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ABSTRACT

Messenger RNA secondary structure prevents mutations at functionally important sites.

Mutations at exposed sites would cause micro-adaptations, niche-specialization, and

therefore, can be thought to promote K-strategists. Exposing, rather than protecting,

conserved sites, is also potentially adaptive because they probably promote macro-

adaptive changes. This presumably fits r-strategists: their population dynamics tolerate

decreased survival. We found that helix-forming tendencies are greater at evolutionary

conserved sites of plant mitochondrial mRNAs than at evolutionary variable sites in a

majority (73%) of species–gene combinations. K-strategists preferentially protect

conserved sites in short genes, r-strategists protect them most in larger genes. This

adaptive scenario resembles our earlier findings in chloroplast genes. Protection levels at

various codon positions also display disparity with respect to life history strategies of the

plants. Conserved site protection increases overall mRNA folding stabilities for some

genes, while decreases it for some others. This contrast exists between homologous genes

of r- and K- strategists. Such compensating interactions between variability, mRNA size,

codon position, and secondary structure factors within r- and K-strategists are most

likely, molecular adaptations of plants belonging to the two extreme life history

strategies. Our results suggest coevolution between molecular and ecological adaptive

strategies.
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1. INTRODUCTION

Messenger RNAs seem to have important functional properties beyond mere coding.

Their secondary structure seems to play several roles. For example, it regulates

transcription and gene expression by affecting mRNA half-lives and turn-over (1-14).

Carlini et al (15) suggest that gene expression in two Drosophila genes (Adh and Adhr) is

dually regulated by synonymous codon bias and mRNA secondary structure.

Experiments reveal effects of synonymous codon usage on expression level and mRNA

decay in human genes, irrespective of codon-anticodon interaction specificity effects

(16). In the extreme case of heat shock proteins, mRNAs are present constantly in the

cellular matrix, but are expressed only after high temperatures melt down the secondary

structure that prevents initiation of protein synthesis (17-19). Mammalian translation

appears to be controlled by mRNA structure near 5’ caps, as indicated by fluorescence

assays for translation efficiency in single live cells (20)

Another role that has been suggested is that of protection, and we focus here on this

aspect of mRNA structure. Site-specific helix-forming propensities in mRNA secondary

structure correlate negatively with site-specific substitution rates (21), also after

accounting for the replication-caused strand-specific effects on these rates in primate

mitochondrial genomes (22-23).

Presumably, helix forming regions in secondary structures are relatively protected from

mutations. The tendency for conserved sites to form helices suggests that this is a

protection mechanism at functionally important sites, at DNA (22-23) or mRNA levels

(21) or both (genetic code creates periodic pattern in mRNA secondary structure; 24) or

at protein levels (25). This could bias the mutational spectrum of a gene towards micro-

adaptive changes because mutations at the less conserved sites are more likely to produce
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functional proteins with slightly altered properties, shifting, narrowing or widening their

optima (i.e. for temperature). The opposite, where the more protected sites are more

mutation prone, is also a potential adaptation. This would increase adaptability to drastic

environmental changes and life history strategies. The former fits better species

considered as overall K-strategists because it potentially increases micro-adaptation and

allows niche specialization, while the latter fits overall r-strategists, as its costs by

decreasing survival are more likely to be bearable for organisms with many offspring and

shorter life-cycles.

Defining r and K strategies

The sigmoidal growth curve of an ideal population can be approximated by the

differential equation: dN/dt = rN (K - N) / K, where N is the number of individuals

present in a population, t is time, r is the intrinsic rate of population growth and K is the

carrying capacity of the environment. Organisms particularly well adapted to an

exponential increase in population size are called r-strategists (the r coming from the

differential equation described above). These r-strategists are characterized by great

rapidity in their development combined with an ability to produce large numbers of

offspring. They tend to inhabit disturbed and transient environments. In contrast to r-

strategists, K-strategists show extreme potential to survive and prosper at or near carrying

capacity, though often at the expense of their intrinsic rate of population growth. The

variable K refers to carrying capacity; they display a bias in their adaptations toward

maximizing this parameter.

Plants are one of the best studied subjects as far as life history strategies and

environmental habitats are concerned (26-28), and abundant molecular data is available

for this group. Therefore we explore these molecular adaptive scenarios of coevolution
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between mRNA secondary structure and the conservation of the mRNA’s coding

properties in plant mitochondria, considering the life history of the plant. In addition, we

have already published results from similar analyses of complete chloroplast genomes

(29). Comparing them with plant mitochondrial genome co-evolution data would

generate further useful insights. The existence of two metabolically important organelles

in plant cells, mitochondrion and chloroplast, and their respective genomes, will enable,

in the future, independent tests of the hypotheses developed here.

We analyzed the relationships between the site-specific helix-forming tendencies of plant

mitochondrial mRNAs and their corresponding site-specific evolutionary variability

levels according to four pre-defined rate categories. We analyzed separately the three

codon positions, expecting differences due to their different coding properties: the third

codon position is relatively freely variable because of the redundancy in the genetic code

and is often also used as a neutral control with respect to variation at the other two codon

positions for measuring positive selection, adaptation and functional divergence (30-39).

