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Abstract 

Synapse strength can be modified in an activity dependent manner, in which 

the temporal relationship between pre- and post-synaptic spikes plays a major 

role. This spike timing dependent plasticity (STDP) has profound implications in 

neural coding, computation and functionality, and this line of research is 

booming in recent years. Many functional roles of STDP have been put forward. 

Because the STDP learning curve is strongly nonlinear, initial state may have 

great impacts on the eventual state of the system. However, this feature has not 

been explored before. This paper proposes two possible functional roles of STDP 

by considering the influence of initial state in modeling studies. First, STDP 

could lead to phase-dependent synaptic modification that have been reported in 

experiments[1, 2]. Second, rather than leading to a fixed phase relation between 

pre- and post-synaptic neurons, STDP that includes suppression between the 

effects of spike pairs [3] lead to a distributed entrained phase which also depend 

on the initial relative phase. This simple mechanism is proposed here to have the 

ability to organize temporal firing pattern into dynamic cell assemblies in a 
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probabilistic manner and cause cell assemblies to update in a deterministic 

manner. It has been demonstrated that olfactory system in locust, and even other 

sensory systems, adopts the strategy of combining probabilistic cell assemblies 

with their deterministic update to encode information. These results suggest that 

STDP rule is a potentially powerful mechanism by which higher network 

functions emerge. 

Since the discovery of spike-timing dependent plasticity (STDP) [4-6], in which a 

synapse is depressed or potentiated according to the time of pre- and post-synaptic 

spikes, the functional role of STDP has been an intensive field of research. Recent 

findings, both theoretical and experimental, on fundamental questions include 

facilitation of dual coding[7, 8], bringing about competition between different 

synapse[9, 10], converging a neural network to a stable state[11, 12], enhancing 

synchronization of neuron and neural networks[13-19], shaping the selectivity of 

neuron or neural circuits [20-24] and mediating sensory experience-dependent circuit 

refinement in the developing nervous system[25, 26]. Other results have also been 

reported, such as bridging the gap between time scales of behavioral tasks and neuron 

firing[27], generating great memory capacity[28], eliminating location dependence of 

synapses and enabling democratic plasticity[29], reducing variability of neural 

response[30], leading to reinforcement learning[31, 32], leading to slowness learning 

required for recognizing objects in variable context[33] and solving the distal reward 

problem[34]. 

Here I present two possible consequences of STDP : initial relative phase 



dependent probabilistic frequency synchronization (entrainment), which could result 

in phase-dependent LTP/LTD, and initial relative phase dependent entrained phase, 

which could lead to formation of probabilistic cell assemblies and cause deterministic 

updates between them. 

Neural synchronization is believed to underlie many important functional aspects 

of neural systems, such as perception, learning, memory and attention [35, 36]. 

Mechanisms that lead to neural synchronization have been widely discussed in the 

literature. As demonstrated in [13] and [19], STDP facilitates frequency 

synchronization (entrainment) to a great extent if potentiation and depression is well 

balanced. However, since the modification of synapse conductance in STDP is 

bi-directional and the corresponding learning curve is strongly nonlinear, little 

difference in initial state may cause great difference in the ultimate fate of the system, 

e.g. success or failure of entrainment, just as initial value does in a deterministic 

chaotic system. Moreover, the interactions between the effects of spike pairs [3] 

further complicate the dynamics of the synapse by introducing suppressions between 

them, therefore allowing more possibilities for initial state to play.  

To consider the effects of initial state in STDP and synchronization is not trivial, 

since it has been reported experimentally that phase sensitive synaptic modifications 

is present both in θ (7Hz)[1, 37-40] and β-γ (20-60Hz) [2]oscillation in vitro. And it 

has also been demonstrated that STDP is involved in olfactory information flow in 

locusts to ensure precise synchronization [15]. Furthermore, it has been demonstrated 

earlier that olfactory information in locust is encoded by both transient cell assembly, 



in which the firing of a specific neuron is probabilistic, and the precise temporal 

sequence in which cell assemblies are updated [41]. It is natural to conjecture that the 

update sequence of cell assemblies is determined by the initial state of neurons in 

consequent cell assemblies. Therefore, it is reasonable and meaningful to ask whether 

and, if yes, how, initial state of a STDP system would have great impacts on the 

eventual state of the system. 

