
1

Atmospheric hypoxia limits selection for large body 
size in insects

C Jaco Klok and Jon F Harrison

School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA 

Recent geological models indicate a marked increase in atmospheric oxygen partial 

pressure (aPO2) to 32 kPa in the Permo-Carboniferous ( 300 million years ago), 

subsequently falling to 13 kPa in the Triassic1. These aPO2 changes have been 

hypothesized to cause multiple major evolutionary events 2 including the 

appearance and subsequent extinction of giant insects and other taxa3,4. Patterns of 

increasing tracheal investment in larger insects support this hypothesis5, as do 

observations of positive relationships between aPO2 and body size in single- or 

multi-generational experiments with Drosophila melanogaster and other insects6.

Large species likely result from many generations of selection for large body size 

driven by predation, competition or sexual selection7. Thus a crucial question is 

whether aPO2 influences the capacity of such selection to increase insect size. We 

tested that possibility by selecting for large body size in five Drosophila 

melanogaster populations for 11 generations in hypoxic (10 kPa), normoxic (21 

kPa) and hyperoxic (40 kPa) aPO2, followed by three generations of normoxia 

without size selection to test for evolved responses. Average body sizes increased by 

15% during 11 generations of size selection in 21 and 40 kPa aPO2 flies and even 

stronger responses were observed for the flies in the largest quartile of body 

masses. However, flies selected for large size in 10 kPa aPO2 had strongly reduced 

sizes compared to those in higher aPO2. Upon return to normoxia, all flies had 
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similar, enlarged sizes relative to the starting populations. These results 

demonstrated that positive size selection had equivalent genetic effects on all flies 

independent of aPO2, but that hypoxia provided a physical constraint on body size 

even in a relatively small insect under strong selection for larger mass. Our data 

support the hypothesis that Triassic hypoxia may have contributed to a reduction 

in insect size.  

Limited multigenerational studies with Drosophila melanogaster suggest that 

these insects might evolve larger body sizes when aPO2 is higher8, 9. However, body size 

can be affected by many factors, and it is not clear that interactions between oxygen and 

body size in the lab would occur in a similar manner in the field. Selection for large 

size, as often occurs in the wild, could potentially overcome these aPO2 effects.

Drosophila melanogaster exhibit strong changes in body size in response to artificial 

truncation selection for large size10, and provide a convenient model for testing whether 

aPO2 influences the response of a species to strong selection for larger body size. 

To test this possibility, we performed truncation selection for 11 generations on 

five populations of D. melanogaster in 10, 21 and 40 kPa aPO2 respectively. Each 

generation we selected the biggest 30 females and 20 males, representing approximately 

the largest 25% of each population, to found the next generation. After 11 generations 

the selection regime was lifted; and then a random 25% of each population was selected 

to found another three generations at 21 kPa aPO2. At every generation we measured the 

body masses of randomly selected males (n = 20) and females (n = 30) for each 

population. In addition, because prior research suggests that oxygen may have stronger 

effects on maximal compared to mean size11,12, we also measured the masses of the flies 

selected to found the next generations (the largest quartile).  
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During size selection, both mean masses and largest quartile masses of flies reared 

in 21 or 40 kPa aPO2 showed marked increases (Figs. 1, 2 and Table 1). After 11 

generations, for the five populations of flies selected in 21 or 40 kPa aPO2, mean mass 

increased significantly by 11-17% over generation 0 values, and the upper quartile sizes 

increased by 25-32 %. In most cases, there were no significant size differences between 

the 21 and 40 kPa groups (see Figs. 1, 2 and aPO2 effects in Table 1). By contrast, the 

flies selected for large size in 10 kPa aPO2 decreased in size during the initial selection 

generations (Fig. 1). After 11 generations of selection, the mean size of the five 

populations reared in 10 kPa aPO2 did increase but did not differ significantly from the 

starting populations (Fig. 2). Size selection increased the upper quartile sizes of the flies 

reared in 10 kPa by 5-8%. Nevertheless, the sizes of all flies reared in 10 kPa aPO2

remained well below those of flies reared in 21 kPa or 40 kPa aPO2 throughout the 

selection period (see Figs. 1, 2 and aPO2 effects in Table 1).  

When the populations were returned to normoxia (and random mating), the 

masses of the groups reared in the three different aPO2s converged within one 

generation toward the greater masses attained by the 21 and 40 kPa groups. Regardless 

of prior aPO2, the populations’ mean increase in mass relative to generation 0 was 2-

11%, while the largest quartile flies increased in size by 12-21%. Clearly truncation 

selection successfully changed both the mean values and the size distribution of these 

populations. The similarity of the masses of the groups in generations 12-14 indicates 

that the selection-induced genetic changes related to size were similar and independent 

of historical aPO2 during selection. 

Our data did not support the hypothesis that atmospheric hyperoxia would enable 

the evolution of larger insects in a strong size selective environment, as hyperoxic 

rearing did not allow flies to reach larger sizes relative to normoxic rearing. In general, 

phenotypic plastic responses of D. melanogaster body size to 40 kPa aPO2 are relatively 
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small (3-6%)13 and it is not surprising that selection can overcome such a minor plastic 

effect. Conceivably, a different result would occur at a less extreme level of hyperoxia. 

