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Abstract
Peptide recognition modules (PRMs) are used throughout biology to mediate protein-protein 
interactions, and many PRMs are members of large protein domain families.  Members of these 
families are often quite similar to each other, but each domain recognizes a distinct set of 
peptides, raising the question of how peptide recognition specificity is achieved using similar 
protein domains.  The analysis of individual protein complex structures often gives answers that 
are not easily applicable to other members of the same PRM family.  Bioinformatics-based 
approaches, one the other hand, may be difficult to interpret physically.  Here we integrate 
structural information with a large, quantitative data set of SH2-peptide interactions to study the 
physical origin of domain-peptide specificity.  We develop an energy model, inspired by protein 
folding, based on interactions between the amino acid positions in the domain and peptide.  We 
use this model to successfully predict which SH2 domains and peptides interact and uncover the 
positions in each that are important for specificity.   The energy model is general enough that it 
can be applied to other members of the SH2 family or to new peptides, and the cross-validation 
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results suggest that these energy calculations will be useful for predicting binding interactions.  It 
can also be adapted to study other PRM families, predict optimal peptides for a given SH2 
domain, or study other biological interactions, e.g. protein-DNA interactions. 

Author Summary (200 words)
Proteins are responsible for carrying out almost every cellular process.  They do not work alone 
but in concert with other proteins, DNA, RNA and other molecules in the cell.  Therefore, the 
study of protein interactions is vital to understanding biology.  Here we study protein-peptide 
interactions, the interaction of proteins with short amino acid chains, which is a type of 
interaction used in many biological contexts.  Besides their biological importance, these 
interactions are interesting to study because there are many similar proteins that interact with 
very different peptides.  Our aim is to understand how this recognition happens and to predict 
which protein-peptide pairs interact.  We develop a model that predicts the energy of interaction 
between one class of proteins, the SH2 domain family, and their peptides, and we validate our 
model by comparing our predictions to experimental data.  Using information about the 
structures and sequences of SH2 domains, we also find amino acid positions in the domain and 
peptide that are important for recognition.  Our approach is unique in its use of different data 
sources and its applicability to the entire SH2 domain family.  It is easily adapted to other protein 
domain families and perhaps to some types of protein-DNA interactions.

Introduction
In the crowded cellular milieu, the ability of proteins to specifically interact with different 
molecules, e.g. sites on DNA or short peptides, is essential to virtually every cellular process 
from DNA replication to cell signaling.  The inherent challenges of this problem and nature’s 
apparent success at engineering these specific interactions raise a number of questions, which 
usually center on either the kinetics of the process or the equilibrium picture: How does 
recognition happen rapidly and specifically?

Here we study one flavor of the equilibrium problem: How does a peptide recognition module 
(PRM) discriminate its particular targets from a large pool of peptides?  PRMs are protein 
domains that recognize specific peptides and are used to mediate protein-protein interactions in 
many contexts.  There are a number of large protein domain families that serve as PRMs.  The 
members of these families are quite similar to each other, but each member can recognize a 
specific subset of the peptide pool.  

Our goal is to gain a physical understanding of this recognition problem.  To do this, we 
construct a potential that describes the interaction energies between a family of PRMs and their 
peptides. We aim to construct this potential in a way that allows us to apply it to domain-peptide 
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pairs unseen in the construction process, to use the calculated energy to predict whether or not 
they interact and to gain some insight into the mechanism used to achieve peptide-binding 
specificity in families of similar PRMs.

As a model system, we use the SH2 domain family of PRMs, which transmit signals from 
receptor tyrosine kinases (RTKs) to the cell interior by interacting with the RTK cytoplasmic 
domains, specifically the tyrosines that are phosphorylated upon RTK activation and their 
surrounding residues .  In 2006, MacBeath and coworkers published a protein microarray-based 
study that quantitatively assessed the interaction strength of almost every human SH2 domain 
with pY peptides extracted from four ErbB family RTKs .  The availability of this large amount 
of data describing the interactions between a variety of SH2 domains and peptides, all measured 
using the same technology, makes the SH2 domain family an ideal test case for our effort.

Other efforts to understand the origins of PRM-peptide specificity usually follow a structural 
biology-, computational structural biology-, or a bioinformatics-based approach .  Structural 
biologists have long studied the structures of PRM-peptide complexes, visually analyzing them 
for positions in the domain and peptide that appear to be important for recognition based on their 
proximity and likelihood of interaction, e.g. .    This approach is sometimes difficult to apply to 
large amounts of structural data, and it may be difficult to generalize the results to an entire PRM 
family.  