This paper presents an effort to study the influence of initial state in STDP, by 

numerically investigating a simple system which consists of an excitatory STDP 

synapse and two repetitive firing neurons with different autonomous period. Detailed 

numerical studies strongly support that initial state is a major determinant to the 

eventual state of the system. Specifically, the probability of successful entrainment is 

largely determined by the initial relative phase of the system. Moreover, the synaptic 

conductance evolves to a stable value if successful entrainment is established and, 

decreases to zero if not. Therefore, this mechanism may be able to account for the 

phase sensitivity of synaptic modification [1, 2, 37-40], a phenomenon that has been 

reported experimentally. Furthermore, if STDP with suppression[3] is considered, the 

stable entrained phase is no longer fixed to a unified value. In stead, the entrained 

phase is dependent on the initial relative phase and distributed in a wide range. Thus 

STDP with suppression provides a natural mechanism to organize post-synaptic 

neurons’ temporal firing pattern according to their initial state and allow probabilistic 

cell assemblies to update in a determinant manner. 



Results 

The model is numerically integrated via a 4th order Runge-Kutta scheme. The two 

neurons fire periodically first, then at a predefined time, the synapse is activated. The 

pre-synaptic neuron keeps its firing period while the post-synaptic one is now driven 

by the synaptic current, which is regulated by the time difference between pre- and 

post-synaptic neurons through STDP rule. Two statistics are analyzed, one is 

inter-spike interval of the post-synaptic neuron (ISI2), and the other is the relative 

phase (ΔΦ) of the pre-synaptic neuron’s spike calculated according to spike time of 

the post-synaptic one (Fig.1, δt/ISI2). The phase relation just before synapse activation 

is termed as initial relative phase. The initial relative phase may be positive or 

negative, indicating the order of pre- and post-synaptic spike just before synapse 

activation. 

 

Put Figure 1 here 

 

Synchronization of pre- and post-synaptic neurons occurs when T1/ISI2 =1. This 

criterion has been employed in[14] and [13]. Since the relative phase of the two 

neurons is also constant if T1/ISI2 =1, and phase relations are factors of major interests 

in this paper, therefore, an alternative criterion of synchronization based on relative 

phase is used. The spike time of the pre-synaptic neuron is converted into relative 

phase of spike time of the post-synaptic neuron. Typically, one simulation contains 

300 runs, each from random initial conditions. Each run of simulation yields about 95 



relative phases (ΔΦ) among which the last 40 are used to compute coefficient of 

variation:  

 
22ΔΦ − ΔΦ

ΔΦ
. 

The coefficient of variation of relative phase (CVRP) indicates not only whether 

synchronization is achieved, but also precision and robustness of synchronization.  

STDP rule modifies the synaptic conductance g(t) according to Δt=t1-t2, a 

dynamic factor that in turn is controlled by g(t). The outcome of this interaction 

between Δt and g(t) may be dependent on the initial value of Δt. Fig. 2 gives an 

example. The left column shows inter-spike interval and the right column plots 

corresponding synapse conductance g(t). Fig.2 (a)~(d) correspond to STDP rule in 

which synaptic update is only based on a pair of nearest spikes (nearest STDP). Fig. 

2(a) shows a case where the post-synaptic neuron is successfully entrained by the 

pre-synaptic one. The corresponding synaptic conductance (Fig. 2(b)) keeps hopping 

between two stable states, allowing a dynamical and flexible entrainment. Fig. 2(c) 

shows a case where the period of the post-synaptic neuron returns to its original state, 

indicating that the STDP synapse between two neurons goes to zero (Fig. 2(d)). Fig. 2 

(e)~(h) are results from STDP with suppression[3]. Note that in this case if 

entrainment is successful, the synaptic conductance achieves one stable value instead 

of hopping between two states (Fig. 2(f)). If entrainment fails, the synaptic 

conductance will also achieves a non-zero level (Fig. 2(h)), different from the case 

shown in Fig. 2(d). All simulations employ the same set of parameters; however, they 

are started from different initial states. 



