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“Technological possibilities are irresistible to man. If man can go to the moon, he 
will. If he can control the climate, he will.”   
 
 

John von Neumann 

  



IV 

Abstract 

To mitigate climate change, international agreements aim on decarbonization of 

energy supply. With electricity as pioneering energy sector, a promising option for the 

future decarbonized electricity system are renewable energy sources (RES), especially 

wind power and photovoltaics. Due to the weather-dependent, volatile feed-in of these 

energy sources, flexibility options are necessary to guarantee a stable electricity supply 

in the future, which includes flexible electricity supply, energy storage, flexible loads 

and electricity grid expansion. Insufficient and uncertain incentives for investments in 

liberalized electricity systems nevertheless impede the necessary expansion of these 

flexibility options. Thus, the aim of this doctoral thesis is to analyze different 

influencing factors on economic incentives for flexibility options and how information 

and communication technology, as well as information systems can improve these 

incentives. In six research articles, which provide deeper insights, an analysis is made 

which incentives are given by the regulatory framework and where information 

systems (IS) and information and communication technology (ICT) can act as a 

catalyst to improve market-based incentives for flexibility investments. The thesis 

illustrates various cases for IS and ICT enabled advantages by on different abstraction 

levels and highlights the importance of interdisciplinary cooperation in the domain of 

flexibility investment incentives.  
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I. Introduction 

I.1 Motivation 

Climate change is seen as a fundamental threat to the continued existence of human 

civilization (Ehrlich and Ehrlich 2013). The increase in global temperature can trigger 

self-reinforcing feedbacks, which push the earth system towards a planetary threshold 

that shift the earth’s climate to an unstable state with continued warming called as 

“Hothouse Earth”. This would cause serious disruptions to ecosystems, society, and 

economies (Steffen et al. 2018). Therefore, increased efforts are necessary to keep 

global temperature below the critical level. Well-known are the decisions from the 

United Nations Climate Change Conference in Paris 2015, with the goal of keeping 

(Ehrlich and Ehrlich 2013) global temperature increase well below 2°C (above pre-

industrial-level) and to pursue efforts to limit the increase even below 1.5°C (United 

Nations 2015). This decision was confirmed by the Climate Change Conference in 

Katowice three years later (United Nations 2018). To reach these goals, global 

decarbonization of energy supply is necessary. This requires a shift towards non-fossil 

technologies which implies a large scale implementation of renewable energy sources 

(RES), nuclear power, carbon capture and storage (CCS) (Zappa et al. 2019). The safety 

of nuclear energy and technological reliability, as well as the social acceptance of CCS, 

are queried (Akashi et al. 2014). As a result, many countries focus on RES to reach their 

decarbonization targets (Zappa et al. 2019). 

The decarbonization of the electricity sector is seen as the first step towards a 

comprehensive transformation of the electricity sector (Rogelj et al. 2015). Therefore, 

a large share of electricity will be generated by the variable RES wind and photovoltaics 

(Ueckerdt et al. 2015). As the electricity generation of both technologies depends on 

weather conditions, electricity grid feed-in will increasingly decentral and underlie 

intermittency and uncertainty (Nazir et al. 2014). This induces two major 

transformations in the electricity system. The first transformation refers to the 

necessary balancing of electricity supply and demand, the second to organization and 

information exchange within the electricity grid.  

The electricity system needs a balance between supply and demand at any time to 

function faultlessly. To ensure this balance in times of increasing and intermittent 
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feed-in, the power system needs flexibility (Cruz et al. 2018; Papaefthymiou et al. 

2018). Various definitions for flexibility in the context of the electricity system exist on 

different levels of abstraction: (CEN-CENELEC-ETSI Smart Grid Coordination Group 

2012) define flexibility “ […] as a “general” concept of elasticity of resource deployment 

providing ancillary services for the grid stability and/or market optimization”. (Zhao 

et al. 2015) provide a framework for defining and especially measuring flexibility by 

determining flexibility by the four dimensions time, actions, uncertainty and costs. 

Thereby, they describe flexibility as “the ability of a system to respond to a range of 

uncertain future states by taking an alternative course of action within acceptable cost 

threshold and time window” and by being a “[…] inherent property of a system […]”. A 

more technical and descriptive definition is given by (Mohandes et al. 2019) who 

describe the three characteristics of flexibility as ramping limit, power capacity and 

energy capacity. These definitions already illustrate the different dimensions and 

perspectives on power-system related flexibility. In the following, this thesis 

distinguishes between flexibility options, which describe different technical 

approaches to provide flexibility to the electricity grid and in flexibility assets, which 

are a specific instantiations of flexibility options. Flexibility options can be categorized 

into demand-side, supply-side, network-side and other sources of flexibility options, 

especially energy storage systems (Cruz et al. 2018). As (Lund et al. 2015) or 

(Papaefthymiou et al. 2018) use slightly different categories for arranging the different 

options (e.g. different role of electricity markets, definition of power-to-gas as own 

flexibility options) and yet there is no consistent categorization. In the following, four 

main technical flexibility options will be distinguished: Demand side flexibility, supply 

side flexibility, storage flexibility and grid flexibility. It is possible to summarize all 

other flexibility options discussed in literature under at least one of these four 

categories and therefore they do not need separate consideration. Regardless of each 

flexibility option’s role, the required flexibility will rise with increasing RES and 

decreasing fossil power plants as the “traditional” source of flexibility, which results in 

an increasing “flexibility gap” (Papaefthymiou et al. 2018). 

The second major transformation stems from the increasingly decentral electricity 

generation: Traditionally, different large power plants were classified according to 

their ability to adjust their power supply into base-, intermediate- and peak load power 

plants (Diesendorf 2010). The behavior of the power consumers was estimated on the 

https://www.sciencedirect.com/topics/mathematics/elasticities
https://www.sciencedirect.com/topics/engineering/ancillary-service
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basis of load models and daily load profiles, which allowed a good prediction of the 

power situation in the grid and the corresponding operation of the power plants 

(McLoughlin et al. 2015; Milanovic et al. 2012). With growing RES share, feed-in 

increasingly stems from small decentral RES power plants, which are typically 

connected to low voltage level distribution grids. Thus, the traditional top-down 

oriented electricity flow from few large power plants connected to the transmission 

grids down to individual consumers via distribution grids dissolves and will turn 

opposite (Slootweg et al. 2011). Consequently, both electricity grids and information 

exchange in the electricity system face new challenges. To address these challenges, the 

term “Smart Grid” has been established in electricity system research. It has the core 

idea of converging “the actual electrical power infrastructure (Energy) with the 

telecommunications (Telecom) and information technology (IT) sectors in order to 

create a more aware and intelligent electrical power system” (Slootweg et al. 2011). This 

idea also entails the concept of intelligence, which allows the shift from mostly manual 

control of electrical grids towards a highly automated control of loads and a grid 

integration of energy storage devices (Slootweg et al. 2011).  

I.2 Research aim 

Combining both developments, the smart grid may therefore serve as the technical 

backbone which orchestrates the RES feed-in and the four different flexibility options. 

Despite the promising technical benefits of a smart grid – that are e.g. described by 

(Hu et al. 2014) – the viability of this concept within liberalized electricity systems is 

still challenging, as the smart grid benefits might not directly translate into a private 

business case (Lunde et al. 2016). This statement of (Lunde et al. 2016) offers a good 

indication about the difficulties in a liberalized electricity system, as incentives for 

investments in the flexibility assets for smart grid infrastructure and flexibility options 

are insufficient or uncertain in many national electricity systems (Alcázar-Ortega et al. 

2015; Paterakis et al. 2017). 

One reason for this uncertainty is, that electricity systems are designed in alignment 

with the political goals in an energy system and are therefore subject to change. These 

goals may for instance consist of the factors sustainability, energy security and 

economic efficiency, with different weightings or additional factors, dependent on the 

specific design of national energy systems. Political goals in turn both depend on 
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societal goals as well as on different technologies and their respective potential. As a 

result, political goals, societal goals, incentives for flexibility options and the uncertain 

potential of technologies influence each other (see figure 1). The integration of RES 

intensifies interdependencies between such technical and institutional elements 

(Verzijlbergh et al. 2017).  