Several computational structural biology approaches have also been applied to the PRM 
specificity problem.  These approaches generally develop energy models of the PRM-peptide 
interactions based on collections of structural data.  The SH2 problem has been studied using a 
variety of these methods , most recently in a study in which an empirical energy model was 
constructed to predict genome-wide targets of 9 human SH2 domains .  Some of these techniques 

have been quite successful at recapitulating in vitro and in vivo interaction data, but may be 
computationally intensive or difficult to apply to domains with no structural data.  There have 
also been successful applications of structure-based threading approaches to other PRM 
specificity problems, e.g. the recognition of peptides by MHC molecules , a unique and widely-
studied PRM problem .  

Bioinformatics-based approaches often center on machine learning methods, which are able to 
leverage large amounts of data, but do not always give a physical understanding of specificity. 
Many of these methods seek to calculate position-specific scoring matrices (PSSMs), which give 
the likelihood of an amino acid occurring at a given position of a bound peptide .  Two notable 
previous efforts to model PRM-peptide interactions applied a modified Gibb’s sampler  and a 
probabilistic discriminative model  to infer the PSSMs of SH3 domains.  The former study 
employed a discriminative prior to find motifs that discriminate between bound and unbound 
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domain-peptide pairs in a yeast two-hybrid SH3 domain interaction network.  The latter 
eliminated the user-defined parameters utilized in the first approach and used a normalization 
technique to avoid over-fitting of the model to phage display and yeast two-hybrid data.  While 
moderately successful at recapitulating the SH3 interaction network, these approaches are not 
transferable to unseen domains and do not give insight into the general principles responsible for 
SH3 peptide recognition.  There are also more general models, e.g. , that aim to explain the 
general properties of protein-protein networks. 

Due to the similarity of the problems, approaches in protein-DNA interactions also merit 
mention.  There are approaches to derive energy potentials from structural studies , physics-
based methods of deriving PSSMs from large scale binding data , and methods to combine 
structural and sequence data to predict binding sites for a family of transcription factors .  

Here we develop a physically motivated energy model to describe the interaction energy 
between SH2 domains and their pY peptides. We measure the performance of the basic model 
and several variants for predicting the experimentally characterized interactions of a diverse set 
of SH2 domains and peptides.  We find that an amino acid-based potential with non-specific 
interaction terms can accurately predict SH2 domain-peptide interactions and that the amino 
acid-based potential can be used to predict interactions with domains or peptides that were not 
used to derive the potential.  Using structure- and information-based techniques, we find the 
amino acid positions in the SH2 domains and pY peptides that confer specificity to the 
interactions.  The technique is sufficiently general that it can be used to predict the peptide 
partners for new SH2 domains and to model interactions for other PRM families.  

Results

Development of a physically-based energy model
The goal of our study is to create a physically based model of the interaction energy between a 
class of PRMs and their peptides and to use this model to predict whether or not PRM-peptide 
pairs interact.  Here, we use a coarse-grained amino acid-based approach to describe the energy 

of interaction E.  We choose this level of detail because it is easy to transfer to new PRM-peptide 
pairs and, unlike atomistic potentials, does not require detailed structural information. This level 
of description also allows us to take into account interactions between residues that are not in 
direct contact, but that are rather mediated by other structural changes.  For each domain-peptide 

pair, we define E as:

 

E = DijU a i( ),a j( )( )
j

￥
i

￥ (1)

Here  is the interaction map, a matrix in which Δ Δij = 1 if amino acid i in the domain interacts 
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(not necessarily directly) with amino acid j in the peptide and Δij = 0 otherwise.  In order to use 
the same map for all domain-peptide pairs, we align the PRMs and the peptides (separately), 

creating a common numbering system for each.  U is an energy potential, where 

 

U x, y( ) is the 

energy of interaction between amino acids x and y, and a(i) and a(j) are the amino acid identities 

at positions i and j of the domain and peptide, respectively. We sum over all positions i in the 

domain and j in the peptide. We also explore the possibility of using a form of the energy 

function in which each interacting pair, or contact, (i, j) has its own energy potential (see 
Equation (4) below).

Since we use the same interaction map and potential for each domain-peptide pair, this form is 
amenable to our goal of being able to apply this potential to new PRMs and peptides.  Working 
in this amino acid-centric manner may also allow us to gain insight into the basis of specificity, 
since the amino acid is the basic unit of change between proteins.  

