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Abstract

Targeting viral vectors to certain tissues in vivo has been a major challenge in gene therapy. Cell type-directed vector
capsids can be selected from random peptide libraries displayed on viral capsids in vitro but so far this system could not
easily be translated to in vivo applications. Using a novel, PCR-based amplification protocol for peptide libraries displayed on
adeno-associated virus (AAV), we selected vectors for optimized transduction of primary tumor cells in vitro. However, these
vectors were not suitable for transduction of the same target cells under in vivo conditions. We therefore performed
selections of AAV peptide libraries in vivo in living animals after intravenous administration using tumor and lung tissue as
prototype targets. Analysis of peptide sequences of AAV clones after several rounds of selection yielded distinct sequence
motifs for both tissues. The selected clones indeed conferred gene expression in the target tissue while gene expression
was undetectable in animals injected with control vectors. However, all of the vectors selected for tumor transduction also
transduced heart tissue and the vectors selected for lung transduction also transduced a number of other tissues,
particularly and invariably the heart. This suggests that modification of the heparin binding motif by target-binding peptide
insertion is necessary but not sufficient to achieve tissue-specific transgene expression. While the approach presented here
does not yield vectors whose expression is confined to one target tissue, it is a useful tool for in vivo tissue transduction
when expression in tissues other than the primary target is uncritical.
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Introduction

Efficient and specific delivery of therapeutic genes to the tissue of

interest is a paramount and so far unsolved issue in gene therapy.

Among the available viral vectors for gene delivery, adeno-

associated virus (AAV) has gained particular attention. The low

frequency of random integration into the genome [1] and the

moderate immune response make AAV an attractive basis for gene

therapy vector design [2,3]. No substantial safety issues have been

encountered in a number of clinical trials involving AAV vectors

[1]. Like in almost all other gene therapy vectors, the tropism of

AAV-2 derived vectors limits its use for the gene transduction of

certain tissues especially when vectors are delivered systemically.

This may partly be circumvented by using AAV serotypes with an in

vivo gene transduction pattern most closely fitting the needs of the

application [4]. Also, the tropism of AAV capsids may be changed

by combining parts of the natural serotype diversity (reviewed in

[5]). Alternatively or in addition, peptides mediating binding to the

cell type of interest can be identified by random phage display

library screening and subsequently be introduced into an AAV

capsid region critical for receptor binding [6,7,8,9,10,11,12]. Such

peptide insertions into or other mutational manipulations of the

heparin binding domain adjacent to VP capsid protein position

R588 can abrogate the natural tropism of AAV-2 capsids to

heparan sulfate proteoglycane (HSPG)-expressing cells and result in

de-targeting from the liver in vivo [13,14,15]. The identification of

numerous tissue-directed peptide ligands during the last decade

[16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32] would seem

to supply almost unlimited potential for the introduction of ligands

into AAV capsids to establish targeted gene delivery in vivo. This

approach has indeed been reported to be successful using certain

peptides [10,11,12]. Yet, our own experience has been, that for

many peptides cell tropism changes or gets lost after inserting them

into the AAV capsid (author’s unpublished observation). This may

be due to a number of reasons. First and foremost, the peptide’s

conformation may change unpredictably when incorporated into

the structural AAV capsid context, leading to a reduced receptor-

ligand affinity and specificity. Further, peptides isolated by phage

display screenings are commonly selected based on receptor binding

but not on subsequent internalization, nuclear transfer, and

transgene expression. To overcome these obstacles, a screening

system based on random peptide libraries displayed directly on
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AAV capsids has recently been developed were the AAV library

particles are amplified based on binding, uptake and viral gene

expression in the target cell via adenoviral helper co-infection

[14,33]. Capsid mutants efficiently transducing various different cell

types have been isolated from such libraries by biopanning on the

cells of interest [14,33,34,35,36,37]. Even though numerous AAV

capsid variants have been isolated by AAV library screenings,

comparative gene expression analyses of such modified AAV

derived vectors have not been performed in vivo and, despite the

obvious importance of the question, it remains open for most of

these vectors whether or not a retargeting after systemic

administration in vivo occurs.

Vector targeting in vivo faces several hurdles which are not

present in vitro and the mechanisms that determine a vectors

tropism and its gene transduction properties in vivo are as yet

poorly understood. While in vivo biodistribution of a vector is to a

considerable part defined by clearance, its gene transduction

properties are rather dependent on receptor binding, cellular

uptake, nuclear transfer, and transgene expression. Thus, major

hurdles for receptor targeted gene transfer in vivo are to improve

specific ligand-receptor interactions under circulation conditions

as well as to overcome host-anti-vector immune reactions, rapid

vector clearance from the circulation by the reticuloendothelial

system, and endothelial cell layers as well as the extracellular

matrix acting as physical barriers [38]. Taking these consider-

ations into account, in vivo biopanning of random AAV peptide

libraries seems to be more appropriate to select for tissue directed

gene vectors than mere tissue culture-based approaches. Among

the limitations faced by in vivo AAV display library selection is the

difficulty to rescue and amplify tissue-targeted library viruses for

multiple selection rounds as the amplification systems used in vitro

are based on adenoviral superinfection and can therefore not

easily be applied in living animals.

In this study, we set out to isolate tissue-directed AAV capsids

using murine breast cancer and lung tissue as prototype targets.

We established a novel adenovirus-free PCR based screening

approach that amplifies tissue-targeted library viruses and

therefore allows for multiple AAV library screening rounds after

systemic application in vivo. We further analyzed gene transduction

properties of the isolated capsid variants. While the selected

vectors indeed transduced their target tissue orders of magnitude

better than unselected vectors, we almost invariably observed

unintended transduction of heart tissue. These results show that

modification of the HSPG-binding capsid domain of AAV vectors

by targeting peptide insertion is necessary but not sufficient to

achieve completely tissue-specific transgene expression while this

technical approach may be appropriate when expansion rather

than restriction of AAV tropism to the tissue of interest is needed.

Our findings therefore broaden the functional understanding of

AAV-2 vectors, particularly when selected from random AAV

display peptide libraries.

