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Summary. 
Vaccines  capable of controlling neoplastic and infectious diseases which depend on the 

cellular immune response for their resolution, have proven difficult to develop. We, and 

others, have previously demonstrated that the potent immunogenicity of hepatitis  B surface 

antigen (HBsAg), the already- licensed  human vaccine for hepatitis B infection,   may  be 

exploited to deliver foreign antigens for cytotoxic T-lymphocyte (CTL) induction. In this study 

we demonstrate that  recombinant (r) HBsAg DNA  delivering  a CTL polyepitope appended 

at the C’ terminus elicits concomitant responses to multiple epitopes restricted through a 

diversity of MHC class I haplotypes, which are relevant in a number of human diseases.  We 

show that the rHBsAg DNA  vaccine elicits concomitant protection against neoplastic and 

infectious disease. These studies vindicate the use of HBsAg as a powerful vector to deliver 

CTL responses to foreign antigens, and have implications for a multi-disease vaccine 

applicable to the HLA-polymorphic human population. 

 

Keywords;   DNA vaccine, cytotoxic T-lymphocyte, hepatitis B surface antigen, cancer, 

infectious disease, epitope 
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Introduction 
Vaccine strategies other than attenuated or killed whole organism vaccines, capable of safely and 

effectively inducing cellular and humoral responses in humans have not proven easy to develop 1. 

The small envelope protein of hepatitis B surface antigen (HBsAg-S) self-assembles into highly 

organised virus-like particles (VLPs) in yeast, insect cells and mammalian cells 2. HBsAg VLPs 

are  exploited as the current globally licensed vaccine for Hepatitis B virus infection in humans 

(including children). The vaccine has a long history in millions of recipients, inviting the usage of 

HBsAg as a vector for delivery of immunogens from other infectious diseases and tumors. 

Regulatory issues surrounding HBsAg vaccines containing   foreign disease-associated 

immunogens  may be less stringent than for other approaches.  

The HBsAg VLP vaccine generates strong B cell immunity, comparing favourably with 

traditional strong immune response inducers 3. The ability of this vaccine to also induce cellular 

responses may be linked to CTL epitope density that occurs in VLPs and/or the ability of VLPs to 

be easily endocytosed 4. HBsAg may also be delivered as a DNA vaccine 5,6. Using DNA as 

immunogen,  CTL induction by intracellular translated HBsAg protein occurs through the 

‘classical’ endogenous pathway  and may occur through the ‘alternative’ exogenous pathway via 

secreted HBsAg particles or protein 7,8. However powerful immune responses to HBsAg DNA 

vaccine are obtained even in the absence of VLP formation. Whether the HBsAg protein has a 

specific characteristic that complements the way that DNA vaccines are presented to the immune 

system, whether it is from some intrinsic adjuvant-like characteristic  or provision of T-‘help’, 

remains unclear. 

DNA-based vaccines hold particular promise as an option to prevent and treat infections  

and some tumors 9. While clinical trials have hitherto shown that the magnitude of immune 

responses primed by standard DNA vaccines is generally weaker in humans than in small 

mammals, a number of strategies (eg. targeting antigen to the endoplasmic reticulum or dendritic 

cells, using adjuvants, prime-boost regimens and/or use of cytokines) have been explored to 

overcome this. One approach which particularly  shows promise for HBsAg  is electoporation or 

ballistic delivery of DNA directly into the skin 10.  A number of these ‘new generation’ 

approaches to DNA vaccination  in humans is now underway 11, and the immunological results of  

trials appear similar to the results we and others have obtained in mice 12. 

We have previously reported a novel strategy for generating cellular immunity using 

HBsAg vector  by deleting HBsAg-specific CTL epitopes and replacing them with foreign CTL 

epitopes of similar physical properties (ie. size and hydrophobicity) 13,14. In addition, other groups 

have extended the C’ and/or N’ termini of HBsAg with whole antigens and shown that such 

vaccines can induce protective immunity15-18. While we have previously highlighted the enormous 
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potential of HBsAg as a potential generic vaccine framework for inducing potent protective 

immunity19, it is clear that this potential is only just being realised . 

  The demonstration that multiple CTL epitopes may by linked linearly to form a 

polyepitope vaccine 20 suggests the possibility of simultaneous protection against multiple 

diseases, by encoding epitopes from a number of different pathogens. In the present study we 

explored HBsAg DNA as a vector to deliver   DNA encoding a polyepitope comprising eight 

murine and human  disease-protective CTL epitopes. We demonstrate that immunization of mice 

induced CTL responses to all eight foreign epitopes.  We also demonstrate  that CTL responses 

were associated with protection against  neoplastic and infectious diseases. 

