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Abstract 

The green fluorescent protein (GFP) of jellyfish (Aequorea victoria) has significant 

advantages over other reporter genes, because expression can be detected in living cells 

without any substrates. Recently, epigenetic phenomena are important to consider in 

plant biotechnology experiments for elucidate unknown mechanism. Therefore, soybean 

immature cotyledons were generated embryogenesis cells and engineered with two 

different gene constructs (pHV and pHVS) using gene gun method. Both constructs 

contain a gene conferring resistance to hygromycin (hpt) as a selective marker and a 

modified glycinin (11S globulin) gene (V3-1) as a target. However, sGFP(S65T) as a 

reporter gene was used only in pHVS as a reporter gene for study the relation between 

using sGFP(S65T) and gene silencing phenomena. Fluorescence microscopic was used 

for screening after the selection of hygromycin, identified clearly the expression of 

sGFP(S65T) in the transformed soybean embryos bombarded with the pHVS construct. 

Protein analysis was used to detect gene expression overall seeds using SDS-PAGE. 

Percentage of gene down regulation was highly in pHV construct compared with pHVS. 

Thus, sGFP(S65T ) as a reporter gene in vector system may be play useful role for 

transgenic evaluation and avoid gene silencing in plants for the benefit of plant 

transformation system.  
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Introduction 

The advent of the technology to transform plants with DNA sequences such as the 

generation of transgenic plants, allowed an entirely new direction for the exploration of 

genetics. 



GFP has grown in popularity as a reporter gene in molecular biology research. In plant 

transformation systems with the problem of low efficiency, the nondestructive analysis of 

putative transformed cells and tissues using a reporter gene such as the GFP (jellyfish 

green fluorescence protein) gene could significantly help to optimize transformation 

protocols and generate transgenic plants (Stewart 2001, El-Shemy et al. 2004, 2006, 

2007) 

With the successful development of procedures for transformation, transgenic plants and 

their progeny have been studied for continued stable expression of the foreign gene 

through several generations. These studies have revealed that in some cases the transgene 

expression was lost in a variable proportion of the progeny. This phenomenon, called 

‘‘gene silencing’’, has been studied most extensively in dicot plants, such as tobacco, 

petunia, tomato, and buckweed (Matzke and Matzke 1995; Meyer 1995). Several 

mechanisms have been proposed to explain the phenomena of gene silencing (Matzke et 

al. 2001; Meyer 1995; Stam et al. 1997). Two types of silencing occur in plants and in 

other eukaryotes: transcriptional gene silencing (TGS) and posttranscriptional gene 

silencing (PTGS) (Carthew,2001; Waterhouse et al., 2001a,b). Silencing at the 

transcriptional level is thought to occur primarily by methylation of promoter sequences, 

thereby interfering with assembly of the transcription factors and/or by attracting 

chromatin re-modeling proteins to these sites (Meyer, 2000; Wang and Waterhouse, 

2002). 

Gene silencing and its implications for transgene expression is an area of intense 

research at this time, and the reader is directed to recent reviews on this large subject 

(Meyer, 2000; Vance and Vaucheret, 2001; Wang and Waterhouse, 2002). For that, the 



target of this study is identify the role of sGFP(S65T) to reduce or avoiding the gene 

silencing phenomena in transgenic plants.  

Materials and methods 

Construction of chimeric genes 

Two plasmid vectors, pHVS and pHV, were constructed based on the pUC19 vector 

(Fig. 1 A and B). pHV contains the hygromycin phosphotransferase coding region, hpt 

(1.0kb), under regulatory control of the cauliflower mosaic virus (CaMV) 35S promoter, 

35Spro, and the modified proglycinin (A1aB1b) cDNA, V3-1 (1.4kb), with a synthetic 

DNA encoding four continuous methionines. pHVS contains additionally  a modified 

jellyfish green fluorescent protein coding region, sGFP(S65T) (0.8kb), under regulatory 

control of 35Spro in the flanking region of the V3-1 gene (El-Shemy et al, 2004,2006, 

2007). 

Initiation and proliferation of embryogenic cultures   

Transformation and regeneration systems for soybean were optimized according to 

methods described elsewhere (Finer and Nagasawa 1988; Hadi et al. 1996; Sato et al. 

