.6) [59].

Moreover, for real applications, the extent of conformational changes associated
to a specific MR event might not be known in advance. In this scenario,
in absence of data on the structure/energetics of the true holo conformation
which could drive the sampling, (long) MD simulations [56, 59, 156, 221],
approaching at least the (micro)second time scale should be carried out, so
to include, in ensemble of structures, also high-energy states featuring large
and/or somehow kinetically unfavourable conformational changes with respect
to the apo conformation [74, 200, 201, 221]. Including in the ensemble also
short-living (high energy) (meta)states is thus a way to mimic what in true
biological environment would be induced/stabilised by ligand interaction with
the aim to catch also states resembling the true holo-like conformation of the
protein under investigation. For this reason, due to the time limitations of plain
MD, conformations generated by means of enhanced sampling techniques [155]
also often included in the ensembles.

2.5.2 The scoring in docking algorithms

In order to produce trustworthy results, an exhaustive sampling of the conformational
space associated to possible complex geometries must be coupled with a reliable
ranking strategy [222, 223]. In an ideal scenario, such ranking would not only be
a scoring parameter, simply dissecting the most likely to occur poses from the less
favoured ones, but it should also accurately estimate the binding affinities (∆G)
associated to the different binding poses. Computational accurate methods exist to
perform such task, such as free energy perturbation [224, 225] and thermodynamic
integration [226], just to cite two options. Unfortunately, despite being generally
recognised as accurate methods, they require a substantial computational cost,
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making them virtually unusable in most CADD applications, where many ligand-
receptor complexes can involved. For this reason, since earlier docking studies, faster
but less accurate ranking methods have been preferred [222]. Among them, the most
widespread strategy is based on the concept of ad hoc constructed functions, named
“scoring function” (SFs) [73, 222] depending on an handful set of parameters and taking
into account the most important interactions to the binding. Several assumptions
and approximations are usually made when constructing a scoring function, in a
sort of trade-off between making the scoring step computationally feasible but at the
same time enough accurate to produce reliable results [46, 73, 75, 223]. Re-scoring
strategies however exist, so that binding free energy (or just the ranking) of docking-
generated complexes is evaluated after the docking stage, often also following a
process of structural refinement. The re-scoring step, in this context, is independent
from the docking strategy used in the previous step. It can be thus carried out
by means of SFs or with different methods. In the latter case, commonly used
strategies are the MM/PBSA and MM/GBSA [227], intermediate for both accuracy
and computational cost between SFs and and strict alchemical methods, although
recent reports showed how these methods don’t always improve the results (see e.g.
ref. [228]).

To evaluate the reliability of SFs, three criteria are considered: (i) Its ability
to identify to rank native-like poses on top; (ii) its ability to discriminate between
potential binders and inactive ligands from large dataset of compounds typically
used in VS efforts [2, 15, 73, 85] and (iii) its ability to estimate binding free energy
values matching with the experimental data; No SF meeting all the above-mentioned
criteria when tested on large and diverse ligand-receptor datasets has been developed
to date. Indeed, despite the large number of SFs proposed over the years, the scoring
problem still represents a major challenge in CADD [73, 173, 222]. Among the most
important SFs limitations, the dependence of its accuracy on the specificity of binding
interactions actually involved in the binding process is a critical one. For instance, a
SF not explicitly considering (de)solvation effects might be accurate for cases in which
the displacement of structural waters upon binding is minor but it is likely to produce
unreliable results for cases where this process plays a crucial role [46, 73, 75, 222, 223].
In this sense, SFs suffer from the difficulties associated to lack of a strong theoretical
model allowing to describe, via simple (and easy to computationally treat) functions,
phenomena such as (de)solvation effects, entropy contributions and hydrophobic
interactions. For more details, including a detailed description of the most commonly
used SFs, see for instance refs. [75, 222, 223, 229–233].

2.6 Druggability assessment

In the context of ligand binding, the term druggability refers to the ability of a
biological macromolecule to accommodate compounds with drug-like properties
leading to a modulation of its function [234, 235]. With only about the 20% of the
human genome representing druggable targets, and only half of those being directly
linked to diseases, methods able to predict the druggability of novel targets have
become of great help in the early phases of drug discovery [205]. In this work, we
estimated the druggability of MD generated conformations of protein using open-
source pocket detection package f-pocket [236] able to identify and characterize
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putative protein binding sites. The algorithm implemented in f-pocket is based
on Voronoi tessellation and alpha spheres and has proven to be stable, fast, and
accurate, performing very well on state-of-the-art data sets [236]. Moreover, for each
putative binding site identified, f-pocket also estimates its druggability through the
calculation of a druggability score, D [237] ranging from 0 for no druggable pocket to
1 for pockets with a high probability to be druggable. To evaluate the druggability
of the known binding sites on the proteins investigated in this work, we recorded
only D values associated with pockets whose centers of mass were found to be within
6 Å of that of the binding site identified in the experimental structures.

2.7 Analysis methods

2.7.1 RMSD analysis

The root mean square deviation (RMSD) is by far the most commonly used quan-
titative measure of the overall similarity between two (macro)molecular structures
[238]. It is defined as the square root of the average of the squared distances between
corresponding atoms of x and y and it is used as a measure of the average atomic
displacement between two conformations of the same molecule. RMSD values are
usually reported in angstrom (Å)3 and calculated by means of equation 2.41, where
the averaging is performed over the n pairs of equivalent atoms selected for the
calculations. It is important to note that to use equation 2.41 each structure must
be represented as a 3N-length vector of coordinates, where N is the number of atoms
of each structure.

RMSD =

√√√√ 1

n

n∑
i=1

‖xi − yi‖
2 (2.41)

However, before the proper RMSD calculation, the conformations to be compared
need to be superposed, as they are often (e.g. when molecular conformations are
sampled from molecular dynamics) in different positions and orientations. In order
to do so, a preliminary RMSD is calculated between the initial conformations in the
original position/orientation and then the optimal roto-traslational motion able to
minimize the RMSD is searched. In this way the conformations are superimposed
by means of a (set of) rigid motion(s) and placed in the same orientation. To do
so, several algorithms exist [239] and have been successfully employed. Examples
include the Kabsch algorithm [240, 241] which uses the rotation matrices to represent
rotational motions or methods in which such representation is given by means of
quaternions [242].

RMSD calculations can be performed for any type and subset of atoms; in this
work, a typical choice for the atom types will be using all heavy atoms (i.e. all atoms
except hydrogens) while concerning the subset of atoms to consider, calculations will
be mostly carried out only for atoms belonging to putative binding site(s) of the
proteins.

3Note that 1 Å = 10−10 m.
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2.7.2 Cluster analysis

Another important strategy needed in the framework of EDES approach is the
cluster analysis, used to extract a set of representative protein conformations for
docking calculations from the MD trajectories. Cluster analysis is a statistical data
mining tool by which a set of objects with similar features are grouped together in
clusters [210, 211]. The aim of cluster analysis is to thus organise observed data
into meaningful structures in order to (i) gain further insight from them; (ii) after
having selected the feature(s) of interest, reduce the size of the dataset by creating
a new (smaller) one, featuring the same properties of the original one with respect
to the feature(s) under study. Key property of a good cluster analysis should be
to make points within each cluster similar to each other while points belonging to
different clusters dissimilar to the ones in the other clusters. In order to do so, cluster
algorithms require the definition of the notion of “similarity”, typically a distance
measure. Examples of such notions include euclidean, cosine, Jaccardi distances
[210, 211].

Concerning MD simulations, the improvement of the computational power, made
it possible to simulate large biological systems in the microsecond scale. As a result,
modern MD simulations often produce massive amounts of data, typically containing
millions of conformations [56]. For this reason, clustering methods have been widely
used to group together similar conformational states from MD simulations. In this
context, the aim of cluster analysis is to capture a set of conformations representing
all the states sampled during the whole simulation. In this way, subsequent studies
on those conformations can be focused on a (small) tractable set of structures.

In general, three ingredients are needed to perform a cluster analysis: (i) the
clustering algorithm; (ii) the feature(s) to be clustered and the metrics to use, i.e. a
proper way to calculate the distances between objects in the feature space; (iii) a
handful number of parameters dependent on the specific algorithm chosen (such as
the number of clusters, cut-off(s) to be used, etc.).

Over the years, a large variety of clustering strategies have been successfully
applied to MD datasets [57, 210, 211, 213, 243–245], elucidating strengths and
pitfalls of each approach. Up to date, however no general clustering recipe exists,
and the specific clustering procedure to be used is still case-dependent.

One of the most commonly used clustering techniques in the field of MD simu-
lations of biological systems is the so called hierarchical agglomerative clustering
(HAC) [210, 212–215], implemented for example in the cpptraj [246] and gromos
modules respectively of the AMBER [136] and GROMACS [247] packages.

Given a MD trajectory of N protein conformations to be clustered, the process of
HAC (in its simplest form, as presented by ref. [248]) can be summarized as follows:

1. Given similarity notion and the metrics, calculate the N · N distance (or
similarity) matrix. Common choices are the euclidean distance for the first
option and the RMSD calculated over the relevant portion of the protein (e.g.
the putative binding site(s)) for the latter;

2. Assign each conformation to a cluster (obtaining N clusters), each containing
just one item. Define the (dis)similarity notion between two clusters as the one
between the items they contain.
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3. Find the closest (most similar) pair of clusters and merge them into a single
cluster, obtaining one cluster less with respect to the ones in the previous step.

4. Compute similarity between the new cluster and each of the previously obtained
ones.

5. Iterate steps 3 and 4 until all items are clustered into the desired number of
clusters.

In particular, step 3 can be carried out in different ways. Examples of three
different typical algorithms used are the single-linkage, complete-linkage and average-
linkage approaches, in which the distance between two clusters is defined respectively
as the shortest, greatest or average distance among any member of the two clusters.
However, more sophisticated approaches exist in which also the statistical properties
of clusters are included. Among them, the Ward algorithm [249, 250] is a very
popular one. In this case, step 3 is carried out merging the (two) clusters so that the
within-cluster variance of the new cluster is minimised.

Another well-known algorithm used for cluster analysis and based on a different
philosophy than the HAC is the K-means one [210, 213, 216–219]. K-means is a
partitional algorithm in which at the first step all of the objects are in the same
cluster4. The algorithm then splits the single cluster into smaller ones in a iterative
process that stops when each object has been separated into a different cluster or
when the requested number of clusters has been achieved.

In particular, referring to the N conformations extracted from an MD trajectory,
a typical cluster analysis via K-means involves the following steps:

1. Choose the number of desired clusters (k) and pick up a set of k cluster centers
(centroids);

2. Assign each conformation to the closest centroids according to the metrics used.
This builds up the first generation of clusters forming a Voronoi partition of
the data [251];

3. For each cluster, calculate the new centroids by averaging the feature(s) values
used as metrics of its members;

4. Repeat the previous two steps iteratively until the cluster centroids stop changing
their positions and become static. Once the clusters become static then k-means
clustering algorithm is said to be converged.

However, the algorithm does not guarantee to find the optimum solution, but
it rather converges to a local minimum [252]. Indeed it has been shown that the
solution strongly depends on the initialisation used. Typical initialisations are based
on a random selection of the initial set of centroids from the dataset [253, 254]. This
simple approach has the advantage that if we choose points randomly we are more
likely to choose a point near a cluster centre since it is where the highest density of
points is located. However, there is no guarantee that we will not choose two or more

4At odd with HAC, which is said agglomerative and starts in a condition in which all objects are
separated into different clusters
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points near the centre of the same cluster, thus not maximising the conformational
diversity of the generated ensemble of clusters. Indeed, when aiming at that scope,
random initialisations is considered one of the most unreliable ones on the basis of a
comparison of several alternative algorithms on a range of diverse data sets [255].

In this work, clustering of MD trajectories is performed at the scope of selecting
a number of conformations to use for ensemble-docking calculations. Our aim was
twofold: (i) maximise the conformational diversity of the ensemble with respect to
the shape/volume of the putative binding site(s); (ii) keeping the number of clusters
as small as possible.

We found that performing the clustering on the RMSD calculated on a large
number of residues (such as the ones lining the BS of a protein) gives a too coarse-
grained representation of the conformational motions. Subtle residue reorientations
or small changes in the volume of the pocket are hardly accounted with the standard
RMSD calculated on the entire BS. In particular we found out that this approach
coupled with a small number of conformations retained (compared to the length of the
simulation) was not able to capture key BS conformational changes crucial for ligand
binding. Indeed, it has been shown that strategies based on a 3D descriptor linked
to the pocket shape appear to be more effective in delivering maximally different
conformations of the binding site [24, 220].

For this reason we introduced a new clustering strategy not based on the RMSD
metrics but on the CVs biased during the metadynamics simulations. As the set of
the 4 CVs was proven to be effective in representing the changes of the BS in terms
of both the volume and the shape, it was the most natural selection as clustering
metrics. Our procedure is based on two different clustering steps: (i) a first step of
hierarchical agglomerative clustering; (ii) a second step using the K-means algorithm
that is initialised with the centroids being the cluster representatives selected in step
(i).

In details, the clustering is performed according to the following procedure (carried
out using the R data analysis software [256]):

The distribution of RoGBS values sampled during the MD simulations was binned
into 10 equally wide slices, and hierarchical agglomerative clustering (using the built-
in function hclust of the cluster R-package and the Euclidean method to compute
the distance matrix) was performed on the selected CVs within each slice, setting
the number of generated clusters to xi = (Ni/Ntot) · Nc, where Ni, Ntot, and Nc

are, respectively, the number of structures within the ith slice, the total number of
structures in the whole simulation, and the total number of clusters respectively.
After that, the clusters for each slice were extracted and used as initialising point for
the subsequent K-means step5. In this way: (i) the RoG slices serve as a guide for
the clustering; (ii) within each slice of conformations with similar RoG, are grouped
together on the basis of the volume/shape of the binding site(s), mediated by the
CIP CVs; (iii) a K-means step on the whole trajectory serves to group together
possible similar structures coming from different RoG slices, so to avoid redundancy
and maximise the conformational diversity of the cluster ensemble.