 

Put Figure 2 here 

 

With nearest STDP, eventual fates of the synapse have no third choice. It can 

either take the value according to the synchronization mechanism described in[13], 

corresponding to entrainment, or decrease to zero (Fig. 3(a)). This is in agreement 

with simulations in[9], where a bimodal distribution of synapse resulted from nearest 

STDP rule. However, in the case of STDP with suppression, the synaptic conductance 

will evolve to a nonzero level, regardless of whether entrainment is successful (Fig.3 

(b)).  

 

Put Figure 3 here. 

 

To get a global view of entrainment, I carried out simulations to scan the 

autonomous period of post-synaptic neuron. The results of scanning T2, with T1 fixed 

at 143ms, are presented in Fig. 4. The left column plots times of synchronization in 

total 300 runs as a function of T2. The criterion of synchronization has been set to 

across 2 orders of magnitude (inset in (c)) to gain more information about 

synchronization precision. The right column is the corresponding entrained phase, 

with the criterion of CVRP <= 0.001. Fig. 4(a) and (b) are results from nearest STDP, 

Fig. 4(c) and (d) are results from STDP with suppression. Note that the initial value of 

v1, v2, g0 and S are random in each of 300 runs. Therefore it is reasonable to regard 



the ratio of times of synchronization to 300 (number of total runs) as synchronization 

probability.  

 

Put Figure 4 here 

 

Probabilistic synchronization exists in a wide range of T2 both for nearest STDP 

and STDP with suppression and, the probability of synchronization varies nonlinearly 

with T2. One could find local minimum and maximum on curves of Fig. 4 (a) and (c). 

Except for those T2 whose probability of synchronization equals 1, there are four 

phases on the curves in Fig. 4(a) and (c), two monotonous increasing and two 

monotonous decreasing. Nearest STDP has wider range of entrained post-synaptic 

period than that of STDP with suppression. However, STDP with suppression lead to 

more precise entrainment. This is indicated by the overlapping of the three curves, 

each corresponding to different synchronization criterion, in Fig. 4(c). In contrast, 

curves in Fig. 4(a) only overlap in the middle part.  

Nearest STDP yields phase-locked synchronization (Fig. 4(b)), which has been 

pointed out in [13] and has been demonstrated in [15] to facilitate olfactory 

information flow in locust. In contrast, STDP with suppression leads to entrainment 

with distributed phase relation (Fig. 4(d)). The distributed entrained phase and the 

probability of synchronization are further studied by investigating the influence of 

initial relative phase. 

The idea of paying special attention to initial relative phase is based on the fact 



that regular repetitive firing neurons could be described as phase oscillators [42]. In 

the case of STDP in which synapse conductance is continuously modified, however, 

the fast intrinsic dynamics of the post-synaptic neuron do not play a major role. The 

dynamical behavior of the system depend more on the dynamics of the synapse 

conductance [13]. Therefore, a natural step to explore into probabilistic 

synchronization and distributed entrained phase (Fig. 4(d)) is to investigate the 

influence of initial relative phase. I carried out simulations for different T2, with T 1 

fixed at 143ms. One simulation consists of 15000 runs, each are from random v1, v2, S 

and g0. Some typical results of these simulations are shown in Figure 5 and 6, in 

which synchronization probability and entrained phase (Fig. 6 red dot) are plotted as 

functions of initial relative phase. Each of the four subplots in Fig. 5 and 6 

corresponds to one T2 value in the four different phases in Fig. 4(a) and (c) 

respectively.  

 

Put Figure 5 here 

.  

Put Figure 6 here 

 

Synchronization probability is a function of both T2 and initial relative phase. 

When T2 is relatively near to T1, appropriate positive and negative initial relative 

phase could lead to synchronization (Fig. 5(a) and (b), Fig. 6(a) and (b)). However, as 

T2 increased, only certain positive initial relative phase could lead to entrainment (Fig. 



5(c) and (d), Fig. 6(c) and (d)).  

In the case of nearest STDP, entrained phase is strictly fixed, regardless of initial 

relative phase and T2. However, if STDP with suppression is considered, the entrained 

phase varies with respect to both initial relative phase and T2. The largest lag between 

entrained phases in Fig.6 is about half of the period of T1, i.e. 70ms.  