Materials and Methods

Cells and cell culture
293T cells (kindly provided by David Baltimore, California

Institute of Technology, Pasadena, CA), were maintained in

Dulbecco’s Modified Eagle’s medium (DMEM; Invitrogen,

Carlsbad, CA) containing 1% penicillin/streptomycin solution

(Invitrogen) and 10% fetal calf serum (FCS; Biochrom, Berlin,

Germany). Primary murine breast cancer cells were obtained from

tumors growing in female transgenic FVB mice expressing the

polyoma middle T antigen under the control of the mouse

mammary tumor virus promoter [39,40] as previously described

[41]. Briefly, tumors were cut into small pieces and digested for

1 h at 37uC in collagenase 2 solution (Biochrom), dissolved in PBS,

10% 2 mM MgCl2/CaCl2 and 10% BSA. The cell suspension was

passed through 100 mm and 40 mm cell strainers, washed twice

with PBS, and cultured in Iscove’s Modified Dulbecco’s Medium

(IMDM; Invitrogen) containing 10% fetal bovine serum, 10%

horse serum, 1% penicillin/streptomycin, and 1.25 mg/ml am-

photericin B (Invitrogen). All cells were cultured in a humidified

atmosphere at 37uC and 5% CO2. Immunodetection using a pan-

cytokeratin antibody (Sigma) revealed more than 95% of

cytokeratin-positive tumor cells after 24 hours in culture.

Animals and tumor staging
All procedures involving animals were performed according to

the Guide for the Care and Use of Laboratory Animals published

by the US National Institutes of Health (NIH Publication No. 85-

23, revised 1996) and the German Animal Protection Code. We

used a transgenic breast cancer mouse model induced by the

polyoma middle T antigen (PymT) under control of the mouse

mammary tumor virus promoter. The mouse strain FVB/N-

TgN(MMTVPyVT)634-Mul (PymT) was purchased from Jackson

Laboratory (Bar Harbor, ME). Genotyping was performed by

polymerase chain reaction (PCR) as described by Jackson

Laboratory (www.jax.org). Starting at the age of 30 days,

transgenic female mice were palpated weekly for early detection

of mammary tumors. The animals were anesthetized by

intraperitoneal injection of 100 mg/kg body weight 10% ketamine

hydrochloride (115.34 mg/ml; Essex, Munich, Germany) and

5 mg/kg body weight 2% xylazine hydrochloride (23.32 mg/ml;

Bayer, Leverkusen, Germany).

AAV peptide library biopanning in vitro and in vivo
A random X7 AAV display peptide library (random insert

introduced at position R588 VP1 capsid protein numbering) with

a diversity of 26108 random clones (determined at the cloned

plasmid level) was produced using a three-step protocol as

described previously [14,35]. For in vitro biopanning (Figure 1,

pathway A), 26106 primary PymT breast cancer cells were

incubated with the AAV library at a multiplicity of infection

(MOI) of 1.000 vector genomes (vg)/cell in selection round 1, 500

vg/cell in round 2, and 100 vg/cell in round 3. After 96 hours,

unbound AAV library particles were removed by 3 washing steps

in PBS. Surface-bound library viruses were detached by trypsin

digestion for 20 minutes and subsequent washing. Previous work

had shown that this additional trypsin digest is essential to enrich

internalizing clones for improved transduction of the target cells

(M.T., unpublished observation). Whole cellular DNA was

extracted using the QIAamp Tissue Kit (Qiagen, Hilden,

Germany). The random oligonucleotides contained in AAV

library particles internalized into tumor cells were amplified by

PCR using the primers 59-GGTTCTCATCTTTGGGAAG-

CAAG-39 and 59-TGATGAGAATCTGTGGAGGAG-39. For

in vivo/ex vivo biopanning of AAV peptide libraries (Figure 1,

pathway B), 161010 vg of an AAV library for selection round 1, or

26108 to 26109 vg per animal for round 2–4 were injected into

the tail vein of female PymT transgenic mice bearing palpable

breast tumors. After 24 hours, primary breast cancer cells were

prepared as described above and grown in vitro for 96 hours.

Oligonucleotide inserts of targeted AAV library particles were

amplified by nested PCR using whole cellular DNA as template.

Primers were 59-ATGGCAAGCCACAAGGACGATG-39 and

59- CGTGGAGTACTGTGTGATGAAG-39 for the first PCR

and 59-GGTTCTCATCTTTGGGAAGCAAG-39 as well as 59-

TGATGAGAATCTGTGGAGGAG-39 for the second PCR.

AAV In Vivo Library Panning
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Pure in vivo library biopanning (Figure 1, pathway C) was

performed along the same lines, except that the circulation time

was 48 hours and that DNA extraction from the tumor tissue was

done without prior ex vivo growth of the cells. To select for lung

homing AAV, libraries were injected into the tail vein of 6-week-

old female PycB/FVB wild-type mice (n = 2 animals per selection

round) as described for tumor selections (Figure 1, pathway C).