5A step by step tutorial on this clustering strategy can be found at the following link: http://
www.bonvinlab.org/education/biomolecular-simulations-2019/Metadynamics_tutorial/ referring to an
hands-on tutorial that we gave during the BioExcel Summer School 2019. The files needed to perform the
analysis can be found here: https://github.com/haddocking/EDES.
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2.8. EDES workflow

2.8 EDES workflow

All the ingredients discussed so far are employed in the method we propose here called
Ensemble Docking with Enhanced sampling of pocket Shape (EDES ) [22] exploiting
relatively short metadynamics simulations of the apo protein of interest to generate
a set of holo-like conformations for ensemble docking. The workflow of the protocol
is sketched in Figure 2.7a. First, we identify the putative binding sites on the target
proteins. For the purpose of validating the methodology, we identified binding site
regions from the structures of the bound complexes. However, we also tested the
performance of the EDES method for cases in which the putative pocket was detected
by means of site finder web servers, such as COACH-D [257]. Next, we calculate
the principal axes of inertia of the binding site. We then use these axes to identify
the so called inertia planes of the binding site, which are the planes orthogonal to
the corresponding inertia axes and passing through the center of mass of the site
2.7b. So, in total three planes are calculated, each identified by two of the inertia
axes. Then we perform relatively short bias-exchange, well-tempered metadynamics
simulations of the apo protein, using a set of four collective variables (CVs): (i)
three (pseudo)contacts across inertia plane (CIP) variables, each defined as the
number of contacts between the residues of the binding site on opposite sides of the
corresponding inertia plane (fig. 2.7c) and (ii) the gyration radius of the binding site
(RoGBS). In particular, CIPs were defined according to the following scheme: for
each inertia plane, the residues lining the binding site were split into two lists A and
B, according to the positions of the geometrical centers of their backbones on each of
the two sides of the plane. Then, the overall number of (pseudo)contacts Nc between
the two groups was calculated through a switching function (eq. 2.43) such as the
following:

Nc =
∑
i∈A

∑
j∈B

sij (2.42)
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)m]
(2.43)

With r0 = 8 Å, n = 6, and m = 12. We manually ensured that residues from two
different groups did not belong to the same secondary structural element. Indeed,
this was necessary to avoid the onset of fictitious secondary structure changes leading
to very high energy distorted structures. We also use the RoGBS to implement a
windows approach (fig. 2.7-d) aimed at sampling more effectively and in a controlled
manner different shapes of the binding site (possibly mimicking conformational
changes induced by ligand binding). Namely, we apply soft walls at RoGBS values
that are 7.5% higher and lower than the value measured in the apo X-ray structure
(RoGapo

BS , corresponding to the center of window 1). Next, from the trajectory of
this first window, we randomly select a conformation of the protein whose RoGBS

is 5% lower to initiate another MD simulation (corresponding to window 2) with
walls centered at ±7.5% RoGapo

BS from this new center. We repeat this procedure
to generate up to four windows including the first one. This leads to an overall
reduction of RoGBS of 15% relative to the center of the first window (RoGapo

BS ).
Despite the arbitrariness of our choice, the performance of EDES is not very sensitive
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Figure 2.7: Overview of the EDES approach. (a) Workflow of the EDES protocol. (b)
Representation of the inertia planes (transparent blue, red, and green) calculated at the
binding site. The α-carbons of residues lining this site are shown as yellow spheres, and the
protein is shown in gray ribbon. (c) Schematic view of the two groups of atoms (orange
and green sticks with α-carbons as spheres) considered for the calculation of the number
of contacts across one inertia plane; the ligand is also shown in black sticks. (d) Scheme
of the “window approach” implemented to enhance in a controlled manner the sampling of
conformations associated with different radius of gyration values of the binding site (RoGBS)
(the plot refers to simulations of the BGT system). The RoGBS values corresponding to the
initial conformation for each window are indicated by a square (w1), diamond (w2), triangle
(w3), and circle (w4). The RoGBS of the apo and holo experimental structures are indicated
by horizontal lines. Image from ref. [22].

to the exact choice of three or four windows (and thus to the exact extent of the
collapse induced at the binding site, amounting to 10% or 15% of the initial value,
respectively). Details of this implementation are better discussed in the next chapter.
After the trajectory are generated, we perform an ad-hoc clustering analysis on MD
trajectories according to the protocol described in the previous subsection, to select
a set of representative protein conformations and finally we use the ensemble of
clusters generated to perform ensemble-docking calculations.
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In the following, we’ll report the performance of EDES in three paradigmatic situa-
tions in the panorama of computer-aided drug design. In our first work [22], EDES is
tested in a typical re-docking experiment. Namely, we selected three target proteins
displaying different extents of conformational changes upon binding and for which
previous works showed they represent challenging targets for docking calculations.
For each of them, an ensemble of receptor structures is generated according to
the original EDES protocol and used for ensemble-docking calculations, where the
experimental structures of ligands are re-docked into the EDES generated set of
receptor conformations. Docking calculations are carried out by means of two docking
packages differing in both the searching and scoring scheme. In our second work,
an improved recipe of EDES method is tested in the context of the fourth iteration
of the Drug Design Data Resource (D3R) Grand Challenge (GC4). It represents
a blind docking challenge where the participants are asked to predict near-native
binding poses of a set of 20 ligands against a specific receptor, for which only the
primary sequence is given. Moreover, since ligands were made available only by their
SMILES code, part of the task was to generate ligand conformers. For this reason we
coupled the improved EDES method to a template-based approach to generate ligand
conformations. Finally, we report also very preliminary results of a third study, in
which we tested an EDES-derived approach to another challenging protein, featuring
a very extended binding region and undergoing major conformational changes upon
ligand binding. In this case, furthermore, we identified target’s binding region only by
means of a site-detection software, without exploiting any experimental information
of its bound conformation(s).

3.1 EDES in Re-Docking calculations

In the following, we’ll assess the sampling performance of the method on three targets
that are representative of systems undergoing minor to very large conformational
rearrangements upon ligand binding (Figures 3.1 and 3.4). Finally, the set of
conformations generated will be used for ensemble-docking calculations.

The first target is the T4 phage β-glucosyltransferase (hereafter BGT) [259] which
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undergoes a hinge-bending motion leading to a compaction of its BS upon binding of
uridine diphosphate (UDP) compared to the ligand-free structure (Figures 3.1-a,d).
This target was chosen because Seeliger and de Groot [23] showed it is a challenging
target for re-docking calculations. In their work, they selected 10 targets to assess
their workflow based on the generation of a set holo-like conformations of each
target by means of an enhanced sampling approach using the tCONCOORD software
[260, 261], with the radius of gyration of the holo structure as a bias to drive the
sampling. These conformations were then used in ensemble-docking calculations. In
eight out of 10 cases they showed the ability of their approach to obtain close-to-
native ligand binding poses within the 100 top-ranked complex models, with BGT
being one of the unsuccessful cases. However, although near-holo conformations of
receptor’s structure were obtained with their workflow also for this target (featuring
a RMSDBS < 2 Å), no near-native ligand poses were retrieved within the top 100
models for this target, making it a well-suited test case to test our method. The
second target is the recombinant ricin (hereafter RIC) [262], representative of proteins
undergoing very minor but subtle conformational changes upon binding of its ligands
(in this case neopterin, NEO) [263] (Figures 3.1-b,e). This is also testified by the
RMSDBS and ∆RoGBS calculated over all the heavy atoms between the apo and
holo experimental structures, respectively accounting to 1.0 Å and of -1% (Table
3.1). RIC belongs to the Astex Diverse Data Set [264] recently used to validate the
AutoDockFR (AutoDock for Flexible Receptors) [265] docking software, in which
receptor’s flexibility is accounted by identifying a (sub)set of its side-chains to treat as
flexible. Although AutoDockFR outperformed AutoDock Vina [266] in cross-docking
experiments using receptor’s apo conformations for most targets analysed in the

Figure 3.1: Comparison of the structural changes undergone by (a, d) BGT, (b, e) RIC,
and (c, f) ABP upon binding of their ligands UDP, NEO, and ALL, respectively. (a-c)
Overall conformational rearrangements of the proteins. The apo and holo proteins are
shown in green and yellow ribbons, respectively, with the ligands in sticks coloured by atom
type. (d-f) Detailed views of the local rearrangements occurring at the binding site. The
conformations of residues lining the binding site in the apo and holo forms of the proteins are
shown with thin green and thick yellow sticks, respectively, while the ligands are shown with
thin black sticks and the protein is shown in transparent grey ribbons. The most significant
reorientations upon ligand binding are indicated by magenta arrows. Image taken from ref.
[22].
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Figure 3.2: Location of the binding sites and additional structural details of the systems
investigated in this work. a, c, e) Structures of the holo-proteins are shown as grey ribbons
with residues lining the BS coloured by residue type and the ligands as spheres coloured
by element; b, d, f) 2D-interaction diagrams for UDP, NEO and ALL with residues lining
their respective BS, using the Ligand Interaction Diagram tool of Maestro [258]. Polar,
apolar, negatively and positively charged residues are coloured cyan, green, red and blue
respectively, with glycine residues coloured white. Image taken from ref. [22].

work, for RIC none of the aforementioned software was able to find any solution
featuring a RMSDlig < 2.5 Å from the experimental structure of the complex.

Finally, as third target we selected the allose binding protein (ABP) (Figures
3.1-c,f), also representative (like BGT) of targets undergoing extended hinge-bending
motions upon binding of their ligands, in this case d-allose (ALL) [267]. In this
case, RMSDBS and ∆RoGBS between the apo and holo experimental structures
account respectively to 4.2 Å and of -26% (Table 3.1), making this target the one
displaying the largest conformational changes among the three (for BGT, RMSDBS
and ∆RoGBS are respectively 2.8 Å and of -10%). This protein therefore represents
another good test case for our approach. Motta and Bonati [24] also selected this
target to test their workflow based on ensemble docking calculations performed with
Glide [268, 269] of its experimental ligand against target conformations generated
through accelerated MD simulations [62]. Further details of the three systems
investigated here concerning the RMSDs, the change in RoG between the apo and
holo experimental structures and the characterisation of their binding sites are
reported in table 3.1 and figure 3.2.

In the following we demonstrate that for all of the targets considered here, EDES is
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able to generate druggable and holo-like receptor conformations. Moreover, using the
widespread and freely available docking programs HADDOCK [270] and AutoDock4
[271], differing in their search and scoring schemes, on a set of EDES-generated
conformations, we identify native-like ligand poses among the top-ranked ones for all
the three systems studied. While being a proof of concept, this work opens the way
to the automatic generation of holo-like conformations for a broad range of protein
targets, representing a game-changing resource for structure-based drug design.

3.1.1 Methodological details

3.1.1.1 Standard MD Simulations

Standard all-atom MD simulations were carried out using the pmemd module of the
AMBER16 [136, 272] molecular modeling software. Topology files were created for
each system using the LEaP module of AmberTools17 starting from the experimental
structures available in the Protein Data Bank (PDB IDs 1JEJ [259] and 1JG6 [259]
for BGT and BGT-UDP, 1RTC [262] and 1BR5 [263] for RIC and RIC-NEO, and
1GUD [267] and 1RPJ [267] for ABP and ABP-ALL, respectively). The ff14SB
[273] and GAFF [274] force fields were used for proteins and ligands, respectively.
Missing parameters for the latter were generated using the antechamber module of
AmberTools17. In particular, atomic restrained electrostatic potential charges were
derived after a structural optimization performed with Gaussian 09 [275]. Each
structure was solvated with the explicit TIP3P water model [276], and its net charge
was neutralized with the required number of randomly placed K+ or Cl− ions. The
total number of atoms was≈ 86.000 for BGT/BGT-UDP, ≈ 54.000 for RIC/RIC-NEO
and ≈ 62.000 for ABP/ABP-ALL. Periodic boundary conditions were employed, and
long-range electrostatics was evaluated through the particle-mesh Ewald algorithm
using a real-space cutoff of 12 Å and a grid spacing of 1 Å per grid point in each
dimension. The van der Waals interactions were treated by a Lennard-Jones potential
using a smooth cutoff (switching radius 10 Å cutoff radius 12 Å). The initial distance
between the protein and the edge of the box was set to be at least 16 Å in each
direction. Multistep energy minimization with a combination of the steepest-descent
and conjugate-gradient methods was carried out to relax internal constraints of the
systems by gradually releasing positional restraints. Following this, the systems
were heated from 0 to 310 K in 10 ns of constant-pressure heating (NPT) using the
Langevin thermostat (collision frequency of 1 ps−1) and the Berendsen barostat.
After equilibration, four production runs of 2.5 µs each (for a total of 10 µs for each
system) were performed for the apo systems, while a single 1 µs-long simulation
was performed for each complex. A time step of 2 fs was used for pre-production
runs, while equilibrium MD simulations were carried out with a time step of 4 fs in
the NPT ensemble (using a MC barostat) after hydrogen mass repartitioning [144].
Coordinates from production trajectories were saved every 100 and 10 ps for MDapo

and MDholo, respectively.

3.1.1.2 Metadynamics Simulations

Bias-exchange well-tempered metadynamics simulations [80, 152, 154, 171, 172]
were performed on the three apo proteins using the GROMACS 2016.5 package
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[247, 277] and the PLUMED 2.3.5 plugin [278]. The last conformation saved from the
equilibration step from MDapo was used as the starting structure for each simulation.
AMBER parameters were ported to GROMACS using the acpype parser [279]. To
enhance the sampling of different binding site shapes, we used the following four CVs
defined by including all heavy atoms of the residues lining the binding site itself: the
radius of gyration of the binding site (RoGBS) calculated using the gyration built-in
function of PLUMED and the numbers of (pseudo)contacts across the “inertia planes”
(CIP1,2,3) of the binding site, defined as the planes orthogonal to the three principal
inertia axes and passing through the center of mass of the binding site. Binding
site residues were defined as those within 3 Å (BGT and RIC) or 4 Å (ABP) of the
ligand in the experimental structure of the complex (Table 3.2 and Figure 3.2). The
cutoff was increased for ABP-ALL because of the low number of residues (seven)
found when a 3 Å cutoff was used. Very similar definitions were found using the
COACH-D Web server with the apo structures (Table 3.4). The CVs were calculated
by an in-house tcl script based on the VMD orient function 1.

Protein Ligand RMSDapo/holo
prot [Å] RMSDapo/holo

BS [Å] ∆RoGapo/holo
BS [%]

BGT UDP 2.3 2.8 -10
RIC NEO 1.1 1.0 -1
ABP ALL 4.7 4.2 -26

Table 3.1: RMSDs and RoGs for the system investigated in this work. For each system,
ligand’s name, RMSD of the protein/binding site and ∆RoGBS between apo and holo
experimental structures are reported. All values are calculated over all heavy atoms of the
corresponding selection. Note that for all the three systems considered in this work, the
RoG decreases upon ligand binding.

Namely, for each plane, residues lining the binding site were split into two lists A
and B according to the positions of the geometrical centers of their backbones on
each of the two sides of the inertia plane, and the overall number of (pseudo)contacts
Nc between the two groups was calculated through the coordination keyword of
PLUMED (see chap. 2.8 for details on EDES workflow).

Each of the four replicas of the bias-exchange metadynamics simulation was
simulated for 100 ns (as our aim is primarily to enhance sampling of different shapes
of the binding site and not to obtain converged free energy profiles), so that each
window accumulated 400 ns of simulation time. Coordinates were saved every 10
ps. The height of the hills w was set to 0.6 kcal/mol for all systems, while it is
customary to set the value of hills’ width ωs,i to be between 1/4 and 1/2 of the
average fluctuations (standard deviations) of the relative CV during a short (of the
order of a few hundreds of ps) plain MD run [170] (see chap. 2.4.2 for details on
metadynamics). In our case, we set the widths to 0.15, 0.05, and 0.08 Å (RoGBS), 5.4,
4.8, and 1.6 (CIP1), 5.1, 3.2, and 4.9 (CIP2), and 5.3, 3.1, and 6.0 (CIP3) for BGT,
RIC, and ABP, respectively. Hills were added every 2 ps, while the bias-exchange
frequency was set to 20 ps. The bias factor for well-tempered metadynamics was

1A step by step tutorial on how to implement these CVs within the EDES framework can be
found at the following link: http://www.bonvinlab.org/education/biomolecular-simulations-2019/
Metadynamics_tutorial/ referring to an hands-on tutorial that we gave during the BioExcel Summer
School 2019. The files needed can be found here: https://github.com/haddocking/EDES.
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set to 10. The “windows approach” briefly described in the the EDES workflow (see
chap. 2.8) was implemented using RoGBS as the driving parameter. We applied
restraints (force constants set to 50 and 10 kcal/mol for the upper and lower walls,
respectively, as we seek for compression rather than enlargement of the binding site)
at values of RoGBS that were 7.5% higher and lower than the value measured in the
apo X-ray structure (RoGapoX−ray). Then, from the trajectory corresponding to this
first window, we selected a random conformation of the protein whose RoGBS was
5% lower than RoGapoX−rayand performed another simulation with walls centered at
± 7.5% RoGapoX−ray from this new center, repeating this procedure so as to simulate
a total of four windows (Figure 3.3 and Table 3.3). It should be noted that the walls
were set to allow partial overlap between adjacent windows, which indeed occurred
in all cases (Figure 3.3).

Protein Binding site’s residues
BGT V18,G188,S189,R191,R195,F213,G214,

K237,I238,M240,Y261,L268,R269,E272
RIC Y80,V81,F93,G121,N122,Y123,I172,S176,

E177,R180,E208,N209
ABP K9,N13,F15,W16,E42,D91,E92,S147,

R151,W175,N201,D227,Q247

Table 3.2: The residues lining the BS for the system investigated in this work, defined
exploiting the experimental holo structure.