 

 

Figure 1: Exemplary interrelations between societal goals, political goals, technological potential and 

relevance of flexibility options. Source: own representation 

Therefore, an isolated consideration of each factor would fall short of designing an 

energy system that fulfills underlying goals at the best. To make an approach towards 

a more comprehensive and coherent perspective on the interplay of the different 

components, this thesis analyzes how the economic viability of different flexibility 

options for the electricity system is influenced by different exogenous aspects that are 

not specific to the technology of the flexibility option itself. This includes economic, 

technological and regulatory aspects. Attractive economic incentives within the 

regulatory framework are the prerequisite for the widespread diffusion of flexibility 

options. Information system (IS) and information and communication technology 

(ICT) have an outstanding influence on technological development (Heeks 2010). 

While the term ICT refers to technological goods, which process, transmit and display 

information electronically (Ruddock 2006; OECD 2015), IS research has a broader 

focus, by examining phenomena that emerge when such technological systems interact 
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with social systems (Lee 2001; Gregor 2006).  

Therefore, this thesis puts a special focus on economic incentives for flexibility options 

and how IS and ICT can improve these incentives. First, IS and ICT may serve as 

enablers that mitigate the implementation of technologies, e.g. by reducing planning 

costs. In this context, IS and ICT act as a catalyst for different flexibility options. 

Second, IS and ICT may change the “merit order” of flexibilities from resource 

incentive flexibility options like grid expansion and storages to information-intensive 

flexibility options like demand response. IS and ICT may serve as a “disruptive” 

technology that influence the structure and even the goals of the energy system. Facing 

these two kinds of impacts, a differentiation of short- and long-term perspective helps 

to structure different potentials of IS and ICT on flexibility incentives over different 

levels of policy, market design and techno-economic feasibility. 

I.3 Structure of the thesis 

The two perspectives for analyzing the potentials of information systems to incentivize 

flexibility options on the energy system are reflected in the structure of this doctoral 

thesis that is described in the following subchapter. This doctoral thesis is cumulative 

and refers to five research articles. The document at hand refers to these research 

articles in the different subchapters but does not contain them in full length. Instead, 

it provides a coherent analysis of the influence of IS and ICT on incentives for 

investments in flexibility options. Therefore, the document at hand puts an increased 

focus on the presentation of interrelations, while the five research papers give detailed 

information. Figure 2 gives an overview of the order of the corresponding research 

articles and illustrates the embedment in the chapters of this thesis. Appendix A 

contains the extended abstracts of the research articles. 
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Figure 2: Structure of this thesis. Source: own representation 

Chapter II elaborates on the theoretical foundation of energy informatics potentials 

based on the transaction cost theory, as well as on the specific contribution of this 

thesis in this research domain.  

Chapter III then describes the long-term perspective on promoting flexibility options 

by analyzing incentives for flexibility in the energy system on different levels and by 

presenting possibilities to strengthen market incentives. The chapter provides a 

summary of goals and requirements regarding the energy transition as well as the 

existing regulatory framework for fostering flexibility options on a European and 

national level. Due to the prevailing uncertainty regarding the future design of the 

energy system, regulatory interventions and subsidies are necessary to initiate the 

expansion of flexibility options. Nevertheless, to pursue a more market-based 

approach in the future, chapter III presents another approach for uncertainty 

reduction and concludes by analyzing which role IS and ICT play in these specific 
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domains.  

Chapter IV then structures the potentials of IS and ICT to support flexibility options in 

the short-term. The more short-term decisions are, the higher the role of ICT in 

comparison to IS for flexibility support is. After giving an overview of existing 

remuneration mechanisms for flexibility options, the thesis describes options for 

power market redesign to support the expansion of flexibility options using the 

possibilities of ICT. This chapter also puts a special focus on demand response as 

information intensive flexibility option with corresponding influence factors. This case 

also illustrates the need for the exploitation of automation, optimizati0n and 

integration. 

To tackle the energy transition also in other sectors apart from the electricity sector, 

chapter V gives an outlook on the cross-sectoral flexibility opportunities which may be 

enabled by IS and ICT and how they can contribute to leveling temporal and spatial 

imbalances in energy demand and energy supply, efficiently. Chapter VI concludes this 

thesis by summarizing the key findings from the previous sections before identifying 

limitations and giving an outlook on future research.  
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II. Theoretical background and contribution  

II.1 Terminology 

The following chapter gives a brief presentation of the generic theoretic fundaments of 

information systems in order to be able to better assess the potential benefits for the 

specific domain of energy systems. Building on that, the established research stream 

of energy informatics is presented, followed by a description of the specific 

contribution of this thesis within this domain.  

The term information system has been existing for several decades and the 

corresponding research discipline had its origins in a variety of different reference 

disciplines with distinct theoretical research perspectives (Kaplan and Duchon 1988). 

Allen Lee describes information systems as a research field that “[…] examines more 

than just the technological system, or just the social system, or even the two side by 

side; in addition, it investigates the phenomena that emerge when the two interact” 

(Lee 2001). Coming from that background, information systems research goes far 

beyond the field of information technology and consists of “interrelated components 

working together to collect, process, store, and disseminate information to support 

decision making, coordination, control, analysis, and visualization in an organization” 

(Laudon and Traver 1994). During the last decades, the role of information systems 

within an organization has shifted from being “relegated in the back office” towards 

being “concern of every manager in the organization” (Brancheau and Wetherbe 1987) 

and fulfill the purpose of improving the effectiveness and efficiency of that 

organization” (Hevner et al. 2004). The presented perceptions of information systems 

by Laudon, Brancheau and Hevner all target an individual organization’s perspective 

on information systems.  

With organizational goals as one purpose of information systems, impacts of 

information systems strategy have widely been investigated on the fundament of well-

established economic theories for individual organizations and organizational strategy. 

More thoroughly, most effects are associated with the improvement of advanced 

information and communication technology (ICT) (or simply information technology 

(IT), the term ICT includes IT in the following) as the technological enabler of IS. The 

cost-saving potential of IT through mechanization of data processing activities has 

accelerated the adoption of IT and IS in the early second half of the 20th century 
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(Kriebel 1968). An increase in data quality, information quality and therefore 

knowledge can contribute to an improved decision making and improved management 

of processes (Kriebel 1968). This again may influence the physical environment.  

II.2 A transaction cost approach to assess the structural impact of IS 
and ICT 

The raised efficiencies enabled by the automated data processing opportunities of IT 

and the better availability of information by IS reduce the transaction costs within an 

organization but also across organizations. This transaction cost theoretic approach is 

common in the existing literature to describe the possible impacts of information 

systems.  

The transaction cost model analyzes the increase of required resources for economic 

exchange between at least two individual participants when certain imperfections 

appear (Cordella 2006). Inefficiencies and imperfections in the organization of 

transactions, also denoted as market failures, are the result of information- and 

behavioral-related problems, with these imperfections defining the complexity of the 

transaction (Ciborra 1983). Economic agents invest in resources to mitigate the effects 

of these imperfections in the execution of the exchange. These investments are the 

costs associated with the transactions, the so-called transaction costs. Structured 

according to the phases of a transaction life cycle, one may distinguish search costs, 

negotiation costs and enforcement costs (Reed 1973; Cordella 2006). From an 

information-oriented perspective, transaction costs for a specific exchange can be 

captured by a function of the constructs coordination costs, bounded rationality, 

information asymmetry, opportunistic behavior, asset specificity, complexity and 

uncertainty (Cordella 2006). The first six constructs can be found as factors (partially 

under a different denomination) in the early publications of (Williamson 1973) and 

(Williamson 1975) who provide a corresponding definition. In a later publication the 

notion of variations in asset specificity as the principal factors for transaction cost 

differs among transactions (Riordan and Williamson 1985). 

In the sense of the transaction theory, the necessary information for assessing an 

exchange’s equity is a critical prerequisite for a successful transaction (Cordella 2006). 