These data underscore the efficacy of HBsAg DNA as a powerful vector to elicit CTL 

responses to multiple foreign epitopes encoded within a DNA polyepitope. They also demonstrate 

the capacity of  rHBsAg DNA to deliver simultaneous protective immunity against multiple 

diseases.   

 

Results 

pHBsAg-Polyepitope#3 
The essential features of  the HBsAg-polyepitope construct  (pHBsAg-Polyepitope#3) are 

depicted in Fig 1. Mammalian codon optimisation of HBsAg and the  CTL polyepitope 

C’terminal extension  was used to predispose to enhanced  polyprotein production. To minimise 

internal initiation of truncated proteins, we preferentially selected epitopes without methionine 

residues, and those two epitopes ( LLM and YLL) which  did contain  a methionine residue  were 

included at the extreme N’ terminus. The epitopes included in the polyepitope were previously 

described to elicit disease-protective CTL responses in  murine models of human disease  (Table 

1). Individual epitopes were separated by hydrophilic ‘spacer’ sequences to reduce the overall 

hydrophobicity of the polyepitope.  Additionally, an arginine residue was included at the C’ 

terminus of each epitope, in order to maximise antigen processing and immunogenicity 21. 

 

 

 Immunization with pHBsAg-Polyepitope#3  DNA elicits CTL responses to  

each encoded foreign  epitope.  
To investigate effector CTL responses, we quantified epitope-specific IFN-γ secretion by 

splenocytes harvested ex vivo from mice receiving a single immunization  with pHBsAg-

Polyepitope#3 .  A significantly higher  number of splenocytes from mice immunized with 

pHBsAg-Polyepitope#3 secreted  IFN-γ when cultured in vitro with peptides RAH, ESY,GIL, 

VGA, and SII ( Table 1, 3-letter code) than without peptide (p<0.001) (Fig. 2). Ex vivo 

splenocytes from mice immunized with HBsAg wild-type  DNA (pHBsAg W/T)  cultured in vitro 
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with these peptides  did not secrete IFN-γ above the level observed when cultured without peptide 

(data not shown). 

We also investigated  whether immunization with pHBsAg-Polyepitope#3  would 

induce memory CTL capable of being restimulated in vitro and of  killing  target cells displaying 

the encoded foreign epitopes. Splenocytes from pHBsAg-Polyepitope#3- or pHBsAg W/T-

immunized mice were restimulated for 6 days in vitro with each of the encoded foreign epitopes 

individually, and then reacted in ELISPOT assay. Significantly higher numbers of restimulated  

splenocytes  secreted IFN-γ when cultured in vitro with peptides RAH, ESY,GIL, SII ( each 

p<0.001), VGA, KLI (each p<0.007) and YLL (p=0.05) (Fig. 3A), than without peptide .  

Numbers of  IFN-γ secreting cells were significantly higher in restimulated splenocytes than in ex 

vivo splenocytes (14-114 fold, p<0.001; Figs. 2, 3A).    Restimulated splenocytes specifically 

killed  epitope-pulsed , but not unpulsed, target cells (p<0.001, except LLM, Fig. 3B). 

Restimulated splenocytes from pHBsAg W/T- immunized mice did not secrete levels of IFN-γ 

above background ,  or kill peptide pulsed target cells (data not shown). 

 We were concerned that although the above immunization regimen elicited responses 

to seven of the eight foreign epitopes encoded by pHBsAg-Polyepitope#3, no response was 

elicited to epitope LLM. To address this we adopted a prime-boost approach. Mice immunized 

once the pHBsAg-Polyepitope#3 were boosted with  a low dose of LLM peptide, and CTL 

response subsequently evaluated. Restimulated splenocytes   from mice immunized with 

pHBsAg-Polyepitope#3 and boosted with LLM peptide,  but not mice immunized with pHBsAg-

Polyepitope#3 without peptide boost, or mice immunized with peptide without prior pHBsAg-

Polyepitope#3 prime,  specifically killed target cells expressing the LLM epitope (Fig. 4).    

 Together, the above data indicates that a single immunization with recombinant 

HBsAg plasmid DNA encoding eight  human disease-relevant  epitopes as a polyepitope  

appended at the C’terminus,  primes for IFN-γ associated effector and memory T cell  responses 

which are cytotoxic for target cells expressing  each of the epitopes.    

 

Immunization with pHBsAg-Polyepitope#3 confers protection against 

growth of tumors  expressing  tumor-associated antigens.    
We  investigated whether  mice immunized with pHBsAg-Polyepitope#3 were simultaneously 

protected against tumors expressing either the HPV 16 E7 or ovalbumin tumor-associated 

antigens.  We first confirmed in  two representative mice  per group of seven that immunization 

with pHBsAg-Polyepitope#3 evoked a IFN-γ secreting effector immune response directed to 

RAH epitope (of HPV 16 E7 ) and to the SII  epitope (of  ovalbumin)   as per Fig. 2 (data not 

shown).   The remaining   five mice per group were challenged with E7-expressing TC-1 tumor or 

with ovalbumin-expressing B16-OVA tumor. In the TC-1-challenged mice, significantly fewer 
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mice acquired tumors, and at  later time points after challenge, in the group immunised with 

pHBsAg-Polyepitope#3 compared with the group immunised with pHBsAg W/T (Fig 5A). 