RoGBS [Å]
System Cw1 Cw2 Cw3 Cw4

BGT 9.87 9.38 8.88 8.39
RIC 7.40 7.04 6.67 6.31
ABP 9.70 9.21 8.73 8.24

Table 3.3: Details of EDES implementation for the systems investigated in this work. Cwi

indicates the value of the RoGBS (Å) at which the ith window was centered.
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System BS definition BS residues BS fraction

BGT X-ray 18,188,189,191,195,213,214,237,238,240,261,268,269,272
COACH-D 18,188,189,195,213,214,237,238,240,243,261,268,269,272 (2) 13/14

RIC X-ray 80,81,93,121,122,123,172,176,177,180,208,209
COACH-D 79,80,81,93,121,122,123,172,176,177,180 (1) 10/12

ABP X-ray 9,13,15,16,42,91,92,147,151,175,201,227,247
COACH-D 9,13,15,16,91,92,145,147,151,175,201,227,247 (1) 11/13

Table 3.4: Comparison between the compositions of the BS as defined in the main text
(BSX−ray) and those identified through the COACH-D webserver [257]. The rank of the
site identified by COACH-D is reported in parenthesis in the third column after the list
of residues. The last column shows the number of residues identified by COACH-D with
respect to the selection based on the experimental holo structure. It shows that COACH-D
recovers more than 80% of the residues lining BSX−ray for all three cases.

3.1.1.3 Cluster analysis

The multi-step clustering analysis was performed using an in-house set of bash scripts
interfacing with the R software [256], according to the following scheme (see chap.
2.7.2 for theoretical details on the cluster analysis) and employing the four CVs used
for the sampling as clustering parameters:

1. The RoG distribution of MD trajectories is binned into a pre-defined number
of 10 equally-wide slices. This is achieved by giving in input to the script the
desired width (in Å) of each slice;

2. The hclust module of the cluster R-package was used to perform a hierarchical
agglomerative clustering (HAC) [210, 212–215] with the Ward method [249, 250]
in which the clusters are extracted separately from each slice. The representative
of each cluster was selected as the one closest to the center, according to the
euclidean metrics calculated on the CVs. The number of generated clusters
within each slice was set to xi = (Ni/Ntot) · Nc, where Ni, Ntot, and Nc are,
respectively, the number of structures within the ith slice, the total number of
structures in the simulation, and the total number of clusters. For this work,
Nc was set to 500.

3. The 500 cluster representatives extracted in the previous step are used as
starting points for a subsequent K-means [210, 213, 216–219] cluster analysis
performed on the whole trajectory and generating the same number of clusters.
This analysis was performed with the k-means module of the cluster R-package,
setting to 10.000 the maximum number of iteractions and using the euclidean
metrics.

4. The 500 final clusters extracted from the K-means step are selected for ensemble-
docking calculations.

However, together with using this clustering protocol in the framework of ensemble-
docking calculations, we also assessed its performance with respect to (i) the usage
of random-initialized K-means clustering without the previous HAC step; (ii) the
usage of a different number of selected clusters for docking and (iii) the metrics
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used. In particular, for the latter case we compared the results obtained with our
protocol with the ones obtained with a standard approach based on the RMSD
metrics. Results of this assessment will be discussed in chap. 3.1.3.

3.1.1.4 Molecular Docking calculations

Molecular docking calculations were performed with AutoDock4 [271] and the HAD-
DOCK Web server version 2.2 [270, 280]. This choice allowed our methodology to
be validated against two programs differing in their search algorithms, scoring func-
tions, and pose selection schemes. However, before being used with EDES-generated
conformations, the performance of both software was first validated in re-docking
experiments against experimental holo structures (Table 3.5).

System AutoDock4 HADDOCK
Protein Simulation Rank RMSDlig Rank RMSDlig Fnat

BGT Xrayapo - (-) 8.8 (9.6) - (-) 3.16±0.33 (3.12±0.57) 0.54±0.03 (0.60±0.09)
Xrayholo 1 (1) 0.3 (0.9) 1 (1) 0.39±0.12 (1.56±0.21) 0.97±0.02 (0.91±0.04)

RIC Xrayapo - (-) 7.3 (3.7) - (-) 3.48±0.05 (3.88±0.26) 0.53±0.00 (0.53±0.05)
Xrayholo 1 (1) 0.7 (1.8) 1 (1) 0.59±0.08 (1.19±0.06) 0.93±0.00 (0.93±0.00)

ABP Xrayapo - (-) 15.0 (15.7) 8 (49)a 1.9±0.2 (1.59)a 0.47±0.00 (0.47)a

Xrayholo 1 (1) 0.5 (0.8) 1(1) 0.68±0.13 (0.73±0.06) 1.0±0.0 (1.0±0.0)

Table 3.5: Performance of AutoDock4 and HADDOCK in docking the experimental structures
of UDP, NEO and ALL onto the X-ray structures of BGT, RIC and ABP respectively.
Values refer to RMSDlig (in Å) from to the experimental pose in the X-ray holo-structures
as obtained in rigid docking calculations after alignment of the BS. The fraction of native
contacts Fnat is defined as the number of native intermolecular contacts identified in a
docking pose divided by the total number of contacts in the reference structure. The contacts
are evaluated within a shell of 5 Å from the ligand in the experimental structures. Values
in parentheses were obtained using a flexible ligand model. Ranking is reported only when
RMSDlig is lower than 2 Å. The HADDOCK statistics and rankings are based on the average
over the top 4 poses of the first acceptable (RMSDlig ≤ 2 Å) cluster.
a: Cases in which no acceptable clusters were obtained. In this case the reported statistics
corresponds to single pose statistics for the first acceptable (≤ 2 Å) and best (between
brackets) poses.

For this work, calculations with both programs were performed using their default
settings, apart from the following changes: In AutoDock4, we used the Lamarckian
genetic algorithm (LGA) to perform a hybrid global-local search of the docking poses.
The grid density (spacing parameter changed from 0.375 to 0.25 Å) and number of
energy evaluations (ga-num-evals increased by a factor of 10 from the default value)
were both increased, with the purpose to avoid repeating each calculation several
times to obtain converged results. For each target, 500 independent rigid docking
calculations (one with each conformation from the ensemble) were performed using
an adaptive grid enclosing all of the residues belonging to the binding site. Next, the
top poses (in total 500, one for each docking run) were clustered using the cpptraj
[246] module of AmberTools17 with a hierarchical agglomerative algorithm (with
the “complete” method) and a cutoff of 1.5 Å for the RMSDBS distance matrix. In
HADDOCK, a single docking run was performed per case, starting from the various
ensembles of 500 conformations, with increased sampling (10000/400/400 models for
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rigid-body docking (it0 step), semi-flexible refinement (it1 step), and final refinement
in explicit solvent (wat step)2. The weight of the intermolecular van der Waals energy
for the initial rigid-body docking stage was increased to 1.0 (from the default value
of 0.01), RMSD-based clustering was selected with a cutoff of 1 Å, and the docking
was guided by ambiguous distance restraints defined for the residues of the binding
site and the ligand [202]. In the rigid-body stage, binding site residues were defined
as active, effectively drawing the ligand into the binding site without restraining its
orientation. For the subsequent stages, the restraints were such that only the ligand
was active, allowing it to explore the binding site better while maintaining at least
one contact with its interacting residues.

3.1.2 Sampling of holo-like conformations

In this section we discuss the performance of EDES in generating holo-like geometries
of the three proteins. We start with BGT, in which the binding event induces
large conformational rearrangements in the BS, particularly in the orientation of
three (positively charged) arginine residues (R191, R195, and R269) neutralising the
negative charge of the diphosphate group of the ligand UDP (Figures 3.1-a,d and
3.2). Figure 3.4 shows the performance in sampling holo-like conformations of the
different simulation approaches presented here: the unbiased simulations of the apo
and holo systems, respectively MDapo and MDholo, and EDES approaches (see chap.
2.8 for EDES workflow and chap. 3.1.1 for methodological details). The performance
is evaluated by means of the RMSD metrics, calculated over all the heavy atoms for
the binding-competent region (RMSDBS), the one affecting the most docking results.

2General details on HADDOCK docking protocol can be found in ref. [270].
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Figure 3.3: Distributions of RoGBS values. (a-c) Distributions from each EDES window
for (a) BGT, (b) RIC, and (c) ABP. The colored bar below each distribution indicates the
position of the lower and upper walls set for RoGBS in that window, and the color gradient
indicates a higher force constant for the upper wall than the lower wall (the centers of the
windows are indicated by darker lines within the bars and are connected by a black dashed
line). (d-f) Comparison of RoGBS normalised distributions (area under each curve equal
to 1, bin size set to 0.1 Å) obtained from the different simulations performed in this work.
Image taken from [22].

Figure 3.4: Normalised distributions (area under each curve equal to 1, bin size set to
0.1 Å) of the RMSD of the binding site heavy atoms (RMSDBS) with respect to the holo
structure. The upper (a-c) and lower (d-f) rows show the distributions calculated over all
of the snapshots extracted from each MD simulation and over cluster representatives only,
respectively. The faint dotted lines in (d-f) correspond to the distributions in (a-c). Image
taken from ref. [22].
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Inspecting figure 3.4 a very poor overlap is revealed between MDapo and MDholo
distributions. This was partially expected, as a relatively short plain MD simulation
is generally unable to sample extended conformational changes. MDholo clearly
performs extremely well but it is used in this work purely as reference distribution,
as the knowledge the structure of the complex will be typically unavailable in
real applications. On the other hand, EDES distributions are centred somewhat
in between the ones obtained from the unbiased MD simulations. In addition,
most conformations sampled by EDES have RMSDBS lower than 2.8 Å from the
experimental structure of the complex. This RMSD value is also the one between
the experimental apo and holo structures of the target (see Table 3.1), showing that
EDES is able to reproduce closer-to-holo states with respect to the experimental
apo geometry. Moreover, EDES distributions reveal a shoulder at lower RMSDs
that increases the percentage of conformations with RMSDBS ≤ 2 Å compared
with MDapo, a feature that persists after clustering (Figure 3.4). Results thus show
that our protocol is able to generate conformations with a (partially) collapsed
binding site also in absence of ligand interactions (triggering such collapse), as also
testified by the inspection of figures 3.3 and 3.5, displaying respectively RoG and
CIPs distributions. The effect of the enhanced sampling with respect to the unbiased
MDapo is particularly evident in the case of arginine R269, pointing to the center of
the binding pocket in the experimental apo conformation: while in MDapo its side-
chain remains in the center of the binding site, a large fraction of EDES-generated
structures features a displaced R269, making room for ligand binding (Figure 3.6).
Furthermore, the ability of our approach to produce near-holo conformations is also
proved within the CIP metrics, describing the 3D shape of the pocket. Indeed, figure
3.7 makes evident the improved overlap between MDholo and EDES distributions
with respect to MDapo. In particular, only EDES samples conformations with CIP
values virtually identical to those of the experimental holo structure (black sphere in
Figure 3.7).
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Figure 3.5: Normalised distributions of the “(pseudo)contacts across inertia planes” (CIPs)
collective variables values sampled during the various MD simulations performed in this
work for BGT, RIC and ABP. Image taken from ref. [22].

Finally, concerning the clustering protocol, acting specifically on the 3D shape of
the pocket (and not on coarse-grained descriptors such as the RMSD) it produced
cluster distributions with an increased percentage of native-like BS geometries,
compared with the fraction sampled during MD simulations (Table 3.6).

However, as already pointed out, our methodology relies on the accurate identifi-
cation of the binding site(s). For this reason, we also investigated its performance
using a slightly different definition of the binding site. Namely, we took advantage
of one of the many available site-finding web servers, COACH-D [257] to determine
consensus binding sites of all three targets (Table 3.4), resulting in a very high
overlap between the experimentally derived sites and those identified by COACH-D.
For example, in the case of BGT, the top identified BS shares 13 out of 16 residues
with the experimental holo structure. We thus repeated all of the EDES simulations
for the three systems using the alternative definition of the binding site obtained
from COACH-D, obtaining virtually identical results (Table 3.7 shows the results for
BGT) to the ones obtained with the experimental BS definition. This indicates that
our method is not sensitive to the exact binding site definition and so it can also be
used successfully in conjunction with site detection algorithms in cases where only
an apo structure is known. This aspect will be more deeply addressed in the second
work presented here (chap. 3.2).

Our method has been primarily developed for targets undergoing rather large
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conformational changes, so for the ones for which unbiased MD simulations are
generally not sufficient to generate near-holo geometries. However, in several real
cases, the extent of apo-to-holo conformational rearrangement(s) could be unknown.
For this reason, we decided to test our method also with RIC, a paradigmatic protein
for cases in which the binding event is associated only to minor conformational
changes (Figure 3.2-b,e), in the spirit of validating the protocol also for such cases.
Furthermore, previous works (see e.g. ref. [24]) have already pointed out that not
always enhanced-sampling approaches improve the percentage of holo-like conforma-
tions generated with respect to standard MD simulations, in particular when the
target only undergoes small conformational rearrangements upon binding. However,
although small, RIC rearrangements were hardly handled by algorithms exploiting
the flexibility of the binding site through side-chain torsional angles [265]. For this
reason, RIC has proven to be a very difficult target for both rigid and flexible docking
calculations starting from the apo X-ray structures using both AutoDock Vina [266]
and the recently introduced AutoDockFR [265] software (see Table 1 in ref. [265]).

Figure 3.6: Binding site views of the lowest-RMSD conformations of BGT with respect
to the bound complex extracted from (a) MDapo, (b) EDES4w, and (c) EDES3w. UDP
is shown in gray lines and transparent surface. The proteins are shown as gray (holo
experimental structure), red (MDapo), dark green (EDES4w, and blue EDES3w) thin
ribbons, with side chains of residues lining the binding site represented as sticks, which are
thicker for R269. Image taken from ref. [22].

In contrast, in our case, standard and enhanced MD simulations were able
to reproduce near-holo geometries of its binding pocket (although the enhanced
approach retrieved conformations closer to the holo structure than those obtained
from MDapo/holo; see Table 3.6 and Figure 3.4). The good performance of the
unbiased approach of the apo system in this case was expected, due to the minor
extent of conformational changes involved in the binding, while EDES confirmed
its ability to sample near-holo states also for such targets. This trend is evident
also in reproducing holo-like conformations of the entire protein (Figure 3.8), as
both (un)biased approaches sampled a relatively large fraction of such structures.
On the basis of these results, we are confident that our approach could also be
applied for other cases in which targets undergo minor conformational changes upon
ligand binding. As stated above, this is particularly encouraging since in a real
case one might not know the extent of the conformational change in advance. The
third protein considered in this work is ABP (Figure 3.2-c,f), undergoing the largest
conformational changes among the other cases considered here, upon binding of its
(small and neutral) ligand ALL. For this system, the performance difference between
the unbiased and biased approaches is the most evident (Figures 3.3 and 3.4), as
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the unbiased approach is unable to produce any single conformation featuring an
RMSDBS lower than 2 Å from the holo X-ray structure (Table 3.6). Moreover, also
in this case, despite only directly enhancing the sampling of the binding region,
our approach is also able to drag the whole protein structure toward close-to-holo
conformations (Figure 3.8).

Figure 3.7: Sampling of the 3D space defined by CIP1, CIP2, and CIP3 during the MD
simulations of BGT and BGT–UDP. Top row : Comparison of the MDapo (red), EDES3w

(blue), and EDES4w (green) distributions with the MDholo distribution (dark gray). The
distributions are shown both as solid points and as transparent surfaces. The locations of
the apo and holo structures are indicated by red and black spheres, respectively. Bottom
row : Envelopes of the MDapo (red), EDES3w (blue), and EDES4w (green) distributions
overlapping with the MDholo distribution (shown in dark gray as a reference). Also reported
are the volumes of the overlapping distribution, Vov (estimated with Voss Volume Voxelator
(http://3vee.molmovdb.org) using a probe radius of 3 Å). Image taken from ref. [22].

