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Abstract 

How is muscle force modulated during hand exercise? Oxygenation in the contralateral primary 

motor cortex (M1) has been observed to vary considerably across trials of repetitive handgrip 
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exercise. No linear relationship was observed between the average value of oxygenation determined 

by a block design study and the force of the handgrip. We found reduced oxygenation in the 

ipsilateral M1 and unchanged oxygenation in the contralateral M1 during repetitive static handgrip 

exercises (40% and 60% maximal voluntary contraction; 10 s exercise/75 s rest; 5 sets), which might 

be due to short-term motor learning. These results support the hypothesis that the ipsilateral M1 

might functionally compensate for the contralateral M1 in force modulation during unilateral 

exercises. 

 

The main text 

 The brain-machine interface (BMI) enables support devices such as artificial hands to restore lost 

human capabilities. The development of these devices would be a breakthrough for neuroscientists in 

the field of movement control. Enabling individuals who have lost their hands to drink a cup of 

coffee through the use of an artificial hand would offer immense gratification to them. BMI 

technology can achieve this goal. However, if the artificial hand is unable to decipher the 

information transmitted by the brain for force modulation, it would breach or release the held object. 

Force modulation of an artificial hand by the brain is a key factor in the development of artificial 

hands through the application of BMI technology. 

  Studies to confirm the relationship between oxygenation in the contralateral primary motor cortex 



(M1) and power output in humans have yielded contradictory results1–3. Recently, it was confirmed 

that the oxygenation in the ipsilateral M1 is considerably higher than that in the contralateral M1. 

This finding was attributed to precise force control during contractions1. Further, the function of the 

ipsilateral M1 complements or inhibits that of the contralateral M14–7. In case of force modulation, 

the ipsilateral M1 may function complementarily to the contralateral M1. 

 Plasticity of the cerebral cortex often poses problems in studies on the oxygenation in the 

bilateral M18. Some researchers have described the relationship between force modulation and the 

ipsilateral M1 oxygenation1,8. This relationship is not constant and is altered by the plasticity of the 

brain. The validation of M1 oxygenation measured at each trial especially fails to explain the force 

modulation. If the ipsilateral M1 modulates the muscle force in a complementary manner, the 

oxygenation in the ipsilateral M1 should decrease with the habituation of an exercise task. On the 

other hand, if the ipsilateral M1 does not control muscle force in a complementary manner or if the 

ipsilateral M1 modulates muscle force predominantly, then the oxygenation in the ipsilateral M1 

should not decrease with the habituation of an exercise task. 

 Subsequently, we aimed to investigate the effect of motor learning on the contribution of the 

changes in the ipsilateral M1 to force modulation. We monitored the oxygenation in the bilateral M1 

during a repetitive handgrip task using near-infrared spectroscopy (NIRS) (details in Supplementary 

Methods and Figure S1). Changes in bilateral M1 oxygenation were measured by NIRS during 5 



repetitions of the handgrip task [exercise: 10 s, rest: 75 s; the tasks were performed at 40% and 60% 

of maximal voluntary contraction (MVC)]. Unlike functional magnetic resonance imaging (fMRI), 

NIRS can monitor the changes in oxygenation in the bilateral M1 at real time without the need for 

the superposition of the slices (details in Supplementary Methods). 

The results of repeated two-way analysis of variance (ANOVA) for the peak changes in the 

oxygenation in the bilateral M1from resting values at 40% MVC (Experiment 1) and 60% MVC 

(Experiment 2) are shown in Table 1 and Table 2. The peak changes in the oxyhemoglobin (HbO2) 

values in the contralateral M1 did not significantly differ across the MVC trials at both intensities 

(40% MVC: F = 0.798, p = 0.5358; 60% MVC: F = 0.403, p = 0.8050) (Figure 1 and 2). 