With increasing costs for assuring the necessary information, the option of re-

organizing the exchange process (i.e. the transaction) within a structure that more 
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adequately addresses uncertainty and information asymmetry becomes more 

advantageous for all the involved parties (Cordella 2006). The organization of the 

transaction always ranges within a spectrum between the two antipodes of market and 

hierarchic coordination. In the logic of market coordination, transactions materialize 

between different individuals and firms as a result of supply and demand forces for a 

product with a certain design, price, quantity and target delivery schedule (Malone et 

al. 1987). The extreme case of pure market coordination (decentralized market) 

amounts in an entire dissolution of organizations, as all transactions are fulfilled by 

individuals on market-based mechanisms (e.g. peer-to-peer trading). Hierarchic 

coordination, on the other side, describes the logic of coordinating material flow by 

adjacent steps by controlling and directing it at a higher level in the managerial 

hierarchy (Malone et al. 1987). Market coordination allows low production costs but 

comes with high coordination costs – for hierarchic coordination, the assignment is 

vice versa (Malone and Smith 1984). The advent of technologies might nevertheless 

change the role of transaction costs in the tradeoff between market and hierarchic 

coordination. ICT may, for instance, tie together adjacent value-chain steps and 

therefore may shift transactions from hierarchic coordination towards more market 

coordination (Malone et al. 1987). This results for instance in a decrease in firm size 

(Brynjolfsson et al. 1994). While these theoretical fundaments had a special focus on 

the reducing effects of ICT on coordination costs, the effect on the remaining constructs 

of transaction cost theory still needs to be taken into consideration as well.  

Bounded rationality: The concept of bounded rationality goes back to (Simon 1972) 

and (March 1982) who suggest that decision-makers face incomplete information, 

limited time, limited skills, limited resources, ambiguity and lack of definition and 

therefore only have limited capabilities to make rational decisions (Forester 1984). 

Bounded rationality has been a key concept in the development 0f organizational 

theory and can provide a link to better understanding impacts of information 

technology on organizational design (Bakos and Treacy 1986). Based on a possible 

information completion, ICT and IS may enable a reduction of bounded rationality, 

which – under the transaction cost paradigm – also results in a more market-based 

organization of transactions.  

Information asymmetry: ICT may help to reduce the information asymmetry between 

two parties (e.g. supplier and buyer) by providing better possibilities of monitoring 
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(Stump and Heide 1996). This may increase the opportunity for both parties to exert 

control themselves while reducing the motivation to control the partner in a 

transaction (Kim and Hsieh 2006; Ruey-Jer 2007). Nevertheless, a lack of willingness 

to disclose the relevant information by the involved parties may undermine the 

technical opportunities, which may have origin in the opportunistic behavior of one of 

the involved participants.  

Opportunistic behavior: Opportunistic behavior entails “self-interest seeking with 

guile” and involves making threats and promises, which are self-disbelieved in hope of 

gaining an advantage over others (Williamson 1975; Kelley et al. 1989). Various control 

mechanisms like contracts in an inter-organizational transaction or inner-

organizational control mechanisms may be used to reduce the risk of opportunistic 

behavior and to compensate for the lack of trust in transactions (Muris 1980; Ouchi 

1979). Although not having a direct effect on opportunism, ICT and IS can be applied 

to design such control mechanisms efficiently by using blockchain and smart contracts. 

These recently emerged technologies may mitigate opportunism through incentives 

and crypto-economic mechanisms at relatively low transaction costs, and thus reduce 

transaction costs (Baron and Chaudey 2019). 

Asset specificity: This concept describes the extent to which investments made to 

support a particular transaction, have a higher value for one organization than for 

others (Loukis et al. 2016). Transaction cost economics maintains that variations in 

asset specificity are even the principal for the existence of firms (Williamson 1975; 

Riordan and Williamson 1985). The concept can take the forms of site, physical, human 

and dedicated assets. In an empirical review, Rao (2001) observes an inverse 

relationship between ICT and asset specificity, thus ICT reduces the specific advantage 

of certain investments for firms. As a result, transaction costs may decrease.  

Complexity and uncertainty: For the two constructs, complexity and uncertainty, the 

relation is not that distinct. The challenge is, that these two constructs are highly 

interdependent with the aforementioned constructs, with ICT effects and with 

themselves (Cordella 2006). Rapid change of technology – as common for ICT itself 

and diffused by ICT to other technologies – can thus be a source of uncertainty by itself 

(Lacity and Willcocks 1995). The same applies to the complexity where reduced search 

costs may lead to an abundance of information which then increases negotiation and 

enforcement costs as well as overall complexity (Bailey and Bakos 1997). As a result, 
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the adoption of ICT in some settings may lead to significantly increased transaction 

costs due to high additional costs to accommodate the more complex environment 

(Cordella 2006). As such, the impact of ICT and IS is not an automatism that will occur 

in any case without external influence. To account for this limitation, this thesis uses 

the term potential instead of impact to describe the consequences of technological 

progress, which can but do not necessarily have to materialize. Still, utilizing ICT to 

increase information availability, to accelerate and to increase the amount of available 

information makes economic exchanges easier and more efficient by reducing 

transaction costs in all three phases of transaction costs (Cordella 2006).  

To conclude, transaction cost theory is well established and empirically confirmed, 

despite still not entirely explored in all its complexity (Geyskens et al. 2006). Thereby 

ICT and IS may contribute towards a more market-based, a less hierarchical, way of 

coordinating transactions and, consequently, increase the number of individual parties 

involved. Comparing this intermediate result with the described developments in 

chapter I, the potential of ICT and IS to change organizational structures comes in 

alignment with the requirements of the energy transition for a decentralized supply of 

electricity. By the early 2010s, both disciplines were brought together to leverage their 

potentials. The next sub-chapter describes this development.  

II.3 The research discipline energy informatics  

Until 2010, the potentials of ICT and IS for the development of energy and especially 

sustainability-related applications were revealed by few, mostly unrelated research 

articles in different domains and research disciplines, as can be seen in the review by 

Kossahl et al. (2012) and Goebel et al. (2014). In 2010, Watson et al. (2010) merged 

the disciplines of IS and energy research to establish the new research discipline 

“energy informatics”. This discipline encompasses the analysis, the design and the 

implementation of systems1 to increase the efficiency of energy systems, following the 

paradigm that information enriched energy, amounts in less energy demand (Watson 

et al. 2010). This special role of data is apparent in the requirement of “collection and 

analysis of energy data sets to support optimization of energy distribution and 

                                                   
1 Watson uses a rather broad definition of (information) systems as an “integrated and cooperating set of people, 

processes, software, and information technologies [working] to support individual, organizational, or societal 
goals” (Watson et al., 2010). Thereby, they also include ICT in his definition of IS. 
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consumption networks.” In this context, Watson et al. (2010) lists eight connecting 

functions of information systems that shape an integrated system for an energy system 

that consists in general of data collection and transmission, information supplying and 

giving decision support and automation opportunities. The technical core of his 

proposed energy informatics framework consists of sensor networks, flow networks, 

sensitized objects and a central information system for coordination. The technical 

core is surrounded by eco-goals and stakeholders that propose policies, regulations, 

social norms and determine the economics both on-demand and supply-side (Watson 

et al. 2010). This generic framework gives various degrees of freedom for locating 

energy informatics research. Goebel et al. (2014) give a more specific idea of goals, 

research themes, use cases and involved disciplines in IS research. Still, there is a broad 

range of application domains that serve the two goals of energy efficiency via smart 

energy-saving systems and renewable energy supply via smart grids. There is a broad 

range of exemplary use cases for energy informatics:   

- Peer-to-peer energy trading (Zhang et al. 2018a) 

- Optimization of data center dispatch to support load balancing (Fridgen et al. 

2017b)  

- Cybersecurity issues in load balancing (Vernotte et al. 2018)  

- The electric grid reliability research (Sultan and Hilton 2019) 

- User interfaces for energy management (Xu et al. 2018)  

- Simulation of energy use (Watson et al. 2018) 

- Big data analysis in smart grids (Zhang et al. 2018b) 

- Predictive energy data analytics (Hopf 2018) 

Given this broad area of applications on different levels of abstraction in the research 

stream of energy informatics, the next sub-chapter arranges the contribution of this 

thesis into energy informatics. 

II.4 Contribution of this thesis 

The aim of this thesis is to analyze how energy informatics can contribute to 

incentivizing flexibility options in the energy system in a long- and short-term 

perspective. According to the framework of Goebel et al. (2014), this thesis falls into 

the categories of renewable energy supply integration via smart grids with use cases 

of factories, energy storage, power systems and electricity markets involved. Relevant 
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research backgrounds are IS economics, optimization and control. Still, this domain-

oriented perspective given by Goebel et al. (2014) might not be sufficient to understand 

the interdisciplinary orientation and the scope of this thesis.  

