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<footnote>  

<abs> Atomic force microscopes and optical tweezers afford direct probe into the 

inner workings of single biomolecules by mechanically unfolding them.1-10 Critical 

to the success of this type of probe is to correctly extract the free energy differences 

between the various conformations of a protein/nucleic acid along its forced 

unfolding pathways.11-15 Current studies rely on the Jarzynski equality16 (JE) or its 

undergirding Crooks fluctuation theorem17 (CFT), although questions exist on its 

validity17-19 and on its accuracy/efficiency.13,20-21 The validity of JE relies on the 

assumption of microscopic reversibility.17,18 The dynamics of biomolecules, 

however, is Langevin stochastic in nature. The frictional force in the Langevin 

equation breaks the time reversal symmetry and renders the dynamics 

microscopically irreversible, even though detailed balance holds true. The 

inaccuracy of JE has largely been attributed to the fact that one cannot sample a 

large enough number of unfolding paths in a given study, experimental or 

computational.13,15 Here I show that both of these questions can be answered with 

a new equation relating the nonequilibrium work to the equilibrium free energy 

difference. The validity of this new equation requires detailed balance, but not 

microscopic reversibility. Taking into the new equation equal numbers of 

unfolding and refolding paths, the accuracy is enhanced ten folds in comparison to 

a JE study based on a similar but larger number of unfolding paths.  
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<p> The beautifully simple Jarzynski equality16 (JE) 
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relates the free energy difference AB GGG −≡Δ  between equilibrium states B and A to 

the nonequilibrium work )( p
BAW →  done to the system along the p-th of the UN  unfolding 

paths from A to B. Here Bk  is the Boltzmann constant, T  is the temperature, and the 

brackets represent the statistical average over the unfolding paths sampled in a given 

experimental or computational study. JE has been shown to be a consequence of the 

Crooks fluctuation theorem17 (CFT) 
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which is valid when the dynamics of the system is microscopically reversible. Namely, 

for each unfolding path from A to B, one can sample a refolding path back from B to A 

that is exactly the inverse of the unfolding path. In that case, of course, 

<fd>              WW BA =→ ,  WW AB −=→ .                                                    (3) 

Otherwise, CFT, Equation (2), and JE, Equation (1), do not hold. In experiments or 

simulations, however, this reversibility is not there unless the process is reversibly slow, 

so that the system is allowed to fully equilibrate at each step along the 

unfolding/refolding path. 

<p> Without invoking the microscopic reversibility, required by JE and CFT, I show, in 

the Methods section, that the equilibrium free energy difference between State B and 

State A is related to the nonequilibrium work by the following equation: 
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This simple relation is the central result of this Letter. The brackets in the numerator 

stand for the statistical average over the UN  unfolding paths sampled in a given 

experimental or computational study. The brackets in the denominator represent the 

same, but over the RN  refolding paths. )( pW is the work done to the system when it is 

unfolded/refolded along the p-th unfolding/refolding path. 

<p> Several points should be noted here. First, Equation (4) is fundamentally different 

from Equation (1), the JE. The two only agree in a trivial case when the system is 

dominated by one unfolding path that is reversible. In such a limit, the free energy 

difference is expectedly equal to the reversible work done on the system. Second, the 

validity of Equation (4) does not rely on the assumption of microscopic reversibility. It 

just requires detailed balance between equilibrium states A and B. This will be clearly 

illustrated in its derivation in the Methods section. Third, if the nonequilibrium work 

BAW → were Gaussian and so were ABW → , then Equation (4) would become 

( ) 2/
RABUBA WWG →→ −=Δ . This over-simple limit may not hold in real systems, 

but it sheds light on why Equation (4) is more accurate and more efficient than the JE. 

The dissipative work (energy spent to overcome friction) along the refolding path and 

the dissipative work along the unfolding path end up cancelling one another in Equation 

(4).20,22-24 This cancellation works to enhance the efficiency of Equation (4). There are 

no such workings in the JE, Equation (1).  