Nevertheless, one should remember that even synonymous changes at third codon

position have frequently functional consequences, such as, for example, effects on rates

and accuracy of protein synthesis (40-41) or costs of ribosomal frameshifts (42).

Our results reveal contrasting relationships between variability, mRNA size, codon

position, and secondary structure factors for r- and K-strategists. They suggest that

molecular adaptations divergently manifest themselves as adaptations towards extreme

life history strategies, in a gradual way. Our approach towards molecular processes and

evolution converges with that described by Skulachev (43).
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2 Materials and Methods

2.1 Choosing, Pruning and Aligning Data

We chose sixteen complete mitochondrial genomes belonging to the group Viridiplantae,

including four chlorophytes (Nephroselmis olivacea (NC_008239; (44)), Prototheca

wickerhamii (NC_001613; (45)), Pseudendoclonium akinetum (NC_005926; (46)),

Scenedesmus obliquus (NC_002254; (47))) and twelve streptophytes (Eudicots:

Arabidopsis thaliana (NC_001284; (48)), Beta vulgaris vulgaris (NC_002511; (49)),

Brassica napus (NC_008282; (50)), Nicotiana tabacum (NC_006581; (51)); Monocots:

Oryza sativa (NC_007886; (52)), Triticum aestivum (NC_007579; (53)), Zea mays mays

(NC_007982; (54)); Coleochaetales: Chaetosphaeridium globosum (NC_004118; (55));

Charales: Chara vulgaris (NC_005255; (56)); Marchantiales: Marchantia polymorpha

(NC_001660; (57)); Mesostigmatales: Mesostigma viride (NC_008240; (58)); Bryophyta:

Physcomitrella patens (NC_007945; (59))). These genomes were selected from twenty

complete mitochondrial genomes available in NCBI GenBank

(http://www.ncbi.nlm.nih.gov) as of May 2008. Our selection was designed to maximize

representation of extreme r and K life strategists, while simultaneously maximizing the

number of homologous protein-coding genes among the species. We observed that

discarding some taxa and thereby, decreasing the sampled taxon density yielded more

homologous genes. We compiled a dataset of twelve mitochondrial protein-coding genes

(atp9, cob, cox1, cox2, cox3, nd1, nd2, nd3, nd4, nd4l, nd5 and nd6) from the above

mentioned plant species, that best satisfied both sampling criteria.

We defined all species belonging to Spermatophyta as relatively fitting the K-strategists

life history syndrome, due to their relative large sizes, longevities, and low offspring
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numbers. This group also includes the large fern species of our sample. Other plants were

considered from an ecological point of view as relatively r-strategists (see for review of

the concepts (60)). This way of grouping largely parallels that of micro-organisms (r-

strategists) and macro-organisms (K-strategists). It is possible that the differences we

detect below might be as well due to the relative extent of pluri-cellularity (or complexity

at the level of cellular differentiation of the organism), rather than the ecological

interpretation we propose. However, diversity of cellular differentiation in itself might

well be part of the K strategy syndrome.

We aligned the amino acid and nucleotide sequences of protein coding genes from each

of these datasets using ClustalW (61). DNA alignments were further corrected using the

amino acid alignment as reference by introducing three gaps for each gap found in the

amino acid alignment. This was done in order to preserve the correct coding frame. We

considered only the coding sequences of the genes for our analyses, irrespective of the

strand on which they are coded, because this is the sequence expressed as mRNA.

2.2 Secondary Structure Calculations

We used the RNA folding version of the mFold software (62) available online

(http://www.bioinfo.rpi.edu/applications/mfold/rna/) and obtained secondary structures

for all the twelve genes, for each of the sixteen genomes. We considered all alternative

structures that were within 50% sub-optimality of the most optimal secondary structure.

We calculated the average stability across the 50% sub-optimality range of secondary

structures. We also averaged over the same range, the propensity of each site in the

alignment to be part of a helix. The helix-forming propensity is indicated by a binary

value (0 for loop and 1 for stem). We thus obtained the average site-specific helix-

forming propensity of each nucleotide in the gene sequence by dividing the number of
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secondary structures in which that site participates in helix formation by the total number

of secondary structures.
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Figure 1 Maximum Likelihood Phylogeny of Viridiplantae Mitochondrial Genomes
The mitochondrial phylogeny for sixteen Viridiplantae genomes is inferred using
PHYLIP v 3.67 (63) under dnaml criterion which uses maximum likelihood.
Phylogeny was calculated using the corrected nucleotide sequence alignments.
Branch lengths were also optimized by maximum likelihood and are proportional to
the number of nucleotide substitutions per site as per the scale bar. The life history
strategy adopted by the plant species is indicated as K or r, next to the species name
on the phylogeny.