DNA of whole lung tissue extracts from two animals was extracted,

pooled and used as template to amplify the random oligonucle-

otide of lung-homing AAV. We varied the time of AAV blood

circulation before lung harvest in 2 alternative selection approach-

es (5 minutes followed by a perfusion step, 48 hours in round 1,

48 hours or 6 days for round 2, and 6 days for round 3 to 4). For

all selections, PCR products were analyzed by agarose gel

electrophoresis to verify correct size, digested with BglI and cloned

into the SfiI-digested pMT-202-6 library backbone plasmid

[14,35]. Cloned AAV library plasmids were transformed into

electrocompetent E. coli DH5-a (Invitrogen) using the Gene Pulser

(Bio-Rad, Hercules, CA). Randomly assigned clones were

sequenced using the reverse primer 59-CAGATGGGCCCCT-

GAAGGTA-39. For production of pre-selected AAV peptide

libraries, 26108 293T cells were transfected with the library

plasmids at a ratio of 25 plasmids/cell using Qiagen’s PolyFect

reagent. pUC18 (Invitrogen) served as carrier DNA. Two hours

after transfection, 293T cells were superinfected with wild-type

adenovirus type 5 (Ad5, supplied by the Laboratoire de Thérapie

Génique, Nantes, France) at an MOI of 5 infectious particles/cell

for library particle amplification. After 48 h, or when cell lysis

Figure 1. Pathways used for selection of targeted viral capsids by screening random AAV display peptide libraries. For all selection
pathways, genomic DNA containing cap gene fragments from internalized library viruses was extracted from the target cells or tissue. Library inserts
were amplified by nested PCR and cloned back into the AAV library backbone plasmid pMT-202-6. The resulting pre-selected plasmid library was
used to produce a secondary AAV library by transfection into 293T cells and subsequent superinfection with Ad5. Pre-selected AAV libraries were re-
subjected to selection on the target cells in vitro or the target tissue in vivo. Preceding the amplification step, the library selection was done according
to one of the following three pathways: Pathway A, in vitro selection: A random AAV display peptide library was incubated on primary breast
cancer dissociation cultures derived from female tumor-bearing PymT mice. Non-internalized AAV library particles were removed by extensive
washing followed by trypsin digestion prior to DNA extraction and AAV insert amplification. Pathway B, in vivo/ex vivo selection: A random AAV
display peptide library was injected intravenously into female tumor-bearing PymT mice. After 24 hours, primary tumor cells of the injected mouse
were prepared as in pathway A and grown ex vivo for 96 hours prior to DNA extraction and AAV insert amplification. Pathway C, in vivo selection:
A random AAV display peptide library was injected as in pathway B in tumor-bearing mice (for selection of tumor-homing AAV) or wild-type mice (for
selection of lung homing AAV), respectively. After 48 hours, the target tissue (tumor or lung, respectively) was removed and lysed, and DNA was
extracted for AAV insert amplification.
doi:10.1371/journal.pone.0005122.g001
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became apparent, cells were detached from the culture dish in

PBS-MK (140 mM NaCl, 5.5 mM KCl, 8 mM Na2HPO4,

1.5 mM KH2PO4, 1 mM MgCl2) and pooled with supernatants.

AAV library particles were harvested by cell lysis via three freeze-

thaw cycles. Cellular DNA was removed by incubation with

benzonase (Sigma) at 50 U/ml lysate at 37uC for 30 min, followed

by Ad5 inactivation at 55uC for 30 min. Viral library preparations

were purified using the iodixanol gradient centrifugation method

as previously described [42,43]. The 40% iodixanol fraction

containing the purified AAV viruses was stored at 280uC until

further use.

Production of capsid modified recombinant AAV vectors
Recombinant AAV (rAAV) vectors displaying selected peptide

sequences were generated by cloning the oligonucleotide inserts

into the pXX2-187 plasmid (a derivative of the library backbone

plasmid pMT-187-0-3 without ITRs) [34,35]. 293T packaging

cells were transfected with the modified pXX2-187 (or pXX2 for

wild-type AAV-2 capsid controls), pXX6 [44], and a plasmid

carrying a reporter gene or a toxic transgene of interest using

PolyFect (Qiagen). Packaged reporter genes included the luciferase

(luc) gene in the plasmid pUF2-CMV-luc [34]. The HSV

thymidine kinase mutant SR39 [45] was used as a cytotoxic

suicide gene. Cells were harvested 96 hours after transfection, and

vectors were purified by iodixanol gradient centrifugation as

described above.

AAV titration and evaluation of vector homing and
serum distribution

The AAV capsid titers were determined as described [46] by

ELISA (Progen, Heidelberg, Germany). The genomic titers of

recombinant AAV vectors and AAV libraries were determined by

quantitative PCR using the Absolute SYBR Green fluorescein

master mix (Abgene, Epsom, UK) and the MyiQ cycler (Bio-Rad)

as previously described [47,48]. Vectors were quantified using the

forward primer 59-GGCGGAGTTGTTACGACAT-39 and the

reverse primer 59-GGGACTTTCCTACTTGGCA-39 specific for

the CMV promoter sequence. The genomic titer of AAV libraries

was determined using the forward primer 59-GCAGTATGGTG-

TATCTACCAA-39 and the reverse primer 59-GCCTGGAA-

GAACGCCTTGTGT-39 specific for the AAV cap gene. Real-

time PCR was done in 20 ml with 0.3 mM for each CMV primer,

or 0.4 mM for each AAV primer, respectively, according to the

manufacturer’s protocol (Abgene). For CMV primers, annealing

temperature was 64uC for 15 seconds. For AAV primers,

annealing temperature was 61uC for 30 seconds. Fluorescence

was measured at the end of each annealing phase. A standard

curve for quantification was generated by serial dilutions of the

respective vector plasmid DNA. Calculations were done using

MyIQ analysis software (Bio-Rad). For quantification of vectors

homing to lung tissue, 561010 capsid-modified rAAV-luciferase

vectors were injected into the tail vein of female PycB/FVB wild-

type mice (n = 3 per group). After 8 d, lung tissue was removed.

Whole DNA was extracted using the DNeasy tissue kit (Qiagen)

and quantified using a 2100Pro spectrophotometer (Amersham

Pharmacia Biotech, Uppsala, Sweden). For real-time PCR, 500 ng

of extracted genomic DNA were used as template to amplify

vector specific DNA using CMV primers as described above. To

determine the amount of circulating AAV library or wild-type

viruses in the blood, 161010 vg were injected into the tail vein of

PycB/FVB wild type mice. Blood was obtained at indicated time

points and centrifuged for 2 minutes at 10,000 rpm. Cell-free

serum was diluted 1:100 in ddH2O and used as template for real-

time PCR using AAV specific primer pairs as described above.

Luciferase gene transduction
To analyze luciferase gene transduction in vitro, 26104 cells per well

were seeded in 24-well plates or 56103 cells per well in 96-well plates

and incubated with AAV-luciferase vectors at an MOI of 10,000 vg/

cell for 72 h. For in vivo gene transfer, 561010 vg of rAAV-luciferase

vectors were injected into the tail vein of anesthetized animals. After 8

or 28 days, respectively, the target tissue and representative control

tissues were removed, snap frozen in liquid nitrogen, and stored at

280uC. Frozen tissue samples and cell lysates were homogenized in

reporter lysis buffer (RLB, Promega, Madison, WI) and luciferase

reporter gene activity was determined in a luminometer (Centro LB

960, Berthold Technologies, Bad Wildbad, Germany) using

Promega’s luciferase assay according to the manufacturer’s instruc-

tions. If required, values were normalized to protein levels in each

probe determined by Bradford assay (Bio-Rad).

Suicide gene transfer and toxicity assay
Cells were seeded at 56103 per well in 96-well plates and

transduced with rAAV-SR39 vectors at an MOI of 10,000 vg/cell.