For a better understanding of energy systems, multi-level representations such as 

frameworks are commonly used, as for example in (Zhang et al. 2018a) and (Sachs et 

al.). These representations were used to derive a six-level model, which illustrates the 

interplay between levels in the energy system, energy informatics, economic 

incentives, technological potentials and political as well societal goals (c.f. figure 3).  

 

 

Figure 3: Scope of this thesis in a six-level model of the energy system. Source: own representation 

This thesis depicts three layers of this representation to conduct a deeper analysis of 

the economic incentives for flexibility options and how energy informatics potentially 

influences these. While market design and regulation set long-term incentives for 

flexibility provision and are consequently elaborated on in chapter III, the control layer 

is used to decide on operational commitment of flexibilities and therefore part of 

chapter IV. The business model layer can be part of both perspectives and will 

correspondingly be part of both chapters. Political goal, ICT and power grid layer will 

not be analyzed in detail, as incentives – as core of this thesis – mainly appear on the 

market design, regulation, business and control level. Still, these remaining levels will 
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be at least taken into account in the analysis of the potential influence of energy 

informatics. 

Therefore, this thesis builds upon existing research in the domains of energy 

informatics, energy policy, energy economics and energy law and provides linkages as 

all four domains have flexibility incentives as part of their research scope. Especially 

the dissertation of Thimmel (2019) is a relevant groundwork, as it also links energy 

informatics, energy policy and energy economics to describe the potential of IS for 

demand flexibility. In more detail, it examines how the use of information systems can 

contribute to a successful energy transition by intelligently matching power demand to 

the fluctuating power supply. In the above described six-level representation, Thimmel 

(2019) focusses on the business and control layer from a demand flexibility 

perspective, while this thesis analyzes more levels from a general flexibility perspective. 
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III. Long-term incentives for flexibility investments in the 
electricity system  

III.1 European and national goals in the electricity sector 

To mitigate the impacts of climate change, a break down of global greenhouse gas 

reduction goals to a European and national level in Germany, is necessary.  

The European goals for all member states in the European country are by now not 

sector-specific but focus on an overall reduction of greenhouse gas emissions and the 

increase of energy efficiency and share of energy demand from RES. The long-term 

goal for 2050 aims at a greenhouse gas reduction by 80 to 95 % compared to 1990 

levels (European Commission 2019).  

Germany as a member state of the European Union has set more specific goals for the 

electricity sector. The country has gained first attention by terms of the 

“Energiewende” as the first major country to commit itself to an electricity system 

transition based on decentralized RES (Antal and Karhunmaa 2018). A detailed 

description of the historical genesis of this term and the underlying political processes 

and goals are described by (Hake et al. 2015). The first key milestone for the scope of 

this thesis is the liberalization of the electricity markets by 1998, which replaced the 

monopoly of energy companies and led to a sharp decline in electricity prices. While a 

mechanism for RES fostering had already been existing since 1990 (Act on the Supply 

of Electricity from Renewable Energy Sources into the Grid, 

“Stromeinspeisungsgesetz, StrEG”), the key milestone for fostering RES was the 

introduction of the Renewable Energy Act, EEG. This act decoupled the premium for 

RES feed-in from electricity market prices by guaranteeing fixed feed-in tariffs for a 

period of 20 years (Hake et al. 2015). In 2010, the “Energiekonzept” was the first time 

when concrete goals for a path to increase the share of RES in gross electricity 

consumption were committed, aiming to reach a 50 percent share in 2030 and an 80 

percent share in 2050 (Bundesregierung 2010). The goal of reaching a 50 percent share 

was intensified later in the coalition agreement of 2018 to reach a 65 percent share of 

RES in gross electricity consumption by 2030 (Bundesregierung 2018). By 2018, 

Germany has reached a share of 37.8 % RES supply in gross electricity consumption 

(Statista 2019).  

Still, as sectors of traffic and heat lag behind, the carbon dioxide reduction does not go 
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along the planned pathway in Germany (Pichlmaier et al. 2019). Future transport and 

heating will require increased cross-sectoral linkages, with electrification as one 

example for such linkages (Verzijlbergh et al. 2017). The potentials of energy 

informatics to contribute to more cross-sectoral actions for carbon-dioxide reductions 

will be further elaborated on in chapter V. This consideration is furthermore relevant 

from a perspective of technologic neutrality, as it is not clear yet, which technologies 

on supply and demand side will determine the future energy system and whether 

certain sectors may exhaust more carbon dioxide than others. Political goals regarding 

the support for certain technologies and sectors are always influenced by the current 

and by the expected potential, as well by societal acceptance and societal goals. The 

process of nuclear phase-out or the discussion about the high-power transmission lines 

in Germany well illustrate the immense significance of policy-society 

interdependencies for the energy system. Nevertheless, this interdependency also 

causes uncertainty and may lead to myopic planning. Heuberger et al. (2017) expect an 

increase of the cumulative power system cost from 2015 to 2050 by up to 14 % due to 

this lack of foresight regarding the relevant technologies for energy transition. 

III.2 Electricity market design choices to enable a high share of RES 

Given the politically and societally desired increase of RES share in the electricity 

system, an expansion of flexibility options (described in chapter I) is necessary, in 

order to balance the increasingly fluctuating supply. In the course of electricity market 

liberalization, grid operators and private stakeholders in the electricity market operate 

flexibility options.  

Thereby, the flexibility options must have the perspective of a positive return-on-

investment in order to be attractive for private stakeholders. Besides the possibility of 

individual agreements, electricity markets give incentives for flexibility by two 

principles: Either electricity markets provide volatile price signals, that allow using the 

technical flexibility to exploit the arbitrage between cheap and expensive trading 

periods, or markets give certain premiums for holding flexibility available over a 

certain time period. The latter mechanism is mostly used in order to sustain the grid 

frequency (balancing power) or to counteract grid congestions (curtailable loads). 

Curtailable loads are specific for Germany, where also regulatory non-market-based 

mechanisms like the grid reserve are implemented in order to guarantee secure supply. 
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Subchapter IV.1 provides a further analysis of how these mechanisms provide revenues 

for flexibility provision in the short term. 

The arrangement of different market mechanisms in an electricity system is 

describable with the term market design. According to (Boisseleau 2004), this term 

has been used in different notions and entails three levels with corresponding design 

choices:  

- Organizational structure: Degree of market integration, degree of competition 

and regulation, access policies  

- Wholesale markets: Bilateral markets vs. pooling or exchanges, market 

integration, transmission pricing 

- Marketplace: Auction design, Prices and behaviors, admissible participants, 

competition 

From a local perspective, Ampatzis et al. (2014) propose a more simplified perspective 

on market design, incorporating the three dimensions , trading horizon and dispatch 

intervals as well as market mechanisms as its determinants. As described above, 

market design underlies influences of e.g. political goals and technological potentials 

and is for this reason subject to changes.  

Common discussions on market design target on questions of congestion management 

and the preference of a nodal, zonal or uniform pricing regime or on the decision 

whether a capacity- or an energy-only market will be advantageous for high RES 

shares; see e.g. (Cramton et al. 2013) or (Weibelzahl 2017). For instance, Kraan et al. 

(2019) argue that pure energy-only markets do not incentivize investors to deliver a 

fully RES-based energy system with the imperative for policymakers to develop 

capacity remuneration mechanisms. When a certain arrangement of market design is 

determined, it is necessary to align regulation in order to implement market design 

into practice. The role of regulation as translator between abstract market design 

concepts and the implementation of the desired results must not be underestimated. 

Ringler et al. (2017) therefore recommend a stable and transparent regulatory 

framework on a European level with cross-border market coupling to enable a common 

European electricity market. Only a stable framework sets the necessary conditions for 

private investors to invest in flexibility options in the long term. The next sub-chapter 

further elaborates these incentives. 
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III.3 Incentives for flexibility investments in the long-term perspective 

Private investors need to take into account potential revenues and expenditures when 

deciding on investments in flexibility options. One possibility, to subdivide 

expenditures is the splitting in capital expenditures (CAPEX) and operating 

expenditures (OPEX). The amount of CAPEX for a flexibility option increases the 

complexity and uncertainty in an investment project and therefore the willingness of 

an investor to undertake investments (Weaver 2012). The OPEX of flexibility options 

relates on the other hand to the marginal costs for flexibility provision and therefore 

influences the commitment of the flexibility options on the different electricity 

markets.  