Forty kPa aPO2 is near the highest level of oxygen for successful rearing of some D.

melanogaster strains14, and thus at this aPO2 there may be oxidative stress that counters 

positive effects of hyperoxia on size. Also, one should take into account that D.

melanogaster is a very small insect, and potentially the interactions between body size 

and oxygen delivery might differ in much larger insects, such as the giant Palaeozoic 

palaeopterans. The correlations between increased aPO2 during this era1,2 and insect 

gigantism2, 3,4, as well as experimental evidence of increased body size of insects reared 

in hyperoxia6 lend support to the hypothesis that atmospheric hyperoxia contributed to 

the evolution of gigantism. 

By contrast, this study’s data convincingly show that hypoxia can limit the size of 

insects, even when they are strongly selected for large size (Fig. 1). Is it reasonable to 

extrapolate from the small D. melanogaster to the giant insects of the Palaeozoic? 

Hypoxia suppresses size in most of the modern insects that have been studied, at least in 

single generation studies6. These plastic effects of hypoxia on size in D. melanogaster

are possibly mediated via oxygen-dependent signalling pathways regulating growth and 

developmental processes such as the ISS pathway (Insulin/Insulin like growth factor 

signalling glucose transport and cell growth), IDGFs (chitinase related imaginal disc 

growth factors), ADGFD (adenosine-deaminase related growth factor),15 HIF-1

(hypoxia inducible factor)16,17, or via Tuberous Sclerosus Complex 2 (Tsc2) or Redd1-

mediated suppression of TOR signalling18,19. Analogous representatives of these 

signalling pathways have been characterized in Hydra (Coelenterata)20, Caenorhabditis 

elegans (Nematoda)21,22, Daphnia magna (Crustacea)23, D. melanogaster (Insecta)15,23,

various mammals24, yeast and Arabidopsis25. This broad distribution of oxygen-

dependent growth among organisms indicates that these signalling pathways originated 

in their common ancestry at least 500 million years ago25, are highly conserved among 



5

eukaryotes, and therefore likely also regulated the development of the Palaeozoic giant 

insect species such as Meganeura monyi and Meganeuropsis permiana (Order 

Protodonata)26 and Mazothairos enormis (Order Palaeodictyoptera)27. Thus, our data, 

demonstrating strong size suppression in a small insect selected for large size, indicates 

that decreased aPO2 offers an important explanation for the giant palaeopteran species’ 

extinction during the progressively hypoxic aPO2 across the Permo-Triassic boundary1.

Methods

To maximize genetic diversity, starting populations were derived by outbreeding five 

unrelated Drosophila melanogaster lines (Tucson Drosophila Stock Center numbers: 

14021-0231.20, 14021-0231.24, 14021-0231.35, 14021-0231.38, 14021-0231.43). 

Outbred stocks were treated with tetracycline and rifampicin (3-5 generations) to 

eliminate Wolbachia 28,29. Two antibiotic-free generations preceded selection 

experiments, and the experimental media lacked antibiotics. 

Generation 0. We split our outbred stock into 15 populations (5 replicates per aPO2,

each started with 30  and 20 . <48 hours old). Flies were cold-anaesthetized (1hr at 

4±1°C)30, weighed individually (Mettler MX 5, ±0.001 mg; and placed in 237 ml bottles 

with 50 ml standard yeast-based Drosophila growth medium. Bottles were kept in an 

incubator (Percival, Boone IO, 25°C, 12L:12D photoperiod) inside three air-tight 

chambers, each connected to a Sable Systems ROXY-8 paramagnetic oxygen regulation 

system that regulated aPO2 at 10, 21 and 40 kPa (www.sablesys.com/roxy8.html). Adult flies 

were removed after four days to limit larval densities to <250/bottle. 

Size selection - Generations 1 to 11. To determine mean population masses, we 

weighed haphazardly-chosen 30  and 20  per population. Of these, the heaviest 10

and 6  were placed in new bottles and served as a portion of the founders of the next 
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generation. From the other flies, we visually selected and individually weighed the 

largest 35  and 25 . Preliminary analyses confirmed that we could visually select flies 

whose average mass did not differ significantly from actual largest masses, ANOVA: 

F4, 45 = 0.619, p = 0.65. The heaviest 20 out of the 35  and 14 out of the 25  comprised 

the remaining founders of the next generations.  

For generations 12-14, selection ceased and populations were reared at 21 kPa. 

Randomly selected adults (30  and 20 ) founded each generation, and we continued to 

measure mean and largest upper quartile masses as described above.  
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Table 1. Comparisons of fly sizes at the start vs the end of positive size 
selection. Repeated measures ANOVA statistics for the first and last 
generations that experienced directional selection for larger size, 
comparing hypoxic-reared (10 kPa, top) or hyperoxic-reared flies (40 kPa, 
bottom) to the control or normoxic-reared flies (21 kPa). Significant p 
values are boldfaced. In all cases, hypoxic-reared flies were significantly 
smaller than normoxic-reared flies, and responded differently than 
normoxic-reared flies. 10 kPa flies had a lesser increase in mass with size 
selection, indicated by significant aPO2 x Generation terms.  