After two cycles of 10 mM ganciclovir (GCV) treatment (24 hours

and 72 hours after transduction), the number of viable cells was

assessed as described [49,50]. Cells were incubated with medium

containing 500 mg/ml MTT (Invitrogen) for 4 h. Subsequently,

absorbance of formazan crystals dissolved in SDS/HCl was

measured at 570 nm in a SpectraMAX microplate reader

(Molecular Devices, Sunnyvale, CA).

Statistics
Statistical analysis was performed using the GraphPad Prism

program 3.0 (GraphPad Software, San Diego, CA). Parametric

data were analyzed by one-way analysis of variance followed by a

Bonferroni post test. Non-parametric data were analyzed by a

Kruskal-Wallis test followed by a Dunn’s post test. p values ,0.05

were considered significant.

Results

PCR-based screening of a random AAV display peptide
library on primary breast cancer cells yields enrichment
of specific peptide motifs

To isolate AAV-2 capsids for targeted gene transfer in primary

breast cancer cells of transgenic PymT mice, we prepared tumor

cells and screened an X7 random AAV display peptide library in

vitro along the lines of pathway A in Figure 1 by which internalized

AAV library particles are amplified based on PCR amplification of

their random oligonucleotide insert. The cap gene region

containing the oligonucleotide insert of AAV recovered from

breast cancer cells after each round of selection was amplified by

nested PCR and correct size of the amplification product was

verified by agarose gel electrophoresis (data not shown). The insert

was cloned back into the library backbone plasmid pMT202-6 and

the diversity of transformed library plasmids was at least 16105

clones for such secondary libraries in this and subsequent

selections (data not shown). New pre-selected AAV particle

libraries were obtained by transfection of 293T cells with the

generated secondary plasmid library in limiting dilution technique

(25 library plasmid molecules per producer cell) to minimize the

production of chimeric AAV library particles or mismatch of

packaged DNA and displayed peptide due to uptake of multiple

library genomes in one producer cell. The titers obtained with this

approach were sufficient for further selection rounds (data not

shown). To increase the stringency of selection, MOIs of AAV

libraries were decreased from 500 vg/cell to 100 vg/cell in rounds

AAV In Vivo Library Panning
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two and three, respectively. Sequence analysis showed enrichment

of several clones after two rounds of selection compared to round

1, functionally validating our novel selection method. Peptide

sequences found after round 1 were RGDLGLS, RGDMSRE,

DGLGRLV, and DRSPLSL. After three rounds of selection,

RGDLGLS and RGDMSRE were the dominant clones (Table 1).

Both peptides share the sequence motif RGDXXXX.

Selected AAV capsids efficiently transduce primary
murine breast cancer cells

To test whether the selected AAV capsid mutants allow for

improved gene delivery to primary PymT breast cancer cells, we

produced rAAV luciferase vectors displaying the selected peptides

RGDLGLS, RGDMSRE, and DGLGRLV for further analysis.

These vectors transduced primary PymT breast cancer cells up to

17.8-fold better than wild-type AAV-2 vectors, and up to 3.500-fold

better than vectors displaying an unselected random peptide

(VRRPRFW) (Figure 2A). In contrast, HeLa cervical cancer cells,

3T3 mouse fibroblasts and primary mouse hepatocytes were not

permissive for transduction with the selected capsid variants while

they could be efficiently transduced with wild-type AAV transduc-

tion (data not shown), suggesting target specificity of the selected

clones and supporting their use for targeting breast cancer cells in

vivo. These findings were further corroborated by experiments using

modified vectors harboring SR39, a derivative of the HSV-tk

suicide gene [45,51,52]. Primary PymT breast cancer cells

transduced by vectors with the RGDLGLS capsid insert showed

strong cytotoxic effects upon ganciclovir treatment, whereas cells

transduced with control vectors were almost resistant to ganciclovir

(Figure 2B). Taken together, these findings suggest RGDLGLS-

AAV as an interesting candidate for targeting therapeutic genes to

breast cancer cells and demonstrate that our novel Ad5-free, PCR-

based biopanning protocol allows for selection of targeted AAV

vectors from random AAV display peptide libraries.

We therefore investigated whether the capsid mutants selected

in vitro can target PymT breast tumors in vivo. AAV luciferase

vectors displaying the selected peptides RGDLGLS, RGDMSRE,

DGLGRLV, an unselected control peptide, or no peptide (wild-

type AAV), respectively, were injected intravenously into female

PymT mice bearing breast cancers. Analyses of reporter gene

expression in tumor tissue revealed that none of the vectors

mediated gene transduction in the tumor tissue (data not shown).

Kinetics of circulating AAV peptide library particles and
wild-type AAV are similar

Based on the negative finding above, we hypothesized that

selection under in vivo conditions is needed to enrich library clones

that are able to bind cellular receptors in tumors, penetrate the

tumor tissue and are internalized into tumor cells under

physiological circulation conditions after intravenous administra-

tion. But we suspected that our novel PCR-based selection of AAV

libraries may not be able to distinguish between library particles

successfully internalized into target cells, and non-homing particles

present in the circulation if the tissue is harvested too early after

injection. To minimize the amount of circulating AAV library

particles in our tissue samples at the time point of harvest, we

analyzed the kinetics of circulating AAV library particles.

Therefore, AAV were injected intravenously at 161010 vg per

mouse, blood samples were collected at various time points, and

the amount of circulating particles in the serum was quantified by

real-time PCR. Clearance rates were comparable in AAV library

particles and wild-type viruses (Figure 3). The amount of

circulating genomes decreased in a straight proportional manner.

We therefore decided to harvest tissues in AAV library selections

48 hours after virus administration.

In vivo selection of AAV display peptide libraries in tumor
tissue results in enrichment of distinct peptide inserts

Two technical approaches were chosen for AAV library

selections in vivo (Figure 1, pathways B and C). Secondary libraries

were produced and analyzed as for in vitro selections. Genomic

titers of selected libraries allowed for injection of 26108 vg per

mouse in selection rounds 2–4 (data not shown). After 4 rounds of

selection, sequencing revealed the enrichment of serine and

glycine-rich peptide motifs and repetition of several single clones.