Additionally, individual tumor growth was significantly slower  in the pHBsAg-Polyepitope#3-

immunized  mice which developed tumors (Fig 5B p<0.008). Similarly, in the B16.OVA-

challenged mice, significantly fewer mice acquired tumors, and at  later time points after 

challenge, in the group immunised with pHBsAg-Polyepitope#3 compared with the group 

immunised with pHBsAg W/T (Fig 5C). Additionally, individual tumor growth was slower in the 

pHBsAg-Polyepitope#3-immunized group (Fig 5D p=0.05).  

These data indicate that  immunization with a recombinant  HBsAg DNA vaccine 

encoding a  polyepitope containing multiple  tumor-associated epitopes confers concomitant 

protection, associated with epitope-specific IFN-γ secreting CTL responses,   against the growth 

of  multiple tumors. 

 

Immunization with pHBsAg-Polyepitope#3 confers protection against  

pulmonary hRSV infection.  
We asked whether immunization of groups of mice with pHBsAg-Polyepitope#3 (which 

expresses a hRSV CTL epitope; ESY, Table 1) would confer protection against pulmonary 

infection in mice challenged with hRSV. Groups of H-2d mice (seven per group) were immunized  

twice with 100 ug  pHBsAg-Polyepitope#3 or pHBsAg W/T id. We first confirmed in  two 

representatives mice  per group that immunization with pHBsAg-Polyepitope#3 evoked  a IFN-γ 

secreting effector immune response directed to ESY   as in  Fig. 2 (data not shown). The 

remaining five mice per group were inoculated  intranasally with  hRSV and four  days later, 

lungs were removed for virus quantitation.  The mean  hRSV  titer was significantly reduced in 

the group immunized with pHBsAg-Polyepitope#3, compared with the  group immunized  with 

pHBsAg W/T (Fig. 6). 

 Taken together, the data in Figs 5 and 6 indicate that immunization with pHBsAg-

Polyepitope#3 affords protection against two tumors and one respiratory virus  infection in 

murine disease models. 

 

Immunization with pHBsAg-Multiepitope#2, encoding foreign CTL epitopes 

inserted into the HBsAg backbone, elicits multiple CTL responses.  
We have previously shown that rHBsAg DNA vaccines in which sequences encoding endogenous 

HBsAg CTL epitopes are deleted  from the HBsAg backbone and replaced with DNA encoding a 

foreign epitope, elicit CTL responses to the inserted foreign epitope 22. We wished to examine 

whether a rHBsAg vaccine encoding multiple epitopes inserted into the HBsAg backbone might 

also be effective in eliciting CTL responses relevant to multiple diseases.  We constructed, using 
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this epitope replacement strategy ,  a rHBsAg DNA vaccine (pHBsAg-Multiepitope#2)  

containing  six of the eight CTL epitopes listed in Table 1, inserted into the HBsAg backbone ( 

Fig 7). We examined the efficacy of induction of CTL responses, capable of killing  target cells 

displaying the encoded foreign epitopes. Splenocytes from mice immunized with HBsAg-

Multiepitope#2  or  pHBsAg W/T were restimulated for 6 days in vitro with each of the six 

encoded  foreign epitopes, and reacted in ELISPOT assay.  A  higher  number of splenocytes from 

mice immunized with pHBsAg-Multiepitope#3 secreted  IFN-γ when cultured in vitro with 

peptides GIL, ESY, RAH, and  KLI, (but not but not VGA or LLM (not shown)), than without 

peptide (Fig. 8A).In addition, restimulated splenocytes specifically killed cognate epitope-pulsed , 

but not unpulsed, target cells (Fig 8B ). Restimulated splenocytes from pHBsAg W/T immunized 

mice did not secrete levels of IFN-γ above background , or kill peptide pulsed target cells (not 

shown).  

These data indicate that CTL responses  to foreign epitopes may be elicited by a 

rHBsAg DNA vaccine encoding multiple disease-relevant foreign CTL epitopes inserted into the 

HBsAg backbone.  