Correspondingly, the peak changes in deoxyhemoglobin (Hb) in the contralateral M1 did not differ 

significantly across the MVC trials at both intensities (40% MVC: F = 3.154, p = 0.0281; 60% 

MVC: F = 2.929, p = 0.0371) (Figure 1 and 2). The peak changes in HbO2 in the ipsilateral M1 

significantly differed across the MVC trials at both intensities (40% MVC: F = 3.154, p = 0.0281; 

60% MVC: F = 2.929, p = 0.0371) (Figures 1 and 2). On the other hand, the peak changes in Hb in 

the contralateral M1 did not significantly differ across the trials, whereas those in the ipsilateral M1 

significantly differed across the trials (40% MVC: F = 6.711, p = 0.0005; 60% MVC: F = 3.057, p 

= .0317) (Figures 1 and 2). A post-hoc test (paired t-test) revealed significant differences in the 

oxygenation (HbO2 and Hb) changes in the ipsilateral M1 between the first and fifth trials (Tables 1 



and 2). 

The results of this study contradict the fact that the ipsilateral M1 partially contributes in force 

modulation. Muscle power output during exercise is fundamentally controlled by the contralateral 

M1. During the motor learning phase, the ipsilateral M1 may act in a complementary manner with 

regard to force modulation. In the present study, we used the handgrip ergometer (details in 

Supplementary Fig 1). The use of this instrument rather than a visual feedback system, as in previous 

studies8,9, enabled easy evaluation of force modulation. In addition, the subjects practiced using the 

device over several days. Thus, the effects of motor learning on force modulation could be 

determined in relatively fewer repetitions of the exercise task. A previous study showed a decrease in 

ipsilateral M1 oxygenation during a sustained handgrip exercise performed at 30% MVC9. These 

results indicate that the contribution of the ipsilateral M1 to force modulation might be 

complementary to that of the contralateral M1. As shown by Newton et al.10, the increased neural 

activation in the M1 of one hemisphere induces reduced neuronal activity in the M1 of the opposite 

hemisphere. Based on these results, oxygenation in the ipsilateral M1 should reduce neural 

activation in the contralateral M1. 

However, NIRS cannot be used to determine the involvement of both hemispheres of the brain in 

force modulation because of technical drawbacks. The contribution of the ipsilateral and 

contralateral M1 to force modulation can be clearly studied using transcranial magnetic stimulation 



(TMS). Thereafter, the uniformity of the contribution of the ipsilateral and contralateral M1 to force 

modulation remains unclear. The present results suggest collateral contribution of the ipsilateral M1 

to force modulation, and that this contribution declines with motor learning. Further studies should 

focus on elucidating the contribution of the ipsilateral M1 to force modulation. This information will 

help achieve advances in BMI technology. 

 

ACKNOWLEDGEMENTS 

We thank N. Kuboyama and C. Ueda for their helpful comments. This work was supported by the “Academic 

Frontier” Project for Private Universities: matching fund subsidy from the Ministry of Education, Culture, Sports, 

Science and Technology of Japan to the Research Institute of Physical Fitness, Japan Women’s College of Physical 

Education. It was also supported by a Grant-in-Aid for Young Scientists (B, #19700532) from the Ministry of 

Education, Science and Culture of Japan to K.S. 

 

AUTHOR CONTRIBUTIONS 

This study was designed by all 3 authors. Data collection was performed by all 3 authors. K.S. was responsible for 

data analysis and writing the paper. 

 

COMPETING INTERESTS STATEMENT 



The authors declare competing financial interests. 

 

REFERENCES 

1. Dai, T.H. et al. Exp Brain Res. 140, 290-300 (2001) 

2. Dettmers, C. et al. J. Neurophysiol. 74, 802-815 (1995) 

3. Thickbroom, G.W. et al. Exp Brain Res. 121, 59-64 (1998) 

4. Benwell N. Mastaglia, F.L., Thickbroom, G.W. Exp Brain Res. 175, 626-632 (2006) 

5. Gandevia, S.C. Physiol Rev. 81, 1725-1789 (2001) 

6. Shibuya, K. & Kuboyama, N. Brain Res. 1156, 120-124 (2007) 

7. Shibuya, K. et al. Brain Res. doi:10.1016/j.braires.2008.03009 (2008) 

8. Ward, N.S. and Frackowiak, R.S.J. Brain. 136, 873-888 (2003) 

9. Liu, J.Z. et al. J Neurophysiol. 90, 300-312 (2003) 

10. Newton J.M., Sunderland A., Gowland P.A. NeuroImage. 24, 1080-1087 (2005) 

 