In particular, the motifs GGLSGXS and ESGXXXX, and the

single clones EYRDSSG, QMSGGVA, EEPALRA, as well as

APTLGLS were enriched during ‘‘in vivo/ex vivo’’ selections

(Table 2). In a separate approach, we performed 2 further rounds

of ex vivo selection with libraries pre-selected for 2 rounds on PymT

cells in vitro (like in Figure 1, pathway A). Here, the only remaining

clone following the in vivo part of this selection displayed the

peptide DLGSARA (Table 2). During in vivo selections (Figure 1,

pathway C), the peptide motifs enriched during four rounds of

selection were XXSGVGS, GEARXXA, and SGNSGAA, as well

as SSGSGGA and ESGIWVA (Table 2). The clones SGNSGAA

and SSGSGGA shared the similar sequence pattern SSG or SGG,

respectively, which also occurred in the EYRDSSG and

QMSGGVA clones enriched during ex vivo selection. The motif

ESGXXXX was highly enriched in both in vivo/ex vivo and pure in

vivo selections. These data suggest that AAV library selection under

circulation conditions is feasible and causes enrichment of a

distinct pattern of displayed peptides after multiple rounds of

biopanning. Therefore, we decided to evaluate in vivo gene

transduction for all enriched clones.

Table 1. Peptides enriched after PCR-based in vitro selection (pathway A) of AAV peptide libraries on primary breast cancer cells

Peptide sequence a Charge pattern b Frequency in selection round c

round 1 round 2 round 3

RGDLGLS +y-yyyx - 3/10 6/9

RGDMSRE +y-yx+- - 1/10 3/9

DGLGRLV -yyy+yy - 3/10 -

DRSPLSL -+xyyxy 1/6 2/10 -

asingle letter code; shared amino acid patterns are highlighted in colored letters
bcharge pattern of amino acid side chains: +, positively charged; 2 negatively charged; x, uncharged polar; y, nonpolar.
cobserved frequency relative to overall number of sequenced clones
doi:10.1371/journal.pone.0005122.t001

AAV In Vivo Library Panning
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Selected library-derived AAV transduce tumors in vivo
To assess whether the in vivo-selected AAV-2 vectors mediate

gene expression in tumor tissue in vivo, we produced luciferase

reporter vectors displaying the selected peptide sequences. All

vectors titers ranged between 861010 to 761011 vg/ml (data not

shown). Luciferase gene expression in the breast tumor tissue was

evaluated 8 days after intravenous injection in tumor-bearing

PymT mice in a screening experiment to assess which clones

should be investigated in detail. Five of the clones (GEARISA,

SGNSGAA, ESGLSQS, EYRDSSG, and DLGSARA) showed an

increased transduction of the breast tumor tissue compared to

wild-type AAV vectors, whereas unselected control vectors did not

mediate any gene expression (data not shown). We chose the most

promising vectors for further experiments in a larger group of

animals (n = 5 mice per clone). Following intravenous injection,

the selected clones transduced tumor tissue up to ,275-fold more

efficient compared to wild-type AAV vectors (Figure 4A). To

further investigate the specificity of selected AAV capsid mutants,

Figure 2. Vector capsids selected from random AAV display peptide libraries for targeted gene transfer in primary breast cancer
cells. A: Primary PymT breast cancer cells were transduced by recombinant AAV-2 luciferase reporter gene vectors displaying the selected capsid
peptide inserts RGDLGLS, RGDMSRE, or DGLGRLV, respectively. Capsids with no (wild-type) or random peptide insert (VRRPRFW) were used as
controls. Transduction efficiency was determined after 72 hours by luciferase assay. Luciferase activities are shown in relative light units (RLU) per
well. Data represent mean values 6 standard deviation (SD) from one representative experiment (out of three) in triplicates (*** = p,0.001 compared
to wild-type and random insert controls). B: Breast cancer cell-targeted therapeutic suicide gene transfer using selected capsid mutants. Primary
PymT cells were transduced using rAAV-SR39 vectors displaying RGDLGLS or a randomly selected control peptide (VRRPRFW). Four days after
initiation of ganciclovir (GCV) treatment, cytotoxic effects were evaluated by MTT assay. Values are shown in % cytotoxicity (i.e., % killed cells).
Untreated and untransduced cells served as controls. Data represent mean values 6 standard error of the mean (SEM) from nine wells in three
independent experiments (*** = p,0.001 selected clone and treated cells vs. all controls).
doi:10.1371/journal.pone.0005122.g002

AAV In Vivo Library Panning

PLoS ONE | www.plosone.org 6 April 2009 | Volume 4 | Issue 4 | e5122



luciferase expression in several control organs was evaluated

(Figure 4B). Moderate de-targeting from the liver by clone

ESGLSQS and the unselected control was observed, whereas

clones GEARISA and EYRDSSG transduced the liver in a

manner comparable to wild-type AAV. DLGSARA gene

transduction in liver tissue was significantly increased compared

to the unselected control vector. Further, we found a strongly

enhanced cardiac luciferase expression for all clones, being

statistically significant for GEARISA, EYRDSSG and

DLGSARA, and a weakly enhanced cardiac transduction of the

unselected control vector compared to wild-type AAV. In regard

to tissue specificity, the ESGLSQS clone had the most favorable

profile as it transduced tumor tissue but not the liver. However,

cardiac gene transduction was seen for this as for almost all the

other clones as well. Reproduction of in vivo gene transduction with

independent vector preparations for DLGSARA and ESGLSQS

precisely confirmed our results (data not shown).

In vivo selection of AAV capsids targeting lung tissue
To address the question whether the organ transduction pattern

of clones obtained by in vivo AAV library screenings depends on

the target tissue the library was selected for, we also selected AAV

libraries for preferential homing into lung tissue. The screening

was done along the lines of the tumor targeting approach (Figure 1,

pathway C). We varied the time of library circulation before tissue

harvest in the first round (5 minutes and 2 days, respectively) in

two independent approaches. For both selections, circulation time

was increased to 6 days in selection rounds 2–4. After 4 rounds of

in vivo selection for both approaches, sequencing of the peptide

insert of the AAV clones recovered from the lung revealed a

striking consensus sequence motif, PRSAD(D/L)(A/S) , which was

enriched independently in both selection procedures (Table 3).

These data show that in vivo selection of AAV libraries in vivo in

distinct tissues yields distinct peptide inserts, suggesting tissue

specificity of the selection process.