1993, El-Shemy et al. 2004, 2006, 2007). Soybean plants, cv. Jack, were grown in soil in 

a glass-house controlled at 25 ºC under natural light. Developing green pods were 

obtained when the immature cotyledons were about 4-5 mm long. After sterilization of 

the pod surface with 70% ethanol followed by 3 rinses with sterile water, the immature 

cotyledons were extracted, the end removed together with the embryonic axis, and the 

sample placed flat side up on MSD40 medium consisting of MS salts (Murashige and 

Skoog 1962) and B5 vitamins (Gamborg et al. 1968) supplemented with 3% sucrose, 

40mg/L 2,4-D, and 0.2% Gelrite (Wako Pure Chemical Industries, Osaka, Japan) (pH7.0). 



Embryogenic tissues were initiated at 25 ºC under cool white fluorescent light (23/1 light 

regime, 5-10 μmol m-2s-1) for 3 to 4 weeks. Soybean embryogenic tissues were suspended 

and maintained in FN Lite liquid medium consisting of FN Lite macro salts, MS micro 

salts and B5 vitamins supplemented with 1 g/L asparagine, 5 mg/L 2,4-D, and 1% 

sucrose (pH 5.8) (Finer and Nagasawa 1988; El-Shemy et al.2004), and maintained by 

subculturing every week into 25 ml of fresh FN Lite liquid medium in a 100 ml flask (El-

Shemy et al.2004, 2006).  

Transformation by particle bombardment   

Approximately 1 g of embryogenic suspension tissue was transferred to the center of 

MSD20 medium consisting of MS salts and B5 vitamins supplemented with 3% sucrose, 

1 g/L asparagine 20mg/L 2,4-D, and 0.2% Gelrite (pH5.8) in a 9 cm petri dish. 

Bombardments were performed using a Biolistic PDS-1000/He Particle Delivery System 

(Bio-Rad, Richmond, CA, USA) according to the instruction manual. Each sample of 

embryogenic tissue was bombarded twice with a pressure of 1350 psi. 

Bombarded tissues were resuspended in the FN Lite medium. One week after 

bombardment the embryogenic tissues were transferred to fresh FN Lite medium 

containing 15mg/L hygromycin B (Roche Diagnostics, Mannheim, Germany). The 

bombarded tissues were transferred to fresh antibiotic-containing FN Lite medium 

weekly for an additional 3 weeks. Then, white lumps of tissue that contained bright green 

lobes of embryogenic tissue were selected and transferred to fresh FN Lite medium 

containing 30mg/L hygromycin B. The hygromycin tolerant tissues were selected and 

resuspended in fresh antibiotic-containing FN Lite medium weekly for 3 additional 

weeks (El-Shemy et al 2004, 2006).  



Hygromycin tolerant embryos were subcultured in FNL0S3S3 liquid medium, 

which contained FN Lite macro salts, MS micro salts and B5 vitamins supplemented with 

1 g/L asparagine, 3% sucrose, and 3% sorbitol (pH 5.8). Three weeks after the suspension, 

excess liquid of the developing embryos was withdrawn with sterile filter paper, and the 

embryos were placed in dry petri dishes for 3 to 5 days. After the desiccation treatment, 

the embryos were placed on MS0 medium containing MS salts, B5 vitamins, 3 % sucrose, 

and 0.2 % Gelrite (pH5.8). The germinating plantlets were transferred to 1/2 B5 medium. 

After root and shoot elongation, plantlets were transferred to pots containing soil, and 

maintained under high humidity. Plantlets were gradually adapted to ambient humidity 

and placed in the glass-house.   

GFP detection 

The presence of sGFP(S65T) was detected by blue light excitation (Chiu et al. 1996). 

Embryos, cotyledons, leaves of regenerated plants and seeds were observed using a 

microscope (Leica Microsystems, Wetzlar, Germany) with a filter set providing 455-490 

nm excitation and emission above 515 nm. 

PCR and Southern blot analysis 

Total DNA was isolated from soybean leaves by the method of (Draper and Scott 1988), 

and used to investigate the presence of the transgenes. PCR analysis was conducted to 

screen transformed plants in a 20 μl reaction mixture containing 10 ng of genomic DNA, 

200 μM of each dNTP, 0.2 μm of each primer, and 2.5 units of Ampli-taq Gold 

polymerase (Applied Biosystems, Foster City, CA USA) in the corresponding buffer. 