Flexibility options have a different structure regarding CAPEX and OPEX (Steffen 

2018). For instance, demand flexibility measures may have comparatively low CAPEX 

but may induce high OPEX when industrial production planning needs to intervene in 

their processes. Currently, especially flexibility options with low additional CAPEX for 

flexibility take part in the markets for flexibility due to the planning uncertainty. In 

general, the higher the share of CAPEX is, the more stability of incentives in a long –

term perspective is necessary (Weaver 2012). This subsection describes two 

perspectives on these long-term incentives: 

Ländner et al. (2019) is the first research article in this cumulative dissertation and 

presents an overview of the current investment barriers for flexibility options and the 

existing legal energy investment framework. More specifically, the article identifies 

obstacles for private investors and provides an analysis of the current regulation that 

increases or decreases incentives for flexibility on the European and the national 

German level. The article undertakes this analysis for the flexibility options network 

expansion, supply flexibility, storage and demand flexibility. Research article 1 then 

summarizes the challenges of future energy law with the three domains uncertainty 

regarding future energy goals, energy law distortion towards specific flexibility 

options and law complexity. Ignoring these challenges might lead towards a system 

deadlock where regulatory interventions to grant necessary flexibility incentives only 

lead to an increase of complexity and uncertainty, thereby lead to market failure and 

in turn to decreasing market-based incentives.  

This conclusion corresponds with the assessment of other research articles. (Newbery 

et al. 2018) mention political risks due to increased concerns over climate change and 
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sustainability which are difficult to hedge and lead to missing markets. (Schachter et 

al. 2016) emphasize the pivotal role of uncertainty in the decision making on flexibility 

options: “There is a need to account appropriately for uncertainty in long-term decision 

making and the valuation of network investment plans, as accounting for uncertainty 

can significantly change the business case for flexible capacity-based services for 

postponing or even avoiding costly irreversible reinforcements.” The risks for private 

investors associated with this uncertainty can, therefore eliminate business cases 

simply by preventing them from being bankable. 

An instrument to reduce such risks on a market-based approach is subject of research 

article 2: Jäckle et al. (2019) present an approach for the mitigation of risks associated 

with flexibility provision for a private investor. Although promoting a special demand 

flexibility use case, the method can be generalized in order to be also applied for storage 

and supply flexibility. Returns for flexibility commitment from electricity spot markets 

are uncertain and volatile, in addition to operational, technological, contextual, 

measurement and verification risks.  

The idea of this article is the explicit design of Flexibility Performance Contracts 

(FPCs). An FPC issuer, therefore, grants a certain remuneration for the use of the 

flexibility to a flexibility provider, independent of the market results. To issue FPCs 

with appealing incentives for flexibility providers and meanwhile an expectable 

positive business case for the FPC issuer, advanced IS for data collection, processing 

and analyzing are necessary. This reflects in the following sub-chapter, which describes 

the potential of information systems to improve the long-term flexibility incentives. 

III.4 Potentials of energy informatics to improve long-term incentives 
for flexibility 

To conclude chapter III, this sub-chapter summarizes the potentials of information 

systems and ICT in the context of energy informatics.  

On the political layer, IS can contribute towards the finding of effective and socially 

accepted solutions in terms of mitigating climate change. For instance, processing of 

high data amounts is necessary in order to simulate the possible impacts of greenhouse 

gas emissions. IS and ICT can be used to analyze the social acceptance of certain goals 

and measures, as in the study of Tiefenbeck et al. (2019). Derived from the political 

goals, it is necessary to derive and simulate energy transition pathways by the aid of 
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energy system models in order to gain information on the possible relevance of the 

different technology options in the electricity system (Bolwig et al. 2019; Lopion et al. 

2018). Such simulations support decision making by creating transparency and 

reducing uncertainty. Although this has no direct influence on the design or amount of 

flexibility incentives, such decisions significantly influence the flexibility requirements 

in an energy system and thereby indirectly also the corresponding incentives. 

These incentives are determined especially on the market design and regulation layer. 

The organizational structure as part of market design (see sub-chapter III.2) may 

especially be affected by the potential to reorganize the most efficient market structure 

in the sense of the transaction theory described in chapter II. The transaction cost-

decreasing effect of IS and ICT leads by trend to a more decentralized energy system 

with smaller participants, which is in alignment with the increasing role of small 

decentral RES suppliers (Slootweg et al. 2011). ICT enabled technologies like 

blockchain, distributed ledger and smart contracts offer disintermediation, 

transparency and tamper-proof transactions (Andoni et al. 2019). These can act as the 

central enabler to decrease the transaction costs at that amount, which empowers 

consumers and small renewable generators to play a more active role in the energy 

market and monetize their assets (Mylrea and Gourisetti 2017). Nevertheless, to put 

these potentials into practical application, the legal framework needs to keep up with 

the created technological potentials.  

The constructs of complexity and uncertainty from transaction theory also exist as 

challenges for the design of energy legislation. The challenge of legal complexity may 

be faced by increased legal automation, similar to the developments described by 

Pasquale (2019). So-called “Legal-tech” already allows an automated execution of 

certain legal processes, whereas it is questionable if the complex niche domain of 

energy law is attractive enough for legal tech to develop solutions in the next years.  

For the challenge of uncertainty, more mature solutions may already exist: In this 

context, the agent-based simulations as one domain of energy informatics research can 

help to better understand the individual behavior of participants and therefore 

contribute to higher certainty regarding market design and regulation decisions. Kraan 

et al. (2019) give an example of agent-based simulations in energy systems. 

The layer of business models may profit from the created certainty in the long-term, as 

this allows more stable revenue streams as a return for flexibility investments. Still, 
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from the perspective of an individual investor, energy informatics can foster other 

incentive mechanisms as a substitute for long-term certainty. As described in sub-

chapter III.4, IS can support flexibility investments by enabling FPCs. FPC-design 

requires the gathering of many different information sources. Vice versa an effective 

usage of IS can deliver a significant competitive advantage for FPC issuers. The role of 

an FPC issuer is by now already captured by some aggregators, who facilitate 

(especially smaller) consumers’ and market participants’ access to energy and 

flexibility markets (Polgári et al. 2017). Aggregators utilize technical assets of their 

partners (flexibility providers) and focus on processing of information t0 send the 

“right signals at the right time”. In return, they guarantee certain remuneration 

schemes for flexibility provision. Using the notion of transaction cost theory of chapter 

II, the ICT-enabled reduction of asset specificity enables aggregators to pursue their 

information focused business model.  

On the power system layer, simulations can also help in the long-term to determine 

investments in certain assets under uncertainty. Examples are the determination of 

investments in smart distribution networks (Schachter et al. 2016) or the dimensioning 

of energy storage systems (Liu et al. 2018).  
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IV. Short-term incentives for the flexibility commitment in the 
electricity system 

IV.1 Remuneration mechanisms for flexibility commitment  

The long-term decisions on electricity market design determine the number and the 

characteristics of available markets for flexibility. In turn, the revenue potentials from 

short-term flexibility commitment on these markets determine the market-based 

investment incentives for flexibility. This sub-chapter, therefore, gives a brief overview 

of the existing remuneration mechanisms to monetize flexibility.  

Albadi and El-Saadany (2007) as well as Albadi and El-Saadany (2008) provide a well-

recognized categorization scheme for flexibility2. In accordance with the introduced 

categorization in sub-chapter III.2, they distinguish between price-based and 

incentive-based programs, whereas one can subdivide the latter category into:  

- Classical programs (Direct Control, Interruptible Curtailable Programs) 

- Market-based (Demand Bidding, Emergency Flexibility, Capacity Market, 

Ancilliary Services Market) 

In contrast to this, price-based programs reward participants for their performance to 

adapt electricity based on price signals and consist of Time of Use (TOU), Critical Peak 

Pricing (CPP) Extreme Day CPP, Extreme Day Pricing and Real Time Pricing (RTP).  