Figure 3.8: Normalised distributions (area under each curve normalised to 1; bin size equal
to 0.1 Å) of the RMSD of the protein backbone (RMSDprotein) with respect to the holo
structure for BGT, RIC, RIC excluding the flexible C-terminal loop (residues 256 to 267,
displayed as tick ribbon in the inset showing the protein as gray ribbons and the residues of
the BS as spheres colored by residue type), and ABP. Image taken from [22].
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System RMSDBS < 1.5 [Å] RMSDBS < 2.0 [Å]
Protein Simulation Trajectory Clusters Trajectory Clusters

BGT

MDapo - - 0.06 (1.69) -
MDholo 23.9 (0.75) 26.6 (0.75) 85.3 (0.75) 84.8 (0.75)
EDES3w 0.02 (1.31) 0.4 (1.31) 3.8 (1.31) 4.0 (1.31)
EDES4w 0.02 (1.31) 0.2 (1.31) 5.0 (1.31) 8.4 (1.31)

RIC

MDapo 9.7 (1.00) 9.6 (1.10) 89.4 (1.00) 93.2 (1.10)
MDholo 13.0 (0.91) 12.4 (0.95) 99.6 (0.91) 97.8 (0.95)
EDES3w 16.5 (0.77) 17.6 (0.81) 85.5 (0.77) 85.4 (0.81)
EDES4w 13.0 (0.77) 19.0 (0.81) 81.4 (0.77) 82.4 (0.81)

ABP

MDapo - - - -
MDholo 25.8 (0.48) 25.6 (0.67) 96.4 (0.48) 88.6 (0.67)
EDES3w 0.5 (1.17) 2.4 (1.20) 6.1 (1.17) 8.4 (1.20)
EDES4w 0.6 (1.17) 1.4 (1.20) 8.6 (1.17) 9.4 (1.20)

Table 3.6: Performance of different MD simulation protocols in reproducing native-like
conformations of the BS of BGT, RIC, and ABP. The performance is measured by the
percentage of conformations with RSMDBS ≤ 1.5 or 2 Å with respect to the experimental
structure. The headings trajectory and clusters refer to snapshots extracted from the full
trajectories and to cluster representatives, respectively. The lowest value of RMSDBS (in
Å) is reported in parentheses. As expected, this percentage is high for MDholo. While a very
low number of such conformations was sampled in MDapo, a large fraction was obtained by
EDES using either three or four windows.

System RMSDBS < 1.5 [Å] RMSDBS < 2.0 [Å]
Protein Simulation BSXray BSCOACH BSXray BSCOACH

BGT EDES4w 0.02 (1.31) 0.01 (1.41) 5.0 (1.31) 6.4 (1.41)
EDES3w 0.02 (1.31) 0.01 (1.41) 3.8 (1.31) 4.1 (1.41)

Table 3.7: Performance of EDES in reproducing native-like conformations of the BS of BGT
using either the BSXray or the BSCOACH definitions. The performance is measured by the
percentage of conformations featuring a value of RMSDBS lower than 1.5 or 2 Å. The lowest
value of RMSDBS (Å) with respect to the holo X-ray structures is reported in parentheses.
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3.1.3 Impact of the cluster analysis

As already pointed out, the outcome of MD-based ensemble-docking is directly linked
to the ability to include, in the pool of receptor conformations, also geometries
prone to host the ligand(s) to be docked. For this reason, as in general the true
bound-like receptor conformation for the ligand of interest is not known a priori, a
cluster analysis on MD trajectories is performed, in order to extract a certain number
of conformation representatives. Clearly, in absence of information concerning the
complex (such as the RoG of its putative binding site(s)), aim of the cluster analysis
is to maximise the structural diversity of the ensemble of clusters, at least at the
binding site.

In our case, despite not making any use of specific knowledge of the structure
of the complexes, our informed strategy was able to generate a larger fraction of
cluster structures displaying RMSDBS < 2 Å than that obtained from the standard
application of K-means using randomly selected conformations as starting points
(Figure 3.9). This is not surprising, as the random initialization strategy is considered
one of the most unreliable ones [255] (see chap. 2.7.2 for details).

Figure 3.9: Performance of the multi-step clustering strategy adopted in this work (hi-
erarchical clustering -HC- within slices of the RoGBS distribution followed by a second
clustering with K-means starting from the points obtained at the first step) in selecting
cluster representatives featuring a low RMSDBS from the ligand-bound structure. The black
line represents the RMSD distribution obtained from the EDES4w trajectory of the BGT
protein. It appears how our approach (red dashed line) results in more uniform distributions
with higher tail populations compared to standard cluster analysis performed with K-means
only without dividing in slices the whole trajectory (10 independent cluster analyses were
performed, whose distributions are shown in blue dots). Image taken from ref. [22].

Furthermore, we also tested our clustering protocol against the number of gen-
erated clusters, aiming to understand the smallest number of clusters still yielding
to include a suitable fraction of near-holo conformations in the ensemble of clusters.
To do so, we performed additional cluster analyses, with the protocol we developed,
in which we decreased the total number of clusters from 500 to 200 and 100. Using
the resulting sets of conformations, we performed additional docking calculations
with AutoDock4 [271]. The results, reported in table 3.8, reveal that the fraction of
holo-like conformations (featuring RMSDBS ≤ 2 Å) remains virtually constant when
going from 500 to 100 clusters and that also docking performance is comparable
when different numbers of starting conformations are used (Table 3.9).
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Finally, another aspect that we decided to investigate is the impact of the metrics
used for the clustering. We performed this analysis on the BGT–UDP system, for
which we compared the performance in selecting holo-like conformations from an MD
trajectory of our clustering protocol (CACV s) to a more standard analysis based on
the distance RMSD (dRMSD) of the binding site (CAdRMSD) using the hierarchical
agglomerative method implemented in the cpptraj [246] module of the AMBER
[136] package. Moreover, we performed docking calculations with AutoDock4 [271]
against the conformations extracted with both approaches to compare the impact
of these clusters on docking performance. This confirmed that, as highlighted by
others [24, 220], clustering strategies based on a 3D descriptor linked to the pocket
shape appear to be more effective in delivering maximally different conformations of
the binding site than those based on the RMSD of the putative region (Table 3.10).
The impact of the clustering strategy used is even more evident when referring to
docking results, with no near-native pose within the top 10 when using structures
obtained from CAdRMSD clustering (Table 3.11).

System Number of clusters
Protein Simulation 100 200 500

BGT EDES4w 9.0 (1.65) 8.0 (1.65) 8.4 (1.31)
EDES3w 4.0 (1.62) 4.0 (1.49) 4.0 (1.31)

RIC EDES4w 78.0 (0.89) 76.5 (0.89) 77.8 (0.81)
EDES3w 80.0 (0.89) 80.0 (0.89) 77.0 (0.81)

ABP EDES4w 10.0 (1.27) 8.0 (1.20) 9.4 (1.20)
EDES3w 7.0 (1.20) 7.5 (1.20) 8.4 (1.20)

Table 3.8: Performance of the multi-step clustering protocol employed in this work in
reproducing native-like conformations of the BS at varying number of clusters. Reported are
the percentages of conformations featuring RSMDBS values lower than 2 Å as well as the
lowest value of the RMSD (Å) with respect to the holo X-ray structures (in parentheses).

Number of clusters
System 100 200 500

Protein Simulation EDES3w EDES4w EDES3w EDES4w EDES3w EDES4w

BGT Sampl. perf. [%] 2.0 3.0 1.0 2.0 1.8 2.0
Pose rank 1 (0.7) 1 (1.3) 8 (0.9) 2 (1.5) 1 (0.6) 2 (1.5)

RIC Sampl. perf. [%] 2.0 3.0 1.5 2.0 2.6 3.4
Pose rank 2 (0.8) 1 (0.8) 3 (0.8) 1 (0.9) 4 (0.7) 1 (0.9)

ABP Sampl. perf. [%] 4.0 1.0 3.0 1.5 3.0 3.2
Pose rank 4 (1.2) 5 (1.8) 3 (1.6) 10 (1.4) 2 (0.8) 2 (0.7)

Table 3.9: Performance of AutoDock4 in reproducing the experimental structures of the
BGT-UDP, RIC-NEO, and ABP-ALL complexes in ensemble-docking calculations with
different number of clusters. Results refer to clusters of docking poses obtained from a
cluster analysis performed on all generated complexes using as metrics the dRMSD with a
cutoff of 1.5 Å. The sampling performance is calculated as the percentage of poses within 2
Åfrom the native structure out of all the top poses considered for each ensemble of receptor
structures. The ranking of the first native-like pose obtained using the highest score within
each cluster is also reported for each case, with the values of RMSDlig in parentheses.
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System RMSDBS < 1.5 [Å] RMSDBS < 2.0 [Å]
Protein Simulation CACV s CAdRMSD CACV s CAdRMSD

BGT EDES4w 0.2 (1.31) - 8.4 (1.31) 4.4(1.51)
EDES3w 0.4 (1.31) - 4.0 (1.31) 2.8 (1.64)

Table 3.10: Performance of EDES in reproducing native-like conformations of the BS of BGT
using 500 cluster structures extracted either with our multi-step protocol (CACV s) or through
a single-dimensional cluster analysis based on the dRMSD of the BS (CAdRMSD). The
performance is measured by the percentage of conformations featuring a value of RSMDBS

lower than 1.5 or 2 Å. The lowest value of the RMSD (Å) with respect to the holo X-ray
structures is reported in parentheses.

EDES3w EDES4w

CACV s CAdRMSD CACV s CAdRMSD

Sampl. perf. [%] 1.8 0.8 2.0 2.0
Pose rank 1 (1) 12 (18) 2 (2) 16 (21)
Clus. Pop. 4 1 4 1

RMSDlig [Å] 0.6 (0.9) 0.6 (0.7) 1.5 (1.2) 0.7 (0.7)

Table 3.11: Performance of AutoDock4 in reproducing the experimental structures of the
BGT-UDP in ensemble-docking calculations using 500 structures extracted with different
clustering strategies from EDES3w and EDES4w simulations. Results refer to clusters of
docking poses obtained from a cluster analysis performed on all generated complexes using
as metrics the dRMSD of the binding site with a cutoff of 1.5 Å. The sampling performance
(third row) is calculated as the percentage of poses within 2 Å of the native structure out
of all the top poses considered for each ensemble of receptor structures. The fourth row
reports the ranking of the first native-like pose obtained using the highest score within each
cluster for ranking. In parentheses, the rank of the same cluster is reported when the average
score over the top three poses is used instead. The fifth row reports the population of the
corresponding cluster in the same column. The last row reports the average heavy-atoms
RMSD of the ligand calculated for the top cluster, with standard deviation in parentheses.
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3.1.4 Docking performance

In this subsection we describe the results of docking calculations performed for each
target with the EDES-generated ensemble of conformations. Specifically, in the
case of AutoDock4, for each target, 500 independent runs were carried out, one for
each different receptor conformation in the ensemble. Next, a cluster analysis on
the top poses obtained from each individual docking run is performed, to obtain
the final results presented here. On the other hand, in HADDOCK all of the 500
conformations within each ensemble were used in a single docking run. The results
are reported in tables 3.12, 3.13 and 3.14, while details on the molecular docking
protocol can be found in chap. 3.1.1.4.

For the BGT–UDP complex, both software achieved improved performance
(defined as the percentage of ligand poses displaying a value of RMSDlig lower
than 2 Å from the holo structure) when coupled to EDES rather than MDapo

(Tables 3.12, 3.13 and 3.14), generating consistent fractions of native-like ligand
poses. Specifically AutoDock4 and HADDOCK, respectively produced up to 2% and
14% of native-like poses when coupled to EDES and 0% (for AutoDock) 2% (for
HADDOCK) when the clusters from MDapo are used. Another important feature
is that both programs were able to rank at least one native-like pose among the
top two when coupled with EDES, regardless of the number of windows used to
generate the clusters of conformations (see Tables 3.12, 3.13 and 3.14 and Figure
3.10). This highlights that also docking performance is not very sensitive to the exact
number of windows used, reflecting the trend already observed for the generation of
holo-like conformations. In the case of RIC-NEO, on the other hand, results clearly
show that using clusters coming from both the unbiased and biased approaches
result in the generation of native-like ligand poses within the top scored ones. As
already mentioned, however, the good performance of the enhanced approach was
not guaranteed and confirms the possibility to use our workflow also for targets
undergoing minor conformational changes upon binding. Finally, also in the case
of the ABP-ALL system, we obtained very encouraging results. In this case, we
observe that HADDOCK’s performance is overall better with EDES3w. In fact, in
the case of EDES4w, the top pose obtained with HADDOCK, although satisfying the
RMSDlig ≤ 2 Å criterion, has a flipped orientation, confirming the known limitation
of using the RMSD criterion alone to evaluate the docking performance. However,
still in the case of the EDES4w ensemble, a ligand pose (almost) perfectly overlapping
with the experimental one is retrieved in the 10th cluster (RMSDlig = 0.9± 0.1 Å).
A final word should be spent on the fact that for both BGT and RIC the results
were virtually independent of the number of EDES windows used, trend which was
verified for both docking software used. Clearly, further studies will be needed to
optimise the number and the width of the windows used, possibly exploiting a set of
intrinsic properties of each protein so as to set up target-dependent rules.

57



3. Applications of the EDES methodology

MDapo MDholo EDES3w EDES4w

sampling performance [%]
BGT-UDP - 84.6 1.8 2.0
RIC-NEO 3.8 10.8 2.6 3.4
ABP-ALL - 94.0 3.0 3.2

pose rank
BGT-UDP - 1 (1) 1 (1) 2 (2)
RIC-NEO 1 (1) 1 (1) 4 (3) 1 (1)
ABP-ALL - 1 (1) 2 (2) 2 (7)

cluster population
BGT-UDP - 48 4 4
RIC-NEO 15 20 10 13
ABP-ALL - 225 9 5 (6)

RMSDlig [Å]
BGT-UDP - 1.2 (0.7) 0.6 (0.9) 1.5 (1.2)
RIC-NEO 1.0 (0.9) 0.6 (0.6) 0.7 (0.7) 0.9 (0.8)
ABP-ALL - 0.7 (0.2) 0.8 (0.3) 0.7 (0.2)

Table 3.12: Performance of AutoDock4 in reproducing the experimental structures of the
BGT-UDP, RIC-NEO, and ABP-ALL complexes in ensemble docking calculations. Results
refer to clusters of docking poses obtained from a cluster analysis performed on all generated
complexes (500 for each ensemble of clusters of receptor structures, corresponding to the
top pose from each independent docking run for that ensemble) using the distance-RMSD
(dRMSD) with a cutoff of 1.5 Å as metrics. The sampling performance is calculated as the
percentage of poses within 2 Å from the native structure out of the top poses considered
for each ensemble of receptor structures. The pose rank refers to the ranking of the first
native-like pose obtained using the highest score within each cluster as sorting criterion.
In parentheses, the rank of the same cluster is reported when the average score over the
top three poses is used instead. The cluster population refers to the population of the
corresponding cluster in the same column. The RMSDlig refers to the average heavy-atom
RMSD of the ligand calculated for the top cluster with the standard deviation in parentheses.
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MDapo MDholo

sampling
performance [%]

BGT-UDP 1.8 37.0
RIC-NEO 23.0 45.5
ABP-ALL 2.5 49.5

pose rank
BGT-UDP 7 (6) 1 (1)
RIC-NEO 1 (1) 2 (1)
ABP-ALL 91 (346)b 1(2)

cluster population
BGT-UDP 6 9
RIC-NEO 80 152
ABP-ALL - 188

Fnat

BGT-UDP 0.72 ± 0.04 (0.75/4) 0.81 ± 0.07 (0.71/3)
RIC-NEO 0.93 ± 0.00 (0.93/1) 0.90 ± 0.03 (0.87/4)
ABP-ALL 0.47 (0.73)b 0.85 ±0.06 (0.93/3)

RMSDlig [Å]
BGT-UDP 2.0 ±0.3 (1.7/4) 0.7 ± 0.2 (0.54/3)
RIC-NEO 0.9 ± 0.3 (0.57/1) 1.0 ± 0.3 (0.67/4)
ABP-ALL 1.9 (1.5)b 0.9 ± 0.2 (0.59/3)

Table 3.13: Performance of HADDOCK in reproducing the experimental structures of the
BGT-UDP, RIC-NEO, and ABP-ALL complexes in ensemble docking calculations for MDapo

and MDholo.
a: Results correspond to the statistics of the top pose in clusters obtained using ligand
interface RMSD clustering with a 1 Å cutoff and a minimum of four poses per cluster. The
cluster rankings are based on the average score of the top four poses (the ranking based on
the score of the top pose is reported in parentheses). The first values in the last two rows
refer to the average statistics of the top four poses of a cluster in the semi-flexible refinement
(it1 step) of HADDOCK, while values in parentheses refer to the statistics/rank of the best
(smallest RMSD with respect to the reference) pose among the top four. The sampling
performance was calculated as the percentage of poses within 2 Å from the experimental
structure out of the 400 generated models (one docking run was performed from the ensemble
of 500 MD conformations). The fraction of native contacts Fnat is defined as the number of
native intermolecular contacts identified in a docking pose divided by the total number of
contacts in the reference structure. The contacts are evaluated within a shell of 5 Å from
the ligand in the experimental structures.
b: Since no acceptable clusters were obtained in this case, the reported statistics correspond
to single-pose statistics for the first acceptable pose (≤ 2 Å) and best pose (in parentheses).
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EDES3w EDES4w

sampling
performance [%]