 Mean  sizes Upper quartile sizes 

Effect F DF p F DF p 

10 kPa vs 21 kPa:  Generations 1 vs 11, during truncation selection for large size 

 Females   Females   

aPO2 69.09 2, 15 <0.0001 89.75 2, 15 <0.0001

Generation 95.98 2, 15 <0.0001 77.98 2, 15 <0.0001

aPO2 x Generation 23.28 2, 15 <0.0001 24.07 2, 15 <0.0001

 Males     

aPO2 45.32 2, 15 <0.0001 95.52 2, 15 <0.0001

Generation 39.52 2, 15 <0.0001 157.58 2, 15 <0.0001

aPO2 x Generation 9.18 2, 15 <0.0025 14.18 2, 15 <0.0004

21 kPa vs 40 kPa:  Generations 1 vs 11, during truncation selection for large size 

 Females   Females   

aPO2 0.05 2, 15   0.9531 4.36 2, 15 <0.0322
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Generation 52.14 2, 15 <0.0001 36.20 2, 15 <0.0001

aPO2 x Generation 3.04 2, 15   0.0781 1.52 2, 15   0.2500 

 Males   Males   

aPO2 0.921 2, 15   0.4197 0.71 2, 15   0.5084 

Generation 73.46 2, 15 <0.0001 62.90 2, 15 <0.0001

aPO2 x Generation 7.23 2, 15 <0.0063 3.33 2, 15   0.0636 
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Table 2. Comparisons of initial fly sizes vs. post selection fly sizes. 
Repeated Measures ANOVA statistics (  = 0.05) for the starting 
populations at Generation 0 vs the second generation (Generation 13) of 
populations post-size selection and returned to normoxia. Although all 
these flies were reared in normoxia, the analyses compare hypoxic-
selected (10 kPa, top) or hyperoxic-selected flies (40 kPa, bottom) to 
control or normoxic-selected flies (21 kPa). Significant p values are 
boldfaced. In general, flies were larger in generation 13 than in the starting 
populations, indicating evolution of larger size in response to truncation 
selection (significant generation effects). However, in general, there were 
no significant effects of the aPO2 during the period of size selection.  

 Mean  sizes Upper quartile sizes 

Effect F DF p F DF p 

10 kPa vs 21 kPa:  Generations 0 pre- vs 13 post-size selection 

 Females   Females   

aPO2 1.06 2, 15   0.3722 0.91 2, 15 0.4222 

Generation 3.81 2, 15 <0.0459 20.58 2, 15 <0.0001

aPO2 x Generation 0.17 2, 15   0.8430 0.52 2, 15 0.6062 

 Males  Males   

aPO2 3.55 2, 15   0.0545 1.43 2, 15 0.2713 

Generation 7.89 2, 15 <0.0045 24.29 2, 15 <0.0001

aPO2 x Generation 0.02 2, 15   0.9778 0.20 2, 15 0.8252 

       

21 kPa vs 40 kPa:  Generations 0 pre- vs 13 post-size selection 

 Females   Females   

aPO2 0.31 2, 15   0.7354 1.42 2, 15 0.2715 
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Generation 1.38 2, 15   0.2826 24.82 2, 15 <0.0001

aPO2 x Generation 0.52 2, 15   0.6037 0.16 2, 15 0.8570 

 Males   Males   

aPO2 2.82 2, 15   0.0915 2.35 2, 15 0.1292 

Generation 13.19 2, 15 <0.0005 35.46 2, 15 <0.0001

aPO2 x Generation 10.89 2, 15 <0.0012 14.80 2, 15 <0.0003 
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Figure legends 

Figure 1. Drosophila melanogaster specimens (females left, males right) from 

the large size-selected populations maintained in their test aPO2s. The flies in 

21 and 40 kPa had very similar body sizes but those maintained in 10 kPa 

exhibited strong size suppression despite having undergone strong size 

selection for 11 generations. 

Figure 2. Plots of mass changes across generations. Mean adult masses 

(females above, males below) of five selected populations of Drosophila 

melanogaster (left), and mean masses of the largest quartile of those 

populations (values shown are the means ± 0.95 confidence intervals of the five 

population means for each treatment). Generation zero represents initial values 

of starting populations all reared in 21 kPa (included in red box). From 

generations 1-11, directional selection for large size was applied in either 

hypoxic (10 kPa, ), normoxic (21 kPa, ) or hyperoxic (40 kPa, ) conditions. 

During generations 12-14, populations were returned to 21 kPa (included in red 

box) and no selection was performed. In all cases, across all generations, 

Repeated Measures ANOVAs (  = 0.05) showed that the aPO2 and Generation 

effects and the aPO2 x Generation interactions were highly significant (p < 

0.0001). Non-overlapping 0.95 CI whiskers indicate significant differences. Due 

to questionable growth medium quality, generations 5, 8 and 9 were excluded 

from all analyses. 
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