 

Discussion 
In this study we have constructed a human codon optimised recombinant HBsAg DNA vaccine 

encoding a polyepitope comprising eight mouse and human disease-protective CTL epitopes 

restricted through four MHC class 1 haplotypes. We demonstrate effector and memory CTL 

responses to the foreign epitopes following a single immunization (in the case of seven of the 

eight epitopes), and where tested, an association of CTL induction with protection against 

neoplastic and infectious disease. While animal ethics considerations precluded challenge of mice 

with multiple diseases simultaneously, the data are consistent with the notion of simultaneous 

protection of immunized recipients against multiple diseases, mediated by CTL responses 

restricted through multiple MHC class 1 (including HLA) haplotypes. Taken together, these 

observations are supportive of the concept of a currently licensed human vaccine (HBsAg) 

genetically modified to encode human disease- protective epitopes. Such a vaccine would be 

applicable to the human MHC class 1 polymorphic population  to simultaneously protect against 

multiple human infectious diseases and some cancers  which depend on the cellular immune 

response for their resolution.  

The observation that CTL-mediated disease resolution is usually focussed on one or a 

few epitopes 23 and that a majority of  human MHC class I polymorphism is contained with 

relatively few epitope cross-presenting class I ’supertypes’  24, suggests that wide population 

coverage against  a substantial number of diseases may be feasible with C’terminal polyepitope 

extensions containing relatively few CTL epitopes.  
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In this study, we also extend our previous observations 25 that  insertion of  multiple 

foreign CTL epitopes within    the HBsAg backbone  allows the generation of multiple 

simultaneous CTL responses to the foreign epitopes.  While a direct side-by-side comparison of 

the efficacy of C’terminal extension with CTL polytope ( ie. pHBsAg-Polyepitope#3)  versus 

insertion of individual epitopes into the backbone (ie.pHBsAg-Multiepitope#2), was not made, it 

is clear that both strategies are highly efficacious for induction of CTL responses to inserted 

epitopes. C’terminal extension is logistically preferable as vaccines using this rHBsAg strategy 

are more easily engineered. In other studies, we have shown that experimental DNA vaccines  

encoding foreign antigen simultaneously appended at both the C’ terminus and the N’ terminus of 

the HBsAg protein elicit protective CTL responses to antigen at both termini (O.Haigh, in 

preparation). Thus, the capacity for delivery of foreign CTL epitopes by HBsAg DNA vaccines 

may be enhanced by simultaneous intra-molecule insertion, and N’-terminal extension, in addition 

to  C’terminal extension. Constraints on size of foreign insert may not be so limiting for vaccine 

derivation when DNA rather than VLP  is used as the delivery modality. 

  For the induction of CTL-mediated immunity, comparison of delivery of wild-type 

HBsAg as a  DNA vaccine compared with delivery as a  VLP vaccine, suggests that the former is 

the preferred modality in terms of immunogenic efficacy, as well as  economically and practically 
26. Continuous exposure to small doses of antigen 27 produced by on-going transcription from 

persisting HBsAg DNA  ( eg. in muscle cells 28 and follicular dendritic cells 29 is likely 

responsible for the persistence of  effector  and memory CTL responses for many months 

following a single intramuscular injection of HBsAg plasmid DNA 30,31 ( R.Tindle, unpublished).  

We have demonstrated the efficacy of rHBsAg DNA vaccines given as a single 1000-fold lower 

dose, than that for conventional DNA vaccines in mice (R.Tindle, unpublished). Wild-type 

HBsAg-based DNA vaccination required a dose up to 2,500-fold lower in humans than used in 

previous clinical trials with conventional DNA 32.  Following injection, transfected antigen 

presenting cells (APCs) will activate the CTL response through the intracellular (endogenous) 

processing pathway 33. This pathway has likely evolved to deal with nascent proteins from the 

ribosome machinery, and it has been demonstrated that particle formation within the APC is not 

required for endogenous processing of the HBsAg polyprotein. 34. Whether secretion of HBsAg 

polyprotein and/or particles, eg. from DNA transfected muscle cells, provides a second 

mechanism for HBsAg CTL generation via the exogenous pathway 35 is controversial 36,37.  Data 

generated from a matched series of plasma DNA vectors expressing wild-type  or several mutant 

forms of HBsAg that were secretion-defective, or severely truncated,  indicated that neither VLP 

formation nor it’s secretion or liberation plays a significant part in the development of the CTL 

response 38.  