BGT-UDP 15.8 20.5
RIC-NEO 15.8 20.5
ABP-ALL 21.3 13.8

pose rank
BGT-UDP 2 (3) 1 (6)
RIC-NEO 1 (1) 1 (1)
ABP-ALL 1 (1) 1 (5)

cluster population
BGT-UDP 33 20
RIC-NEO 53 69
ABP-ALL 20 5

Fnat

BGT-UDP 0.80± 0.02 (0.79/1) 0.72 ± 0.04 (0.71/3)
RIC-NEO 0.90 ± 0.06 (1.00/3) 0.83 ± 0.06 (0.73/3)
ABP-ALL 0.80 ± 0.00 (0.80/1) 0.72± 0.03 (0.73/2)

RMSDlig [Å]
BGT-UDP 0.8 ± 0.2 (0.50/1) 1.3 ± 0.4 (0.87/3)
RIC-NEO 0.9 ± 0.3 (0.34/3) 0.9± 0.2 (0.62/3)
ABP-ALL 0.8± 0.1 (0.74/1) 2.0± 0.1 (1.98/2)c

Table 3.14: Performance of HADDOCK in reproducing the experimental structures of
the BGT-UDP, RIC-NEO, and ABP-ALL complexes in ensemble docking calculations for
EDES3w and EDES4w. See caption of Figure 3.13 for details.
c: It should be noted that a cluster was found ranking 10th with RMSDlig = 0.86 ± 0.12
and scoring as the top pose within standard deviations (-26.8 ± 0.4 vs -25.3 ± 1.1 a.u.)
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Figure 3.10: Docking performances of various structural ensembles in reproducing the
experimental poses of BGT–UDP (top row), RIC–NEO (middle row), and ABP–ALL
(bottom row). Close views of the experimental binding modes are shown in the first column,
while the top-score poses within the first cluster with RMSDlig ≤ 2 Å, or poses with the
lowest RMSDlig value when no native-like pose was found, are reported in the next columns,
with the corresponding ranks given in square brackets. The docking was performed both
using AutoDock4 and HADDOCK for comparison. In each panel, the molecular surface of
the backbone and that of the Cα atoms of the protein are colored by residue type as in
Figure 3.1, and the ligand is shown as sticks colored by atom type. In columns 2 to 7, the
experimental pose is shown in black thin sticks for easy comparison. Image taken from ref.
[22].

3.1.5 Druggability assessment

We used the software f-pocket [236] to assess the druggability of the binding site for
conformations generated by EDES (see chap. 2.6 for methodological details) and from
the unbiased approach. The calculations have been limited to the cluster ensembles
as they have been shown to well represent the whole conformational space sampled
during the MDs. For each conformation, f-pocket gives a druggability estimation by
means of a score (D) [237] ranging between 0 and 1, with higher values identifying
more druggable geometries. It is customary to associate scores higher to 0.5 to
putative binding sites [237]. Table 3.15 shows that EDES generates a much larger set
of druggable structures than MDapo for BGT and ABP. In particular, in the latter
case no druggable conformation was generated by the unbiased simulation, while the
performance of the two sets was similar for RIC, as expected. Moreover, in all cases
EDES-derived ensembles have a higher percentage of structures associated with D
higher than 0.5 than those derived from MDapo. Finally, for BGT and RIC we can
also see that the fraction of EDES-generated conformations featuring D higher than
0.9 is not much lower than that obtained from the MDholo.
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System % of cluster structures with D greater than:
Protein Simulation 0.5 0.6 0.7 0.8 0.9

BGT

MDapo 8.8 4.8 3.2 1.6 0.4
MDholo 40.0 28.6 18.0 10.6 2.4
EDES3w 15.8 10.2 6.8 4.6 1.4
EDES4w 14.2 10.8 7.2 3.6 1.8

RIC

MDapo 2.6 2.2 1.2 0.4 0.2
MDholo 14.2 8.8 6.0 2.4 0.4
EDES3w 3.2 2.4 1.6 0.4 0.2
EDES4w 3.4 2.6 1.8 0.4 0.2

ABP

MDapo - - - - -
MDholo 20.4 13.0 7.2 3.6 1.6
EDES3w 7.6 5.2 3.0 1.8 0.4
EDES4w 7.4 5.4 2.6 1.2 0.2

Table 3.15: Performance of various MD simulations in generating druggable conformations
of the binding site. For each protein and each simulation, the percentages of structures (over
the 500 cluster representatives) featuring druggability scores D larger than 0.5 to 0.9 are
reported in columns 3 to 7, respectively.

3.2 EDES in Cross-Docking calculations

3.2.1 Introduction

An accurate characterisation of receptor/ligand binding poses is of great importance
for successful computer-aided drug discovery projects. For this reason, blind docking
challenges, such as the Drug Design Data Resource (D3R) Grand Challenge (GC)
[281–283], represent a excellent opportunities for developers to test and validate their
rational drug design methodologies against experimental datasets. The D3R Grand
Challenge is an annual event in which pharmaceutically relevant sets of protein-ligand
complexes, for which the experimental structures have not been made publicly yet
available, are selected for ligand pose predictions and binding affinity evaluations.
This year, we decided to partecipate to the fourth iteration of the competition
(GC4) to test our recently developed EDES approach, with minor modifications with
respect to the original workflow [284]. In this edition, the selected target for the
pose prediction stages is the beta-site amyloid precursor protein cleaving enzyme
1 (BACE-1), a beta-secretase 1 protein [285]. BACE-1 plays a crucial role in the
early stages of in Alzheimer’s disease, in which the β-amyloid peptides composing
the amyloid plaques are generated [286–288]. Given its central role in the formation
of β-amyloids, since long time BACE-1 enzyme has been recognised as a key target
for developing therapies against the setting of Alzheimer’s disease [289, 290]. The
research interests for this enzyme is also testified by the great number of BACE-1
protein structures deposited in the Protein Data Bank (PDB) [36] at the beginning
of the challenge (>300 on September 4th 2018), the majority of which are known
inhibitors of this target. Here we report the performance of a hybrid approach for
ensemble-docking [74, 78] that we developed for this challenge, coupling our recently
proposed EDES protocol to sample holo-like and druggable protein conformations
with the template-based algorithm for ligand conformer generation successfully
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employed in the previous Grand Challenge 3 (GC3) competition [291]. With our
workflow, near-native ligand poses were found for 16 (80%) and 17 (85%) of the twenty
targets using, respectively, AutoDock [271] and HADDOCK [270, 280] as docking
software. The most challenging cases were those for which the ligand generation
steps produced conformers displaying the largest deviation from the geometry in
the native complex, while virtually identical holo protein conformations have been
obtained for all the cases. Importantly, our hybrid strategy performed best among
the methods using receptor conformations generated without exploiting structural
information of the enzyme bound to other ligands.

3.2.2 Methodological details

The D3R GC4 is composed of a set of different stages, in which participants were
asked to predict the binding pose and/or calculate the binding affinity for a set of
ligands when bound to a given protein receptor. The first two stages (hereafter stages
1a and 1b), in particular, aimed to (i) predict the crystallographic binding poses of
twenty ligands into a receptor for which the bound conformation was not known
(stage 1a) and (ii) predict the binding poses of the ligands of stage 1a but when the
bound receptor conformations were made available (stage 1b). So, for stage 1a (a
typical cross-docking experiment), we performed ensemble docking calculations of
conformations of both the protein and the ligands generated by our methodology
(vide infra), while in stage 1b (an example of self-docking calculation), we used the
same ligand conformations employed for stage 1a but we docked them against the
experimental bound conformations of the protein receptor, made available by the
organisers for this stage. For both challenges, we submitted a set of 5 poses for each
ligand, according to challenge rules.

3.2.2.1 Data provided

In stage 1a the only data provided by the organisers consisted of a list of 20 compounds
given in the Simplified Molecular Input Line Entry System (SMILES) code [292]
together with the protein primary sequence given in the FASTA format [293]. In
stage 1b the experimental structures of the receptors for all 20 BACE-1 complexes
were provided, to allow the participants to self-dock each ligand on the corresponding
holo-conformation of the receptor.

3.2.2.2 Binding site determination

In our first work [22] (chap. 3.1), we used the experimental holo structure of each
target to determine receptor’s BS. In this case, as no holo structure was available,
we followed the approach presented in ref. [202]. Namely, we retrieved in the PDB
[36] all the protein structures featuring at least the 95% of sequence identity to the
amino acid sequence provided by the organisers via the FASTA sequence and having
a co-crystallised ligand. Among the entries, we discarded (undesirable) structures
such as the ones having crystallisation buffer molecules as ligand(s), low resolution
ones, structures with split side chains near the binding site and cases in which ligands
were covalently bound, as we know ours bind non-covalently. This resulted in 340
structures. We verified that the binding site was well characterised and perfectly
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conserved in all these cases, with no structure featuring missing residues in the
putative pocket. Next, we used the Tanimoto metrics [294], as implemented in fmcsR
[295] and chemmineR [296] packages to evaluate the similarity between the ligands
present in the selected (340) structures and each of the 20 target compounds provided,
in order to identify a set of receptor templates featuring the most similar ligand to
the compounds to be docked.
If A and B are the two molecules to compare, we can define vectors ~A and ~B as the
N-bit-long binary vectors encoding the fingerprints of the two molecules. Each bit
of the two vectors represents a specific molecular feature chosen for the similarity
calculation, and is set to “1” if the molecule posses that property and to “0” otherwise.
Tanimoto coefficient is then defined as shown in eq. 3.1, where the quantities a and b
represent the number of bits set to “1” for molecule A and B, respectively, while c is
the number of common bits set to “1”. Choosing the appropriate features to include
in the Tanimoto similarity measurement, it serves as an accurate and easy way to
compute the structural and chemical similarities between different molecules;

TA,B =
c

a+ b− c
(3.1)

Further details on Tanimoto similarity measurement in the case of biological
molecules can be found in refs. [202, 284, 291, 294]. The search for the structure
featuring the most similar ligand to each of the 20 compounds resulted in 10 complex
structures selected as templates (Table 3.16). From these structures, the residues
lining the binding site were identified, following the same geometrical approach used
in the previous work (chap. 3.1). To perform this task, a single list of residues
was built by merging all the residues within 3.5 Å from the ligand in each of the
9 complex structures selected. With this approach, more than 30 residues were
included in this preliminary definition of the BS. Among them, some residues were
part of the putative binding region only in a single template structure while others
were common to multiple templates. For this reason, we decided to consider (i) only
the residues appearing at least in 2 structures (i.e. the most conserved ones) and (ii)
among those present only in one structure, the most buried ones (likely to interfere
with ligand binding). In this way the number of residues was decreased to 20. Figure
3.11 clearly highlights that the chosen list of 20 residues (Table 3.17) surrounds all
the 20 congeneric ligands provided for this challenge.
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Ligand target Template PDB ID Tanimoto similarity
BACE01 3DV1 0.605
BACE02 3DV1 0.875
BACE03 3DV1 0.821
BACE04 3DV1 0.872
BACE05 3DV1 0.725
BACE06 4DPI 0.660
BACE07 2IQG 0.618
BACE08 3DV5 0.543
BACE09 3DV5 0.698
BACE10 3K5C 0.739
BACE11 3VEU 0.833
BACE12 4KE1 0.681
BACE13 3K5C 0.681
BACE14 3K5C 0.861
BACE15 3K5C 0.891
BACE16 3K5C 0.750
BACE17 2B8L 0.490
BACE18 3DV5 0.476
BACE19 3DV1 0.625
BACE20 6BFD 0.604

Table 3.16: Ligand templates structures. For each target compound (first column), we
report the template PDB ID (second column) and the TanimotoCombo similarity coefficient
between the two ligands (third column), evaluated with the software software OpenEye
ROCS. The TanimotoCombo coefficient ranges from 0 (lowest similarity) to 1 (highest
similarity).
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Residue Occurrence
Q12 3
G13 1
D32 9
G34 9
S35 2
Y71 5
T72 9
Q73 7
G74 2
F108 4
F109 1
I110 1
Y198 1
I226 2
D228 9
S229 2
G230 9
V232 8
N233 1
T329 1

Table 3.17: List of residues defining the putative binding site of BACE-1 ligands investigated
in this work. Residues are reported along with their occurrence frequencies (ranging from
0 to 10) in the list of residues within 3.5 Å of the ligands in the (experimental) template
structures.

66



3.2. EDES in Cross-Docking calculations

Figure 3.11: Putative binding site identified on the BACE-1 apo protein (PDB ID 1SGZ
[297]) for implementation of the EDES approach. a) Structure of the protein (grey ribbons)
showing the side chains of the 20 residues in Table 3.17 as sticks coloured by type (polar,
apolar, acidic and glycines in light green, magenta, red and white respectively); b) zoom
on the putative binding site in a), showing in transparent sticks the experimental poses
of the 20 ligands provided by the organisers (after superposition of common Cα atoms on
all proteins to 1SGZ); c) comparison between the apo structure of BACE-1 (1SGZ, grey
ribbons) and the 20 ligand/BACE-1 complex structures (blue ribbons) released at stage 1b
of the challenge.
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3.2.3 Ligand preparation

The 20 ligands were similar in size, each containing about 35 heavy atoms. Since
ligands were provided in the SMILES string, a line notation for describing chemical
structures, the first task was to generate their three-dimensional conformations. To
do so, we employed the methodology featured in ref. [291].

As explained in the previous paragraph, the first step consisted in identifying a
set of template receptor structures, highly homologous to receptor’s sequence. In our
case, this resulted in a set of 9 different template structures. Next we generated up to
500 conformers for each of the 20 ligand targets using the OpenEye OMEGA software
package [298]. Then we calculated the TanimotoCombo coefficients (combining shape
and chemical similarity) [291, 299] between all target conformers and template ones
by means of the software OpenEye ROCS (using the “shape and colour” mode) [299]
to select template structures with a similar holo conformation to the one assumed in
presence of the ligand(s) to be docked. Finally, for each target compound, we selected
the 10 conformers (among the 500 generated) displaying the highest Tanimoto-combo
similarity to the corresponding template ligand.

3.2.4 Standard and enhanced-sampling (MD) simulations

In order to run the simulations, it is crucial to have a starting conformation of the
protein. In this case, at odd with the previous work, no unbound (apo) conformation
of the target was given by the organisers, as only the primary (1D) sequence of the
receptor was provided.

In order to identify a suitable unbound target conformation, we searched the PDB
database looking for protein structures displaying an homologous primary sequence to
the one provided by the organisers. To do so, we used the software package BLASTP
2.7.1+ [300], setting the number of alignments to 1000 and the number of score
evaluations to 10, while using the default values otherwise. We also searched only for
entries having the keyword “BACE” in their name. With this approach, we identified
around 300 structures, of which only 8 were apo proteins. Among these, we searched
for conformations resolved at good resolution (2 Å or better), that did not feature
any missing residue, in particular at the putative binding site, and displaying a full
overlap with the BACE-1 sequence provided by the organisers. The only structure
matching with these criteria was the one with PDB ID 1SGZ [297], which we selected
as starting protein conformation for the simulations. However, prior to setting up the
system, the structure was further refined through the MolProbity webserver [301].