AAV clones displaying the PRSAD(D/L)(A/S) motif
transduce lung tissue in vivo after systemic
administration

Reporter gene vectors were made carrying the PRSTSDP and

PRSADLA peptides or controls and gene transduction in vivo was

evaluated. In a first step, we investigated whether the selected

AAV capsid variants home to lung tissue more efficiently than

AAV control vectors (wild-type or random insert capsids). Vectors

were administered intravenously, and DNA was recovered from

lung tissue after 8 days. Quantitative PCR of the CMV promoter

region of the vectors revealed an up to 63-fold higher yield for the

selected capsid variants compared to AAV-2 wild-type vectors and

up to 74-fold higher yield compared to random control insert

vectors (Figure 5A). Evaluation of luciferase expression in the lung

28 days after intravenous administration revealed a 35-fold and

233-fold increased transduction efficiency of PRSADLA and

PRSTSDP, respectively, compared to wild-type AAV (Figure 5B).

To determine the specificity of lung-targeted capsids, luciferase

expression in several control organs was evaluated. Both selected

clones showed higher gene transduction in liver, heart, kidney,

brain, and muscle, compared to unselected controls (Figure 5C),

suggesting that the cellular target bound by the selected vectors in

vivo is ubiquitously rather than lung-specifically expressed.

Figure 3. Kinetics of circulating AAV peptide library particles is similar to wild-type AAV. A random X7 peptide library or wild-type AAV-2
viruses were injected intravenously at 161010 vg per mouse. Blood samples were collected after indicated time points and the amount of circulating
viral particles in the serum was determined by real-time PCR. Data represent mean values from n = 3 mice per group, analyzed in triplicates 6 SD.
doi:10.1371/journal.pone.0005122.g003
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Discussion

Vector targeting in vivo is of paramount importance in gene

therapy. For adeno-associated virus (AAV), this issue has been

addressed by the insertion of peptide ligands into the vector capsid

[6,7,8,9,10,11,12] or by exploiting the diversity of the various

capsid serotypes [4,5]. Despite considerable progress in this field,

the availability of tissue-directed vectors for in vivo use is very

limited, especially if delivered intravenously.

The screening of random AAV display peptide libraries is an

innovative tool to select for vectors efficiently transducing any cell

type of interest and has been described and validated for various cell

types in vitro [14,33,34,35,36]. Most of the vectors described in these

studies, however, have not been validated for in vivo use.

In our studies, library-derived vector capsids (displaying

RGDLGLS, DGLGRLV) selected on primary murine breast

cancer cells in vitro transduce the cell type they were selected on

with high efficiency but fail to mediate breast cancer tissue

directed gene transduction after systemic administration. As a

consequence, we performed screenings of AAV libraries in vivo

over multiple selection rounds after tail vein injection via the blood

stream, using tumor and lung as target tissues. Several peptide

clones were enriched in tumors and a clear-cut peptide sequence

motif was recovered from the lung. While we achieved

transduction of the target tissue by the selected vectors, we failed

to achieve truly tissue-specific transgene expression. Therefore,

except for liver transduction, most of our selected vectors have a

tropism that is expanded to rather than specific for the tissue of

interest compared to wild-type AAV-2. This may be due to several

reasons: 1) the lack of tissue-specific receptors; 2) the expression of

receptors conferring optimum transduction in several tissues, so

capsids targeting receptors that are tissue-specific, but less efficient

for transduction are not enriched; 3) superordinate (not receptor-

dependent) factors influencing the selection process such as

endothelial barriers, blood-derived factors, or extracellular matrix

interactions. The first reason can be virtually excluded based on

the overwhelming success rate of in vivo tissue targeting using

phage display libraries [16,17,18,19,20,21,22,23,24,25,26,27,

28,29,30,31,32]. Regarding the expression of non-tissue-specific

receptors that are compatible with optimized AAV transduction,

we think that two factors may play a role. Some of the selected

peptides mediated transduction of several tissues with a clone-

dependent transduction pattern, suggesting that the tropism is

mediated by the targeting peptide. Especially for the lung-

transducing vectors, the broad-spectrum tropism may also be

due to the mechanism of library selection. Upon intravenous

injection, virus capsids with optimized in vivo binding behavior may

have been enriched in the lung irrespective of tissue specificity due

to the first-pass effect after intravenous injection. These vectors

may well be cell type-specific but not tissue-specific. They may be

Table 2. Peptides enriched in tumor tissue after selection for tumor-homing AAV

Selection pathway Peptide a Charge pattern b Frequency in selection round c

round 1 round 2 round 3 round 4

Pathway B GGLSGVS yyxxyyx -/6 -/7 1/22 7/41

GGLSGDS yyxxy-x -/6 -/7 -/22 1/41

GSVSGSA yxyxyxy -/6 -/7 -/22 1/41

EYRDSSG -y+-xxy -/6 -/7 -/22 7/41

QMSGGVA xyxyyyy -/6 -/7 -/22 1/41

ESGLSQS -xyyxxx -/6 1/7 1/22 2/41

ESGIWVA -xyyyyy -/6 -/7 1/22 2/41

EEPALRA --yyy+y -/6 -/7 -/22 4/41

APTLGSP yyxyyxy -/6 1/7 -/22 13/41

Pathway B d RGDLGLS +y-yyyx 5/16 -/10

DLGSARA -yyxy+y 2/16 10/10

DGLGRLV -yyy+yy 6/16 -/10

DLRGLAS -y+yyyx 1/16 -/10

DRSPLSL -+xyyxy 1/16 -/10

Pathway C AISGVGS yyxyyyx -/6 1/15 2/24 2/32

DRSGVGS -+xyyyx -/6 1/15 4/24 2/32

SISGVGS xyxyyyx -/6 -/15 -/24 1/32

SEGRSGV x-y+xyy -/6 -/15 -/24 1/32

GEARSRA y-y+x+y -/6 -/15 -/24 1/32

GEARISA y-y+yxy -/6 -/15 2/24 7/32

SGNSGAA xyxxyyy -/6 1/15 4/24 8/32

SSGSGGA xxyxyyy -/6 -/15 2/24 2/32

ESGIWVA -xyyyyy -/6 -/15 -/24 2/32

asingle letter code; only peptides occurring repetitively or sharing common sequence motifs are shown; shared amino acid patterns are highlighted in colored letters
bcharge pattern of amino acid side chains: +, positively charged; 2 negatively charged; x, uncharged polar; y, nonpolar.
cobserved frequency relative to overall number of sequenced clones
dpathway B subsequent to 2 rounds of in vitro selection as in pathway A
doi:10.1371/journal.pone.0005122.t002
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directed to endothelia in general, which is underlined by the fact