Despite this well-recognized framework, the assessment of grid flexibility does not 

match into these given categories. Grid flexibility may be evaluated with the prevented 

costs, that a transmission system operator (TSO) or distribution system operator 

(DSO) would have spent for congestion management otherwise (e.g. by reciprocal 

ramping-up and ramping down distant power plants). Congestion management 

regimes highly depend on the prevailing market. A nodal pricing regime, for instance, 

includes congestions into the market price signals. Under a zonal or uniform pricing 

regime, most of the above-described programs imply a “copperplate” and do not 

account for possible grid congestions. To better integrate the grid perspective, local 

flexibility markets are in discussion. Olivella-Rosell et al. (2018) provide an overview 

of ten possible flexibility services for DSOs, balancing responsible parties (BRP) and 

prosumers as flexibility customers in three different possible grid states. As the TSO is 

                                                   
2 841, respectively 1522 citations of the underlying research article in Google Scholar by 05.08.2019 
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not among the flexibility customers in this perspective, opportunities to provide 

balancing power and load curtailment are not in the scope of their research article.  

To integrate both the global and local perspective, figure 4 provides a representation 

of flexibility remuneration schemes for the case of Germany.  

 

Figure 4: Flexibility remuneration potentials for the German case. Source: own representation 

It’s quite remarkable that both perspectives of Albadi and El-Saadany (2007) and 

Olivella-Rosell et al. (2018) et al. presume that participants do not have own access to 

the electricity markets and therefore use an intermediary like the utility, aggregators 

or the BRP, transferring the market incentives with the described programs. 

Intermediaries help to provide access to these markets, as trading volumes of the 

flexibility providers may be insufficient, or as power market product might not match 

the requirements of a flexibility provider. The next sub-chapter will therefore analyze 

possible adjustments of power market products to better match such requirements.  
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IV.2 Improved incentives for flexibility by better matching of power 
market products 

The design of electricity spot markets accounts for the trade-off between planning 

certainty and flexibility by consecutive auction mechanisms. The EPEX Spot for the 

market region Germany/Luxemburg has, for instance, three different types of auctions 

(Day-Ahead, Intraday-Auction and Intraday-Continuous). This allows both planning 

certainty regarding the operations of assets at the following day and flexibility to 

address short-term changes. While Intraday-Auction and Continuous in 

Germany/Luxemburg allow the trading of 15-minutes time steps, other countries still 

rely on one-hour duration as minimum product length (Märkle-Huß et al. 2018).   

Verzijlbergh et al. (2017) propose the reduction of time-steps in Day-Ahead and 

Intraday markets (e.g. to 5 minutes). Märkle-Huß et al. (2018) conclude that 15-minute 

trading can increase power generation from RES and meanwhile decrease electricity 

prices, while it is necessary for future research to find the optimal duration of power 

trading contracts. On this basis, research article 3 analyses the possible degrees of 

freedom in the design of power market products and their impact on different 

stakeholders in the electricity system to prepare for further possible product 

adjustments. Adjustments for power market products are possible regarding the 

strengthening of locational pricing, shorter duration of power trading contracts, 

shorter gate closure times, and smaller minimum trading volumes. The evaluation of 

these adjustments leads to the tradeoff of increased enablement of small and flexible 

participant involvement that may increase market efficiency versus an increase in 

transaction costs. Furthermore, adjusting these parameters inherits interdependencies 

with other dimensions of market design like the congestion management regime for 

the adding of local pricing components or the delimitation between balancing power 

and spot markets for a shortening of gate closure time. The costs for the necessary 

infrastructure to implement these changes will oppose the potential benefits of higher 

market efficiency. Still, the question about the reallocation of gains in market efficiency 

to increase incentives for flexibility providers remains unanswered. Therefore, the 

design of adjusted power market products offers a large potential for further research. 

Besides such product design-related questions, various other parameters influence the 

economic viability of flexibility provision as the next sub-chapter illustrates.  
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IV.3 Influencing factors on provided flexibility in the case of industrial 
demand response 

Flexibility assets need to refinance the initial investments with earnings earned from 

committing the flexibility to the remuneration mechanisms described in sub-chapter 

IV.1. From an economic perspective, an asset owner performs the operational 

commitment of a flexibility option when the expected revenues overweigh the costs for 

flexibility. The difference between both amounts is necessary to generate return-on-

investment and to gain a profit margin. The challenge of committing flexibility is, 

therefore, to overview the complex remuneration mechanisms, while assessing costs 

for providing flexibility, which depend on various influencing factors.   

Costs for supply flexibility of thermal power plants highly depend on the overall 

number of startups and the number of full load hours (Schill et al. 2017). Storage 

flexibility costs may appear e.g. for battery storage systems in terms of a shortened life-

time due to degradation, which largely depends on the battery charging (Pelletier et al. 

2017). In the case of demand flexibility (in the following, this thesis uses the term 

demand response according to the framework of (Palensky and Dietrich 2011), 

fluctuations in electricity consumption delimit the availability of this potential (Müller 

and Möst 2018). The demand response potential can be subdivided in the theoretical 

potential as the absolute maximum demand response potential, the technical potential 

which takes into account technical restrictions, the economic potential to comprise 

only the cost-effective potential and the achievable potential as smallest potential 

subset which also takes into account the acceptance of load interventions (Dranka and 

Ferreira 2019). Industrial processes have a high demand response potential (Paulus 

and Borggrefe 2011). Still, a central constraint restricts the potential: In industrial 

processes, when aiming to be cost-effective which means to avoid opportunity costs for 

lost production, the economic potential depends on the capacity utilization of process 

plants. A 100 percent capacity utilization inherits no flexibility at all (Ausfelder 2018). 

As a result, overcapacities are necessary for industrial demand response for flexibility 

provision at competitive costs. Such overcapacities may stem from seasonal 

fluctuations, declining conjuncture, raised material efficiencies or safety redundancies. 

Although the actual potential provided is – as the smallest subset – directly bounded 

by the achievable potential, the economic potential might be – at least in the highly 

energy intensive processes with adequate transparency – the highest delimiter for the 
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provided DR potential. 

For the case of a paper mill, research article 4 (Schoepf et al. 2018) analyses how the 

demand response depends on the relation of two raw material prices of pulp and 

recovered paper. The article finds that the demand response potential significantly 

depends on the relation of both raw material prices. This underlines the importance of 

considering the relevant internal and external influence factors both in the case of long-

term decisions on the role of certain technologies in the energy system and in the case 

of short-term flexibility commitment, as well as the interdependencies between the two 

perspectives. 

IV.4 Potentials of energy informatics to improve short term incentives 
for flexibility 

The potentials of energy informatics on the business model layer also apply for the 

short-term perspective by terms of redesigning power trading contracts, as research 

article 3 in sub-chapter IV.2 illustrates. The capabilities of automated processing and 

analyzing a large amount of data are the prerequisite for an adjustment of power 

trading towards the shorter duration of power trading contracts, shorter gate closure 

times and smaller minimum trading volumes. Energy informatics shifts the tradeoff 

between increased market efficiency due to a better matching of trading products with 

the technical requirements of the individual participants and increased transaction 

costs due to higher coordination efforts towards a better match of contracts. ICT also 

allows for more efficient contracting by providing the possibility of short-term smart 

contracts (Thomas et al. 2019). Moreover, ICT can improve access to electricity 

markets by providing services on platforms like the “Energy Synchronization Platform” 

(Schott et al. 2018). 

It is also possible to implement platform-based services for the control layer, where 

energy informatics offers opportunities to improve flexibility incentives by maximizing 

the economic profit earned from the commitment of the flexibility option. Facing the 

variety of external and internal influence factors that determine costs and revenue 

potentials of flexibility options, the exploitation of IS and ICT enabled automation 

potentials is imperative for flexibility provision at reasonable transaction costs. By that, 

both IS and ICT play an important role, as information about the relevant parameters 

needs to be gathered, optimized and translated into control signals for the technical 
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flexibility assets. Research article 4 in subchapter IV.3 illustrates the influence of raw 

material prices as external factors on the economic demand response potential in a 

(comparatively simple) real-world case. That case offers high potentials for automated 

control of the production quantities of the electricity-intensive processes in order to 

minimize summed costs of electricity and production in an integrated manner.  

A yet not mentioned but meanwhile crucial issue for the commitment of flexibility is 

the forecasting of electricity feed-in and electricity prices. Energy informatics allows 

the steady improvement of forecasting technologies, based on permanent training of 

models with the steadily increasing data amount. Machine Learning models, therefore, 

improve Day-Ahead electricity price forecasting accuracy and may outperform 

statistical methods (Lago et al. 2018).  