3.2.4.1 Standard MD Simulation

Standard all-atom MD simulations of the apo protein (herafter MDapo) embedded
in a 0.15 KCl water solution (≈ 60.000 atoms in total) and under periodic boundary
conditions were carried out using the pmemd module of the AMBER18 package
[136, 302]. The initial distance between the protein and the edge of the box was set
to be at least 16 Å in each direction. Topology files were created for each system
using the LEaP module of AmberTools18 starting from the apo structure with PDB
ID 1SGZ. The AMBER-FB15 [43, 303] force field was used for the protein, the
TIP3P-FB model was used for water, and the parameters for the ions were obtained
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from ref. [304]. Long-range electrostatics was evaluated through the particle-mesh
Ewald algorithm using a real-space cutoff of 12 Å and a grid spacing of 1 Å in each
dimension. The van der Waals interactions were treated by a Lennard-Jones potential
using a smooth cutoff (switching radius 10 Å, cutoff radius 12 Å). Multistep energy
minimisation with a combination of the steepest-descent and conjugate-gradient
methods was carried out to relax internal constraints of the systems by gradually
releasing positional restraints. Following this, the system was heated from 0 to
310 K in 10 ns of constant-pressure heating (NPT) using the Langevin thermostat
(collision frequency of 1 ps−1) and the Berendsen barostat. After equilibration, a
production run of 1 µs was performed. A time step of 2 fs was used for pre-production
runs, while equilibrium MD simulations were carried out with a time step of 4 fs in
the NPT ensemble (using a MC barostat) after hydrogen mass repartitioning [144].
Coordinates from production trajectory were saved every 100 ps.

3.2.4.2 Metadynamics Simulation

This step has been performed accordingly to what described in the general EDES
workflow (chap. 2) and already discussed in the previous work. Here, only the main
steps will be recalled, highlighting the small modifications with respect to the original
recipe [284].

Metadynamics simulations were performed on the apo protein using the GRO-
MACS 2016.5 package [277] and the PLUMED 2.3.5 plugin [278]. Simulations started
from the last conformation sampled along the pre-production step of the unbiased
MD. AMBER parameters were ported to GROMACS using the acpype parser [279].
We used four CVs, defined only on the binding site region: 1) the radius of gyration
of the binding site (RoGBS); 2-4) the numbers of (pseudo)contacts across three
orthogonal “inertia planes” (CIPs). All non-hydrogenous atoms were considered to
define the three CIPs, while only backbone atoms were used to estimate RoGBS ,
at odd with the original approach in which also the latter CV was implemented
considering all the heavy atoms. This change was made to reduce the computational
cost of the calculation, considering that also the new implementation of RoGBS is
still able to act (although in an indirect way) on the BS’ side-chains, which are
however directly biased by the CIPs variables. Also in this case we applied the
“windows” approach, aiming to sample, in a controlled manner, shapes of the binding
site associated to decreased RoGBS values. However, in this case, we only generated
3 windows including the first one, centred respectively at 9.91, 9.41 and 8.92 Å
(corresponding to a global 10% RoGBS decrease with respect to the one of the
experimental apo structure, center of the first window). The choice to limit the
extent of the conformational sampling only to 3 windows (instead of 4, as in the
original approach) was manly due to the time restrictions of the challenge. In the first
instance, this choice is supported by the findings that EDES sampling performance
is not very sensitive to the usage of 3 or 4 windows (see chap. 3.1). Moreover,
in the spirit of a further validation of the original protocol, also in this case we
focus on the sampling of conformations displaying a partially collapsed binding sites
(i.e. with smaller RoGBS than the apo system). Although this choice can appear
somehow arbitrary, as already discussed, it supported by several studies showing
that ligand binding in enzymes most often results in a closed conformation of their
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binding pockets as compared to the apo structures (see e.g. refs. [27, 305] or refer to
the Introduction, chap. 1). Finally, for this specific system, the choice can also be
justified a posteriori observing the (small) collapse of the binding site of BACE-1
occurring upon binding of all ligands (vide infra).
Each replica was simulated for 100 ns, leading to 400 ns of metadynamics simulations
per window; coordinates were saved every 10 ps. The height w of the Gaussian hills
was set to 0.6 kcal/mol, while the widths σi of the Gaussian hills were set to 0.06, 2.6,
1.7 and 3.0 respectively for RoGBS and CIP1,2,3. The bias factor for well-tempered
metadynamics was set to 10. Hills were added every 2 ps, while the bias-exchange
frequency was set to 20 ps. The force constants used “windows” approach were the
same used in the previous work. Hereafter, the concatenated trajectory of the 3
windows will be refereed as EDES3w.

3.2.4.3 Docking calculations

Docking calculations were performed on a set of receptor conformations extracted
from the MD trajectories according to the clustering protocol presented in the Com-
putational Method section (chap. 2) and discussed in the previous work (chap. 3.1).
However, a few differences with the original implementation should be highlighted.
First, the number of protein conformation clusters used for docking calculations here
is reduced from 500 to 200. This was essentially due to the need to cope with the time
constraints of the challenge, considering that here we used multiple conformations for
each target ligand. Moreover, in the original EDES implementation, all the clusters
were extracted from the metadynamics run. Docking performed on the clusters from
the unbiased MD were indeed only used as a reference to compare the results of the
two approaches. As an improved recipe of the original method, and in the spirit of
developing a more general approach, here we also included conformations coming
from an unbiased MD run. Indeed, as the extent of the conformational changes
occurring at the binding site was not known a priori, including also low-energy states
coming from small rearrangements of the unbound protein conformation appeared
reasonable. In particular, in this case we expected to observe significant oscillations
of the BS region close to the very flexible flap (Figure 3.11) also along MDapo. We
applied our original multi-step clustering protocol to both MDapo and EDES3w

trajectories, with the additional requirement to extract at least 10 cluster represen-
tatives from each of the 10 slices in which each RoGBS distribution was binned,
so as to include a certain number of structures also from poorly sampled regions.
In this way, 500 clusters from each trajectory were extracted. Next, an additional
cluster analysis using the same approach was performed on the pool of 1000 cluster
representatives in order to generate the final ensemble of 200 structures. Finally, as
already highlighted, 10 ligand conformations for each target ligand were selected and
employed in ensemble-docking calculations. Calculations were performed using either
AutoDock4.2 [271] or the HADDOCK2.2 webserver [270, 280], following the scheme
presented in the first work (chap. 3.1).

In particular, with AutoDock, a docking campaign against all the 200 receptor
conformations was performed with each selected ligand conformer, while in the case of
HADDOCK, for each target ligand, the whole ensemble of conformers was submitted
and used in a single docking run. However, both docking programs were used in two
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different variants, generating the four sets of protein-ligand binding pose predictions
that we submitted for the challenge. More in details, we used the standard AutoDock
(receipt ID pe6zg) and HADDOCK (receipt ID kmtri) schemes, an AutoDock approach
with a subsequent step of pose refinement and rescoring (herafter Autodockrr; receipt
ID nstab) and an approach in which HADDOCK was used including all hydrogen
atoms of both binding partners (hereafter HADDOCKall−Hs, receipt ID apue7). The
first two approaches follow precisely the docking scheme presented in the first work
(chap. 3.1), so they won’t be discussed here.

The Autodockrr approach follows the Autodock procedure, with an additional step
consisting in the relaxation of the top 10 docking poses by means of a multi-step
structural relaxation performed with AMBER18 [302]. Systems were optimized in
vacuum through three consecutive cycles of restrained structural relaxation (1000
cycles of steepest descent followed by up to 24000 cycles of conjugate gradients)
followed by an unrestrained optimization (2000 cycles of steepest descent followed by
up to 8000 cycles of conjugate gradients). During restrained relaxation harmonic
forces of 0.3, 0.2, and 0.1 kcal·mol−1· Å−1 (respectively for the first, second and
third cycle) were applied on all non-hydrogenous atoms of the system. Long-range
electrostatics was evaluated directly using a cutoff of 99 Å, as for the Lennard-Jones
potential. The AMBER-FB15 [43, 303] force field was used for the protein, while
the parameters of the ligands were derived from the GAFF force field [274] using
the antechamber module of AmberTools18. In particular, bond-charge corrections
(bcc) charges were assigned to ligand atoms following structural relaxation under
the Austin Model 1 (AM1) approximation [306]. Note that, as for HADDOCK, the
definition of a topology involving permanent bonding interactions allow for keeping
the correct ligand cycle connectivity during refinement, while allowing some degree
of flexibility such as changes in torsional angles and formation of H-bonds. Finally,
the poses were rescored using the same scoring function of AutoDock employed to
rank the original docking poses.

The HADDOCKall−Hs approach is same as the HADDOCK one, except for the
inclusion of all hydrogens (and not only the polar ones) in the structures of the
binding partners. Finally, in addition to the ensemble-docking calculations using
receptor structures generated in silico for stage 1a, we also performed self-docking
calculations (only with the standard AutoDock approach) for the stage 1b of the
challenge. In this case, for each ligand, we docked its conformers employed in
stage 1a against the conformation of the receptor extracted from the corresponding
holo experimental structure, released by the organisers at the beginning of stage
1b (protocol Autodockself , receipt ID qb4hg). All the remaining parameters were
identical to those employed within the Autodock protocol.

3.2.5 Results

In this section we discuss the performance of our approaches at both stages of the
challenge, together with highlighting possible drawbacks of the method and some
directions for further developments. First, we discuss the docking performance of
during the stage 1a, in which we predicted the near-native ligand poses for a set
of 20 ligands known to be BACE-1 binders. Evaluations of the predicted poses
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were performed according to the data downloaded from the D3R website3. In
particular, the accuracy of the poses was evaluated by calculating the RMSD of
each ligand with respect to its experimental reference structure (considering only
heavy atoms), after superposition of the binding interface areas. We performed a
global evaluation in terms of the success rate of each approach on the whole set of
20 ligands together with a more detailed per ligand analysis. In this context, we also
performed docking calculations of the ligand conformations generated for stage 1a in
the experimental unbound BACE-1 conformation to evaluate the need for bound-like
receptor conformations to obtain near-native ligand poses. Then, we separately
analyse the performances of the sampling of holo-like receptor conformations and of
the generation of near-native ligand conformations.
Finally, we discuss the results obtained in stage 1b, in which we self-docked our
generated ligand conformations into the true bound receptor conformations, in order
to evaluate the improvements obtained with respect to results of stage 1a when the
true receptor conformations are used.

3.2.5.1 Stage 1a challenge

The performance of the method is summarised in Table 3.18, in which the global
performances of the different methods used in this work are evaluated for their ability
to retrieve near-native poses for the 20 BACE-1 target ligands. In particular, in the
following we’ll refer to median and average RMSD values, calculated on the whole set
of 20 ligands but considering, for each ligand, only the top pose or the nearest-native
one. In the first case they’ll be indicated as RMSD1

med and 〈RMSD1〉, while in the
second one RMSDmin

med and 〈RMSDmin〉, where the apices “1 ” and “min” indicate
that the calculation is performed considering only the top pose or the one displaying
the minimum RMSD (thus being the nearest-native one). Finally, we’ll also consider
the median and average RMSD values on all the five poses submitted for all each
ligand. In this case they will be indicated as RMSDmed and 〈RMSD〉 (Tables 3.19,
3.20). All these values are calculated over all the heavy atoms of the ligand, after
the alignment of the protein binding interface region. With this metrics, the best
results were obtained with the Autodockrr approach, by which the top 10 poses
obtained with AutoDock have been further optimised and rescored. Table 3.18 shows
that with this approach, we obtained RMSD1

med and 〈RMSD1〉 values lower than,
respectively, 2 and 3 Å. Consistently, considering only the nearest-native poses, we
obtained RMSDmin

med and 〈RMSDmin〉 values lower than 1.5 and 2 Å. These results
clearly show the positive impact of the refinement procedure with respect to the
“standard” AutoDock protocol (Table 3.18). Considering the standard approaches,
HADDOCK with standard settings performs very similarly to AutoDock, while an
appreciable drop in the accuracy is caused by the explicit consideration of non-polar
hydrogen atoms of the ligand during docking, in the HADDOCKall−Hs approach.
Although a detailed explanation of this behaviour would require more systematic
studies, which are out of the scope of this work, a reasonable explanation is that the
change in ligands’ volume, due to the inclusion of the non-polar hydrogens, have a
dramatic impact on the ability of HADDOCK’s search scheme to place the ligands
within the buried (and rather small) binding site of BACE-1.

3https://drugdesigndata.org/about/grand-challenge-4-evaluation-results
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Averages Median
Protocol 〈RMSDmin〉 〈RMSD1〉 〈RMSD〉 RMSDmin

med RMSD1
med RMSDmed

Autodockrr 1.73±0.88 2.86±2.71 4.24±1.77 1.38 1.78 3.89
Autodock 2.48±1.82 3.10±2.57 4.41±2.10 2.07 2.25 4.28

HADDOCK 2.28±0.99 4.12±2.73 4.64±1.53 2.06 3.12 4.23
HADDOCKall−Hs 3.19±2.26 4.83±3.50 5.96±2.18 2.66 3.10 5.76

Autodockapo 3.78±2.94 5.67±3.72 5.17±3.34 2.47 3.51 3.49

Table 3.18: Overall performance of our protocols in retrieving near-native ligands conforma-
tions of BACE-1 ligands (rows 4 to 8) during stage 1a. The performance of the Autodockapo
protocol is also shown. The values are in Å.

Moreover, a global comparison in terms of the 〈RMSDmin〉 and 〈RMSD1〉metrics
of the performances of all applicants is shown in figure 3.12. Within this metrics,
our methods are placed in the middle-left and middle-right regions of the histogram
plot (Figure 3.12), when compared to the results obtained by all the other applicants.
However, an inspection of the details of the protocols used by the other participants
(for those for which they were made available) and leading to better results than
ours in terms of 〈RMSD1〉 showed that our approach is the only one not exploiting
experimental information on the bound receptor conformations. Indeed, at odd
with those approaches, all our strategies are based on ensemble-docking calculations
where receptor conformations are generated in silico from an experimental unbound
receptor structure, exploiting no information on receptor structures complexed with
similar ligands to the ones provided for the challenge.

Our performances can be also analysed from a different perspective, highlighting
the accuracy of the different approaches when tested on each ligand separately. We
report the results for each of the 20 BACE ligands in Tables 3.19 and 3.20 for the
AutoDock and HADDOCK derived approaches, respectively. Moreover, the results
are also represented in Figure 3.14. Globally, the tables show that with the above-
mentioned approaches, we were able to retrieve at least one pose with RMSDlig

< 2.5 Å respectively in 15 (Autodock), 16 (Autodockrr), 17 (HADDOCK), and 10
(HADDOCKall−Hs) out of twenty cases, corresponding to success rates of 75%, 80%,
85%, and 50%. Moreover, the high standard deviations associated to the 〈RMSD〉
values for almost each ligand (Figure 3.14 and Tables 3.19, 3.20) was somewhat
expected. Indeed our EDES approach displays the (desired) tendency to maximise
the structural diversity of receptor conformations used for docking calculations, in
particular at their putative binding site, resulting in a large diversity in the docking
poses obtained. For this reason, evaluating our performances on the basis of the
success rate appears much more of value than considering average RMSD values
over all the poses submitted for each approach. In the following, we will focus our
analysis only to the top three approaches: Autodock, Autodockrr, and HADDOCK.
First of all, tables 3.19 and 3.20 reveal that the most challenging ligand is BACE02,
the only one for which we obtained poses featuring an RMSDlig > 3.5 Å from the
native conformation with all the approaches.
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In particular for this target, the best performance is obtained with HADDOCK, by
which the nearest-native pose features a RMSDlig = 3.9 Å. Additional challenging
ligands include BACE10, for which the best RMSDlig value is 2.8 Å (obtained
with Autodockrr), and to a minor extent BACE07, BACE09, BACE14, BACE16
and BACE18, for which 1 out of the three protocols was unable to find poses with
RMSDlig values lower than 2.5 Å. Autodockrr demonstrated to be the top-performing
method in terms of the success rate, reproducing at least one near-native pose among
the top 5 for all ligands but BACE02, for which 〈RMSDmin〉 = 4.5 Å. In principle,
the issues with BACE02 could be amended by including also in the docking stage
some degree of partner flexibility, although it has been shown by others that in such
cases the (potential) improvement is reported to be system-dependent [2, 15]. In this
case, however, a (small) improvement is actually noticeable in the results obtained
using HADDOCK, which includes by default flexibility of both docking partners by
means of short MD runs in the space of the torsional angles and by which a lower
value of 〈RMSDmin〉 is obtained for this target. In this particular case, however,
these results were in part expected. Evaluating the performances obtained in the
separate steps of receptor/ligand sampling (Table 3.21) clearly shows that in this
case, while being able to obtain virtually identical holo-like geometries, our workflow
is less accurate in generating the native-like ligand conformations. Finally, we also
compared our predictions with the typical scenario in which we generated ligands
conformations but the only receptor structure available is the apo one.

