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The concept of Endothelium Derived Relaxing Factor (EDRF), put forward by 

Furchgott in the earlier 80’s of the past century1, 2, implies that nitric oxide (NO) 

produced by NO synthase (NOS) in the endothelium in response to acetylcholine (ACh) 

passively diffuses to the underlying vascular smooth muscle cells (VSMC) thereby 

reducing vascular tension.  It was thought that VSMC do not express NOS by 

themselves, but to the time of those studies immunohistochemical techniques were not 

what they are now.  State-of-the-art immunohistochemistry permits nowadays to localize 

NOS both to the endothelium and to VSMC3, 4.  However, the principal question 

remained unanswered, is the NO generation by VSMC physiologically relevant?  We 

hypothesized that the destruction of the vascular wall anatomical integrity by rubbing 

the blood vessel intimal surface may increase vascular superoxides that, in turn, reduce 

NO bioactivity.  To address this issue, we examined ACh-induced vasorelaxation in 

endothelium-deprived blood vessels under protection against oxidative stress and found 

that superoxide scavengers - tempol and N-acetyl-L-cysteine - restored vasodilatory 

responses to ACh in endothelium-deprived blood vessels without influencing the 

vascular wall tension in intact blood vessels.  Herewith we provided the first evidence 

that VSMC can release NO in amounts sufficient to account for the vasorelaxatory 

response to ACh.  In contrast to the commonly accepted concept of the obligatory role of 

endothelial cells in the relaxation of arterial smooth muscle, the local NO generation by 

VSMC may modulate vascular functions in an endothelium-independent manner.  

 

In the article “The obligatory role of endothelial cells in the relaxation of arterial smooth 

muscle by ACh” published in Nature in 1980, Furchgott and Zawadzki reported that rubbing 

off the endothelial layer rendered blood vessels insensitive to ACh1.  It was concluded, that 

the endothelial cells when stimulated by ACh, released a nonprostanoid, diffusible factor 
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(later termed EDRF for endothelium-derived relaxing factor) that acted on the subjacent 

VSMC to produce relaxation, whereby VSMC were regarded as passive recipients of NO 

from endothelial cells.  Later, it was reported that the NO release accounts for the biological 

activity of EDRF2. 

However, aspects of the anatomical integrity of the organ (i.e., blood vessel) subjected 

to experiments with rubbing the blood vessel intimal surface were neglected.  More recently it 

was, however, found that the destruction of the vascular wall integrity in the process of 

endothelial denudation destroys myoendothelial gap junctional communications in VSMC5 

and impairs K+-induced vasorelaxation (background-K+ channel activation)6. What is more, 

endothelial denudation was reported to increase the concentration of vascular superoxides7, 8 

that, in turn, impair vasodilatory responses to exogenous and endogenous nitrovasodilators9.  

Known as NO scavengers, superoxides drastically reduce NO bioactivity and NO 

bioavailability10-12, while the intact endothelium protects VSMC from the superoxide attack13, 

14.  In addition to NO scavenging, superoxides can also directly exert a vasoconstrictor 

action15, 16.  Therefore, the objective of the present study was to elucidate the role of 

superoxides associated with vascular dysfunction induced by destroying the anatomical 

integrity of the blood vessel.   

In these experiments, thoracic aorta rings, mesenteric artery rings and pulmonary 

artery rings from intact and denudated blood vessels of rat were first subjected to 

morphological and immunohistochemical control to confirm the absence of the endothelial 

layer in endothelium-deprived blood vessels and to demonstrate NOS expression in blood 

vessels under study.  The specificity of anti-NOS antibodies used in this study has been earlier 

confirmed by us with Western blotting of rat and porcine blood vessels3, 4, rat and human 

skeletal muscles17, 18 and rat myocardium19.  For immunohistochemical assay in this study, we 

employed highly sensitive chain polymer-conjugated technology (EnVision System) 

developed by DakoCytomation and found all three NOS isoforms expressed not only in the 

intima but also in media of the blood vessels under study.  As an example, Figure 1 shows 

strong expression of NOS3 in the thoracic aorta (Fig. 1a), mesenteric artery (Fig. 1b) and 

pulmonary artery (Fig. 1c), in both intimal and medial cells.  Inserts in this layout (Fig. 1) 

demonstrate the complete removal of the endothelial layer after denudation.  The NOS 

expression by cells in the media of blood vessels was also confirmed by us earlier with 

Western blotting showing the presence of characteristic immunoreactive protein bands for 

NOS1, NOS2 and NOS3 not only in the intact porcine carotid artery and rat aorta, but also in 
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the blood vessels devoid of endothelium3, 4.  Further evidence for NOS expression in VSMC 

can also be drawn from more recent publications20-22.  

 To gain evidence for the role of NOS in the regulation of vascular tension and to 

elucidate the role of superoxides in impairing vasodilatory responses, we examined ACh-

induced vasorelaxation in endothelium-deprived blood vessels in the presence of superoxide 

scavengers - tempol and N-acetyl-L-cysteine (NAC).   