Reaction were hot-started (9 min at 94°C) and subjected to 30 cycles as follows: 30 sec 

at 94°C; 1 min at 55°C; and 1 min at 72°C. The last extension phase was prolonged to 7 



min at 72°C. The primer set for hpt was designed for amplification of a 560 bp 

fragment; sequences are 5’-ATCCTTCGCAAGACCCTTCCT-3’ (35S promoter) and 

5’-GGTGTCGTCCATCACAGTTTG-3’ (hpt). The primer set for V3-1 was designed for 

amplification of a 1403 bp fragment; sequences are 5’-

TTCAGTTCCAGAGAGCAGCAGCCT -3’ and 5’-CTGATGCATCATCATCTGAGG 

-3’. That for sGFP(S65T) was designed for amplification of a 708 bp fragment; 

sequences are 5’- AAGGTACCGGATCCCCCCTCAGAA -3’ and 5’- 

AAGAGCTCCGATCTAGTAACATAGATGACACC -3’.  

Southern blot analysis was conducted to confirm the stable integration of 

transgenes into soybean. Total DNA (10 μg) was digested with the restriction enzyme, 

SacI, and digested DNA was separated by electrophoresis in a 1% agarose gel and 

transferred onto a hybond N+ membrane (Amersham Biosciences, Buckinghamshire, 

England). Labeling and detection were conducted following the protocol of ECL direct 

nucleic acid labeling and detection (Amersham Biosciences). DNA fragments of the V3-1 

gene, sGFP(S65T) gene, and hpt gene were amplified from the plasmids with the same 

primer sets used for the PCR analysis, and served as hybridization probes on Southern 

blot membranes.  

Analysis of seed proteins in transgenic soybean  

The subunit composition of seeds from individual transgenic soybean was analyzed by 

SDS-PAGE (Laemmli 1970). A total globulin fraction was extracted from soybean seed 

meal by grinding with 50 mM Tris-HCl, pH 8.0. The supernatant was obtained after 

centrifugation at 15,000g for 10 min. The protein concentration was determined with a 

BCA protein assay (Pierce, Rockford, IL, USA) kit using bovine serum albumin as a 



standard. The protein solution was mixed with the same amount of a twice-concentrated 

SDS sample buffer containing 2-mercaptoethnol. The proteins (25 μg) from each sample 

were separated on a gels (Tricine-SDS-PAGE and SDS-PAGE) containing 12 % (w/v) 

acrylamide and 0.2 % (w/v) bis-acrylamide, and were stained with Bio-Safe CBB G-250 

stain (Bio-Rad).  

Results and Discussion 

The potential of GFP appears, is greater than its current applications as researchers 

seeking to characterize GFP under novel conditions reveal new uses for the protein 

(Stewart 2001, Richards et al 2003, El-Shemy et al 2004, 2006). This increased potential 

is especially pertinent to plants, since it is often desirable to quantify gene expression on 

the plant and in the field. 

Embryogenic cells induced from a soybean cultivar, Jack, were transformed by 

microparticle bombardment with the pHVS, which contains a modified globulin gene, a 

selectable marker gene hpt and a reporter gene sGFP(S65T). To optimize the conditions 

for particle delivery into the embryogenic tissues, transient expression of the sGFP(S65T) 

gene was detected one day after bombardment with a fluorescent microscope. According 

to the intensity and number of foci expressing GFP, we decided on a pressure of 1350 psi 

and distance of 6 cm for the delivery. Expression of sGFP(S65T) in soybean was also 

monitored during the selection with hygromycin and development of plants (Fig. 2).  

In this experiment, the conditions for delivery of particles coated with plasmids according 

to the transient expression was successfully optimized of the sGFP(S65T) gene (Fig. 2). 

GFP can partially replace antibiotic selection and be of great use when the organogenesis 

or conversion of transformation procedures is inefficient under antibiotic or herbicide 



selection (Stewart 2001). It could be helpful in isolating events during the early stages of 

transformation experiments as described here. An example of this was the transformation 

of sugarcane with sGFP(S65T) (Elliot et al. 1998) 

Transformation was achieved by coating each plasmid, either pHV or pHVS, onto the 

particles and bombarding embryogenic tissues. Hygromycin-resistant cells were selected 

then matured in FNL0S3S3 liquid medium and germinated on MS0 media. All 

regenerated plants obtained from the two constructs were confirmed the presence of hpt 

gene by PCR analysis. Out of a total of 122 regenerated plants obtained from the 

introduction of pHVS, 82 plants produced an expected band with a 0.5 kbp of PCR 

product within the hpt gene (Table 1). On the other hand, 29 of 98 regenerated plants 

obtained from the introduction of pHV yielded the 0.5 kbp hpt fragment in PCR analysis 

(Table 1). PCR analysis for sGFP(S65T) genes was conducted in the soybean plants that 

yielded a hpt band to confirm the presence of all transgene cassettes (Fig. 3). The 

expression of sGFP(S65T) was detected in about 52 % of the hpt-positive soybeans 

engineered using pHVS (Fig. 3). 