We thus performed docking calculations with AutoDock using (i) the 10 ligand
conformations used for the stage 1a and (ii) the experimental apo structure of BACE-
1 (PDB ID 1SGZ) that we selected as starting conformation for the simulations.
Table 3.18 confirms that, as expected, this approach (Autodockapo in the table),
shows a dramatic drop of the accuracy in retrieving near-native ligand poses with
respect to the top performing three strategies of stage 1a, due to the lack of inclusion
of protein flexibility.
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Autodock Autodockrr

Target ligand RMSDmin RMSD1 〈RMSD〉 RMSDmin RMSD1 〈RMSD〉
BACE01 1.7 2.2 3.7±2.9 1.2 1.2 1.8±0.5
BACE02 4.2 4.2 6.5±2.7 4.5 4.5 7.9±2.9
BACE03 2.8 2.8 5.3±3.4 1.8 2.6 3.8±3.4
BACE04 1.5 1.5 2.9±1.3 1.1 1.1 2.2±1.0
BACE05 2.1 2.1 3.8±3.3 1.4 1.6 5.3±4.9
BACE06 1.1 1.1 1.7±0.7 1.5 1.6 2.1±0.8
BACE07 2.1 2.5 2.5±0.3 2.6 2.6 3.4±0.9
BACE08 1.2 1.7 3.3±4.0 1.0 1.0 4.9±5.0
BACE09 2.2 2.2 4.5±2.9 2.4 3.1 4.1±3.1
BACE10 9.3 9.4 9.4±0.1 2.8 10.0 8.2±3.0
BACE11 1.5 2.8 2.3±0.8 1.0 1.2 3.6±4.3
BACE12 1.4 1.5 1.8±0.5 1.2 10.3 6.8±4.7
BACE13 1.5 2.2 2.1±0.5 0.9 1.4 3.6±4.2
BACE14 4.2 10.8 8.2±3.6 1.3 2.5 4.9±3.3
BACE15 2.2 2.2 4.4±3.8 1.1 1.8 2.4±1.0
BACE16 2.5 2.5 4.2±3.6 2.6 2.6 4.4±2.9
BACE17 1.8 1.9 4.8±2.7 1.4 1.7 3.1±2.4
BACE18 2.6 2.6 5.3±2.5 1.8 1.8 4.7±2.5
BACE19 1.8 2.3 6.8±4.4 1.3 1.5 3.4±3.0
BACE20 2.1 2.1 4.9±3.4 1.6 8.5 4.0±3.0

Table 3.19: Summary of the docking results obtained with the Autodock-derived approaches
for 20 BACE-1 ligands (data from https://drugdesigndata.org). All values are expressed in
Å. RMSDmin values larger than 2.5 Å are bolded.

HADDOCK HADDOCKall−Hs

Target ligand RMSDmin RMSD1 〈RMSD〉 RMSDmin RMSD1 〈RMSD〉
BACE01 1.5 2.0 2.8±1.7 3.1 3.1 4.7±2.7
BACE02 3.9 4.4 4.3±0.3 10.2 10.5 11.0±0.7
BACE03 2.5 3.5 4.2±2.7 3.2 3.5 5.7±3.2
BACE04 2.2 9.6 6.6±4.0 2.3 9.7 7.1±3.6
BACE05 1.4 3.1 3.8±3.1 8.7 9.8 10.0±0.9
BACE06 1.8 2.3 3.6±3.3 2.3 2.3 5.8±4.6
BACE07 2.4 2.6 4.5±3.2 3.5 3.6 6.2±3.5
BACE08 1.3 1.6 2.0±1.1 1.4 1.5 5.0±4.7
BACE09 3.3 10.0 8.4±3.0 2.2 2.9 5.3±3.8
BACE10 5.5 5.8 6.6±2.0 3.5 9.5 6.5±2.9
BACE11 2.0 4.5 3.7±1.0 1.7 1.7 5.4±3.9
BACE12 1.2 1.9 3.5±3.4 1.4 1.9 4.8±4.3
BACE13 1.5 1.5 3.9±3.2 1.8 1.8 2.2±0.4
BACE14 2.1 9.4 6.9±3.8 2.9 3.1 4.7±3.5
BACE15 2.2 3.0 3.7±1.6 3.4 9.4 8.5±2.9
BACE16 2.5 3.1 4.5±3.5 3.0 3.3 6.0±4.0
BACE17 1.9 5.7 5.2±1.9 1.7 2.3 3.0±1.9
BACE18 2.0 3.9 4.0±1.4 1.9 2.4 3.5±2.0
BACE19 2.3 2.3 5.1±3.3 2.4 9.6 8.1±3.2
BACE20 2.0 2.0 5.3±4.0 3.2 3.2 5.9±3.6

Table 3.20: Summary of the docking results obtained with the HADDOCK-derived ap-
proaches for 20 BACE-1 ligands (data from https://drugdesigndata.org). All values are
expressed in Å. RMSDmin values larger than 2.5 Å are bolded.
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Figure 3.12: Overall performance of the docking protocols employed in this study, as
measured by the values of 〈RMSDmin〉 and 〈RMSD1〉
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Figure 3.13: Distribution of RoGBS calculated for the 200 conformational cluster represen-
tatives of BACE-1 selected for docking calculations. The clusters are divided in two groups
according to the MD trajectory they were extracted from (103 and 97 clusters from MDapo

and EDES3w, respectively).

Figure 3.14: Performance of the Autodock (a), Autodockrr (b), HADDOCK (c) and
HADDOCKall−Hs (d) protocols in reproducing the near-native conformations of the 20
BACE ligands. Green and grey panels refer to targets for which we obtained at least one
pose within the top 5 featuring a value of the ligand RMSD ≤ 2.5 Å and ≤ 3 Å respectively,
while orange boxes indicate cases for which no such poses were found among the top 5 ones.
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3.2.6 Performance in sampling of holo-like conformations

In this section, we discuss about the ability of EDES to generate holo-like confor-
mations of BACE-1 protein. This is evaluated in terms of the RMSD distributions
calculated for the heavy atoms of the binding site (hereafter RMSDBS) with respect
to each of the 20 BACE-1 experimental structures (provided at stage 1b). The
analysis has been performed for the unbiased simulation of the apo system (MDapo),
for metadynamics one (EDES3w) and for the ensemble of 200 cluster structures used
in docking calculations. Results are shown in figure 3.15. Considering the structures
with an RMSDBS ≤ 2 Å, the first evident feature is that both trajectories, MDapo

and EDES3w, are able to generate a significant fraction of receptor conformations
displaying a low RMSDBS , with respect to every ligand/BACE-1 experimental
structure. However, a careful inspection of the middle panel in figure 3.15 reveals
the presence of a shoulder of low RMSD conformations more prominent in EDES3w

than in MDapo. This is also testified by the greater fraction of structures with
RMSDBS < 1.5 Å in the EDES3w run than in MDapo. However, the overall good
performance of MDapo is not surprising, considering the (relatively small) conforma-
tional rearrangements undergone by the protein upon binding of all ligands (Figure
3.11). The small extent of structural rearrangements upon binding is also noticeable
in the variation of RoGBS in the apo/holo transition, specifically decreasing from
the initial value of 9.79 Å (in the apo protein) to the range of 9.10-9.44 Å, found
in the 20 holo conformations. As already pointed out, EDES method was primarily
developed for targets undergoing large conformational changes upon binding, leading
to a partial collapse the putative site. However, even its original recipe still allows
to sample conformations with an enlarged pocket, with respect to the apo form,
extending the possibility of usage of the method also for targets in which the pocket
opens up upon binding. In the spirit of a further improvement in this sense, in the
improved recipe used for this work we decided to include, in the ensemble of receptor
conformations, also structures extracted from an unbiased MD simulation of the
apo protein. Indeed, among the cluster representatives selected, a large diversity of
RoGBS has been observed, ranging from 9.1 Å to values over 10.8 Å. The largest frac-
tion of structures featuring a collapsed pocket (smaller RoGBS values) with respect
to the unbound system (9.79 Å) derived from EDES3w as well as most structures
displaying a RoGBS close to the upper value (Figure 3.13). On the other hand,
conformations coming from MDapo displayed a RoGBS distribution roughly centred
around RoGapoBS . Moreover, together with a large variability of BS’s compactness,
our cluster analysis approach confirmed its ability to select a large (in some cases
even larger than that sampled along the MD trajectories) fraction of low-RMSDBS

geometries with respect to all the experimental reference structures (Figure 3.15 and
Table 3.21). Finally, it is worth stressing that for all target receptors, we sampled
at least a few conformations featuring the binding site virtually identical to the
experimental structures, as testified by the lowest RMSDBS values of the clusters
selected, all around 1 Å (Table 3.21).
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Figure 3.15: Normalised distributions (bin size = 0.1 Å) of RMSDBS calculated with
respect to the 20 experimental structures of ligands in complex with BACE-1. The analysis
has been performed for MDapo (upper panel) and EDES3w (middle panel) trajectories, as
well as for the ensemble of 200 BACE-1 structures used in ensemble docking calculations
(lower panel). The insets in the upper and middle panels represent enlargements of the
left-hand region of the corresponding graphs.
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Protein Ligand
System RMSDmin

BS [Å] % RMSDBS < 1.5 Å RMSDlig−fit [Å]
BACE01 1.13 16 1.11-1.71 (1.44±0.24)
BACE02 1.08 15 1.16-3.08 (2.70±0.63)*
BACE03 1.07 15 0.95-1.44 (1.25±0.15)
BACE04 1.08 19 1.03-2.05 (1.55±0.44)
BACE05 1.07 15 0.82-3.05 (1.50±0.73)
BACE06 1.19 15 0.58-1.38 (0.98±0.23)
BACE07 1.10 17 1.62-2.77 (2.08±0.45)*
BACE08 1.07 17 0.57-1.51 (0.92±0.29)
BACE09 1.17 17 1.52-2.38 (1.96±0.38)
BACE10 1.13 17 1.54-2.33 (1.98±0.33)
BACE11 1.06 17 1.03-2.24 (1.64±0.48)
BACE12 1.07 17 0.68-1.79 (1.13±0.44)
BACE13 1.06 16 0.52-1.00 (0.75±0.16)
BACE14 0.98 16 1.37-3.34 (2.48±0.81)*
BACE15 1.16 14 1.53-2.23 (1.95±0.33)
BACE16 1.17 14 1.83-3.53 (2.39±0.59)*
BACE17 1.13 14 1.08-1.58 (1.34±0.18)
BACE18 1.14 14 1.53-2.01 (1.81±0.11)
BACE19 1.07 16 1.17-1.51 (1.33±0.10)
BACE20 1.20 15 1.49-3.26 (1.83±0.52)

Table 3.21: Performances of our methodology evaluated separately for the generation of
protein and ligand conformations similar to those found in the ligand/BACE-1 experimental
structures. The 2nd column reports the lowest RMSDBS calculated across the 200 receptor
conformations with respect to each experimental structure. The 3rd column reports the
percentage of conformations displaying an RMSDBS lower than 1.5 Å. The last column
reports the minimum and maximum RMSD values (calculated on the non-hydrogenous
atoms with respect to the structure of each ligand in the experimental structure), as well as
the average and standard deviation within parentheses. Values of RMSDmin

lig−fit larger than
1.5 Å and average values of RMSDlig−fit larger than 2 Å are italicised and marked with an
asterisk (*), respectively

80



3.2. EDES in Cross-Docking calculations

3.2.7 Generation of near-native ligand conformers

In order to highlight the performance of our improved EDES recipe, in this section
we discuss the ability of our template-based similarity protocol in generating near-
native conformations for the 20 target ligands. Table 3.21 reports the statistics of
the RMSD calculated on the heavy atoms of each ligand after it has been aligned
on the reference experimental conformation (released in stage 1b by the challenge
organisers), hereafter refereed as RMSDlig−fit. In all cases, the closest-to-native
ligand conformation generated displayed a RMSDlig−fit, lower than 2 Å, confirming
the good sampling performance of this approach, as already reported in ref. [291], in
generating at least one near-native conformation for all the different (macrocycle)
ligands considered in this work. However, in general terms, the RMSD values obtained
in ligand sampling are slightly larger than those obtained for the receptor (Table
3.21). In particular, for 6, 4 and 1 cases, corresponding to the 30, 20 and 0.5 %,
we obtained an average RMSDlig−fit respectively greater than 1.5, 2 and 2.5 Å,
while for the remaining cases the average RMSDlig−fit was smaller than 1 Å. Not
surprisingly, the above-mentioned cases in which the average RMSDlig−fit is greater
than 1 Å (Table 3.21), exception made for BACE03 and BACE15, are also the ones
for which the docking results are the least accurate. To further investigate into the
ligand generation strategy, figure 3.16 shows the histograms of RMSDlig−fit values
for all (500) ligand conformers generated per each target together with the ones of
the 10 selected for the docking runs by means of Tanimoto metrics. First of all, by
the visual inspection of the figure, it is noticeable how the conformation generation
protocol by means of the OpenEye OMEGA software is able to generate, in most
cases, a large fraction of conformations similar to the native one (RMSDlig−fit <
2.0 Å). However, as we know that also a slight change in the orientation of a single
ligand’s functional group can have a dramatic impact on docking calculations, the
lack, in all cases, of a considerable fraction of structures featuring a RMSDlig−fit
< 1.0 Å indicates the need to improve this step of the workflow. However, in the
majority of cases, the selection criterion used (based on the Tanimoto similarity
metrics) is able to include the ensemble of the 10 ligand conformations, a large
fraction of low-RMSD geometries, a notable exception being represented by BACE02.
Therefore, as already pinpointed by others [307–309], the generation of native-like
conformations of macrocyclic ligands regards not only the selection process, but also
(and even to a larger extent) the conformer generation step. Globally, the combined
ligand generation/selection approach produced a large fraction of the 10 selected
conformers with RMSDlig−fit values lower than 1.5 Å for 11 over the twenty targets
(BACE01, BACE03, BACE04, BACE05, BACE06, BACE08, BACE11, BACE12,
BACE13, BACE17 and BACE19), which are also roughly the ones for with we obtain
the most successful docking results with the Autodockrr and HADDOCK protocols.
On the other hand, ligand targets for which the ensemble of conformers featured the
most distorted geometries (BACE02, BACE07, BACE10, BACE14, BACE15 and
BACE16) were also the ones for which we obtained the worst docking performance.
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Figure 3.16: Histograms of RMSD values for all ligand conformers generated per target.
The x axis shows the heavy-atom RMSD (Å) of every conformer after optimal superimposition
on the crystallographic compound. The red lines highlight the RMSD values of the 10
conformers that were selected for docking based on the shape matching procedure outlined
in the thesis.

3.2.7.1 Stage 1b challenge

Finally, in the following we’ll discuss the results obtained in this self-docking stage
in which we docked the 10 ligand conformers used for stage 1a into the experimental
bound protein structures (made available by the organisers for this stage). This
step thus helps to highlight the accuracy in the generation of ligand conformers
and of possible limitations of the workflow not directly linked to the treatment
of protein flexibility. We performed this exercise only using AutoDock, using the
same scheme followed during stage 1a. In terms of averages (over the 5 poses
submitted) we obtained 2.24±2.13, 2.93±2.78 and 3.59±2.73 Å respectively for
〈RMSDmin〉, 〈RMSD1〉 and 〈RMSD〉. In terms of median values, on the other
hand, we obtained 1.60, 2.03 and 2.30 Å for RMSDmin

med, RMSD1
med and RMSDmed.