In thoracic aorta rings with intact endothelium, cumulative addition of ACh (10-10-

3x10-5 M) produced concentration-dependent relaxation.  The maximum relaxation was 85.59 

± 4.69 % (Fig. 2). In rings with denuded endothelium, ACh-induced relaxation was held back 

with the maximum relaxation 15.85 ± 4.31 % (p<0.01). Pre-treatment of denuded rings with 

NAC (10-4 M) significantly restored ACh-induced relaxation to the level of 33.75 ± 7.25% 

(p<0.05) (Fig. 2, left panel).  Tempol (3x10-3 M), a superoxide dismutase mimetic, also 

reversed the ACh-mediated relaxations in endothelium-deprived aortic ring preparations with 

the maximum relaxation of 34.58 ± 6.65% (p<0.05), whereas pre-treatment of thoracic aorta 

intact rings with tempol but insignificantly inhibited ACh-induced relaxation (Fig. 2, right 

panel). 

Cumulative addition of ACh (10-9-3x10-5 M) relaxed phenylephrine-precontracted 

intact mesenteric artery rings with a maximum relaxation of 74.0 ± 8.04% (Fig. 3, left panel).  

Compared to intact mesenteric artery rings, endothelial denudation resulted in a significant 

depression of ACh-induced relaxation (20.2 ± 3.23%, p<0.01), but pre-treatment of 

endothelium-denuded rings with tempol (3x10-3 M) restored ACh-induced relaxation up to 

51.6 ± 6.2% (p<0.01).  Important, tempol pre-treatment of intact mesenteric artery rings did 

not affect the vasorelaxatory response to ACh. 

In pulmonary artery rings with intact endothelium, ACh-induced relaxation amounted 

to 89.9 ± 4.12% (Fig. 3, right panel).  Like in intact mesenteric artery rings, ACh-induced 

relaxation was not affected by tempol pre-treatment.  After endothelial denudation, ACh-

induced relaxation was held back, and the maximum relaxation decreased to 20.0 ± 7.76% 

(p<0.01).  However, tempol (3x10-3 M) pre-treatment of endothelium-deprived rings restored 

ACh-induced relaxation to the level of 57.4 ± 8.81% (p<0.01). 

Thus, our results indicate that superoxides induced by destruction of the vascular wall 

integrity play crucial role in impaired vasodilatory responses to ACh and explain, why 

rubbing off the endothelial layer rendered blood vessels insensitive to ACh in the experiment 

of Furchgott and Zawadzki1.   
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To summarize, our data provided the first evidence that VSMC can release NO in 

amounts sufficient to account for the vasorelaxatory response to ACh, which implies an 

autocrine fashion of NO signaling in the control of the vascular tension.  A better 

understanding of the NO regulatory networks in the vasculature may contribute to 

development of novel drug and gene therapies for the treatment of cardiovascular diseases. 

 

METHODS  

Animals.    All animal experiments were performed in accordance with the guidelines of the 

Institutional Animal Care Committee, Institute of Normal and Pathological Physiology, 

Bratislava.  Male Wistar rats (350-450 g; n=11) were housed under a 12 h light-12 h darkness 

cycle, at a constant humidity and temperature, with free access to standard laboratory rat 

chow and drinking water. 

 

Reagents.   We purchased phenylephrine, ACh, and N-acetyl-L-cysteine from Sigma and 

tempol (4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) from Merck.   

 

Histology.  Tissue probes of the thoracic aorta, mesenteric artery and pulmonary artery were 

fixed in buffered 4% formaldehyde and routinely embedded in paraffin.  Light microscopy of 

paraffin sections stained with hematoxylin-eosin confirmed complete removal of the blood 

vessel intimal layer after endothelial denudation.  

 

Antibodies and immunohistochemical techniques.  4-μm sections of the paraffin blocks 

were dewaxed in xylene, rehydrated in graded alcohols, and pre-treated for antigen retrieval in 

10 mmol/L citric acid, pH 6.0, in a pressure cooker as described earlier3, 4.  After blocking 

non-specific binding sites with BSA-c basic blocking solution (1:10 in PBS, Aurion, 

Wageningen, The Netherlands), sections were immunoreacted with primary antibodies over 

night at 4°C.  Characterization of rabbit primary polyclonal antibodies recognizing NOS1, 

NOS2 and NOS3 (Transduction Laboratories, Lexington, KY, USA; and Santa Cruz 

Biotechnology, Santa Cruz, California) including Western blotting procedure were described 

elsewhere3, 4.  Primary anti-NOS1-3 antibodies were diluted to a final concentration of 2.0 μg 

ml-1.  After immunoreacting with primary antibodies and following washing in PBS, the 

sections were treated for 10 min with methanol containing 0.6% H2O2 to quench endogenous 

peroxidase.  Bound rabbit primary antibodies were detected using DAKO EnVision-HRP 

system and NovaRed substrate kit (Vector Laboratories, Burlingame, CA, USA), 



 5

counterstained with Ehrlich hematoxylin for 30 sec and mounted with an aqueous mounting 

medium GelTol (Immunotech, Marseille, France).   