2.3 Calculations of Variability Categories for Each Site

We inferred the mitochondrial phylogeny for this dataset using PHYLIP v 3.67. (63)

under dnaml criterion, which uses maximum likelihood. Phylogenies were calculated

using the corrected nucleotide sequence alignments. Branch lengths were also optimized

by maximum likelihood and are proportional to the number of nucleotide substitutions

per site. Figure 1 depicts the phylogeny we used, which also indicates the life history

strategies of the plant species. The r-strategists and K-strategists form two distinct

phylogenetic clusters, which stresses the need to test the working hypotheses proposed

here at ulterior stages with larger numbers of species while taking into account

phylogenetic relationships. Rate variation was allowed using a gamma distribution (64)

with shape parameter an= 1.75. The inferred phylogeny was further used to infer in which

predefined average rate categories each site fits, such as to maximize the overall

likelihood of the data, given the phylogeny. The number of site-specific evolutionary

variability categories depicting different average rate parameters and the corresponding

rates were decided based on probabilistic cut-offs evaluated by hidden Markov Models

by PHYLIP while inferring phylogenies. These cut-offs indicated a high probability of

sites fitting an average rate parameter =·0.5. Based on this information, we arbitrarily

chose four rate categories: M1, M2, M3 and M4, which represented average rate

parameters of 0.1, 0.2, 0.3 and 0.4. Maintaining a constant average rate across the

genome reduces the sensitivity in detecting heterogeneity at synonymous sites. Our

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

08
.1

92
2.

1 
: P

os
te

d 
28

 M
ay

 2
00

8

http://www.go2pdf.com


analysis incorporates average rate variation and is therefore sensitive to heterogeneity

even at the synonymous sites.

We further performed similar analyses on individual codon positions for this dataset and

its corresponding phylogeny. Qualitatively, classification of sites under these four

categories helps to assess the evolutionary variability composition of gene sequences

based on their relative fits to the four evolutionary rates. Determining the relative

frequency of sites fitting each of the four categories, we could comparatively assess

differences in evolutionary variability compositions if any, across different gene

sequences.

Table 1 Average site-specific stem-forming tendencies were obtained across the
initial 50% sub-optimal structures obtained from the RNA folding version of mFold
(62) for twelve mitochondrial mRNAs of sixteen plant species and the coefficients of
correlations between these site-specific stemminess measures and the variability
category of that site are represented below as ‘protectedness’ of variable sites. A
positive coefficient indicates that variable sites are protected and/or conserved sites
are exposed. A negative coefficient indicates that variable sites are exposed and/or
conserved sites are protected. Variability categories of each site were obtained using
the ‘dnaml’ command available in PHYLIP v3.67 package. The life-strategies, i.e.
‘r’ or ‘K’, adopted by the plant species are indicated within brackets, next to the
scientific names. Numbers in bold indicate significant correlations according to 2-
tailed t-tests. The last three rows, indicated by N, NK, and NR indicate the total
number of negative correlation coefficients over all the sixteen species, all the K-
strategists and all the r-strategists, respectively, for each gene. The last column
indicated by N is the total number of negative correlation coefficients over all genes
for each species.N
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Exposedness of conserved Sites (r)
atp9 cob cox1 cox2 cox3 nd1 nd2 nd3 nd4 nd4l nd5 nd6 N

Arabidopsis thaliana (K) -0.07 -0.02 -0.02 -0.02 -0.07 -0.03 0.05 0.03 0.02 -0.17 0.00 0.08 7
Brassica napus (K) -0.04 -0.03 -0.02 0.00 -0.03 -0.04 0.05 0.05 -0.02 -0.20 -0.04 0.08 8
Nicotiana tabacum (K) -0.12 -0.01 0.00 -0.02 -0.04 -0.02 0.01 -0.04 0.00 -0.21 0.00 -0.04 10
Oryza sativa (indica cultivar-K) -0.16 -0.02 -0.01 -0.01 -0.02 0.02 0.00 0.01 -0.04 -0.13 -0.05 0.01 8
Triticum aestivum (K) -0.11 -0.01 -0.01 -0.08 -0.03 -0.01 0.01 0.00 -0.02 -0.13 -0.03 0.00 11
Zea mays subsp. mays (K) -0.21 -0.03 0.00 0.01 -0.03 0.00 0.03 0.01 -0.04 -0.12 -0.04 -0.03 7
Beta vulgaris subsp. vulgaris (K) -0.12 -0.03 -0.03 -0.03 -0.06 -0.03 0.00 -0.03 -0.03 -0.18 -0.02 0.02 10
Chaetosphaeridium globosum (r) -0.07 -0.02 -0.04 -0.06 -0.03 -0.06 -0.02 -0.02 -0.03 -0.08 -0.01 0.02 11
Chara vulgaris (r) 0.00 -0.03 -0.03 -0.06 -0.08 -0.04 -0.06 -0.07 -0.01 -0.11 -0.07 0.00 12
Marchantia polymorpha (r) -0.02 0.00 -0.05 0.04 -0.08 -0.10 -0.05 0.01 -0.02 -0.10 -0.02 -0.02 10
Mesostigma viride (r) -0.12 -0.01 -0.05 -0.02 -0.09 -0.08 -0.06 -0.01 -0.04 -0.10 -0.10 -0.02 12
Nephroselmis olivacea (r) -0.12 -0.02 -0.07 -0.06 -0.04 -0.03 -0.03 0.08 -0.01 -0.02 -0.04 -0.03 11
Physcomitrella patens (r) -0.03 -0.02 -0.06 -0.09 -0.05 -0.04 -0.03 -0.04 -0.03 -0.04 -0.04 -0.05 12
Prototheca wickerhamii (r) -0.09 -0.07 -0.05 0.00 -0.11 -0.03 -0.03 0.09 0.02 0.01 0.00 -0.05 7
Pseudendoclonium akinetum (r) -0.12 -0.02 -0.02 -0.05 -0.01 -0.07 0.00 0.00 -0.05 -0.18 -0.09 0.07 9
Scenedesmus obliquus (r) 0.03 0.03 0.00 0.03 -0.01 0.04 0.01 0.00 -0.01 0.01 0.01 0.02 2
N 15 15 14 11 16 13 7 7 14 14 12 9
NK 6 6 5 4 6 4 0 2 5 6 4 3
NR 9 9 9 7 10 9 7 5 9 8 8 6
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3 Results