that a similar capsid mutant (PRSVTVP) has been previously

selected on primary endothelial cells in vitro [14]. This emphasizes

the importance of the simultaneous negative selection in library

screenings in vivo that can be achieved in tissues other than the

lung. If the lung is the target of a screening, additional negative

selection steps on endothelial cells prior to in vivo selection might

alleviate some of the specificity challenges encountered in our

targeting experiments. The second factor influencing the extended

but unspecific tropism relates to the remarkable observation that

as long as our selected vectors conferred any transgene expression

in vivo, it invariably also occurred in the heart in addition to the

target tissue. Heart expression of these vectors was even stronger

than in wild-type AAV vectors. This is congruent with previous

studies describing increased heart transduction upon modification

of the VP3 region R484E/R588E [13] and peptide insertions at

Figure 4. Gene delivery by AAV capsid mutants selected for breast cancer transduction in vivo. AAV luciferase vectors displaying selected
peptides or controls (wild-type or VRRPRFW) were injected intravenously into female PymT tumor-bearing mice. After 8 d, representative tissues were
harvested and luciferase activities were determined in individual tissues as relative light units (RLU) per mg protein. A: In vivo transduction of tumor
tissue in PymT transgenic FVB mice by selected AAV mutants. Bars indicate the median, n = 5 mice per group. * p,0.05 targeted vectors vs. wild-type.
# p,0.05 targeted vectors vs. random insert control. B: In vivo transduction of various non-cancerous tissues in PymT transgenic FVB mice by tumor-
selected AAV mutants. The dotted line indicates the threshold beyond which luciferase expression data could be reliably delineated from background
signal. Data represent mean values 6 SEM, n = 5 mice per group. * p,0.05; ** p,0.01 targeted vectors vs. wild-type AAV-2. # p,0.05; ## p,0.01
targeted vectors vs. random insert control.
doi:10.1371/journal.pone.0005122.g004
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position R588 [14]. Our results in conjunction with the previously

published data suggest that cardiac gene transduction may be

mediated by a redistribution effect resulting from ablation of the

endogenous tropism of the vector [13,14], but clearly is also

mediated by the design of the peptide insert as it varied from clone

to clone. This might indicate that a capsid region close to the

library insert at position R588 contributes to this tropism and that

it may therefore be independent of the selected peptide sequence

as such. Yet, biodistribution studies have not revealed increased

heart homing by peptide insertion in this region [10,11], which

might in part be attributable to, or at least influenced by, a slightly

differing insertion site (position N587 instead of R588). These

findings re-emphasize that the gene expression profile mediated by

a gene vector is not solely reflected by its biodistribution profile but

also depends on factors like intracellular processing, promoter

activity and vector clearance mechanisms.

Perabo et al. recently described that peptides containing a net

negative charge and inserted at the AAV capsid position 587 are

prone to confer a heparin sulfate proteoglycan non-binding

phenotype which correlates with liver and spleen de-targeting in

mice [15]. However, in our screenings we also isolated negatively

charged peptides such as EYRDSSG which retained strong liver

transduction. This may suggest that such selected capsid variants

in our study indeed do not bind to heparin sulfate but rather to a

ubiquitously expressed alternative receptor. In turn, we also

isolated capsid mutants such as ESGLSQS which de-target from

the liver compared to wild-type AAV, contradicting the assump-

tion that additional mutations outside of the peptide insertion site

at position 588 may be required to achieve this de-targeting effect.

Despite its obvious limitations, in vivo screening of AAV-2 libraries

allows for selection of vectors with an extended tropism towards the

tissue of interest. Vectors targeting the endothelial cell layer in vivo

might be used to deliver anti-angiogenic genes such as endostatin in

order to block neovascularization and tumor growth [53].

Furthermore, vectors transducing various organs might be useful

when expression in tissues other than the primary target is desirable

or uncritical as it has been performed by expression of the SOD

gene delivered by adenovirus to protect lung tissue against

radiation-induced fibrosis [54]. Compared to AAV vectors like

AAV6 transducing lung tissue after nasal aspiration [55], vectors

like the ones presented here which transduce lung tissue after

intravenous injection, may also target other cell types such as lung

endothelia and may therefore be considered as a valuable addition

to the arsenal of lung-directed gene vectors. Finally, the tumor-

directed vectors displaying the ESGLSQS peptide that mediates

AAV transduction of breast cancer tissue in vivo and AAV de-

targeting from the liver may further be optimized by using tumor

specific expression systems such as the hTERT promoter [56,57].

In previous work on AAV libraries, internalized virus particles

were amplified by adenoviral delivery of helper proteins

[14,33,34,35]. However, the pathogenicity of adenovirus impedes

the use of this strategy for in vivo selections, especially if it has to be

administered systemically. Furthermore, the helper-dependent

selection requires a near to complete adenoviral infection of the

target tissue in order to maximize the amount of clones that can be

amplified. Using currently available helper viruses, this can not be

achieved in all organs and tissues in vivo, particularly in light of the

fact that many target tissues or cell types are not susceptible to

adenoviral infection after systemic administration. In addition, it is

not clear (and at least in the tumor tissue used in our study very

questionable) if AAV can replicate in mouse tissue efficiently. Our

novel selection method addresses these points. Relevant parts of

the genomes of tissue-targeted library viruses are amplified via

nested PCR. We distinguished between three alternative selection

pathways, all of which are based on the amplification and

enrichment of tissue-homed AAV library particles by PCR during

the selection process. Pathway A is a cell-based in vitro selection

approach in which genomes of internalized library viruses are

amplified while non-internalized viral particles are eliminated.

Although our PCR selection protocol does not exclusively force

the selection for AAV capsids that mediate gene expression, we

demonstrate the functionality of this technical approach in that

clones sharing a common peptide motif (RGDXXXX) were

recovered by screening on primary murine breast cancer cells and

conferred efficient transduction of these cells, even in a cytotoxic

suicide gene transfer approach. Similar peptide motifs have been

selected on PC3 prostate carcinoma cells [34] and M07e human

leukemic megakaryocytic cells [33] by adenovirus-based selection.