To rewrite equation (1) in a more compact form, we let D be a 20 x 20 matrix

 

D(x, y) = dxa i( )dya j( )Dij

j

￥
i

￥ , (2)

therefore 

 

D(x, y) is a count of the number of interactions between an amino acid of type x in the 

domain and type y in the peptide.  Here δ is the Kronecker delta function.  Now, if we reshape 

the 20x20 D matrix into a 1x400 row vector d and reshape the 20x20 matrix U into a 400x1 

column vector u, we can rewrite equation (1) as:

 

E = d u (3)

In order to achieve maximum discriminatory power between the energies of bound and unbound 

domain-peptide pairs, we aim to find the potential U that maximizes the energy gap between the 
bound and unbound pairs, while minimizing the variance of the two energy distributions (Figure 
1A). The approach is inspired by a method using to derive folding potentials in protein folding 
field , in which the energy potential is designed to maximize the gap between the energy of the 
native structure and the mean energy of all other structural decoys, while minimizing the 
variance of energies of the decoys (Figure 1B).  Here, the interaction map and energy potential 
describe intramolecular contacts, rather than intermolecular contacts, but are otherwise 
completely analogous.  This method is similar to an earlier formulation by Goldstein, et al. ,  and 
to an approach used to infer PSSMs for protein-DNA recognition that is related to the support 
vector machine (SVM) methodology .

Another method from protein folding which we might have chosen to optimize U is a perceptron 
learning method that uses neural networks to solve a system of inequalities that ensure the native 
structure is lower in energy than all the decoys .  However, we choose not to use this method 
because it has been shown to give similar results to the energy gap method  and is slightly harder 
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to generalize to the case where one native structure is replaced by a set of bound pairs. 

Given equation (3) and an interaction map , there is an Δ analytical solution (similar to ) that 

provides the potential U that maximizes the energy gap between the bound and unbound domain-
peptide pairs, explicitly using both positive and negative examples (Materials and Methods).  

Therefore, once the problem is written in this fashion, the challenge is to find the interaction map 
 that gives the optimal separation between energies of the bound and unbound pairs, a problemΔ  

we explore after defining some performance metrics.

Performance metrics and cross-validation techniques
In order to assess the performance of our model, we use several metrics and cross-validation 
techniques.  (For a more in-depth discussion, see Materials and Methods).  We focus on two 
metrics, based on their use in similar studies and their intuitive physical interpretation: the bound 
rank and the area under the receiver operating characteristic curve (ROC AUC).  

The bound rank score assesses the clustering of bound pairs to the low end of the predicted 
energy distribution and is calculated by ordering all the domain-peptide pairs by increasing 

energy, E and then calculating the median rank of the bound pairs (Figure 1C).  We report the 
bound rank score as a fraction of the median bound rank divided by the number of data points in 
the test set, which varies depending on the type of cross-validation used.  The bound rank gives a 
sense of how far down an ordered list of energy predictions one should look to find bound 
domain-peptide pairs.  The best possible bound rank score, which is obtained when all the bound 

pairs have lower energies than all the unbound pairs, is 

 

nbound +1( ) 2, where nbound is the number 
of bound domain-peptide pairs.  The expected bound rank score for a random classifier is 

 

ntotal +1( ) 2 , where ntotal is the total number of domain-peptide pairs.

ROC curves are commonly used to assess how well a classifier categorizes two populations, e.g. 

in our case how well the predicted interaction energy E separates the bound and unbound pairs. 
In these problems there is usually a tradeoff between the true positive rate (TPR) and the false 
positive rate (FPR), and ROC curves summarize this tradeoff by plotting these rates against each 
other.  For example, in this problem, we pick an energy threshold, and we predict that domain-
peptide pairs with energies below the threshold are bound.  If we raise this threshold we will 
increase our TPR, the fraction of bound pairs that are correctly classified, but we will also 
increase our FPR, the fraction of unbound pairs that are incorrectly classified.

The ROC AUC corresponds to the probability that the energy of a randomly chosen bound pair 
is less than a randomly chosen unbound pair and is calculated by integrating the area under a 
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ROC curve (Figure 1D).  It is commonly used to summarize a ROC curve in a single number. 
The ROC AUC for a random classifier is 0.50 and for a perfect classifier is 1.0.

In order to avoid over fitting and to assess the likely performance of the method on unseen 
examples, we use two types of cross-validation: 10-fold, in which nine-tenths of the data are 
used to fit the model, which is then applied to the remaining one-tenth of the data, and leave-one-
group-out (LOGO), in which one domain or peptide is left out of the training process and then 
used as the test data set.

Interaction map optimization
As mentioned above, given an interaction map , there is an analytical way to find the potentialΔ  

U that maximizes the energy gap.  So the challenge is to find an interaction map that 
characterizes the generic binding of SH2 domains to pY peptides. We use three methods – an 
information-based method, a structure-based method, and a hybrid method.  Our hybrid 
approach is unique in its integration of structure and sequence information.  While most 
structure-based approaches use contacts present in the native structure of the complex, we 
attempt to refine the set of relevant interactions using information-based approaches (similar to 
correlated mutations, e.g.).  This refinement aims to (a) eliminate the direct interactions that are 
not contributing to specificity, and (b) identify indirect interactions mediated by structural 
rearrangements.