3.1 Protection by secondary structure of functionally important sites

The coefficients of correlation (rs) between the site-specific variability levels and site-

specific stemminess in the secondary structure of mRNAs are represented for all genes

and species in Table 1. Positive rs indicate that highly conserved sites in the gene tend to

be part of loops in the secondary structure and that the variable sites form helices.

Negative rs indicate that highly conserved sites form helices, and the more variable sites

are part of loops. Negative rs also fit general expectations that the functionally important

(conserved) sites are those most protected by the secondary structure. This expected

scenario is found in 73% of all combinations of genes and species, and is slightly weaker

in K-strategists (68%) than in r-strategists (77%). Each % value is significantly greater

than 50% by a sign test, but the difference between them was not statistically significant

by chi square test.

Some genes have greater proportions of significant correlation coefficients in the

expected negative direction for one strategist type than the other. This difference is strong

for cox3 (4 of 9 negative rs in r-strategists and 2 of 7 in K-strategists), nd2 (7 of 9

negative rs (significant at P < 0.05 for 2 cases) in r-strategists and none in K-strategists),

nd1 and cox1 (4 of 9 negative rs in r-strategists and none in K-strategists) and nd4L (2 of

9 negative rs in r-strategists and 7 of 7 in K-strategists) genes. The differences between

the mean rs in the two life history types are significant (2-tailed t-test for unequal sample

sizes) for cox1, nd1, nd2, and nd4L genes (Figure 2). These differences between them are

affected by gene size as a confounding factor, according to which the trends switch

directions. A greater percentage of negative correlation coefficients (69%) was found for
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smaller genes (with average size lesser than 950 nucleotides) than larger genes with

average size greater than 950 and lesser than 2200 nucleotides, (61%), in K-strategists,

though this difference was not statistically significant.
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Figure 2 Level of ‘protectedness’ of variable sites in mitochondrial genes vis-à-vis life
history strategies of plant species
The Y-axes are the correlation coefficients between the variability category of each
site in a gene and the tendency of that site to be part of helices in the RNA secondary
structure. These measures are averaged across all 7 K-strategists and 9 r-strategists.
The variation in variability-protection correlation measures are indicated by the
standard deviation bars. The double (**) and single asterisks (*) indicate significant
differences at the 5% and 10% levels of significance, according to a 2-tailed t-test.

According to these size categories, the large genes were nd1, nd2, nd4, nd5, cox1, and

cob with average sizes 991, 1751, 1705, 2200, 1633 and 1318 nucleotides, and the small

genes were atp9, nd3, nd4L, nd6, cox2 and cox3 with average sizes 276, 473, 324, 797,

861 and 946 nucleotides, respectively. In r-strategists, the relationship with gene size is

reversed: there are fewer negative rs (70%) in shorter genes than in larger genes (83%).

This means that the large genes in r-strategists have significantly more times negative rs
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than any size in K- and small size in r-strategists (P < 0.05, 1 tailed chi2 test (a 1 tailed

test is arguably justified because one can expect that cost minimization is more needed

for large (hence more costly) genes, especially in r-strategists disposing of less little

reserves)). Hence, minimization of mutation costs is greatest for large genes of r-

strategists.

3.2 Protection by Secondary Structure at Different Codon Positions

The overall trend at second codon positions fits best expectations that conserved sites

tend to form helices, as indicated by the relatively larger percentage (73%, which is

significantly more than 50% by sign test) of negative correlation coefficients for all

combinations of genes and species (Table 2B). The trend at first and third codon

positions is similar and weak (56-57%, not significantly different from 50% by sign test;

Table 2A and 2C). The average variability levels across genes are not very different for

the first, second and third codon positions (1.68, 1.46 and 1.57 respectively).

The proportion of negative rs for each gene correlates negatively with the average

variability levels of those genes at the first and second codon position, but positively at

the third codon positions. The percentage of negative rs is significantly lower (by 2 tailed

chisquare tests, P < 0.05) in K-strategists than r-strategists at first and second codon

positions (61:50 and 80:64, respectively), as reported above for the complete sequences.