<p> To illustrate the efficiency/accuracy of Equation (4) in realistic applications, I have 

performed computer simulations of unfolding a deca-alanine poly-peptide, using the all-

atom CHARMM 27 force fields25 implemented within the NAMD26 molecular 
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dynamics software package. This system is simple enough for which an exact solution is 

achievable by unfolding and refolding it at a reversibly slow speed, yet complex enough 

to serve as a prototype for studies of proteins and nucleic acids. Fig. 1 shows the work 

done to the poly-peptide when it is unfolded at a speed of 10-4 Å/ps along with the work 

done to the system when it is refolded at the same speed. The negligible difference 

between the two work curves suggests that unfolding/refolding at 10-4 Å/ps is indeed 

slow enough. The processes can be regarded as reversible and the work as a function of 

the end-to-end distance is a good approximation to the exact solution of free energy. 

Fig. 1 also shows the results of this research work and the results of JE in comparison 

with the exact solution. The free energy of this work is obtained through Equation (4) 

with 10 unfolding and 10 refolding paths at an irreversible speed of 10-2 Å/ps. The JE 

free energy is obtained through Equation (1) from 20 unfolding paths sampled at the 

same irreversible speed. In Ref.[13], Park et al give a thorough study of the same system 

based on JE. Sampling ten blocks of ten unfolding paths, they find that the deviation of 

the JE value of the free energy is 1.9 kcal/mol from the exact solution in the fully 

unfolded state with an end-to-end distance of 33.42 Å. They also estimate that the error 

bar is 1.6 kcal/mol. My simulations confirm these results. Park et al also employ the 

second and third order moments of work in place of the exponential average of JE. They 

conclude that the second order moment gives the best result and that the third order 

moment causes greater deviations from the exact solution and greater error bars, 

indicating that the nonequilibrium work distribution is not Gaussian. 

<p> I have sampled 10 unfolding and 10 refolding paths at the irreversible speed of 10-2 

Å/ps. These 20 paths are divided and arranged into four sets of five unfolding and five 

refolding paths. Fig. 2 shows one of the four sets of nonequilibrium work curves. The 

work curves along the refolding paths obviously do not overlap with their counterparts 

along the unfolding paths, evidencing the lack of reversibility required by the JE. Fig. 2 

also shows the free energy computed through Equation (4) from these four sets of 
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unfolding and refolding paths. The free energy so obtained is found to be very close to 

the exact value (Fig. 1). The deviation from the exact value is found to be 0.1 kcal/mol 

in the fully unfolded state and the error bar is approximately 0.2 kcal/mol. Indeed, 

Equation (4) is ten folds more accurate than the JE, Equation (1), for deca-alanine.  

<p> Based on the validity and efficiency of Equation (4), it is reasonable to expect that 

its applications will yield accurate estimations of free energy differences from 

nonequilibrium work for mechanical unfolding experiments and simulations of 

biomolecules, even when a limited number of unfolding and refolding paths can be 

sampled. 

<meth1ttl> Methods 

<meth1hd> In this section, I present a rigorous derivation of Equation (4) and show that 

its validity only requires detailed balance, far less restrictive a constraint on the 

dynamics of a system than the microscopic reversibility that is required by CFT and JE. 

Consider a biomolecule consisting of N atoms having 3N degrees of freedom. L degrees 

of freedom will be controlled in an experimental or computational unfolding/refolding 

process from State A to State B. For example, deca-alanine has N=104 atoms and 312 

degrees of freedom. In the simulations discussed in the previous section, one terminal 

nitrogen atom is fixed while the other terminal nitrogen atom is pulled with a constant 

velocity v. For this case, L=6 degrees of freedom are controlled while the other 306 

degrees of freedom are subjected to stochastic dynamics. In State A, the L coordinates 

of the two terminal atoms are fixed to one set of values, A
ll xx =  for Ll ,2,1= . In State 

B, they are fixed to another set of values, B
ll xx =  for Ll ,2,1= . The 3N-L coordinates 

assume stochastic values according to the statistical weight factors determined by the 

energy and the entropy of the system. The probability for the system to be in the 
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macroscopic states A and B are related to its equilibrium free energy AG  and BG as 

follows:27 
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In this equation, AZ  and  BZ  are the partition functions of the system when it is 

constrained to the macroscopic states A and B respectively. Z is the total partition 

function of the system without any constraints.  