In each interaction map construction method, each potential contact – a pair of positions in the 
aligned collection of SH2 domains and peptides – is ranked by some criteria aimed at assessing 

its role in recognition.  Then we construct interaction maps by taking the top ncontacts ranked 

contacts, where ncontacts can be varied, and setting the corresponding elements of  to 1.  Briefly,Δ  
the information-based method ranks potential contacts using a normalized measure of the 
divergence between the amino acid composition of bound and unbound domain-peptide pairs. 
The structure-based method ranks the contacts by the number of experimentally determined 
SH2-peptide structures in which the contact is within some distance cutoff.  The hybrid method 
uses the structure-based method to select potential position pairs and ranks them using the 
information-based criteria. 

In order to find the optimal interaction map, we compare the 10-fold cross-validated ROC AUC 
and bound rank scores for interaction maps constructed using the three methods and different 
numbers of contacts (Figure S1).  The best-performing (“optimal”) interaction map is a hybrid 
interaction map with 10 contacts, using a distance cutoff of 5.5 angstroms, with ROC AUC of 
0.87 (bound rank = 31/325).  The information-based technique performs quite well, plateauing at 
a ROC AUC of 0.82, with 5 contacts (bound rank = 37/325).  Both of the ROC AUC scores and 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.1
88

1.
1 

: P
os

te
d 

12
 M

ay
 2

00
8



the bound rank scores are well above the scores expected for random classifiers (0.50 and 
163/325, respectively). 

Physics-based energy potential can predict SH2-peptide interactions
Figure 2A compares the un-cross-validated performance of the best information-based map, the 
optimal hybrid map and a “standard” energy potential.  The ROC curves unambiguously show 
the energy predictions from the hybrid and information-based interaction maps far outperform a 
standard energy potential used in protein folding .  The failure of the standard potential shows 
that different types of amino acid contacts are important for protein folding and protein-peptide 
interactions. In Figure 2B, we plot the energy of bound and unbound peptide-domain pairs, 
sorted by domain, and it shows that the bound pairs tend to have energies on the low end of the 
energy spectrum.  

Using the hybrid interaction map, we can achieve a TPR of 0.90, predicting 179 of 198 bound 
pairs correctly, with a FPR of 0.06, predicting 190 of 3057 unbound pairs incorrectly.  In other 
words, at this level about half of the pairs that are identified to be “bound” actually are.  If we 
use a lower energy threshold, 165 of 198 bound pairs are predicted correctly and 135 of 3255 
unbound pairs are predicted incorrectly.

Using the optimal interaction map, we carry out LOGO cross-validation to see how the method 
will fare on unseen domains and peptides.  The results are shown in Figure 3, and are quite 
impressive, with mean ROC AUC values of 0.84 for both unseen domains and peptides.  For a 
number of domains and peptides, the ROC AUC is 1, indicating that the method perfectly 
separates bound and unbound domain-peptide pairs.   (See Table S1 for a list of domains and 
peptides with their ROC AUCs.)  Interestingly, the performance of the model on an unseen 

domain seems to be uncorrelated (r = 0.19) to the sequence identity of the test domain to its 
nearest sequence neighbor in the training set (Figure S2). 

Position-specific energy potentials over-fit the data
In the results above, a common energy potential is used for all positions in the interaction map. 
But given the different structural and chemical contexts of each position, it may be more realistic 
to describe each position using a separate energy potential.  The form of such an energy function 
is similar to (1), but now the number of parameters in the energy potential is 

 

202 ncontacts = 202 10  – ten fold larger than the example above.  Figure S3 shows the results of 
using a mixture of position-specific and common energy potentials:

 

E = a DijU a i( ),a j( )( )
j

￥
i

￥ + (1- a ) DijUij a i( ),a j( )( )
j

￥
i

￥ (4)

Variables are defined as before, with the ij subscript indicating that the energy matrix Uij is 
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specific is to position-pair ij and α being a scalar weight.  While the use of a position-specific 
energy map gives excellent results when the entire data set is used (ROC AUC = 0.99), it is not 
robust to 10-fold cross-validation (ROC AUC = 0.76), indicating that we do not have enough 
data to infer this increased number of parameters without over-fitting.

Non-specific energy is informative
When examining the data set, it is immediately obvious that the bound pairs are very unevenly 
distributed over the different domains and peptides – the number of domains or peptides bound 
by a peptide or domain varies widely.  In light of this observation, we try adding another term to 

the energy function – the non-specific domain (d) or peptide (p) energy of interaction.  