In summary, DNA-based HBsAg immunization is extremely potent, and may be 

explained by prolonged or higher expression, high epitope density, superior antigen processing, 
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the presence of multiple T-helper epitopes 39,40, biasing the response via cytokines  to a Th-

1profile 41 and, possibly in some circumstances,  secretion for uptake of polyprotein/particle by 

APCs. The observation of long-lasting CTL responses  ( and antibody)  in neonatally immunized 

mice by  (wild-type) HBsAg DNA, but not HBsAg particles42, reinforces the rationale for a DNA 

approach for  recombinant HBsAg vaccines. Furthermore, that the capacity of rHBsAg DNA 

vaccines to elicit powerful CTL responses is undiminished in the presence of high-titer HBsAg 

antibody (R.Tindle, unpublished) further argues for a DNA approach where rHBsAg  DNA 

vaccine may be given to recipients who sustain   a HBsAg B-memory response from prior 

vaccination for hepatitis B virus. Finally, DNA vaccination effectively induces CTL responses in 

recipients bearing MHC class I haplotypes that do not respond to immunization with HBsAg VLP 

vaccine 43 

Indeed, recombinant HBsAg VLP vaccines are likely to prove impractical outside the 

laboratory setting; extensive studies  in our laboratory  (S.Thomson , M.Mather unpublished data) 

replacing  endogenous HBsAg CTL  with foreign CTL epitopes matched for size, charge, and 

hydrophobicity, and from other laboratories44,45  have indicated that  VLP formation is  severely  

and unpredictably compromised by modification of the HBsAg protein, presumably relating to 

structural and/or stability constraints .   

  pHBsAg-Polyepitope#3 did not produce VLPs when used to transfect Huh cells (data 

not shown) even though we designed HBsAg-Polyepitope#3 protein  to retain tertiary structure 

compatible with VLP formation. Thus, inclusion of  hydrophilic spacers between epitopes  

reduced the overall hydrophobicity of the polyepitope extension to prevent   it’s insertion into the 

bilid membrane (as predicted by TMHMM topography algorithm (http:\\ca.expasy.org\tools\).  

This measure predisposes the polyepitope to an external (to the particle) location. We also elected 

to exclude epitopes containing cysteine residues, thereby minimising perturbation in  secondary 

structure  due to disulphide bonding.  The lack of VLP formation is in contrast to rHBsAg C’-

terminally extended with a HIV polyepitope where some VLP production was recorded.46.  It 

underscores findings of our laboratory and others 47,48  on  the relative lack of predictability of 

VLP-forming propensity by HBsAg engineered to  contain foreign sequences. 

 The indifferent immunogenicity of sub-dominant epitopes in the presence of one or 

more immunodominant epitopes can compromise the efficacy of vaccines encoding multiple CTL 

epitopes . The results reported here indicate CTL responses to all eight CTL epitopes appended as 

a C’terminal polyepitope, even though the polyepitope contained at least two ‘strong’ CTL 

epitopes  (ESY, GIL) which might have been expected to be immunodominant. The lower CTL 

responses elicited by ‘weaker’ epitopes eg VGA, KLI  in this context (Fig. 3) were similar to  

responses elicited by these epitopes administered individually as  high molar excesses of peptide  

in Quil A adjuvant (not shown), suggesting  that level of response from pHBsAg-Polyepitope#3 
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was determined by intrinsic properties of these epitopes, and not by co-expression of  other, 

‘immunodominant’, epitopes  

We were unable to elicit an antibody response to the encoded hRSV B-cell mimotope   

following two immunizations with pHBsAg-Polytope #3 DNA (data not shown).This may have 

reflected the id. route of immunization from which most injected DNA localises to professional 

APC in draining lymph nodes, predisposing to rapid antigen processing of nascent HBsAg 

polypeptide  However, we have  previously elicited antibody to the hRSV epitope via  the id. 

route when expression was from  hRSV DNA inserted into to the ‘a’-loop region of HBsAg DNA  

(T. Doan, unpublished).  In the latter case,  the hRSV-HBsAg recombinant formed VLPs.  This is 

consistent with the notion that secretion or release of rHBsAg  polyprotein/VLP is a necessary 

prerequisite for induction of antibody by rHBsAg DNA vaccines. 

In this study we demonstrate that  recombinant HBsAg delivering  a CTL polyepitope 

appended at the C’ terminus elicits concomitant responses to multiple epitopes restricted through 

a diversity of MHC class I haplotypes, which are relevant in a number of human diseases.  We 

show that the rHBsAg vaccine elicits concomitant protection against neoplastic and infectious 

disease. These studies vindicate the use of HBsAg as a powerful vector to deliver CTL responses 

to foreign antigens. They also have have implications for a multi-disease vaccine applicable to the 

HLA-polymorphic human population. 

 

Materials and Methods 

pHBsAg-Polyepitope#3 
The hepatitis B surface antigen codon sequence of Valenzuela et.al.49 was used as a basis for the 

codon optimization of the gene using codons described by Cid-Arregui et al 50. The sequence data 

has been submitted to the Genbank  database under accession number xxx. 