 The exclusion of the primary antibody from the immunohistochemical reaction, 

substitution of primary antibodies with the rabbit IgG (Dianova) at the same final 

concentration, or preabsorption of primary antibodies with corresponding control peptides 

resulted in lack of immunostaining.   

 

Visualization and image processing.  Immunostained sections were examined on a Zeiss 

microscope “Axio Imager Z1”.  Microscopy images were captured using AxioCam 12-bit 

camera and AxioVision single channel image processing (Carl Zeiss Vision GmbH, 

Germany).  Resulting images were imported as JPEG files into PhotoImpact 3.0 (Ulead 

Systems, Inc.  Torrance, CA, USA) for analysis on Power PC followed with printing on a 

color printer Hewlett Packard DeskJet 970Cxi.  Images shown are representative of at least 3 

independent experiments which gave similar results.   

 

Functional in vitro study.  Rats were anaesthetized with diethylether, decapitated and 

exsanguinated.  The thoracic aorta, mesenteric artery and pulmonary artery were immediately 

removed, cleaned of adhering fat and connective tissue and cut into 2-4 mm wide rings. In 

one part of rings care was taken to avoid abrasion of the intimal surface to maintain the 

integrity of the endothelial layer. In the second part of rings endothelial cells were removed 

by gently rubbing the intimal surface with cotton-covered wire. The rings were vertically 

fixed between two stainless steel triangles in 20 ml incubation organ bath with Krebs solution 

of the following millimolar composition: NaCl 118; KCl 5; NaHCO3 25; MgSO4 1.2; KH2PO4 

1.2; CaCl2  2.5; glucose 11; ascorbic acid 1.1; CaNa2EDTA 0.032, and bubbled with a 95% 

O2 and 5% CO2 gas mixure. The vessel segments were allowed to equilibrate for 1 hour at a 

resting tension of 1g and the changes of isometric tension were recorded as described 

previously (Török et al. 1993)23. Krebs solution containing 80 mM KCl was prepared by 

replacing NaCl with equimolar KCl and after an equilibration period the rings were stimulated 

until a sustained response was obtained, in order to test their contractile capacity. The 

presence of functional endothelium was assessed in all preparations by determining the ability 

of ACh (10-5 M) to induce relaxation of rings pre-contracted with phenylephrine. For 

relaxation studies, the rings were pre-contracted with maximum concentration of 

phenylephrine (10-5 M) and cumulative concentration-response curves for ACh (10-10-3x10-5 

M) were obtained. After washout the rings of aorta were preincubated with N-acetylcysteine 
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(10-4 M; 20 min) or tempol (3x10-3 M; 20 min). The rings of mesenteric artery and pulmonary 

artery with tempol only, and the relaxant responses to ACh were determined. Relaxation was 

expressed as a percentage of phenylephrine-induced contraction. 

 

Statistical analysis.  Data are given as means ± S.E.M.  For the statistical evaluation of 

differences between groups, one-way analysis of variance (ANOVA) was used and followed 

by Bonferroni´s post-hoc test. The differences of means were considered as significant at P 

value < 0.05. 
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FIGURE LEGENDS 
 
Figure 1  Expression of NOS3 in (a) thoracic aorta, (b) mesenteric artery and (c) pulmonary 

artery, in both intimal and medial cells.  Inserts demonstrate the complete removal of the 

endothelial layer after denudation.  50 µm scale bar for entire layout. 

 

Figure 2  (Left panel) Effect of NAC (10-4M) on the concentration-response curves to ACh 

in thoracic aorta endothelium-intact (E+) and endothelium-denuded (E-) rings. Tissues were 

exposed for 20 minutes to NAC before addition of phenylephrine. Data points are mean 

values and vertical lines represent S.E.M. * p<0.05; ** p<0.01; with respect to E+;  + p<0.05; 

++ p<0.01 with respect to E-. (Right panel) Effect of tempol (3x10-3M) on the concentration-

response curves to ACh in thoracic aorta endothelium-intact (E+) and endothelium-denuded 

(E-) rings. Tissues were exposed for 20 minutes to tempol before addition of phenylephrine. 
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Data points are mean values and vertical lines represent S.E.M. * p<0.05; ** p<0.01; with 

respect to E+;  + p<0.05; ++ p<0.01 with respect to E- 

 

Figure 3  (Left panel) Effect of tempol (3x10-3M) on the concentration-response curves to 

ACh in mesenteric artery endothelium-intact (E+) and endothelium-denuded (E-) rings. 

Tissues were exposed for 20 minutes to tempol before addition of phenylephrine. Data points 

are mean values and vertical lines represent S.E.M. ** p<0.01; with respect to E+;  + p<0.05; 

++ p<0.01 with respect to E-. (Right panel)  Effect of tempol (3x10-3M) on the 

concentration-response curves to ACh in pulmonary artery endothelium-intact (E+) and 

endothelium-denuded (E-) rings. Tissues were exposed for 20 minutes to tempol before 

addition of phenylephrine. Data points are mean values and vertical lines represent S.E.M. ** 

p<0.01; with respect to E+;  + p<0.05; ++ p<0.01 with respect to E-.  
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