Silencing was first observed concerning transgene expression in plants about 10 years 

ago,with a report that transformation of petunia with extra copies of the chalcone 

synthase gene could result in a block in expression of both the transgene and the 

corresponding endogenous gene (Napoli et al., 1990, Lessard et al, 2002). This 

phenomenon was termed cosuppression (Napoli et al., 1990). Suppression of endogenous 

glycinin in the transformed soybean was frequently observed on the introduction of the 

modified glycinin V3-1 gene (Table 1).   

Southern blot analysis was performed to confirm the integration, and to estimate 



the copy numbers of transgenes. Total genomic DNA, which was isolated from transgenic 

plants to as certain the presence of all transgene cassettes by PCR (Fig. 3), was digested 

with SacI, and hybridized with one of the three probes for hpt and sGFP(S65T) (Fig. 4). 

All the transformants analyzed here yielded one to seven bands hybridized with the hpt 

probe in addition to a common band at around 6.6 kbp (Fig. 4 A). The V3-1 gene was 

altered genetically from a proglycinin (A1aB1b) cDNA, which ordinarily exists in 

soybean. Therefore, untransformed plants also gave multiple bands, indicating that these 

bands would correspond to the endogenous glycinin genes. The transgenic plants gave 

additional bands resulting from the integration of the V3-1 gene (Fig. 4 B). On the other 

hand, DNA isolated from untransformed plants hybridized with the sGFP(S65T) probe, 

even though GFP is not derived from plants. This maybe caused by unspecific 

hybridization of the probe with soybean genomic DNA. The individual plants exhibited 

different banding patterns, confirming that they resulted from different events. 

The effects of transgenic copy number on the level of gene expression are known 

to be complex. Though it was anticipated that the increase of transgene copy number 

would increase the expression level (Dai et al. 2001; El-Shemy et al.2004, 2006,2007), it 

is now known that gene co-suppression phenomena frequently occur in transgenic plants 

with repeated transgenes or an unusual structure such as inverted repeats (Vaucheret et al. 

1998). Such events are likely to be powerful inducers of co-suppression and methylation 

(Luff et al. 1999). Transgenic plants lacking all subunits of glycinin had multiple copies 

of the V3-1 gene and small fragments hybridized with a V3-1 probe (Fig. 4). 

The accumulation of glycinin was confirmed by SDS-PAGE analysis of the 

globulin fraction extracted from transgenic seeds (Fig. 5). The modified glycinin V3-1 



could not be distinguished from endogenous glycinin subunits by the SDS-PAGE, 

because the modified glycinin contains only six additional amino acids in the basic 

subunit. However, the glycinin subunit polypeptides in some transformants were 

intensely stained with CBB compared to non-transformants (Fig. 5). This may be due to 

the accumulation of the modified glycinin V3-1 in transgenic seeds. On the other hand, 

some transgenic soybeans lack all subunits of glycinin, suggesting the transgene may 

cause the suppression of endogenous glycinin genes by the effect of gene silencing (Table 

1, Fig. 5 and Fig. 6). The ratio of gene silencing was lower in transformants engineered 

with the pHVS construct and selected based on GFP expression than transgenic soybean 

engineered with the pHV construct.  

It is suggested that the transgene causes the effects of gene silencing. There is 

some predictability to silencing. Counter intuitively, an increasing copy number of a 

transgene can correlate with an increased risk of silencing (Lessard, et al 2002). 

However, determining whether silencing will occur in particular transgenic plants is still 

largely an empirical problem, requiring testing of transgene expression in the individual 

plants. Two general approaches can be used to avoid problems with silencing (Lessard, et 

al 2002). First, the use of gene delivery methods, such as Agrobacterium-mediated 

transformation, that result in integration of relatively few copies of a transgene into the 

genome,can minimize problems with silencing (Dai et al., 2001). Second,the use of 

constructs in which matrix attachment regions flank the transgene may also minimize 

silencing (Spiker and Thompson,1996). The results expected that the transgenic soybeans 

accumulating the modified glycinin V3-1 to have a higher level of methionine than 

nontransformants (Fig. 5). Up to date, gene silencing was seen as a problem for plant 



genetic transformation, as it prevented reliable expression of a desired phenotype within 

transgenic plants (Taylor and Fauquet, 2002). However, with increasing knowledge of the 

mechanisms underlying this phenomena, and realization that it can be utilized to down-

regulate native genes within the plants, and it will become a powerful tool in future 

transgenic applications (Vance and Vaucheret, 2001; Lessard et al, 2002).  