 

E = a DijU a i( ),a j( )( )
j

￥
i

￥ + 1- a( ) p (5)

 

E = a DijU a i( ),a j( )( )
j

￥
i

￥ + 1- a( )d (6)

Figure 4 shows performance is optimal when α is 0.90 for peptides and 0.80 for domains 
indicating that a modest contribution from non-specific energy terms gives better predictive 
performance.  However, these non-specific energy terms can only be derived for domains and 
peptides for which we have data.  This means that we can use these terms if we are making 
predictions for new peptides with a characterized domain or new domains with a tested peptide, 
but these non-specific terms cannot be used to predict interactions between domains and peptides 
that are both uncharacterized. However, the main (left) term of the energy function, which 
describes pair-wise interactions, can be applied in any of these cases, even when both the domain 
and the peptide are uncharacterized.

Interaction map includes unexpected contacts
The results above, Figure 3 in particular, indicate that an amino-acid based potential with a 
common interaction map can predict the binding of SH2 domains to pY peptides, even when the 
domain or peptide was not used in the construction of the potential.  Now, to understand the 
origin of specificity, we inspect the optimal interaction map, shown in Figure 5. To review, this 
map is constructed using the hybrid method, which selects potential contacts by searching for 
those that are physically close in at least one experimentally determined domain-peptide 
structure and then ranks them by an information-based criterion.  The information-based 
criterion finds contacts that have different amino acid composition in the bound and unbound 
pairs.
 
While about half of the positions in our interaction map overlap with those identified in a study 
of SH2 domain selectivity , there are two unexpected features of this interaction map.  First, 
there are three contacts with the pY position, numbered as position 0, which is unexpected. 
Since all peptides have a phosphorylated tyrosine in this position, it cannot be responsible for 
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determining any difference in domain specificity.  Therefore, the amino acids identities at the 
domain positions must specify some sort of general “stickiness,” which is derived separately but 
is related to the non-specific energy terms.  For example, only three of the six most highly bound 
domains (the N-terminal domains of PIK3R1, PIK3R2, and PIK3R3) contain an alanine residue 
at position 120, interacting with the pY residue.  

The second surprising observation is the lack of contacts with the +3 position of the peptide, 
which has been previously identified as a mediator of specificity .  Analysis revealed that the 
most informative +3 domain contact positions overlap with the +2 positions, but the +2 positions 
were more informative, which is why they are included in the interaction map.  This observation 
may reflect the choice of peptides included in the data set – they have a more diverse set of +2 
than +3 positions – but is nonetheless interesting, since the peptide set is derived from natural 
peptide sequences and may be a better representative of what they SH2 domains are exposed to 
in real cell than the random peptides used in phage display experiments or the small set of 
peptides available in experimentally determined structures of SH2 domain-peptide complexes.

Discussion
One of the significant features of domain-peptide interactions is that large, highly conserved 
families of domains interact specifically with sets of similar peptides.  How is this specificity 
achieved?  The amino acid level is the natural level on which to study this problem: How do 
changes in amino acid sequence alter the specificity of a particular PRM?  With this in mind, we 
created model of domain-peptide interaction energies using an amino acid-based potential 
applied to an interaction map used to describe the generic SH2 domain-pY peptide interaction. 
Two major features of our basic model are that (a) it can be applied to SH2 domains or pY 
peptides that are not used in the model construction and (b) it is physically interpretable.  

It was not obvious from the outset that this level of detail was appropriate to describe the 
problem, as isotropic contact potentials have been shown to be insufficient for protein folding , 
i.e. they do not provide sufficient specificity to identify a native protein structure from an 
astronomical number of alternatives. Our results show, this energy model is surprisingly 
effective at predicting domain-peptide interactions. This success may be in part due to the 
relatively small set of possible peptides that contain a central tyrosine residue, as compared to 
the large set of possible protein structures. 

The results of the LOGO cross-validation show that the model is successful at predicting the 
interactions involving a new domain or peptide, which is useful in predicting interactions that 
could not be measured, e.g. those involving domains that are difficult to express, or have not 
been measured, e.g. interactions with mouse SH2 domains.  The LOGO cross-validation 
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performance actually gave insight into experimental considerations, as well.  Of the ten domains 
with the worst LOGO ROC AUC scores, five were difficult to express, and domains that were 
hard to express generally had below average LOGO ROC AUC scores [A. Gordus, personal 
communication].

Additionally, a position specific energy potential, while excellent at fitting the entire data set, 
fares poorly under cross-validation, indicating that the data set is not large enough to specify the 
large number of parameters in the position specific model.  On the other hand, non-specific 
energy terms, which indicate the general “stickiness” of the domains and peptides improve the 
predictive capability of the model.  These results may inform fields of computational biology 
aimed at predicting protein-protein and protein-DNA interactions, e.g. .