Incorporation of the RGD sequence into the viral capsid can

target the vector to integrins, which are widely expressed on

several cell types [6,8,58]. This suggests that AAV clones with an

RGD-containing peptide insert might target via the integrin class

of receptors [59]. The RGD integrin recognition sequence is also

present in the so-called RGD4C-peptide which binds avß3 or

avß5 integrins. This peptide homes to tumors in vivo after systemic

administration and has therefore been widely used to target

cellular integrins expressed in the tumor tissue of xenograft mouse

models [17,60,45,61]. It may therefore be tempting to speculate

that the RGD-displaying AAV clones presented here might, like

the RGD4C-peptide, also target tumor cells via the aV class of

integrins. However, we consider this unlikely because the clones

did not show preferential homing to tumor tissue in vivo and RGD

as a tripeptide sequence by no means specifically binds to this class

but also to other classes of integrins. In fact, 12 of the 20 currently

known integrins recognize a certain RGD-containing sequence as

their ligand [59].

Pathways B and C aimed at selection of virus capsid variants

after systemic administration of AAV libraries in vivo. These

Table 3. Peptides enriched in lung tissue during in vivo
selection for lung-homing AAV after four rounds of selection

Selection pathway Peptide a Charge pattern b

5 minutes circulation PRSADLA y+xy-yy

PRSADLA y+xy-yy

VRSAADI y+yyy-y

PRSTSDP y+xxx-y

PRSTSDP y+xxx-y

PRSVDLS y+xy-yx

RGDLGLS +y-yyyx

2 days circulation PRSADLA y+xy-yy

PRSADLA y+xy-yy

PRSADLA y+xy-yy

VRSAADI y+yyy-y

PRSTSDP y+xxx-y

PRSVDLS y+xy-yx

PRSVDLS y+xy-yx

PASADLA yyxy-yy

Consensus motif P R S A D (D/L) (A/S)

asingle letter code; shared amino acid patterns are highlighted in red letters
bcharge pattern of amino acid side chains: +, positively charged; 2 negatively

charged; x, uncharged polar; y, nonpolar.
doi:10.1371/journal.pone.0005122.t003
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pathways take into account several hurdles that limit viral receptor

targeting under in vivo conditions. Thus, tissue homing particles

with weak or unspecific binding capacities toward their targets are

eliminated by host clearance mechanisms or by homing to other

tissues, although the screening process does not guarantee that the

selected clones confer gene expression in addition of homing to the

target tissue. Upon using selection pathways A, B, or C for tumor

targeting, the enriched peptide sequences varied depending on the

respective selection pathway, indicating that the most suitable

screening conditions may have to be evaluated for each individual

target tissue.

Compared to the previous work in which AAV libraries were

selected in vitro on various target cells, these results are a significant

step forward and profoundly expand our knowledge on the

mechanisms involved in the in vivo gene transduction of vectors

derived from biopanning of AAV peptide libraries. In addition,

they overcome some of the limitations observed in a recent report

by Grimm et al. [37]. In this pivotal work, AAV libraries were

selected in vivo based on topical application to the airways (as

opposed to systemic administration like in our study). Conse-

quently, while two selected capsid mutants (NSSRDLG,

MVNNFEW) in this study mediated gene transfer to certain cell

types in the lung tissue after administration by inhalation, they

failed to mediate vector retargeting after systemic administration.

Interestingly, the NSSRDLG peptide insert described in this study

was also described in previous studies on other cell types [14,37]

but also overlaps with the DLGSARA insert isolated from breast

cancer tissue in the work presented here. Yet, both peptides

probably bind to different receptors as the in vivo tropism seems to

be very different which indicates that, at least for AAV, the whole

peptide sequence rather than parts of a sequence motif has to be

considered to evaluate its tropism.

Figure 5. Targeting of AAV capsid mutants selected on murine lung tissue in vivo. AAV luciferase vectors displaying selected or control
capsids (wild-type or random insert VRRPRFW) were injected intravenously into female FVB mice. Tissue was harvested after 8 or 28 d, respectively,
and processed as indicated. A: Evaluation of lung homing. Lung tissue was harvested 8 days after vector injection and the amount of AAV genomes
was determined by quantitative PCR. Data represent mean values from n = 3 mice per group, analyzed in triplicates 6 SD. B: In vivo lung gene
transfer by selected AAV after intravenous injection. Lung tissue was harvested 28 days after vector injection, and luciferase activity was determined
as relative light units (RLU) per mg protein. Bars indicate the median value, n = 5 mice per group (** = p,0.001 targeted vectors vs. wild-type and
random insert control). C: In vivo transduction of various tissues in mice by AAV library mutants selected for lung transduction. Tissues were
harvested and luciferase activity was determined as in 5B. The dotted line indicates the threshold beyond which luciferase expression data could be
reliably delineated from background signal. Data represent mean values 6 SEM, n = 5 mice per group. * p,0.05; ** p,0.01 targeted vectors vs. wild-
type AAV-2. # p,0.05; ## p,0.01 targeted vectors vs. random insert control.
doi:10.1371/journal.pone.0005122.g005
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In addition, the two selections (in Grimm et al. [37] and in our

study) were done in a different AAV backbone context. Of note, in

the work by Grimm et al. [37], the diversity of recovered AAV after

two rounds of selection was restricted to one clone, presumably

due to inefficient amplification and rescue of clones using

adenoviral helper functions. Such outcome might change upon

applying our novel PCR amplification protocol. Furthermore,

novel AAV library principles like sequence evolution by error-

prone PCR [62] and DNA shuffling [63] might enhance specificity

and efficiency if used for in vivo selection.

This is the first report of in vivo biopanning with a systemically

administered random AAV peptide library over multiple selection

rounds. We show that vectors displaying in vivo-selected peptides

have a significantly improved transduction profile in breast cancer

or lung tissues after systemic administration. These findings

demonstrate the superiority of AAV clones selected in vivo over

clones selected in vitro, as long as in vivo transduction is required.

Unintended cardiac transduction by selected clones remains the

major limitation to be addressed in subsequent studies, e.g., by

further functional mapping of the capsid. Our findings broaden

the understanding of AAV transduction profiles in vivo, the

functionality of random AAV display peptide libraries and, even

beyond the specific targets tumor and lung, are an important step

in the development of targeted AAV gene vectors.
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