Essentially, oligonucleotides were synthesized as 80mers (Geneworks, Australia) 

which covered the full length sequence of the HBsAg in the 5’ to 3’ direction. A series of CTL 

epitopes were interspersed with spacer regions comprising the sequences HWSISKPQ, RAKT, 

RADT, RDTA or RTKA. (Fig. 1). Spacer sequence HWSISKPQ is  mimotope of  a hRSV F-

protein B-cell epitope 51. Other spacer sequences are as described 52. A set of complementary 

oligonucleotides were also synthesized which overlapped the termini of the forward 

oligonucleotides by 40 bases. Each oligonucleotide was then added to a PCR reaction at a 

concentration of 5ng/ul in the presence of PrimeSTAR HS DNA polymerase (Takara Bio Inc, 

Shiga, Japan). PCR reaction conditions were as described by the manufacturer. The PCR product 

was purified from a 1% agarose gel after electrophoresis using UltraClean GelSpin cartridges (Mo 

Bio Labs Inc, CA) according to the manufacturer’s instructions and then incubated in the presence 

of dNTPs (10mM) and Taq DNA polymerase (Promega, USA) for the addition of 3’-teminal 
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adenosine residues. The DNA was  ligated into pGEM-T easy vector (Promega, USA) using 

T4DNA ligase (Promega, USA) according to the manufacturer’s instructions. The DNA insert 

into  the pGEM-T easy plasmid was sequenced in both directions and any errors in the sequence 

corrected using  the QuickChange II site-directed mutagenesis kit (Stratagene TX, USA).  

 

pHBsAg-Multiepitope#2.  
pHBsAg-Multiepitope #2 was derived essentially as described 53. In summary, the plasmid pcD3-

HBsAgS (ayw subtype) 54 was engineered to delete the HBsAg-specific CTL epitopes ( 
13VLQAGFFL21,  28IPQSLDSWWTSL39, 41FLGGTPVCL49,  97LLDYQGMLP105 , 
184GLSPTVWLS193 and 206SILSPFIPLL215 55,56, and to introduce the restriction enzyme sites 

BsiW1, NheI , BspE1, Afl1, BlpI and SacII  respectively, by PCR-driven site directed 

mutagenesis. Synthetic oligonuleotides encoding  the selected foreign epitopes   were inserted 

into HBsAg through systematic sub-cloning into these restriction sites  to create the construct 

depicted in Fig.7. Due to reading frame shifts caused by addition of restriction sites, codons  for 

alanine and leucine (AA or A and AL)  were included in the insert sequences at the 5’ and 3’ ends 

of the inserted epitope  oligomers. Sequences of constructs were verified via Terminator 

Sequencing (ABI) Big Dye 3.1.  

 

Immunization and restimulation of splenocytes 
Mice were immunized intradermally (id.) in the ear as with 100 ug of purified  plasmid DNA 

prepared by  EndoFree Plasmid Giga Kit (Qiagen, Australia). Two weeks  after immunization, 

spleens were removed and splenocytes were restimulated in vitro for 6 days as described 57with 

1ug/ml cognate peptide. For peptide immunizations, mice were immunized subcutaneously (sc.) 

at the tail base with 50ug peptide + 0.25ug tetanus toxoid (TT) as a source of  T-helper epitopes 

+ 10ug Quil A adjuvant 58. Ten days later spleens were harvested and splenocytes were 

restimulated as above. 

 

Cells.  
EL4.A2 cells 59 are susceptible to specific CTL lysis through both H-2b and HLA A*0201 

restriction pathways. P815 is susceptible to specific CTL lysis  through the H-2d restriction 

pathway. Cells were maintained as described 60.  

 

Murine IFN-γ ELISPOT assay. 
 Epitope-specific gamma interferon (IFN-γ) secreting spleen cells were enumerated ex vivo by an 

enzyme-linked immunospot (ELISPOT) assay with minimal CD8+ T-cell epitope peptides, 
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essentially as described 61. IFN-γ spots were counted using an AID ELISPOT reader system. 

Results were calculated as IFN-γ positive cells/106 spleen cells.  
 

51 Cr-release CTL assay.  

CTL assays were conducted as previously described 62. In summary, target cells (104 per well) 

sensitised at 37OC for 1 hour with 1ug/ml cognate or irrelevant peptide, or medium alone, and 

labelled with 100uCi  51Chromium (Cr), were incubated with effector cells at various effector: 

target cell ratios in triplicate in 96 well microtiter plates. Negative controls included wells 

containing target cells but no effector cells (= ‘background’). Supernatants were harvested from 

CTL assays at 4 hours, and 51Cr release quantified by gamma counting. Results are expressed as 

percent cytotoxicity +/- standard deviation (51Cr release in experimental wells minus 

background/detergent-mediated total release minus background d) x 100%.  