However, at third codon positions, K-strategists yield more negative rs (62%) than r-

strategists (54%), although this difference is not statistically significant by chi-square

test. Different selection pressures at the synonymous and non-synonymous sites are

therefore, an additional factor regulating the coevolution of molecular and ecological life

history switches.
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A
Exposedness of conserved Sites (r) Codon Position I

atp9 cob cox1 cox2 cox3 nd1 nd2 nd3 nd4 nd4l nd5 nd6 N
Arabidopsis thaliana (K) -0.12 -0.02 -0.02 0.07 -0.07 0.03 0.08 0.02 0.02 -0.24 0.04 0.08 5
Brassica napus (K) -0.09 -0.01 0.00 0.09 -0.02 0.04 0.08 0.09 -0.01 -0.20 0.04 0.08 5
Nicotiana tabacum (K) -0.10 -0.02 0.07 -0.10 -0.03 0.09 -0.01 -0.10 -0.01 -0.29 0.07 -0.04 9
Oryza sativa (indica cultivar-K) -0.14 0.04 0.04 0.04 -0.06 0.11 0.04 0.07 -0.04 -0.19 -0.04 0.01 5
Triticum aestivum (K) -0.08 0.03 0.07 -0.08 -0.05 0.08 0.09 0.05 -0.01 -0.19 -0.03 0.00 7
Zea mays subsp. mays (K) -0.15 0.03 0.05 0.04 -0.07 0.07 0.11 0.06 -0.02 -0.19 -0.04 -0.03 6
Beta vulgaris subsp. vulgaris (r) -0.17 -0.05 0.02 -0.09 -0.03 0.05 0.04 0.00 -0.02 -0.29 0.03 0.02 6
Chaetosphaeridium globosum (r) -0.18 -0.13 -0.01 -0.13 -0.07 -0.08 0.01 -0.07 -0.04 -0.26 0.00 0.02 10
Chara vulgaris (r) -0.14 -0.07 -0.03 -0.02 -0.05 0.04 -0.03 -0.02 0.01 -0.21 0.00 0.00 10
Marchantia polymorpha (r) -0.16 -0.06 -0.05 0.04 -0.05 0.03 0.04 0.00 -0.01 -0.20 -0.01 -0.02 9
Mesostigma viride (r) -0.05 -0.12 -0.04 0.06 -0.08 0.00 -0.07 0.13 -0.02 -0.18 -0.10 0.06 9
Nephroselmis olivacea (r) -0.11 0.02 -0.03 -0.08 0.01 0.05 -0.02 0.02 0.01 0.01 -0.03 -0.03 6
Physcomitrella patens (r) -0.24 -0.12 -0.06 0.02 0.01 0.01 -0.04 0.01 0.01 -0.07 -0.01 -0.05 7
Prototheca wickerhamii (r) -0.04 -0.08 -0.12 -0.07 -0.08 0.01 -0.01 -0.11 0.02 -0.01 0.02 -0.05 9
Pseudendoclonium akinetum (r) -0.14 -0.05 0.01 -0.02 -0.07 -0.04 0.02 0.08 -0.06 -0.21 -0.09 0.07 8
Scenedesmus obliquus (r) 0.00 0.06 0.04 0.09 -0.01 0.11 0.01 0.05 -0.06 -0.03 0.05 0.02 3
N 15 11 8 8 14 3 6 5 11 15 10 8
NK 6 3 1 2 6 0 1 1 5 6 3 3
NR 9 8 7 6 8 3 5 4 6 9 7 5
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B
Exposedness of conserved Sites (r) Codon Position II

atp9 cob cox1 cox2 cox3 nd1 nd2 nd3 nd4 nd4l nd5 nd6 N
Arabidopsis thaliana (K) -0.06 -0.08 0.00 0.01 -0.13 -0.10 0.04 0.08 0.06 -0.20 0.04 0.08 5
Brassica napus (K) 0.05 -0.07 -0.01 0.04 -0.04 -0.09 0.05 0.09 -0.05 -0.17 -0.12 0.08 7
Nicotiana tabacum (K) -0.26 -0.04 -0.06 0.10 -0.05 -0.11 0.05 0.19 -0.05 -0.08 -0.06 0.01 8
Oryza sativa (indica cultivar-K) -0.21 -0.08 -0.03 0.05 0.02 -0.09 0.01 0.09 -0.05 -0.13 -0.10 0.02 7
Triticum aestivum (K) -0.13 -0.09 -0.02 -0.07 -0.02 -0.15 -0.02 0.09 -0.01 -0.14 -0.08 0.01 10
Zea mays subsp. mays (K) -0.07 -0.17 -0.01 0.03 -0.04 -0.09 0.00 0.10 -0.08 -0.14 -0.09 -0.02 9
Beta vulgaris subsp. vulgaris (r) -0.16 -0.14 -0.05 0.08 -0.10 -0.12 0.00 0.08 -0.06 -0.16 -0.09 0.03 8
Chaetosphaeridium globosum (r) -0.06 -0.04 -0.05 -0.03 -0.02 -0.05 -0.06 0.13 -0.01 -0.03 -0.03 0.04 10
Chara vulgaris (r) -0.01 -0.10 -0.01 -0.04 -0.11 -0.09 -0.14 -0.07 -0.06 -0.14 -0.16 0.01 11
Marchantia polymorpha (r) -0.14 -0.03 -0.05 0.08 -0.08 -0.22 -0.08 -0.07 -0.04 -0.13 -0.02 -0.01 11
Mesostigma viride (r) -0.08 0.01 -0.06 -0.01 -0.15 -0.19 -0.01 -0.15 -0.08 -0.09 -0.12 -0.07 11
Nephroselmis olivacea (r) -0.10 -0.10 -0.05 0.03 -0.10 -0.17 -0.02 0.23 0.01 -0.09 -0.04 -0.02 9
Physcomitrella patens (r) -0.10 -0.10 -0.09 -0.10 -0.14 -0.10 0.00 0.02 -0.08 -0.18 -0.06 -0.06 10
Prototheca wickerhamii (r) -0.05 -0.14 -0.03 0.15 -0.16 -0.09 -0.07 0.07 0.06 -0.11 -0.02 -0.02 9
Pseudendoclonium akinetum (r) -0.15 -0.06 -0.05 0.01 0.05 -0.12 -0.01 -0.14 -0.07 -0.22 -0.12 0.07 9
Scenedesmus obliquus (r) 0.03 0.06 -0.03 0.05 -0.01 -0.03 -0.02 0.07 -0.01 -0.03 0.00 0.03 7
N 14 14 15 5 14 16 9 4 13 16 15 6
NK 5 6 5 1 5 6 1 0 5 6 5 1
NR 9 8 10 4 9 10 8 4 8 10 10 5
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C
Exposedness of conserved Sites (r) Codon Position III