Silencing effect appeared stochastic in nature, with patterns and variegation appearing in 

the tissues of the transformed plants, much like previous observations of somaclonal 

variation and paramutation (Grant-Downton and Dickinson 2005). This ‘co-suppression’ 

of an endogenous gene by extra copies of the same gene was also accompanied by 

observations that insertion of entirely foreign coding gene sequences did not necessarily 

lead to their expression (Grant-Downton and Dickinson 2005). Other experimentation 

with transgenic technology led to the discovery that this gene silencing effect on 

endogenous genes by inserted DNA was more consistent when the inserted gene copy 

was in reverse or ‘antisense’ orientation (van der Kroll et al., 1988). Perhaps more 

remarkable was the realization that a whole copy of the gene was not even required to 

elicit this effect (Grant-Downton and Dickinson 2005). Clearly, adding new fragments of 

DNA to the genome not only resulted in the silencing of their own expression, but also 

the specific silencing of endogenous genomic sequences to which they were homologous 

(Grant-Downton and Dickinson 2005). An intact copy with no nucleotide mutation was 

being ‘silenced’ by the presence of a foreign sequence at another site in the same genome. 

Exactly how this extra DNA was delivered via Agrobacterium or biolistic integration, 

(Grant-Downton and Dickinson 2005).  



Biomolecular techniques allow for the insertion of the gene for GFP right before the stop 

codon (Chalfie et al. 1994). The cell would keep making hemoglobin, but before reaching 

the stop codon it would make the GFP (Chalfie et al. 1994, Fig. 7).  

There were three reasons Prasher thought that GFP could potentially become a significant 

tracer molecule. Firstly, if enough protein with attached GFP were made, it should be 

easy to detect and to trace it as it moved through the cell, because irradiating the cell with 

ultra violet light would cause the GFP attached to the protein to fluoresce. Secondly, 

Shimomura had shown in 1974 that GFP was a fairly small protein. This GFP was 

important because a small protein attached to the protein of interest was less likely to 

hinder its proper function. Its small size would also allow it to follow the fused protein, 

especially in organelles like neurons, whereas the diffusion of large proteins would be 

difficult. Thirdly, it had been shown that once GFP was made in the jellyfish, it was 

fluorescent. Most other bioluminescent molecules require the addition of other substances 

before they glow. For example, aequorin will glow only if calcium ions and 

coelenterazine have been added, and firefly luciferase requires ATP, magnesium, and 

luciferin before it luminesces. This would make GFP a much more versatile tracer than 

either aequorin or firefly luciferase, which were being used as tracers. Besides attaching 

GFP to a protein and making it a fluorescent tag, Prasher also thought that GFP could 

potentially be a very useful reporter molecule. For activate protein production DNA 

promoters are used, these are sequences of DNA next to genes that contain the 

information about where and when the gene should be read and make the protein. If GFP 

is linked to a specific promoter then it will be expressed in place of the protein, showing 



where and when the gene of interest is switched on (Douglas Prasher, from Zimmer, 

Marc website, Fig. 7).  

Therefore, sGFP(S65T) can be effectively used to select the transformants expressing all 

the gene cassettes (El-Shemy et al.2004, 2006, 2007). The transgenic plants expressing 

sGFP(S65T) grew and reproduced normally, and the GFP expression was inherited 

without any abnormalities. In conclusion, using sGFP(S65T) as a reporter gene was 

reduced or avoiding the gene silencing in transgenic soybean . 

Acknowledgements 

Hany A. El-Shemy (Cairo University, Faculty of Agriculture, Biochemistry Department, 

Giza, Egypt) was supported by a postdoctoral fellowship from the Japanese Science and 

Technology Corporation. Mutasim M. Khalafalla (Commission for Biotechnology and 

Genetic Engineering, Sudan) was supported by a postdoctoral fellowship from the Japan 

Society for the Promotion of Science. The authors thank Yumi Nakamoto, Yumi 

Naganuma and Midori Yokoyama for technical assistance. 

References 

Aragao, F.J.L., Sarokin, L., Vianna, G.R. and Rech, E.L. (2000) Selection of transgenic 

meristematic cells utilizing a herbicidal molecule results in the recovery of fertile 

 transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Ther Appl 

Genet 101,1-6. 

Barz, T., Ackermann, K. and Pyerin, W. (2002) A positive control for the green 

 Fluorescent protein-based one-hybrid system. Anal Biochem 304,117-121 



Carthew,R. W. (2001) Gene silencing by double-stranded RNA. Curr. Opin. Cell Biol. 

13,244�248. 