On the infrastructure level, the use of ICT improves the possibilities of controlling grids 

and the technical power infrastructure, which increases the efficiency of grid and asset 

operation and may reduce grid congestions. Lampropoulos et al. (2019) propose an 

ICT-based hierarchical framework to control the flexibilities by a TSO or a DSO. By 

better control of grid and flexible resources, a more efficient commitment of 

flexibilities can be attained (Nainar et al. 2019). Data standardization initiatives like 

generic load and data provision management (GLDPM) aim to improve data 

availability and especially the coordination between the distribution and transmission 

grid level (ENTSO-E 2017; Schönheit and Sikora 2018). Improved coordination 

between TSOs and DSOs can substantially increase welfare of system operators 

(Vicente-Pastor et al. 2018). Energy informatics has the tasks of providing the 

foundations for standardization e.g. by developing generic data models for flexibility 

in an electricity system, as provided e.g. by (Schott et al. 2019). 
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V. Enhancing flexibility for the electricity system by a broader, 
cross-sectoral perspective on energy 

After the challenges of decarbonizing the electricity sector as pioneering sectors have 

been described, still other sectors like traffic and heating need to be considered in the 

transformation due to their high energy demand. The concept of sector coupling 

promotes the purposeful interaction of different grids, as this potentially mitigates 

problems associated with RES feed-in like balancing demand and supply or grid 

congestions.  

Research article 5 addresses this topic by suggesting a broader perspective on the 

energy system, also incorporating the outcomes of energy transformation chains into 

the scope of energy systems and as a possibility to transport energy. Following this 

perspective, not only the primary, secondary and tertiary energy carriers are under 

consideration, but instead also the consumable products, which are the outcome of an 

energy-demanding process. For instance, the road transport of aluminum as an 

electricity-intensive good may be an alternative to power grids for electricity to a 

certain degree. Given sufficient production capacities, the traffic sector may offer 

possibilities to dissolve grid congestions or even to transport energy more efficiently. 

To determine the transportation-loss-minimal pathway for energy transportation 

between geographically distant locations, the research article uses the traffic 

assignment problem from logistics research. Next to the possibility of physical energy 

transportation of energy inherent products, the perspective also includes the 

opportunity of virtual energy transportation by dispatching capacity of data centers or 

by using distributed manufacturing resources for production.  

Implementing this perspective into practice nevertheless requires certain regulatory 

mechanisms and the exploitation of energy informatics’ potential. As no central 

coordinator directs the energy flows in liberalized energy systems, it is necessary to 

implement adequate market mechanisms. The fee structure for the usage of public 

grids must then set the corresponding incentives to promote the usage of grids that are 

most beneficial to an overall system of goals (e.g. reduction of greenhouse gases). The 

role of energy informatics can hereby cover the support of all layers. Examples are the 

development of scenarios and simulations to develop adequate incentives, the 

implementation of efficient contracting in cross-sectoral transactions or the provision 

of sectoral pathway optimization tools.  
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VI. Conclusion 

VI.1 Contribution, Limitations and Outlook 

A significant RES share-increase in the energy system is important for the 

decarbonization of societies that highly depend on energy supply. Therefore, especially 

the electricity system requires flexibility options to compensate the volatile feed-in 

characteristics of RES. Liberalized electricity systems require incentives for private 

market participants to invest in the expansion of technical assets as flexibility options. 

Yet, the incentives for flexibility in many countries are uncertain, too low, or both 

(Alcázar-Ortega et al. 2015; Paterakis et al. 2017). To provide guidance for the design 

of future electricity systems with improved flexibility incentives, a more holistic 

perspective is necessary, which also includes reasons, needs and shaping elements for 

market design change (Ela et al. 2016). This thesis, therefore, analyzed, which potential 

role energy informatics could play in this context.  

Specifically, the aim of this doctoral thesis was to analyze economic incentives for 

investments and for the commitment of the different flexibility options demand 

flexibility, storages, supply flexibility, and grid expansion and how these options are 

potentially influenced by energy informatics. Different research approaches, which 

included mathematic models, simulations, conceptual work and literature, and 

legislative text research were performed in interdisciplinary research teams in order to 

cope with the various interdependencies in the electricity system. The research articles 

had a different level of abstraction but were all related to the topic of flexibility 

incentives. These aspects allow integrating a unique variety of perspectives into one 

doctoral thesis.  

The analysis started with a consideration of the theoretical background on advantages 

of IS and ICT using the transaction cost theory and the introduction of energy 

informatics as a combination of IS and ICT applications for a sustainable energy 

system. Subsequently, the long-term perspective on RES-induced necessities for 

flexibility options were described, as well as applications for IS in energy system 

modeling. This especially included changes in the layer of market design and 

regulation, as well as the derived business model layer. Research article 1 gave an 

overview of the current regulatory framework for flexibility incentives on a European 

and a national level, followed by research article 2 that describes a market-based 
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instrument to mitigate the risks of flexibility investments.  

In the short-term consideration of flexibility, the focus lied on the operational 

improvement of flexibility commitment. Thereby, research article 3 introduces 

potential new products on the spot market. Research article 4 analyzed how external 

factors influence the economic demand response potential. Research articles 5 

finalized by promoting a broader perspective for the consideration of energy sectors in 

the entire energy system. Summarizing the key potentials of energy informatics 

according to the focused layers (policy goals, market design and regulation, business 

model, control), it is possible to emphasize following issues: 

- Energy informatics already plays a major role in the layer of political goal 

setting. Despite not being immediate focus of this thesis, this topic gains 

increasing importance as diverging interests and high uncertainties regarding 

the decarbonization pathway are observable. In order to fill these gaps, scenario 

building with a neutral and transparent assessment of different outcomes 

regarding climate impact, economics, supply security and social acceptance is 

necessary. Energy informatics has the important role of providing realistic data 

and simulation frameworks for this assessment. Therefore, the energy 

informatics framework by Goebel et al. (2014) possibly needs an extension by 

the topic energy system modeling to also account for the strategic implications 

of energy informatics.  

- On the market design layer, IS and ICT (in general) have the potential to change 

the most efficient forms of coordinating transactions from hierarchal 

coordination towards more decentralized and market-based coordination. This 

goes in alignment with the planned shift in the electricity sector from a 

centralized top-down electricity flow towards a decentral bottom-up interaction 

of RES and flexibility options. Presuming this logic of the transaction cost 

theory, a shift towards a more market-based and decentral approach is 

expectable. Nevertheless, other non-market based factors that restrict the 

applicability of the transaction cost theory in this domain influence the energy 

and electricity system as critical infrastructure. 

- Energy informatics enables business models like aggregators who process 

information to facilitate flexibility provision for technical assets. Sometimes 

aggregators also overtake the role of risk mitigation, which requires a thorough 
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risk evaluation and portfolio creation for the aggregator, based on market data. 

To mitigate these risks already in the process of power market trading, energy 

informatics also allows efficient processing of power market products that 

match better the technical characteristics of flexibilities.  

- On the control level, energy informatics can mitigate the negative effects of 

interdependencies and complexity on the efficient commitment of flexibility. 

Automated control and decision support system that integrate the influence of 

external factors are the keys towards an increased provision of flexibility. This 

especially applies to the case of demand response as illustrated in the case of 

research article 4 but also applies for other cases like e.g. electric vehicle 

charging.  

For a valid evaluation of these findings, it is nevertheless necessary to consider the 

associated limitations. The transaction cost theory was the only considered approach 

to analyze the structural change potentials of energy informatics. Although this theory 

already includes some observable phenomena like bounded rationality, a simple lack 

of information cannot explain some societal effects like NIMBYism3. Instead, other 

more recent approaches from behavioral economics like the prospect theory by 

Kahneman and Tversky (1979) may be used to better predict the irrational behavior of 

some participants in the energy system to derive better decisions. Furthermore, there 

is not necessarily a causality between the adoption of IS and ICT and – if even realized 

– a reduction of transaction costs. It is, therefore, necessary to consider the overall 

consequences of IS and ICT adaption instead of only direct effects (Cordella 2006).  

Still, this thesis cannot describe all associated consequences with IS and ICT use in the 

energy system either, as a high amount and variety of interdependencies exists in the 

domain of energy informatics. Therefore, this thesis described some relevant 

interdependencies and arranged them in a framework considering the topic of the role 

of energy informatics for flexibility incentives on different abstraction levels.  