Results are also shown in Figure 3.14-e. Interestingly, the usage of the true holo
receptor conformations results only in a marginal improvement with respect to the
results of same protocol used at stage 1a (Table 3.18), while it did not affect the
success rate evaluated in terms of number of ligands featuring at least one pose
with RMSDlig−fit ≤ 2.5 Å, which remained the 75%. This result is not surprising,
in virtue of the good sampling of holo-like receptor conformations obtained with
the (improved) EDES recipe. Moreover, we also note (Figure 3.14-e) that ligands
shown to be the most challenging ones in stage 1a still represent the ones for which
reproducing the correct binding geometry is most difficult. In particular, no native-
like poses (RMSDlig−fit ≤ 2.5 Å) were found for BACE09, BACE10, BACE15,
BACE16, and BACE18, while for BACE07 all poses have RMSD values close to 2.5
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Å, following the same trend observed in stage 1a. While, in such cases, structural
relaxation of the poses, followed by a rescoring step, as done e.g. in the Autodockrr
approach, is expected to improve the results, we can note that, for cases like BACE02
and BACE14, also a very minor structural rearrangement towards the correct BS
geometry was sufficient to find at least one native-like pose (Figure 3.14-e).

3.2.8 Conclusions

In this work, we reported the performance of our hybrid docking approach in its
participation to the D3R Grand Challenge 4 competition [284]. Our workflow, based
on ensemble-docking calculations, involves a template-based approach to generate
and select a pool of ligand conformers coupled our EDES protocol (implemented for
this work with small modifications with respect to the original version) to sample
and select holo-like protein conformations starting from the apo one. Regarding
the generation of ligand conformers, a good accuracy in generating and selecting
near-native structures has been observed for most ligands, while EDES method
confirmed its great performance in sampling holo-like BACE-1 geometries for all
congeneric target ligands. In particular, the results obtained in the case of BACE-
1, undergoing only minor movements of a flap region upon binding, strengthen
the possibility to use EDES protocol also for targets involving small structural
rearrangements upon binding. These findings are reflected in the overall relatively
good performance obtained in stage 1a. Regardless of the specific approach used,
we were able to find near-native poses among the top 5 ones for at least 75% of the
twenty complexes subject of the pose prediction sub-challenge (stage 1a). More in
details, while HADDOCK was able to find near-native poses for more targets than
AutoDock, the latter, coupled to a computationally cheap post-docking relaxation
and rescoring of the poses, displayed the best overall performance among the four
approaches presented. Finally, we also performed docking calculations for all target
ligands on the experimental apo and holo conformations. In the first case, docking
results proved to be significantly less accurate than those obtained with the EDES-
obtained holo-like conformations, due to the incorrect positioning of the flexible flap
region in the apo structure. On the other hand, performing docking calculations on
the experimentally-obtained holo conformations produced only overall small pose-
prediction improvements with respect to using EDES-obtained geometries. This
confirms the ability of EDES approach to generate conformations prone to correctly
host the ligand(s) and pinpoints to its general applicability, although originally
developed only for targets undergoing large conformational changes upon binding.
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3.3 Tackling very challenging systems: adenylate kinase

As third application of the EDES workflow, here we present some preliminary
results concerning the sampling of holo-like structures for a further protein, the
adenylate kinase, featuring (i) very large conformational changes upon binding,
also involving secondary structure rearrangements and (ii) a very extended binding
region, composed of two (sub)pockets with different physico-chemical properties.
Namely, the two binding regions are known to bind different ligands via an allosteric
behaviour, where the binding of the first substrate in its binding pocket increases,
via extended conformational changes, the affinity for the ligand of the other binding
pocket [310–313].

Adenylate kinase (hereafter AK, PDB ID apo: 4ake [314], PDB ID holo: 1ake [315])
belongs to the category of phosphotransferase enzymes and its role is central in the
metabolism of adenine nucleotides. Moreover, its deficiency and/or malfunctioning
has also a role in the onsetting of different pathologies, such as the haemolytic anemia
[316]. Over the years, several works [25, 81–83] addressed the issue of reproducing
holo-like geometries of this target from its unbound structure, showing that AK
represents an extremely challenging system.

To address this target with our approach, we first identified the binding region
from the experimental holo structure, considering the residues within 3.5 Å from
the ligand, bis(adenosine)-5’-pentaphosphate (AP5), bound in the complex (PDB
ID 1ake). The residues lining the binding site (hereafter BSexp) are reported in
table 3.22, from which it can be seen that the site is rather extended, containing 30
residues. We also checked, using this definition of the BS, the RMSD considering
all heavy atoms and only backbone ones between the apo and holo conformations,
obtaining respectively 5.1 and 4.8 Å. The extent of the conformational changes is
also reflected in the variation of the RoG in the apo/holo transition, going from
14.5 to 11.2 Å and from 14.2 to 11.4 Å when calculated, respectively, over the heavy
atoms and only over backbone ones. On the other hand, the partial collapse of the
binding site due to ligand binding can also be noticed in a 23% RoG decrease in the
first case and of the 20% in the second one. This makes AK a perfect challenging
test case for our improved recipe not exploiting any experimental information on
the holo conformation, not even for the BS identification. For this reason, we put
ourselves in the condition of not having available the holo conformation and identified
the BS region to be used for the simulations by means of the site-finder software
COACH-D [257]. The software outputs a set of 10 possible binding sites, together
with a rank (C) reflecting the confidence of the prediction. The score ranges from
0 to 1, where a higher score indicates a more reliable prediction. We identified a
consensus binding competent region by merging the residues belonging to the first
three identified binding sites (BStot), having a C-score respectively of 0.99 (site-1),
0.89 (site-2) and 0.67 (site-3). The remaining predictions all presented a C-score of
0.1 and for this reason have been discarded. Interestingly, site-1, site-2 and site-3
contained respectively 13, 33 and 18 and residues, with site-1 and site-3 being almost
complementary to each other to generate site-2. Moreover, site-2 encoded 29 over
the 30 residues of BSexp. Next, we followed the same approach described in the other
works presented here to perform an unbiased MD simulation (10 µs long) and a set
of biased (metadynamics) simulations, following the same protocols presented in
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the other works. However, in the case of the biased simulations, together with the
approaches presented so far, we developed a new one based on an improved set of CVs.
Several works [18, 20, 27, 31, 305, 317] highlighted that a common and widespread
class of rearrangements in the context of ligand binding is represented by domain
hinge-movements, which can be interpreted as a (quasi-rigid) rotation of one domain
of the protein relative to another. In the spirit of being able to enhance this specific
class of motions together with the unspecific structural rearrangements triggered
by the usage of CIP variables, we introduced a new class of collective variables,
hereafter simply refereed as “contacts between rigid domains” (CRD). Defined in
the same way of the CIPs, these CVs specifically target hinge-like motions between
quasi-rigid domains. First, an analysis on the structural dynamics of AK has been
performed by means of the software SPECTRUS [318], identifying three quasi-rigid
domains: a main (central) one (CORE), surrounded by two smaller ones placed on
two opposite sides, the ATP-binding domain (LID) and the NMP-binding one (NMP)
(Figure 3.17). The binding site region extends through all the CORE domain up to
its borders with LID and NMP (reflecting the (sub)pockets identified COACH-D as
site-1 and site-3).

Figure 3.17: Adenylate kinase (AK) apo conformation, with the three (quasi)-rigid domains
identified by the software SPECTRUS [318] highlighted in different colors: black for the
central (CORE) domain and green and yellow respectively for the LID and NMP ones.
Residues of the extended binding region are also represented as spheres corresponding to
their centres of mass. Dark purple, green and yellow spheres indicate respectively the
residues in the CORE, LID and NMP domain.

Then, we divided the binding region into two sets of facing residues, respectively
at the CORE/LID and CORE/NMP interfaces. To identify the residues of the
binding region at both interfaces we selected BStot residues within a 8 Å cutoff from
any residue belonging respectively to the LID and NMP domain. This identified
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respectively the two regions refereed hereafter as BSLC (LID/CORE) and BSNC
(NMP/CORE) (Table 3.22). The CDRs were then defined according to the CIP
scheme, considering all the heavy atoms of the corresponding selections.

In the following, we’ll present the results in terms of sampling of holo-like confor-
mations of this target for (i) a standard unbiased MD simulation (MDapo), (ii) the
standard EDES approach with 4 windows (EDESstd) and (iii) an enhanced-sampling
approach combining the standard RoG/CIP set of CVs to the new CRD ones, with a
total 6 CVs (EDEScrd). In the latter case, both RoG and the three CVs have been
defined on the total binding site BStot, while the CRDs have been defined on BSLC
and BSNC . Moreover, in this case, together with the already mentioned difference
in the set of CVs used, the windows approach has been converted into one only
employing a variable upper restraint where the RoG value of BStot is used to gently
drive the sampling into structures with a decreased RoG value. Simulations start with
a very soft restraint on RoGX−ray

apo with a force constant of 10 kcal·mol−1· Å−1 for 1
ns, which is increased of the same amount each ns, until the force constant value of 50
kcal·mol−1· Å−1 is reached. Then, each 10 ns the value at which the restraint is set
is decreased of a fixed amount, in order to push the systems towards conformations
featuring a value of RoG decreased of the 20 % with respect to RoGX−ray

apo . Each of
the 6 replicas is 500 ns long, for a total simulation time of 3 µs. The results obtained
with these approaches will also be compared to the ones of other works addressing
the same target (Table 3.23).

Protein Binding site’s residues
BSexp A8,P9,G10,A11,G12,K13,G14,T15,T31,G32,L35,R36,M53,L57,L58

V59,V64,N84,G85,F86,R88,Q92,R119,R123,D158,R167,K200,P201,V202,V205
BSLC A8,P9,G10,A11,G12,K13,T15,R119,R123,D158,R167,K200,P201, V202,V205
BSNC T31,G32,L35,R36,M53,L57,L58,V59,V64,N84,G85,F86,R88,Q92

Table 3.22: BS definition for AK. The table reports the residues identified from the exper-
imental holo conformation (BSexp) as well as the two binding regions (BSLC and BSNC)
identified by the site-finder software COACH-D [257].
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Approaches
Protein region Results MDapo EDESstd EDEScrd

BSLC (noH) Minimum RMSD (Å) 1.43 1.31 1.41
% RMSD < 2.5 Å 10.9 32.2 25.6

BSNC (noH) Minimum RMSD (Å) 1.66 1.48 1.54
% RMSD < 2.5 Å 2.9 3.2 1.2

BSexp (noH) Minimum RMSD (Å) 3.4 2.6 2.2
% RMSD < 2.5 Å 0 0 0.01

Protein (BB) Minimum RMSD (Å) 3.7 2.4 2.2
% RMSD < 2.5 Å 0 0.002 0.1

Table 3.23: Performance of an unbiased MD simulation together with two enhanced-sampling
approaches in sampling holo-like conformations for the AK protein. For each approach,
the RMSD of the nearest-holo geometry is reported (minimum RMSD), together with the
percentage of structures with an RMSD lower than 2.5 Å. The calculations have been
performed on all heavy atoms for both the identified binding regions LID(NMP)/CORE
and for the experimental binding region while the analysis has been restricted to only the
backbone atoms for the whole protein.

Although the results presented in table 3.23 are still very preliminary and the
work is still on-going, a few considerations can be already drawn. First of all, from
the data presented it appears that not even a 10 µs long unbiased MD simulation
(MDapo) is able to sample holo-like conformations of such a complex binding region.
Indeed, the minimum value of BSexp is 3.4 Å. However, the unbiased approach is able
to reproduce the individual binding regions BSLC and BSNC rather well, respectively
with minimum RMSDs of 1.43 and 1.66 Å (from the values in the experimental
structures respectively of 2.3 and 2.5 Å), even if the rearrangements towards the holo
geometry of the whole binding site (BSexp) fail to combine well. On the other hand,
considering the biased approaches, we see that in terms of minimum RMSD both
of them improve the sampling performance compared to MDapo for the individual
binding regions and for BSexp. However, EDEScrd performs better than EDESstd
when reproducing BSexp, for which it is the only approach to generate conformations
featuring a RMSD < 2.5 Å. This might be linked to introduction of the new CVs
explicitly targeting hinge-like motions, displayed in this target when binding its
ligand AP5. However, it should also be noted that in this case the windows approach
of the original EDES method has been converted into the usage of only variable
upper restraint, so for a fair comparison the CVs used for the EDEScrd approach
should also be used within the original EDES protocol. Clearly further studies
are needed in this sense. Finally, concerning the ability of the protocol to drag
the whole protein towards holo-like conformations, we see the same trend observed
in reproducing BSexp. In particular, concerning RMSDprotein, our results can be
compared to those of Kurkcuoglu and Doruker [25] and Ahmed et al. [317]. Using
different sampling schemes, the nearest-to-holo conformation generated in both cases
displayed a RMSDprotein (considering the backbone atoms) of 2.4 Å.

Similar results are obtained also with our enhanced-sampling approaches, while
such a comparison is unfeasible for the binding site, since details of the reproduction of
this region were not disclosed in the other works. Docking calculations on the clusters
extracted from these trajectories should be now performed to assess the quality of
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those geometries in the reproduction of near-native ligand conformations. Moreover,
other combinations of CVs and sampling protocols could also be considered, to further
improve the understanding of the dynamical behaviour of this target. Finally, it
should be stressed again that in this case no experimental information on the holo
state has been used, not even to define the binding region, further confirming the
possibility to use such approaches also when the binding region is defined by means
of site-finder software.
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4.0.1 General considerations

In this thesis we have presented a novel protocol able to generate holo-like and
druggable protein conformations starting only from the knowledge of the apo structure.
The method employs metadynamics on a new set of CVs, specifically targeting the
putative binding site and resulting in the generation of maximally diverse protein
geometries, including a relevant fraction of holo-like and druggable ones. Moreover,
the usage of an ad-hoc designed clustering protocol allowed us to select a tractable
(small) number of conformations while maintaining or even increasing (compared
with the distributions obtained from the MD simulations) the fraction of holo-like
geometries. We tested this protocol in the framework of ensemble-docking, performing
both re-docking and cross-docking calculations. In the first case, the experimental
ligand geometry was docked into the receptor conformations generated with our
approach starting from an available X-ray unbound structure. We performed this
exercise with three different targets, undergoing different extent of conformational
changes upon binding and which had already proved to be challenging proteins for
docking calculations. In the second case, we tested the general applicability of the
whole workflow in D3R Grand Challenge 4 (GC4). Aim of the challenge was to
retrieve near-native ligand poses for a set of 20 (macrocycle) ligands known binders
of the BACE-1 enzyme. In this case, however, neither the 3D structures of ligands
nor of the receptor were made available by the organisers. Finally, we also reported
the preliminary results of applying a modified EDES protocol for the generation
of holo-like conformations of the adelynate kinase, a protein featuring an extended
binding region and undergoing the largest conformational changes among the other
targets addressed here.

Given the very encouraging results obtained in all cases, we are confident that our
protocol could pave the way towards an automated workflow for the generation of
holo-like and druggable conformations of proteins, still today representing a limiting
factor in structure-based drug design approaches.
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4.0.2 Perspectives

A straightforward way to improve the sampling could be to couple the MD simulations
with the use of co-solvents [61, 319] as done for example in ref. [320]. Furthermore,
our original set of CVs could be improved by explicitly including other orthogonal
degrees of freedom, such as global protein motions [25, 321, 322], rotations around
torsional angles [24, 65] or secondary structure changes [167, 323]. Alternative
routes to post-process docking poses can also be used, such as pose refinements
with re-scaled protein-ligand interactions in explicit solvent [164, 320]. Moreover,
experimental information from various sources on both the apo and holo states
as well as bioinformatics predictions could be used at any stage of the process.
Examples include the encoding of new ad-hoc CVs able to enhance the sampling
along specific (known to be crucial) motion modes or the usage of restraints in
both the conformational sampling/selection steps. With this respect, for example,
experimental data on the gyration radius of the complex (often experimentally easier
to obtain than the whole characterisation of the complex [324]) could be used as
restraints to drive the sampling via the already implemented “windows approach” as
well as used as filters during the clustering procedure [25].

Concerning the identification of the putative binding region, an important improve-
ment would be the setting up of an automatic protocol for binding site(s) identification
using consensus data from multiple site-detection programs [257, 325–328].

Our long term perspective would be to set up a database of protein conformations,
in which, for each target, a number of maximally diverse and druggable protein
geometries is provided. Moreover, the provided conformations should not be biased
towards specific ligand chemotypes, so that they could be used also in the assessment
of the binding properties of new therapeutic agents.
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