Chalfie, M. , Tu, Y. , Euskirchen, G. , Ward, W.W. & Prasher, D.C. (2004) Green 

fluorescent protein as a marker for gene expression. Science 263, 802–805 .  

Chiu, W-L., Niwa, Y., Zeng ,W., Hirano, T., Kobayashi, H. and Sheen, J. (1996) 

Engineered GFP as a vital reporter in plants. Current Biol 6:325-330. 

Dai, S., Zheng, P., Marmey, P., Zhang, S., Tian, W., Chen, S., Beachy, R.N. and Fauquet, 

 C. (2001) Comparative analysis of transgenic rice plants obtained by 

 Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7,25-33. 

Draper, J. and Scott, R. (1988) The isolation of plant nucleic acids. In: Draper J, Scott R, 

 Armitage P, Walden R (eds) Plant genetic transformation and gene expression. 

 Blackwell Scientific Publications, London, pp212-214 

Elliot, A., Campbell, J., Brettell, I. and Grof, P. (1998) Agrobacterium-mediated 

 transformation of sugarcane using GFP as a screenable marker. Aust J Plant Physiol  

25,739–743. 

Elliot, A., Campbel,l J., Dugdale, B., Brettell, R. and Grof, C. (1999) Green-fluorescent 

 Protein facilitates rapid in vivo detection of genetically transformed plant cells. Plant 

 Cell Rep 18,707–714. 

El-Shemy, H. A., Khalafalla, M. M., Nishizawa, K., Utsumi, S. and Ishimoto, M. 

(2004) Isolation of soybean plants with stable transgene expression by visual selection 

based on green fluorescent protein. Molecular Breeding 14, 227-238. 



El-Shemy, H. A, Khalafalla, M. M., Fujita, K. and Ishimoto, M. (2006) Molecular 

 control of gene co-suppression of transgenic soybean. J. Biochemistry and Molecular 

Biology, 39, 61-67. 

El-Shemy, H. A, Khalafalla, M. M., Fujita, K. and Ishimoto, M. (2007) Improvement of 

protein quality in transgenic soybean plants. Biologia Plantarum, 51, 277-284. 

Finer, J. and Nagasawa, A. (1988) Development of an embryogenic suspension culture of 

 soybean [ Glycine max (L.) Merrill]. Plant Cell Tiss Org Cult 15,125-136. 

Finer, J.J. and Mcmullen, M.D. (1991) Transformation of soybean via particle 

 Bombardment of  embryogenic suspention culture tissue. In Vitro Cell Dev Biol 

 27,175-182. 

Gamborg, O., Miller, R. and Ojima, K. (1968) Nutrient requirements of suspension 

 cultures of soybean root cell. Exp Cell Res 50,151-158. 

Grant-Downton, R. T. and Dickinson, H. G. (2005) Epigenetics and its implications for 

plant biology. The epigenetic network in plants.  Annals of Botany 96: 1143–1164. 

Hadi, M.Z., McMullen, M.D. and Finer J.J. (1996) Transformation of 12 different 

 plasmids into soybean via particle bombardment. Plant Cell Rep 15,500-505. 

Hansen, G. and Wright, M. (1999) Recent advances in the transformation of plants. 

 Trends Plant Sci 4,226-231. 

Harper, B., Mabon, S., Leffel, S., Halfhill, M., Richard, H., Moyer, K. and Stewart, J.C. 

 (1999) Green fluorescent protein as a marker for expression of a second gene in  

transgenic plants. Nature Biotech 17,1125-1129. 



Haseloff, J., Siemering, K., Prasher, D. and Hodge, S. (1997) Removal of a cryptic intron 

 and subcellular localization of green fluorescent protein are required to mark 

transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94,2122-2127. 

Hinchee, M.A.W, Conner-Ward, D.V., Newell, C.A., McDonnell, R.E., Sato, S.J., 

 Gasser, C.S., Fischhoff, D.A., Re, D.B., Fraley, R.T. and Horsch, R.B. (1988) 

 Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. 

 Bio/technology 6,915-922. 

Jang, I-C., Nahm, B. and Kim, J-K. (1999) Subcellular targeting of green fluorescent 

 protein to plastids in transgenic rice plants provides a high-level expression system. Mol 

 Breed 5,453-461. 

Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. 

 Plant Mol Biol Rep 5, 387-405. 

Kim, C.S., Kamiya, S., Sato, T., Utsumi, S. and Kito, M. (1990) Improvement of 

 nutritional value and functional properties of soybean glycinin by protein engineering. 

 Protein Eng 3,725-731. 