Figure legends 

Figure 1. The peak value in oxygenation changes from resting levels at 40%MVC trials. The 

astarisks are shown the significant difference between the first trials. Upper panels represent the 

results of oxyhemoglobin (HbO2) changes. Lower panels represent the results of deoxyhemoglobin 



(Hb) changes. Right panels represent the results of contralateral primary motor cortex oxygenation 

changes, and left panels represent the results of ipsilateral primary motor cortex oxygenation 

changes. Asterisks show significant differences from the first trial (p < 0.05). Error bars indicate 

s.e.m. 

 

Figure 2. The peak value in oxygenation changes from resting levels at 60%MVC trials. The 

astarisks are shown the significant difference between the first trials. Upper panels represent the 

results of oxyhemoglobin (HbO2) changes. Lower panels represent the results of deoxyhemoglobin 

(Hb) changes. Right panels represent the results of contralateral primary motor cortex oxygenation 

changes, and left panels represent the results of ipsilateral primary motor cortex oxygenation 

changes. Asterisks show significant differences from the first trial (p < 0.05). Error bars indicate 

s.e.m. 
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HbO2 Hb

Trial No. Trial No.

1 0.0116 ± 0.0008 0.0140 ± 0.0010 1 -0.0079 ± 0.0005 -0.0124 ± 0.0010
2 0.0143 ± 0.0013 0.0101 ± 0.0010 2 -0.0111 ± 0.0012 -0.0127 ± 0.0009
3 0.0144 ± 0.0008 0.0107 ± 0.0006 3 -0.0101 ± 0.0006 -0.0103 ± 0.0006
4 0.0107 ± 0.0010 0.0070 ± 0.0008 4 -0.0051 ± 0.0005 -0.0039 ± 0.0006 *
5 0.0093 ± 0.0009 0.0029 ± 0.0010 * 5 -0.0054 ± 0.0003 -0.0011 ± 0.0007 *

F =0.798, p = 0.5358 F = 3.154, p = 0.0281 F =2.215, p = 0.0911 F = 6.771, p = 0.0005
There were significant differences between
Trial 1 and 4: t = 3.854, p = 0.0084; and
between Trail 1 and 5: t = 6.429, p =
0.0007

Table 1. The peak value in oxygenation changes from resting levels at 40%MVC trials. The astarisks are shown the significant difference between the first trials. Left panel represents the results of
oxyhemoglobin (HbO2) changes. Right panel represents the results of deoxyhemoglobin (Hb) changes.

Contralateral Ipsilateral Contralateral Ipsilateral

There was a significant difference
between Trial 1 and 5: t = 3.017, p =
0.0235



HbO2 Hb

Trial No. Trial No.

1 0.0173 ± 0.0016 0.0166 ± 0.0010 1 -0.0093 ± 0.0004 -0.0116 ± 0.0005
2 0.0160 ± 0.0012 0.0133 ± 0.0008 2 -0.0107 ± 0.0003 -0.0123 ± 0.0004
3 0.0186 ± 0.0012 0.0160 ± 0.0011 3 -0.0096 ± 0.0006 -0.0121 ± 0.0010
4 0.0171 ± 0.0015 0.0119 ± 0.0006 4 -0.0101 ± 0.0005 -0.0086 ± 0.0004
5 0.0123 ± 0.0015 0.0063 ± 0.0009 * 5 -0.0086 ± 0.0006 -0.0057 ± 0.0005 *

F = 0.403, p = 0.8050 F = 2.929, p = 0.0371 F = 0.405, p = 0.8036 F = 3.057, p = 0.0317
There was a significant difference
between Trial 1 and  5: t = 4.744, p =
0.0032

There was a significant difference between
Trial 1 and 5: t = 2.627, p = 0.0392

Table 2. The peak value in oxygenation changes from resting levels at 60%MVC trials. The astarisks are shown the significant difference between the first trials. Left panel represents the results of
oxyhemoglibin (HbO2) changes. Right panel represents the results of deoxyhemoglibin (Hb) changes.

Contralateral Ipsilateral Contralateral Ipsilateral
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