atp9 cob cox1 cox2 cox3 nd1 nd2 nd3 nd4 nd4l nd5 nd6 N
Arabidopsis thaliana (K) 0.05 0.02 -0.02 -0.13 -0.04 -0.05 0.03 -0.13 0.00 -0.14 0.04 0.10 6
Brassica napus (K) 0.01 -0.02 0.01 -0.09 -0.02 -0.10 0.03 -0.05 0.02 -0.24 -0.04 0.10 7
Nicotiana tabacum (K) 0.00 0.02 -0.02 -0.06 -0.07 -0.06 -0.01 -0.22 0.00 -0.23 -0.01 -0.05 9
Oryza sativa (indica cultivar-K) -0.05 -0.02 0.00 -0.09 0.00 -0.02 -0.05 -0.12 -0.01 -0.05 -0.02 0.03 9
Triticum aestivum (K) -0.07 0.00 -0.02 -0.10 0.00 -0.02 -0.04 -0.13 -0.04 -0.04 0.00 0.03 8
Zea mays subsp. mays (K) -0.26 0.01 0.02 -0.03 0.01 -0.03 -0.04 -0.14 -0.03 -0.02 -0.01 -0.01 9
Beta vulgaris subsp. vulgaris (K) -0.03 0.08 -0.04 -0.07 -0.08 -0.04 -0.03 -0.18 -0.01 -0.09 -0.01 -0.04 11
Chaetosphaeridium globosum (r) 0.08 0.11 -0.01 -0.02 0.05 -0.03 0.01 -0.10 -0.02 0.05 0.00 0.06 5
Chara vulgaris (r) 0.09 0.05 -0.02 -0.11 -0.10 -0.04 -0.01 -0.13 0.01 -0.02 -0.05 0.02 8
Marchantia polymorpha (r) 0.19 0.08 -0.06 0.02 -0.07 -0.12 -0.09 -0.26 -0.01 0.07 -0.01 -0.05 8
Mesostigma viride (r) -0.16 0.10 -0.08 -0.09 -0.04 -0.07 -0.10 0.02 -0.01 -0.02 -0.05 -0.05 10
Nephroselmis olivacea (r) 0.02 0.01 -0.11 -0.13 0.02 0.03 -0.03 -0.01 0.00 0.02 -0.04 0.06 5
Physcomitrella patens (r) 0.26 0.15 -0.01 -0.16 -0.04 -0.05 -0.06 -0.16 -0.05 0.05 -0.03 -0.05 9
Prototheca wickerhamii (r) -0.12 -0.02 -0.02 -0.07 -0.10 -0.04 -0.01 0.14 0.00 0.13 0.01 0.07 7
Pseudendoclonium akinetum (r) 0.01 0.04 -0.07 -0.15 0.03 -0.10 0.00 0.05 -0.03 -0.16 -0.04 0.02 6
Scenedesmus obliquus (r) 0.15 -0.01 -0.04 -0.03 0.03 0.01 0.05 -0.11 0.05 0.12 -0.03 -0.04 6
N 6 4 13 15 9 14 11 13 9 10 12 7
NK 4 2 4 7 4 7 5 7 4 7 5 3
NR 2 2 9 8 5 7 6 6 5 3 7 4

Table 2 Average site-specific stem-forming tendencies were obtained across the initial 50% sub-optimal structures obtained from
the RNA folding version of mFold (62) for twelve mitochondrial mRNAs of sixteen plant species and the coefficients of correlations
between these site-specific stemminess measures and the variability category of that site are represented below as ‘protectedness of
variable sites for individual codon positions (Table 2a, 2b and 2c for the first, second and third codon positions). The other details
are as in Table 1.
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P =0.0006*