Insights from the interaction map 
To make the model generally applicable, we used a single interaction map to describe all SH2 
domain-pY peptide interactions.  Based on the accuracy of the binding predictions, this 
simplification seems to work for the majority of cases.  This result is somewhat unexpected, 
especially since others have described several binding modes for SH2-peptide interactions .

We tried various interaction map construction strategies based on structural data and 
information-based techniques.  From these efforts come two interesting observations.  First, the 
information-based techniques are quite effective, implying that sequence information is 
sufficient to build an energy-based classifier of protein-peptide interactions.  This is useful for a 
variety of reasons, e.g. for some domain families, structural data may be sparse or unreliable, 
and processing structural data is labor-intensive.  Second, the hybrid technique that combines 
structural and information-based data is most effective, which is unsurprising since it 
supplements structural information, which may average over a variety of binding modes, with 
the information contained in the sequence data.

By studying the optimal interaction map, we learn two things.  First, contacts with the pY 
position specify a general “stickiness” of the domain that is informative for predictions.  Second, 
the contacts with the +2 position and +3 position are redundant, but in a peptide population 
derived from actual protein sequence, the +2 position is more informative.  Because we used a 
different alignment of the SH2 domains, it is difficult to directly compare the interaction map to 
previous studies.  However, an informal comparison shows that there is a significant overlap 
between the positions in our interaction map and those identified in a seminal study of SH2 
domain selectivity .
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Comparison to previous approaches
Our approach has several advantages over other techniques used to dissect the specificity of 
domain-peptide interactions and to predict binding.  In comparison to traditional structural 
biology methods, which generally rely on manual, individual analysis of complexes, our method 
allows us to combine structural data from a number of similar complexes with large-scale 
proteomic data.  Moreover, our method incorporates negative data for domain-peptides pairs that 
do not interact, as well as positive data from those that do interact.  In contrast to some 
computational structural biology approaches, e.g. , our method does not provide true quantitative 
predictions of interaction energies, but it is able to provide sufficiently accurate interaction 
energy rankings to correctly predict which domain-peptide pairs are bound.  By using an 
interaction map in place of direct amino-acid contacts, our method finds amino acid positions 
that are directly and indirectly involved in specific recognition and can be applied to members of 
a PRM family for which there is no structural data.

In comparison to other bioinformatics-based techniques, our approach gives results that are 
physically interpretable: an interaction map that specifies the positions that are important for 
recognition and an amino acid-based energy potential (Figure S4).  It is also applicable to 
domains that are not present in the training set, a feature not available in previous studies . 

Future directions
The success of this method opens up a number of future research directions.  Most directly, the 
interaction map and energy potential can be used to scan databases of physiologically 
phosphorylated peptides (e.g. Phospho.ELM ) for potential SH2 interaction partners or to predict 
likely peptide partners for SH2 domains not included in the study.  It would also be interesting to 
use this approach to predict “optimal” peptides for each SH2 domain and to experimentally 
verify that these domain-peptide pairs actually interact.  This approach is also easily applicable 
to any PRM family with a large-scale interaction data set, e.g. PTB domains  and PDZ domains . 
It would be interesting to attempt an adaptation of this method for protein-DNA interactions, as 
well.

One obvious drawback of this study is that is does not use the quantitative data available from 
the SH2 protein microarray experiments . Considering there are only ~200 positive data points in 
the data set and the comparable number of parameters in the model, modeling the strength of 
these interactions quantitatively will be challenging and may call for a different approach.
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Materials and Methods

Data Preparation
The data is taken from .  Only the 115 SH2 domains are considered, so the 44 PTB domains are 
discarded.  There are 10 double-SH2 domains, which are also discarded.  There are 66 peptides, 
but we discard all unphosphorylated peptide data points.  There are 33 peptide which are singly 
phosphorylated; 2 are discarded due to high background binding, leaving 31 peptides, and 

105x31 = 3255 interactions.  Domain-peptide pairs with measured Kd values less than 2 
micromolar are considered bound (198 pairs), all others are considered unbound.  The SH2 
domains are aligned using MUSCLE , and the peptides are aligned by the pY position.

Optimization of energy potential
To optimize the potential given an interaction map, we adapt the procedure presented in .  First, 

we define a score, Z, which expresses Figure 1A mathematically:

 

Z =
m- - m+

s - + s +
,

where µ+ and σ+ are the mean and standard deviation of the energies of the bound domain-

peptide pairs µ- and σ- are the same for the unbound pairs.  For the basic model, we can write µ+ 

and σ+ as:

 

µ+ = d(k) u
k all bound pairs

= d(k) u = d+ u

m- = d(l)
l all unbound pairs

u = d- u

s +
2 = var d(k) u( ) =  u cov d(k)( ) u

s -
2 =  u cov d(l)( ) u

With this, we can rewrite Z as:

 

Z =
d- u - d+ u

 u cov d l( )( ) u +  u cov d k( )( ) u
=

d- - d+( ) u

 u cov d l( )( ) + cov d k( )( )[ ] u
=

a u

 u B u

Here 

 

B = cov d l( )( ) + cov d k( )( ).  For convenience, we optimize Z2.  Setting 

 

d Z 2
( )

du
= 0 , we get:

 

u* B- 1a

Since the performance of a particular energy potential u is unchanged if it is scaled by a constant 

c or increased by a constant b – the bound rank and ROC AUC scores of u and cu + b are the 

same – the scale of the optimal u is arbitrary.
 