Kitamura, Y., Arahira, M., Itoh, Y. and Fukazawa, C. (1990) The complete nucleotide 

 sequence of soybean glycinin A2B1a gene spanning to another glycinin gene A1aB1b. 

 Nucleic Acids Res 18,4245. 

Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head  

bacteriophage T4. Nature 277,680-685. 



Luff, B., Pawlowski, L. and Bende, J. (1999) An inverted repeat triggers cytosine 

 methylation of identical sequences in Arabidopsis. Mol Cell 3,505-511. 

Matzke, A. and Matzke, M. (1995) Trans-inactivation of homologous sequences in 

 Nicotiana tabacum. In: Meyer P (ed) Gene silencing in higher plants and related 

 phenomena in other eukaryotes. pp1–14, Springer, Berlin Heidelberg New York. 

Matzke, M., Matzke, A.J.M. and Kooter, J.M. (2001) RNA: guiding gene silencing. 

 Science 293,1080-1083. 

Maximova, S., Dandeka,r A. and Guiltinan, M. (1998) Investigation of 

 Agrobacterium-mediated transformation of apple using green fluorescent protein: 

 high transient expression and low stable transformation suggest that factors other than 

T-DNA transfer are rate-limiting. Plant Mol Biol 37,549-559. 

McCabe, D., Swain, W.F., Martinell, B.J. and Christou, P. (1988) Stable transformation 

 of soybean (Glycine max) by particle acceleration. Biotechnology  6,923-926. 

Meyer, P. (1995) Understanding and controlling transgene expression. Trends Biotechnol 

13,332-337. 

Meyer, P. (2000) Transcriptional transgene silencing and chromatin components. Plant 

Mol. Biol. 43, 221–234. 

 

Morin, X., Daneman, R., Zavortink, M. and Chia, W. (2001) A protein trap strategy to 

detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc 

Natl Acad Sci USA 98,15050-15055 



Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays 

with tobacco tissue culture. Physiol Plant 15,473-497. 

Napoli, C.,Lemieux, C.,and Jorgensen, R. A. (1990) Introduction of a chimeric chalcone 

synthase gene in petunia results in reversible cosuppression of homologous genes in 

trans. Plant Cell 2,279-289. 

Nielsen, N.C. (1985) The structure and complexity of the 11S Polypeptides in Soybean. J. 

 Amer Oil Chem Soc 62,1680-1686. 

Nielsen, N.C., Dickinson, C.D., Cho, T.-J., Thanh, V.H., Scallon, B.J., Fischer, R.L., 

 Sims, T.L., Drews, G.N. and Goldberg, R.B. (1989) Characterization of the glycinin 

 gene family from soybean. Plant Cell 1,313-328. 

Ohta, S., Mita S., Hattori, T. and Nakamura, K. (1990) Construction and expression in 

 tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the 

 coding sequence. Plant Cell Physiol 31,805-813. 

Philip, A. Lessard, P. A., Kulaveerasingam, H., York, G. M., Strong, A. and Sinskey, A. J. 

(2002) Manipulating gene expression for the metabolic engineering of plants. Metabolic 

Engineering 4,67-79. 

Richards, H. A., Halfhill, M. D., Millwood, R. J. and Stewart, C. N. (2003) Quantitative 

GFP fluorescence as an indicator of recombinant protein synthesis in transgenic plants. 

Plant Cell Rep 22,117-121. 

Sato, S., Newell, C., Kolacz, K., Tredo, L., Finer, J. and Hinchee, M. (1993) Stable 

transformation via particle bombardment in two different soybean regeneration systems. 

Plant Cell Rep 12,408-413. 



Spiker, S. and Thompson,W. F. (1996) Nuclear matrix attachment regions and transgene 

expression in plants. Plant Physiol. 110,15-21. 

Stam, M, Mol, J., and Kooter, J. (1997) The silence of genes in transgenic plants. Ann Bot 

 79,3–12. 

Stewart, J.C.N. (2001) The utility of green fluorescent protein in transgenic plants. Plant 

 Cell Rep 20,376-382. 

Taylor, N. G. and Fauquet, C. M. (2002) Microparticle bombardment as a tool in plant 

science and agricultural biotechnology. DNA and Cell Biol. 21, 963-977. 

Tian, L., Levèe, V., Mentag, R., Charest, P.J. and Sèguin, A. (1999) Green fluorescent 

 protein as a tool for monitoring transgenc expression in forest tree species. Tree Physiol 

 19,541-546. 

van der Krol A, Lenting P, Veenstra J, van der Meer I, Gerats A, Mol J, et al. 1988. An 

anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. 