P =0.003*

P =0.004*

P =0.009*

P =0.009*

P =0.005*

P =0.034*

P =0.097

P =0.005*
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P =0.020*
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Figure 3 RNA stability in mitochondrial genes vis-à-vis life history strategies of plant species
The Y-axes are the correlation coefficients between the variability category of each site in
a gene and the secondary structure stability (negative of ∆G) of mitochondrial mRNAs.
These measures are averaged across all 7 K-strategists and 9 r-strategists. The variation
in the stability correlation measures are indicated by the standard deviation bars. The
double (**) and single asterisks (*) indicate significant differences at the 5% and 10%
levels of significance, according to a 2-tailed t-test.
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3.3 mRNA secondary structure adaptations and species life history strategies

The overall stability of genes is significantly greater in K-strategists than in r-strategists, except

for nd3, for which the P-value of the differences in stabilities between the two life history types

is 0.097 (by 2-tailed t-test for unequal sample sizes; Figure 3). We also explored whether the

variability or conservation levels of helix-forming sites enhances or decreases overall mRNA

stability. We used regression analyses to estimate their contribution to stability in r- versus K-

strategists. The t-statistics of these regression analyses are plotted for all genes in Figure 4. The

t-statistics are in opposite directions for K- and r-strategists, for the majority of genes (8 among

12). atp9, cob, cox3, nd2 are genes for which the t-statistics are in the same direction. For most

genes, rs between variability and stemminess correlate positively with stability, irrespective of

their sign. This is significant for cob, cox1, cox3 and nd2. Significant negative correlations

with stability occur for nd4L and nd6 genes, for K-strategists. Variability correlates negatively

with stemminess for nd4L of K-strategists, and predominantly positively for nd6 gene in K-

strategists. This is also true for the r-strategists to a lesser extent or with lower significance,

than for K-strategists. However, these rs increase (though not significantly) with stability in

both genes for r-strategists. This suggests that different genes adapted their nucleotide

compositions and secondary structure to either up-regulate stability as in r-strategists, or down-

regulate stability as in K-strategists.
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Figure 4 Contribution of protected, variable sites (and/or exposed, conserved sites) to RNA
stability vis-à-vis life history strategies of plant species
The coefficient of correlation between the RNA stability, - (∆G), and exposed extents of
conserved sites in that mitochondrial mRNA depicts the Y-axis. The protection of
variable sites and exposure of conserved sites is estimated as in Figure 1, by the
correlation coefficient between the variability categories of sites and the tendencies of
these sites to be part of helices. The difference between this contribution for K- and r-
strategist species is highly significant (P=0.004, 2-tailed t-test). Asterisks denote gene-
strategy combinations for which the contribution to mRNA stability of exposed,
conserved sites is significant (2-tailed t-test).N
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4 Discussion

4.1 Regulating mutability

Our major result is that genome regions that are conserved, and hence are probably

functionally important, tend to be coded by sequences that participate in the formation of

helices at the mRNA level. This probably results in fewer mutations at the mRNA level,

increasing the accuracy of protein synthesis for a majority of sites. This suggests that some

highly conserved sites are conserved not because of their coding properties and their effects on

protein function, but because they protect by complementing other sites in helices, the latter

being functionally important beyond mRNA secondary structure. This means that part of the

design of mRNAs includes packing and protection constraints. As a result, mutations, also at

the DNA level (DNA, during single stranded periods (22-23) also self hybridizes in a manner

similar to RNA), are biased as a function of their potential adaptive effects on protein function.

This adaptation, as that described for off frame stops that stop protein synthesis after ribosomal

shift (42), decreases the costs of inaccurate translation due to mutations in the mRNA.

4.2 Adaptive strategies for mutability at molecular level

Results indicate the existence of three adaptive strategies, for various combinations of plants

and genes: 1. the most frequent strategy protects functionally important sites (for example in

the r- strategist Mesostigma viride, and the short gene nd4L, see Table 1) and is most frequent

at the second codon position (31 significant cases: 17.7% of all cases; Table 2B), as compared

to 11.5 and 10.9% at first and third codon positions, respectively); 2. a rarer strategy exposes

functionally important sites (sign tests show a significant excess of positive correlations in the

r-strategist Scenedesmus obliquus (Table 1), at first codon positions in ND1 (Table 2A) and at

third codon positions in ND3 (Table 2C)) and is most common at 3rd codon position (10
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significant cases: 5.7% of all cases), as compared to 2.6 and 1.5% for first and second codon

positions, respectively (2.5% of tests are expected to be positive and significant at P < 0.05

according to two tailed tests due to chance); and 3. a mixed strategy, where sequences probably

include sites or regions following each of the previous principles, resulting in fewer than

expected significant correlations combined with a lack of overall direction in the signs of the

correlations when looking at all the cases in these genes or species. These combined criteria

suggest that this mixed strategy exists for the r-strategists Nephroselmis olivacea (first codon

position), Scenedesmus obliquus (second codon position) and Chara vulgaris (third codon

position), and for ND3 (first codon position) and ND6 (first and third codon positions). These

considerations suggest that in any gene, some regions might tend to follow the protective

strategy and others, the exposing strategy, and that our analyses detect consistent tendencies

only in the relatively fewer cases where the majority of sites in that sequence follow the same

strategy.