Discussion 

Timing is important in neural systems[43]. However, how does timing 

demonstrate its importance? Answers to this question are not complete now. This 

paper tried to shed some light on this question by considering the influence of initial 

relative phase in STDP. Numerical results strongly support that the initial relative 

phase influence the ultimate state of the model severely. The probability of 

synchronization, entrained phase and the stable synaptic conductance all show 

dependence on the initial relative phase.  

Phase sensitive synaptic modification has been reported in experiments [1, 2, 

37-40]. Fig. 3 and Fig. 5 demonstrate that synaptic modification is sensitive to initial 

relative phase in the case of nearest STDP. If the synapse conductance is at a mediate 

value before the stimulus incoming, whether LTP or LTD will be induced by the 

stimulus depends on initial relative phase. However, a decrease of synaptic 

conductance to zero (Fig. 2(d)) is not biologically plausible. This defection may not 

occur if other types of synaptic plasticity[44] are included.  

The entrained phases are fixed in nearest STDP. This mechanism has been 



demonstrated both in locust olfactory system[15] and a StdpC experiment[13, 45]. 

However, results in this paper predicts that, if STDP with suppression[3] is working, 

entrained phase is no longer fixed. Instead, it is also dependent on the initial relative 

phase and the autonomous period of the post-synaptic neuron T2. Here, I propose this 

result may have implication in the formation of cell assemblies and the dynamical 

update between them.  

Neurons are grouped into transient subpopulations, also known as cell assemblies 

in which neurons are in strong synchrony, to perform specific tasks. It has been 

suggested in [46] and proved[47] that the phase relation between two cell assemblies 

determines the conductance of their mutual influence. In locusts[41],.odor information 

is represented not only by the active cell assembly, in which any neuron’s firing is 

probabilistic, a situation that brings about some ambiguities if information is 

represented only by the active cell assembly, but also by the deterministic updated 

sequence between them. 

Supposing a configuration in which synchronous synaptic inputs excite many 

spontaneous spiking post-synaptic neurons. These post-synaptic neurons may have 

same or different spontaneous periods. According the results in Fig. 6, the 

synchronous inputs could entrain the post-synaptic neuron probabilistically according 

to initial relative phase. Furthermore, those entrained post-synaptic neurons will fire 

at different phases in a deterministic manner. Thus, post-synaptic neurons are divided 

into different subpopulations and will fire in a temporal pattern that is determined by 

their spontaneous period and their initial relative phases. STDP with suppression 



seems to be an appropriate and a potentially powerful mechanism to support the 

encoding strategies in locust olfactory system and other sensory systems[41]. 

However, there are some questions with respect to the above proposal. Odor 

identification could be finished in a few hundred millisecond in insects and 

mammals[41]. Can the synchronous inputs entrain post-synaptic neurons with a fast 

enough speed if the proposed mechanism is working? And, does neural noise destroy 

these effects? I have observed in simulations that if STDP with suppression is 

considered, the model behaves more robust in the presence of neural noise and 

reaches its stable state faster than if nearest STDP is involved (data not shown). The 

most difficult question, if the proposed mechanism is working, may be how the 

update sequence of cell assemblies can be stimulus specific and how neurons’ firing 

can be phase locked the oscillation of local field potential. Answers to these questions 

are not available within the simple model considered in this paper. 

In conclusion, this paper investigates the influence of initial state in STDP. Initial 

relative phase dependent probabilistic synchronization is found to exist in a large 

parameter range. Phase sensitive synaptic modification is found to occur in nearest 

STDP. STDP with suppression could lead to distributed entrained phase, which may 

have implications in the probabilistic formation of cell assemblies and the 

deterministic update between them.  

Methods 

The model consists of two Hodgkin-Huxley type neurons coupled by an excitatory 



STDP synapse. Each neuron is modeled with the standard formalism: 
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Here the suffix i=1 and 2, denotes pre- and post-synaptic neuron respectively, V 

denotes membrane potential. If V reaches a threshold value of -20 mV, the neuron is 

considered to fire a spike. Ii is a constant input current that drives each neuron to fire 

periodically. In other words, the autonomous periods of neurons, labeled as T1 and T2, 

are determined by Ii. Isyn denotes the synaptic current from the pre-synaptic neuron. 