<p> In equilibrium, the system satisfies the detailed balance27,28 between the 

macroscopic states A and B. Namely,  

<fd>         ( ) ( ) ( ) ( )ABPBpBAPAp →=→  .                                     (6) 

In this way, the equilibrium free energy difference between the macroscopic states A 

and B is related to the transition probabilities ( )BAP →  from A to B 

and ( )ABP → from B to A as follows: 
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The transition probabilities are determined by the stochastic dynamics of the system that 

is governed by the Langevin equation,28 
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Here im  and ix  are the atomic mass and coordinate of the i-th degree of freedom 

respectively. γ  is the damping (frictional) constant.V is the potential energy of the 

system that is a function of all coordinates. iξ is the stochastic force acting on the i-th 

degree of freedom. It is assumed to be Gaussian with the following characteristics: 

<fd>      0)( =tiξ ,  )'(2)'()( ttTkmtt ijBiji −= δδγξξ .                      (9) 
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Here ijδ is the Kronecker delta and )'( tt −δ  is the Dirac delta function. For each sample 

of the stochastic force { iξ } generated according the following probability 
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the Langevin equation (8) produces one transition  path { )()( tx p
i } starting from one 

initial condition { A
l

p
l xx =)0()( }(unfolding) or  { B

l
p

l xx =)0()( } (refolding). Ω  is the 

normalization factor. Time t is taken to be in the interval of ( )τ,0 . In terms of transition 

paths, the transition probabilities are28 
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Involved in the above equations are Wiener path integrals with noise (stochastic force) 

measure [ ]ξD . Implicit are the integrals over the 3N-L degrees of freedom.  

<p> Now, for a controlled path of the L degrees of freedom, { })(txl , that goes from 

{ }A
ll xx =)0(  to{ }B

ll xx =)(τ , one can obtain the unfolding transition probability from 

Equation (11), using Equations (8) and (10), 
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When the unfolding velocity is uniform, 0)( =txl .  In the over-damped limit, ∞→γ , 

the transition probability can be approximated as 

<fd>             ∑ ∑∫
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂−

Ω
=→

UN

p

L

l l
l

BU x
Vtxdt

TkN
BAp

1 1 0

)(
2

1exp11)(
τ

,                      (14) 



8 

which has no explicit dependence upon the damping parameterγ . Now it is obvious that 

the unfolding transition probability is related to the work done on the system: 
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In the same manner, one can prove that the refolding transition probability is also 

related to the work done on the system: 
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With Equations (7), (15), and (16), I complete the rigorous proof for the central result of 

this Letter in Equation (4). 
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<LEGEND> Fig. 1, Free energy (kcal/mol) as a function of the end-to-end 

distance (Å): The exact results are the red and green curves that overlap with 

one another completely. The result of this work is the pink curve that nearly 

overlaps with the exact results. The JE result is the blue curve. The zero point 

of the free energy is set to where the end-to-end distance is equal to 13.42 Å.  

<LEGEND> Fig. 2, Free energy/nonequilibrium work (kcal/mol) as a function of 

the end-to-end distance (Å): The red curve is the free energy computed with 

Equation (4). Five green curves are the nonequilibrium work  done along five 

unfolding paths ( BAW → )and five blue curves are the nonequilibrium work done 
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along five refolding paths ( ABW →− ). The state when the end-to-end distance is 

13.42 Å is chosen as the reference point for the free energy and the work. 
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