 

Tumor protection assays.  
Groups of H-2b mice ( 7 per group) were immunized  twice with 100 ug  pHBsAg-Polyepitope#3 

or pHBsAg W/T id.,  or 100ug of E7 or  OVA peptide + tetanus toxoid + Quil A sc.  CTL 

responses  to tumor epitopes RAH and SII were confirmed in two representative mice per group 

by  IFN-γ  ELISPOT on ex vivo splenocytes. The following day, the remaining   5 mice per 

group were injected sc.on the flank  with 2x105 TC-1 cells, which express the E7 tumor-

associated antigen of human papillomavirus type 16 63 or with  105  B16-OVA  melanoma cells 

expressing ovalbumin 64. (The tumor doses were pre-determined by titration experiments to 

discern a minimal dose giving rise to tumor in 80-100% of unimmunized mice). Mice were 

monitored for incidence of tumor with time to 43d. Tumor  volume  was  derived  at intervals 

from calliper measurements in two perpendicular dimensions  by the formula S2 L, where S is the 

shorter dimension and L is the longer dimension.  

 Data are  also presented as  Kaplan Meier  tumor incidence curves  of  % tumor free mice at 

given time points after tumor injection.  

 

Propagation of RSV and evaluation of   pulmonary viral infection. 
hRSV A2 (VR-1302) strain (American Type Culture Collection , Rockville, MD, USA) was 

propagated  in   HEp-2  cells essentially as described 65 and  recovered from the supernatant 

following freeze/thawing of monolayers displaying a cytopathic effect. 

hRSV was quantified by immunofocus assay, using goat anti-hRSV primary antibody 

(Chemicon, Australia), anti-goat Ig horse-radish peroxidase conjugated second antibody, and  

tetraaminobiphenyl hydrochloride substrate (Sigma, Australia), according to manufacturer’s 
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instructions.  Lungs were collected   4 days after mice were inoculated intranasally (in.) with 

8x105 plaque forming units (pfu)  and RSV quantified in lung homogenates by immunofocus 

assay as described 66. 

 
Statistics.  
Experimental values were compared for significant difference using Student’s t-test. Kaplan 

Meier tumor incidence curves were compared using the Log Rank statistic. 
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Epitope Virus protein Restriction Reference 

RAHYNIVTF Human papillomavirus (HPV)16 E7 H-2Db 67 

ESYIGSINNITKQSA Respiratory syncytial virus (hRSV) F H-2Kd 68 

GILGFVFTKL Influenza A (Flu) matrix HLA A*02 69 

VGALIFTKL Human metapneumovirus (hMPV) H-2Kb 70 

SIINFEKL (Ovalbumin) H-2Kb 64 

KLILALLTFL Human metapneumovirus (hMPV) SH HLA A*02 71 

LLMGTLGIV Human papillomavirus (HPV) 16 E7 HLA A*02 72 

YLLEMIWRL  Epstein Barr Virus (EBV) LMP1 
 

HLA A*02 73 

AMQMLKETI HIVgagp24 H-2Kd 74 

 

 

Table 1.  Foreign CTL epitopes included in pHBsAg-Polyepitope#3 
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Titles and legends to figures  

 
Fig.1  rHBsAg-Polyepitope#3 multi-disease vaccine. DNA encoding eight  disease-protective CTL 

epitopes ( AA sequence depicted as 3-letter code) was appended to the 3’-prime end of a codon 

optimised HBsAg minigene in a mammalian  expression vector. The epitopes were restricted 

through murine (H-2b, H-2d) and human (HLA-A2 ) MHC class I alleles. Epitopes were separated 

by ‘spacer’ sequences. 

 

Fig. 2 Immunization with pHBsAg-Polyepitope#3 elicits-epitope specific IFN-γ secreting  

splenocytes . Ex vivo splenocytes from A2Kb or Balb/c mice ( as appropriate to MHC restriction;  

3 per group) immunized once   id.  with pHBsAg-Polyepitope#3 exhibit cognate epitope-directed 

CTL responses.  Effector  IFN-γ- secreting cells were quantified by IFN-γ ELISPOT assay using 

splenocytes harvested  at 14 days (DNA immunization) or ten days (peptide immunizations) after 

immunization, and incubated for 15-18h. with cognate epitope peptide ( black histogram bar) or 

without peptide (stippled histogram bar) , as indicated. Splenocytes from A2Kb or Balb/c  mice  

immunized with HBsAg wild type  DNA  (pHBsAg W/T)  and incubated with the appropriate 

peptide showed no  ELISPOT response above background (not shown). Bars represent means +/- 

standard deviation of 3 replicates. 