Parameters are: C=30μF, gL=1μS, EL=-64mV, gNa=360μS, ENa=50mV, gK=70μS, 

EK=-95mV. The gating variables that govern activation and inactivation of ion 

channels yi(t)={mi(t),hi(t),ni(t)} satisfy first order kinetics: 
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The term Isyn in the model denotes the synaptic current from the pre-synaptic 

neuron. It is modeled as Isyn=g(t)S(t)(V2(t)-Vrev). Here Vrev =20mV is the reversal 

potential of the post-synaptic neuron, S(t) is an activation variable which obeys 
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Parameters are Vth=-20mV, Vslope=12mV and tsyn=40msec. The initial value of S is 

taken from a uniformly distributed random number between 0 and 1 to simulate the 

probabilistic nature of synaptic processes. g(t) is the maximal conductance which 



undergoes modification continuously. The modification of g(t) is carried out through 

an intermediate variable graw which is updated in an additive STDP manner: 
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Here τ0 reflects the finite time of information transport through the synapse. 

Parameters are gmax=25nS, gmin=gslope= gmax/2=12.5nS, τ0=30msec, τ+=100msec, 

τ-=200msec, A+=9nS, A-=6nS. The initial value of the intermediate variable graw0 is set 

to be gmax/2=12.5nS. The initial value of the maximal conductance g is set to a 

random number distributed equally in the interval of [5, 20] nS. 

If interactions between spike pairs[3] are considered, the corresponding update 

rule of synaptic conductance takes the form 
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Here n is the number of the most recent spike of neuron i. Parameters are τ1=100msec 

and τ2=200msec.  

The same model, with similar set of parameters, has been used in[13] to 

approximate the Aplysia neuron in a “Spike timing-dependent plasticity Clamp” 



experiment. One could find more detailed description of this model in[13]. 
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Figure Legends 
 

Fig. 1. Relative phase, ΔΦ=δt/ISI2, is illustrated. The relative phase just 

before the synapse activation is of particular importance and is termed as initial 

relative phase. The synapse is activated at a pre-defined time (solid arrow or 

dashed arrow) in simulation. The case represented by the solid arrow denotes 

a positive initial relative phase, while the dashed arrow indicates a negative 

initial relative phase. Blue solid line: trajectory of the membrane potential of the 

pre-synaptic neuron. Red dashed line: that of the post-synaptic neuron. 

 

Fig. 2. Examples of initial state dependent synchronization are shown. 

Parameters are T1=143ms, T2=200ms, g(0)=12.5nS. Left column shows ISI2, 

right column shows corresponding synaptic conductance. (a)~(d) are results 

from nearest STDP, (e)~(h) are results from STDP with suppression 

 

Fig. 3. Histograms of stable synaptic conductance drawn from 300 runs 

are plotted. The last 40 conductance of each run is used in plotting. (a): 

nearest STDP. Two components located in the interval of (15, 20) nS 

correspond to hopping synaptic conductance in Fig. 2(b). The component 

located at zero corresponds to entrainment failure in Fig. 2(d). (b): STDP with 

suppression. In this case, whether entrained or not is not indicated by the 

distribution of stable synaptic conductance. Parameters are: T1=143ms, 

T2=206ms. 



 

Fig. 4. Synchronization probability and entrained phase are plotted as 

functions of T2. T1 is set to 143ms. (a) and (b): nearest STDP; (c) and (d): 

STDP with suppression. Inset in (c) indicates the criterion of synchronization 

used in plotting. T1 is fixed at 143ms. 

 

Fig. 5. Probability of synchronization is plotted as a function of initial 

relative phase in the case of nearest STDP. Parameters are: T1=143ms, 

T2=168ms (a), 222ms (b), 235ms (c), 252ms (d). 

 

Fig. 6. Both probability of synchronization and entrained phase (red circle) 

are plotted as functions of initial relative phase in the case of STDP with 

suppression. Parameters are T1=143ms, T2=165ms (a), 188ms (b), 198ms (c), 

206ms (d).  














	Article File #1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