When adding terms to the energy model, e.g. the non-specific energies, the Z score is modified 
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accordingly and optimized with respect to each term separately.  The optimal non-specific 
energy term for a particular domain or peptide is proportional to the number of interactions that 
domain or peptide participates in.

Scoring and cross-validation
We use two scores to assess the model performance: bound rank and ROC AUC. As shown in 
Figure 1C, to calculate the bound rank, the domain-peptide pairs are ordered by the predicted 
energy.  Bound rank is then calculated by taking the median rank of the bound domain-peptide 
pairs. We report the bound rank score as a ratio of the median bound rank to the number of data 
points in the test set, which varies depending on cross-validation technique.  

ROC curves are constructed by plotting the TPR versus the FPR, given all possible energy 
thresholds.  For a given threshold, all domain-peptide pairs below the threshold are predicted to 
be bound, and all pairs above are predicted to be unbound.  The TPR and FPR are then given by:

 

TPR =
TP

TP + FN

FPR =
FP

FP + TN
Here TP are true positives – domain-peptide pairs both predicted and experimentally found to be 
bound, TN are true negatives – domain-peptide pairs both predicted and experimentally found to 
be unbound, FP are false positives – domain-peptide pairs predicted to be bound and 
experimentally found to be unbound, and FN are false negatives – domain-peptide pairs 
predicted to be unbound and experimentally found to be bound. The ROC AUC is calculated by 
estimating the area under this curve using the trapezoidal rule.

As with all cross-validation techniques, the two methods we use divide the data into two sets: the 
training set, from which the model parameters are inferred, and the test set, on which the model 
is applied and tested.  The stratified 10-fold cross-validation is done by dividing the data into 10 
equal parts with the same proportion of bound and unbound pairs as the total data set.  The 
training set contains 9 of the 10 parts, and the test set is the remaining part.  The method uses 
each tenth as the test set in turn, and averages the result.  For some of our tests, we repeat this 
method 50 times.  In the LOGO cross-validation method, the set containing all pairs involving 
one domain or peptide group is the test set, and the remainder is the training set.

Interaction map construction
For each construction method, we first define a potential set of domain-peptide position pairs – 
pairs of positions in the domain alignment (made using MUSCLE) and in the peptide alignment 
(aligned with the pY position as position 0).  Then, we order the pairs using some criteria and 
add them to the interaction map in the order specified by the criteria.
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For the information-based interaction maps, all position pairs are considered, and the criteria 
used to evaluate the pairs is the normalized Kullback-Leibler (KL) divergence between the 
amino acid distributions at the position.  The general formula for KL divergence of two discrete 

probability distributions p and q is

 

KL = p i( )log
p i( )
q i( )

 ?

 ?
 ?

 ?

 ?
 ?

i

￥

In our case, for each possible domain-peptide pair, we let p be the distribution of amino acid-

amino acid frequencies in the bound cases and q be the distribution in the unbound cases.  For 
example, to calculate the KL divergence of the 10-0 position pair, we extract the amino acid 
pairs present in position 10 of the domain (according to the MUSCLE alignment) and position 0 
of the peptide (the pY position).  We then tabulate the observed frequencies of each possible 
amino acid pair for bound and unbound cases, adding a pseudocount of 1 to each entry to 

avoiding taking the log of or diving by 0. Using these empirical p and q distributions, we find the 
KL divergence.  To control for differences in the inherent diversity of the data set at each 
position pair, we also calculate the KL divergence for a control where the bound/unbound labels 
are shuffled randomly.  We do this 100 times and calculate the mean and standard deviation of 
the KL divergence for the random shuffles.  We then assess the significance of the “real” KL 

divergence by calculating a Z-score: 

 

Z = KL - KLcontrol( ) var KLcontrol( ) , and pick contacts 

with the largest Z-scores.