 

Fig.3  Splenocytes from mice immunized  with  pHBsAg-Polyepitope#3 and restimulated in vitro 

with cognate peptide exhibit enhanced IFN-γ secretion  and specific cytotoxicity  (A) A2Kb 

or Balb/c mice (as appropriate to MHC restriction; 3 per group) were immunized once id with  

pHBsAg-Polyepitope#3. Splenocytes harvested 14 days after last immunization were restimulated 

in vitro with cognate peptide for 6 days, then  (A) reacted in  IFN-γ ELISPOT  with (black bar) or 

without (stippled bar) peptide (bars represent means +/- standard deviation of 3  replicates), or (B) 

reacted in 51 Chromium release cytotoxicity assay with peptide-pulsed (squares) or unpulsed 

(triangles)  EL4.A2 (H-2b and HLA A*02) or P815 (H-2d) target cells as  appropriate. Data points 

represent means of three replicates +/- standard deviations. (Where standard deviations are 

<3%,they are masked by symbols).  

 

Fig 4.  Immunization with pHBsAg-Polyepitope#3 primes for a CTL response to epitope LLM 

which can be boosted with peptide immunization. Two groups of A2Kb mice (A and B ; three 

mice per group)   were immunized once with 100ug id. of  pHBsAg-Polyepitope#3.  Fourteen 

days later, the groups were boosted with (A) 5ug LLM peptide plus adjuvant, or  (B) adjuvant  
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alone. A third group  (C; three mice) received 5ug LLM peptide plus adjuvant, without prior 

priming with pHBsAg-Polyepitope#3. Splenocytes harvested 8 days later were restimulated with 

LLM peptide in vitro  for six days,  then reacted with EL4.A2 target cells pulsed (square symbols) 

or not pulsed (triangle symbols) with LLM peptide in a 51Chromium cytotoxicity assay. Data 

points represent means of three replicates +/- standard deviations (standard deviations were <5%). 

 

Fig 5.Immunization with pHBsAg-Polyepitope#3 simultaneously protects mice against challenge 

with  tumors each expressing a different tumor-associated antigen (HPV 16 E7 or 

ovalbumin). H-2b  mice (seven per group) were immunized twice id.with  pHBsAg-

Polyepitope#3 , or with pHBsAg W/T at  a 14d interval. Induction of  RAH (HPV E7 epitope)- 

and SII (OVA epitope)- specific IFN-γ secreting splenocytes was confirmed  by ELISPOT 14days 

later from two representative mice per group (not shown). The remaining  five mice per group 

were challenged with ( A,B )  2x105    TC-1 tumor cells , or  (C, D) 105 B16-OVA melanoma cells 

sc. on the flank.  Tumor growth was monitored to 42 days as the percentage of mice with palpable 

tumor,   and by calliper measurement of tumor size. Mice with tumors in excess of 1000mm3 were 

euthanized in accordance with animal ethics requirements. Results are expressed as  tumor-free  

mice (%) at the indicated time points (A,C), and as tumor volume in mice with time (B, D. Closed 

symbols, individual mice immunized with pHBsAg-W/T; open symbols, individual mice 

immunized with pHBsAg-Polyepitope#3).  

 

Fig.6 .  Immunization with pHBsAg-Polyepitope#3 reduces hRSV viral load in lungs.   H-2d mice 

(seven per group) were immunized twice id. with pHBsAg-Polyepitope#3 or with pHBsAg W/T  

at an interval of 10 days.  Induction of hRSV epitope (ESY)-specific IFN-γ secreting splenocytes 

was confirmed  by ELISPOT 14days later from two representative mice per group (not shown). 

The remaining five mice per group were challenged in. with 8x105 pfu hRSV.  hRSV in the lungs 

was quantified 4 days later by plaque assay. Results are expressed as mean viral titer per lung per 

group +/- standard deviation.   

 

 

Fig. 7 rHBsAg-multiepitope#2  vaccine. Six DNA minigenes  encoding  different   disease-

protective CTL epitopes (AA sequence depicted as 3-letter code) were  inserted into DNA 

encoding  HBsAg  in pSwitch2 expression plasmid, to replace endogenous HBsAg CTL epitopes, 

as described (75and ‘Experimental procedures’).  

 

 

Fig. 8 Splenocytes from mice immunized  with rHBsAg-multiepitope#2  and restimulated in 

vitro with cognate peptide exhibit enhanced IFN-γ secretion  and specific cytotoxicity. A2Kb 
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or Balb/c mice (as appropriate to MHC class I restriction ; 3 per group) were immunized once id. 

with rHBsAg-multiepitope#2 . Splenocytes harvested 14 days after last immunization were 

restimulated in vitro with cognate peptide for 6 days, then (A). reacted in  IFN-γ ELISPOT  with 

(black  bar) or without (stippled bar) peptide  or (B) reacted in 51 Cr release cytotoxicity assay 

with peptide-pulsed (square symbols ) or unpulsed (triangle symbols)  EL4.A2 (H-2b and HLA 

A*02) or P815 (H-2d) target cells as  appropriate. Data points represent means of three replicates 

+/- standard deviations. (Standard deviations were  <3%) 
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