Nature 333: 866–869 

Vaucheret, H., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J-B., Mourrain, 

 P., Palauqui, J.-C. and Vernhettes, S. (1998) Transgene-induced gene silencing in plants. 

 Plant J 16,651-659. 

Wang, M-B. and Waterhouse, P. (2002) Application of gene silencing in plants. Cur. 

Opin. Plant Biol. 5, 146–150. 

Waterhouse, P. M.,Wang,M. and Finnegan, E. J. (2001a) Role of short RNAs in gene 

silencing. Trends Plant Sci. 6,297-301. 



Waterhouse,P. M., Wang,M. B. and Lough,T. (2001b) Gene silencing as an adaptive 

defence against viruses. Nature 411,834-842. 

Wippersteg, V, Kapp, K., Kunz W., Jackstadt, W.P., Zahner, H. and Grevelding C.G. 

(2002) HSP70-controlled GFP expression in transiently transformed schistosomes. Mol 

Biochem Parasitol 120,141-150. 

Vance, V. and Vaucheret, H. (2001) RNA silencing in plants- Defense and counter 

defense. Science 292, 2277–2280. 

Zimmer, M. ( 2007) Green Fluorescent Protein.  Retrieved Dec. 4, 2007 from 

http://www.conncoll.edu/ccacad/zimmer/GFP-ww/GFP-1.htm 

 

 
 
 

 

 

 

 

 

 

 

 

 

http://www.conncoll.edu/ccacad/zimmer/GFP-ww/GFP-1.htm


Figure Legends 

Fig. 1 Structures of plasmid constructs for soybean transformation. A, pHVS contains a 

modified glycinin gene, V3-1, between hpt as a selectable gene and sGFP(S65T) as a 

reporter gene. B, pHV contains V3-1 flanked by hpt as a selectable gene. Restriction sites 

are indicated.  

Fig. 2 Visualization of sGFP(S65T) expression in transformed soybean plantlets. 

Embryos (A), leaves (B) and Seeds (C). 

Fig. 3 Detection of foreign genes in transgenic soybean plants by PCR: hpt (A), and sgfp 

(B) genes. lane 1 (untransformed control), 2-15 (transformed soybeans with pHVS and 

pHV), and 16 (plasmid with pHVS) 

Arrowheads expected 560 bp and 708 bp fragments of hpt and sgfp genes. 

Fig. 4 Southern blot analysis of soybeans transformed with pHVS and pHV.  Total DNA 

was digested with SacI and loaded in lane N (untransformed control), 1-4 (transformed 

soybeans with pHVS), and 5-7 (transformed soybeans with pHV). Separated DNA was 

transferred to a nylon membrane and hybridized with each probe containing the coding 

region of hpt (A), and sGFP(S65T) (B).  

Fig. 5 Tricine-SDS-PAGE (A) and SDS-PAGE (B) analysis of components of seed 

storage proteins in transformed soybean. Globulin fractions were isolated from QF2 

(mutant line lacking 7S and 11S globulin), Jack (untransformed control) and 

transformants, 25 μg of each fraction was fractionated by SDS-PAGE and then stained 

with CBB. 

Fig. 6 Detection of storage proteins (11S globulin) in soybean transgenic seed 

proteins(Immune-blotting). QF2 (mutant line lacking 7S and 11S globulin), Jack 



(untransformed control) and transformants. lane 1 (transformed soybeans with pHVS), 

lane 2(transformed soybeans with pHV) and lane 3 (transformed soybeans with pHVS). 

Arrowheads expected fragments of 11S globulin (Jack, untransformed control,  lane 1,3 

transformed soybeans with pHVS). 

 QF2 and Lane 2 transformed soybeans with pHV showed silencing of internal 11S 

globulin.  

 

Fig. 7 Insertion of GFP gene into DNA. Douglas Prasher GFP School, (Science 263, 

802–805, 1994).  http://www.conncoll.edu/ccacad/zimmer/GFP-ww/GFP-1.htm   

 

 

 

 

 

Table 1 Gene silencing efficiency in soybean by using two vector systems 

Construct                           pHVS                                pHV      

Regenerated plants               122                                  98 
hpt-positive by PCR               82                                  29                 
Transgenic plants1)             49( 292)/203))                     21 
Absence of glycinin            24(102)/ 143))                     15                            
Gene Silencing %            58.5(34.42) / 703))                 71.4      
 
1) Transformats giving hpt and sGFP bands by PCR analysis  
2) Transgenic soybean expressing sGFP 
3) Transgenic soybean not expressing sGFP 
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