For the structure-based maps, position pairs found to be in “contact” in SH2-peptide structures 
are considered.  We download all the SH2 structures available in the Protein Data Bank  as 
defined by SCOP  (144 structures as of February 2006) and manually sort through the structures, 
retaining only those bound to a tyrosine-containing peptide.  We remove structures with peptides 
containing two phosphorylated peptides and non-standard amino acids and structures with 
extraneous domains. For NMR structures, only one model is used, either the averaged model or 
the first model in ensemble.  For structures with multiple identical copies of the domain-peptide 
pair, only the first domain-peptide combination is retained.  After this filtering 38 structures 
remain.  The PDB codes of these structures are listed in Table S2.  Using RasMol , for each 
structure, we extract all domain-peptide position pairs in which non-backbone atoms are within a 
given distance threshold of each other.  We vary the threshold from 3.5 to 6.5 angstroms in 1-
angstrom increments.  To construct an interaction map, we add position pairs by the number of 
structures in which they are found to be in contact.

For the hybrid interaction maps, we only consider position pairs found to be in contact according 
to the structure criteria and then order the pairs by information-based significance.
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Figures

Figure 1

Figure 1.  An illustration of the energy potential construction method and the performance 

metrics.  (A) Given an interaction map, which specifies the interacting amino acids between the 
peptide and the domain, we find an energy potential that maximizes the gap between the mean 
energy of the bound (red) and unbound (blue) peptide-domain pairs, while minimizing the width 
of these distributions.  (B) This is analogous to a method used in protein folding that finds, given 
a map of intramolecular contacts, a potential that maximizes the energy gap between the native 
structure (red line) and decoys (blue distribution), while minimizing the width of decoy energy 
distribution. (C) We use two metrics to assess the ability of a potential to distinguish between 
bound and unbound domain-peptide pairs, based on their relative energies. To find the bound 
rank metric, we order the pairs by increasing energy and calculate the median rank of the bound 
pairs.  In this illustration, the bound pairs are shown as open, red circles on the energy scale, and 
the unbound pairs are filled blue circles.  The bound rank here would be median [1, 3] = 2/7.  (D) 
To calculate the ROC AUC, the area under the ROC curve, we construct a ROC curve by 
plotting the true positive rate versus the false positive rate for various energy thresholds and 
calculate the area under the curve. The ROC AUC corresponds to the probability that the energy 
of a randomly chosen bound pair is less than a randomly chosen unbound pair.
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Figure 2

Figure 2.  Performance of the basic energy model for predicting domain-peptide interactions. 

(A) Here we compare the ROC curves for the optimal hybrid interaction map (solid blue line), 
the best information-based interaction map (dashed red line) and a negative control (black dot-
dash line), which is a standard energy potential of amino acid interactions used for protein 
folding.  These curves are not from the cross-validation studies, but show the same result as 
cross-validation – the hybrid interaction map performs the best, with the information-based map 
close behind.   When applying the control potential to the hybrid interaction map, the ROC AUC 
is 0.54, which is close to the score of random predictors, 0.50. (B) This diagram shows the 
energy of bound pairs (open red circles) as compared to unbound pairs (filled blue dots), 
organized into columns by domain.  The energy scale is arbitrary.  There is a clear trend for the 
bound pairs to be on the low end of the energy spectrum.N
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Figure 3

Figure 3.  Performance of the basic model on unseen domains and peptides.  In order to assess 

the expected performance of the energy model on peptides or domains not used in the 
construction process, we perform LOGO cross-validation.  To do this, we exclude all the pairs 
including a particular domain or peptide from the training set used to create the potential and 
then used the derived potential to predict the interaction energies of the excluded pairs.   In (A), 
we plot the ROC AUC scores for excluded peptides and in (B) we plot the scores for excluded 
domains.  In both cases, the average ROC AUC is very high, 0.84, indicating that the energy 
function transfers well to new domains and peptides.

Figure 4

Figure 4.  Performance of the basic energy model with a non-specific interaction energy term. 

Here, we plot the ROC AUC of energy models that include a non-specific energy term for 

peptides (A) and domains (B).   The x-axis corresponds to 1-α in Equations (5) and (6) – α is the 
weight applied to the basic energy model and 1-α is the weight applied to the non-specific 
energy term.  Here we can see a modest contribution of either domain or peptide non-specific 
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energy terms increases the ROC AUC, and the domain non-specific energy term is more 
informative than the peptide term.

Figure 5

Figure 5.  An illustration of the optimal hybrid interaction map.  This figure shows a PDB 

structure of a sample SH2 domain , with the domain in a green ribbon depiction and the peptide 
in a yellow space-filling mesh.  The figure was made with MacPyMOL .  The interacting amino 
acids are highlighted in space-filling blue (domain) and red (peptide).  The cartoon on the right 
shows the interaction map schematically, where the numbers on the left correspond to positions 
in the SH2 domain alignment and the numbers on the right correspond to the peptide positions, 
where position 0 is the location of the phosphorylated tyrosine, and the positions above and 
below are towards the N- and C-termini, respectively. 
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