4.3 Life history strategies, mRNA secondary structure stability and gene size

There were some differences in the tendencies of r- and K-strategists with respect to the

protection of conserved sites. Overall, and for the same gene length, mRNA secondary

structure stability was greater in K- than r-strategists (Figure 3). The stability increases more

with gene length in the former (Figure 5). It can be suspected that higher stabilities reflect

slower turn-over rates in K-strategists, which could also fit with slower growth. If mRNA half

lives are longer, the need for protection against mutations is also greater. This is in line with

the observation that the tendency to protect more conserved sites was also stronger in K-

strategists than in r-strategists, and this especially at the first and second codon positions. The

opposite was true for the third codon position, which suggests that K-strategists increase the
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adaptive flexibility of their molecular machinery mainly by synonymous or semi-conservative

mutations, which is less true for r-strategists.

atp9
nd4L
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cox2
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Figure 5 Mean stability of mRNA secondary structure as a function of the mRNA’s mean
length, for r- and K-strategists
The average stabilities were calculated over the folding stability of the mRNAs,
separately for K- and r-strategists. The K-strategists are indicated by filled circles and the
r-strategists are indicated by hollow circles.

Gene lengths were not systematically different between K- and r-strategists. This result

indicates that cost minimization does not include gene length, when comparing mitochondrial

genes of r and K plants, unlike examples reported for other taxa and genes (65-67).

4.4 Gene size as cofactor of molecular adaptive strategies

On average, the tendencies of K-strategists to protect conserved sites are not overwhelmingly

lower than those of r-strategists. However, the difference becomes striking when considering
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gene length. Indeed, in K-strategists, the tendency to protect conserved sites was strongest in

short genes, and decreased with gene length. The opposite was true in r-strategists. Hence, for

example, in the relatively large gene ND2, all K-strategists tend to expose conserved sites,

while a significant majority of r-strategists protect them (results significant by sign tests, Table

1).

One can presume that small genes have more regulatory functions, while larger ones tend to

have more catalytic, basic maintenance functions. Following this rationale, r-strategists would

maximize the potential for functional evolution of regulatory functions while being relatively

conservative in the evolution of house keeping functions. K-strategists would maximize the

evolutionary potential of large genes, and be conservative for regulatory genes. The larger

reserves and bodies of K-strategists enable them to “experiment” at the level of house keeping

functions in some body parts without being lethal for the individual plant, but their long life

cycles and low reproduction rates make such experimenting at the level of regulatory functions

unpractical. The opposite rationale holds with r-strategists, who possess relatively little

reserves and bodies, but large offspring numbers and short life cycles. The encouraging

similarity of these results with results obtained from analyzing chloroplast genomes (29; 8

species common between these two analyses) suggests this to be a general adaptive strategy for

plants rather than an organelle-specific strategy.

4.5 Gradual and saltatory evolution

We suggest that protection of conserved sites tends towards gradual, micro-adaptive evolution,

while exposing these sites leads to saltatory evolution. The results indicate that the gradual

mode is the most frequent, but less so in r-strategists. They also suggest that the latter would

tend to evolutionary macro-adaptations for regulatory functions, while K-strategists would tend

to macro-adaptive changes for basic maintenance functions. These rationales are again
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compatible with the general concepts of r- and K- strategies. It is likely that the association

between site variability and secondary structure varies not only among plants and protein

species, as well as regions of a sequence, but also among the 20 amino acids. Further studies,

based on more ample species sampling, and on comparisons taking into account the

phylogenetic relatedness among the various plant species, as well as less dichotomic

definitions of r- and K- strategies, are likely to elucidate the links indicated by this study

between molecular and whole organism levels of adaptation.
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5. Conclusions

1. Sites coding at mRNA level for functionally important sites in the protein are mostly

protected by secondary structure. However, in a quarter of the possible combinations of

mitochondrial genes and species, the opposite relationship exists: variable sites are more

protected by forming parts of helices and conserved sites being in the loop regions.

2. Second codon positions showed greater protection of conserved sites than first and third

codon positions, where trends were weaker.

3. In some cases, the third codon position showed greater than expected exposure of conserved

sites.

4. Overall, K-strategists protect conserved sites lesser than r-strategists, despite greater overall

stability of secondary structures.

5. This was true for the first and second codon positions, but at third codon positions, K-

strategists protected conserved sites more than r-strategists.

6. Conserved sites were more protected in short than large genes in K-strategists. This

relationship with gene size is reversed in r-strategists.

7. Overall secondary structure stability of genes increases with gene length and is greater for

K-strategists than r-strategists, independent of gene size.

8. In some genes for most plants, we observe a tendency to protect conserved sites, in fewer

species-gene combinations, a tendency to expose them. We did not detect any tendency in a

larger than expected proportion, suggesting that these sequences consist of a mix of sites that

follow each of the 2 strategies, defining a third category of molecular adaptation.
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9. The effects of variability or conservation levels of helix forming sites on stability, for the

same genes are often opposite for r- and K-strategists, suggesting that interactions between

gene composition, gene size and codon position factors ultimately affect gene stability

oppositely in the two extreme life history types.
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