The described interdependencies in this thesis already illustrate the complex interplay 

of ecologic, regulatory, economic and technologic questions. On the technological level, 

a variety of solutions is potentially available, but on the subordinate levels, high 

uncertainty and complexity regarding policy goals and the role of each flexibility option 

                                                   
3 see e.g. Hankinson 2018 for explanation 
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are prevalent in many countries. Energy informatics-enabled decision support is thus 

not just necessary for operational decisions like the commitment of technical flexibility 

assets, but also for the provision of guidance for societal and political goals.  

Moreover, energy informatics has the potential to change existing market structures 

and to allow an efficient interplay of small decentralized and decarbonized RES sources 

and flexibilities in the power markets. To unleash and to manage this potential, I 

promote fostering the sub-discipline of strategic energy informatics combining both 

broad and deepened perspectives from different disciplines in a long-term view to gain 

a big picture of a sustainable energy system. It is not possible to understand the energy 

system as a whole by approaching it from one single research discipline, neither can a 

single person capture its whole complexity. To close the flexibility gap and the 

increasing gaps of political and societal opinions on the energy system, it is therefore 

imperative to close the gap between researchers in different disciplines and to join 

forces for the design of the future energy system. 

VI.2 Acknowledgement of previous work  

I conducted all my research with colleagues at the Finance and Information 

Management (FIM) Research Center and the Project Group Business and Information 

Systems Engineering of the Fraunhofer Institute for Applied Information Technology 

(FIT). Thus, I point out how my research builds on these organizations’ previous work.  

Several research papers in the mentioned organizations examined the general topic of 

flexibility in the energy system. The experience and the knowledge of these authors 

helped to identify research gaps and to create new ideas. The most important research 

articles in this context were the work of Fridgen et al. (2014), Fridgen et al. (2016) and 

Fridgen et al. (2018). Additionally, research article 2 builds upon a research stream 

regarding insurance of energy efficiency investments. In particular, the work by Buhl 

et al. (2018) as well as Töppel and Tränkler (2019) has set the path for this research. 

Finally, the extended perspective on sector coupling as described by research article 5 

grounds in the work of Fridgen et al. (2017b), where data centers provide flexibility. 
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VIII. Appendix A: Extended abstracts of the research articles 

VIII.1 Research article 1: From Energy Legislation to Investment 
Determination: Shaping Future Electricity Markets with Different 
Flexibility Options 

Authors: 

Eva-Maria Ländner, Alexandra Märtz, Michael Schöpf, Martin Weibelzahl 

Published in: Energy Policy  

(VHB-JOURQUAL 3 Category: B; 2018 Impact Factor: 4.88) 

 
Citation:  

Ländner, E. M., Märtz, A., Schöpf, M., & Weibelzahl, M. (2019). From energy 

legislation to investment determination: Shaping future electricity markets with 

different flexibility options. Energy policy, 129, 1100-1110. 

Extended abstract: 

As the share of renewables increases, flexibility options in the power grid will have to 

keep up with this fundamental change in the power supply structure over the next 

decades. In liberalized electricity systems, this includes, securing investments to supply 

the necessary flexibility in future. In the context of flexibility investments in the 

transportation of energy throughout the grid is the crucial backbone in maintaining a 

stable and efficient energy system. However, as it is argued in Steinke et al. (2013) or 

Weibelzahl and Märtz (2018), adequate storage investments may potentially lower the 

need for large-scale grid extensions. Similar arguments also apply for conventional 

power plants built at the required network locations as well as for installed demand-

side management systems, both of which are usable as options for grid stabilization 

with possibly reduced grid investments through a better balance of intermittent 

electricity supply and demand. 

Despite their importance for a successful energy transition, there are still severe 

obstacles that may keep investors from undertaking the needed investments in 

flexibility options. The article identifies five obstacles that prevent possible private 

actors in the electricity system from investing in flexibility options:  

- Market design & congestion management regimes 
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- Interdependent decision making in anticipative markets 

- Emergence & penetration of renewable energy production 

- Market power & imperfect competition 

- Unknown regulatory changes and market outcomes 

These obstacles emphasize the importance of a political legislation framework that 

increases the incentives for investments in flexibility options. Following this 

conclusion, the article provides an analysis of the current regulation for incentives for 

flexibility on the European and the national German level.  

The flexibility option of network investments and network expansion is regulated in 

the Ten-Year Network Development Plan (TYNDP) by the organization ENTSO-E 

(European Network of Transmission System Operators for Electricity), which 

determines the future demand of grid expansion. A sum of about 180 billion euros is 

estimated, to be necessary until 2030, to modernize and expand European grids. This 

plan is pursued by the German TSOs to develop different scenarios for the grid 

expansion under different long-term energy-policy perspectives. 

The flexibility option back-up generating capacities is not explicitly regulated on the 

European level, despite a directive allowing member states to grant state subsidies for 

generation capacities in the case of market failure. The incentives for supply flexibility 

are restricted to investment support for power plants when security of supply is in 

danger, which has its origin in the political decision against capacity market design.  

Storage facility investments are not directly incentivized under European regulation. 

Still, there is a directive that obligates the EU Member States to take the necessary and 

appropriate steps for storage expansion to ensure a stable electricity system. The 

regulatory framework to support investment in flexibility in Germany is inconsistent 

and does currently not give sufficient incentives for a large scale expansion of storage, 

which can also be traced back to the calculation of grid fees and levies for end 

consumers.  

Investments in demand side management are especially promoted via the option of 

increased energy efficiency on the European level. The need for more flexibility and for 

an increase in flexibility potential investment was recognized by a proposal for 

regulation in 2017. On the national level, regulations on necessary energy efficiency 

increase and grid fees are an additional obstacle for the implementation of demand 
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flexibility measures.  

The article finally summarizes the challenges of future energy law with the three 

domains uncertainty regarding future energy goals, energy law distortion towards 

specific flexibility options and law complexity. Ignoring these challenges might lead 

towards a system deadlock where regulatory interventions to grant necessary flexibility 

incentives only lead to an increase of complexity and uncertainty, thereby lead to 

market failure and in turn to decreasing market-based incentives. As a result, policy 

makers need to lower investment uncertainty for private investors, avoid a distortion 

of energy investment law towards specific flexibility options and technologies, and 

reduce the complexity of the current legislation. 
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VIII.2 Research article 2: Risk Mitigation Capability of Flexibility 
Performance Contracts for Demand Response in Electricity 
Systems 

Authors: 

Florian Jäckle, Michael Schöpf, Jannick Töppel, Felix Wagon 

Published in: Proceedings of the 27th European Conference on 

Information Systems (ECIS) 

(VHB-JOURQUAL 3 Category: B; 2018 Impact Factor: -) 
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Proceedings of the 27th European Conference on Information Systems (ECIS), 

Stockholm & Uppsala, Sweden, June 8-14, 2019. 

Extended abstract:  

The transition of the energy system increases the urgency to cope with the 

intermittency of renewable energy sources to keep the electricity network balanced. 

Demand Response (DR) measures are a promising approach to align the electricity 

consumption, especially of industrial consumers, with current electricity supply. 

Although demand response (DR) benefits are widely acknowledged from a practical 

perspective, industrial consumers are still reluctant to participate in DR measures. 

Within electricity systems, flexibility aggregators support industrial consumers in 

utilizing their flexibility potential and in overcoming these barriers. Besides technical 

installation and system maintenance, flexibility aggregators provide expertise in 

assessing and exploiting financial benefits as well as in fulfilling necessary 

requirements, e.g. the prequalification process for participation in DR measures 

(Ikäheimo et al. 2010). As most existing markets for flexibility require certain 

minimum trading volumes, flexibility aggregators help providers of small flexibility 

capacities, by combining individual flexibilities (pooling) and reducing transaction 

costs for all industrial consumers (Ottesen et al. 2018). Additionally, prices on these 

markets are usually exposed to a certain volatility and uncertainty. Therefore, revenues 

from the provision of flexibility are uncertain and represent an economic risk for 

flexibility providers. The decision-makers of industrial consumers are usually risk-
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averse (Gambardella and Pahle, 2018). For this reason, investments in expanding the 

potential for DR provision might be omitted, although being profitable in the long 

term. Flexibility aggregators may mitigate these risks for an industrial consumer acting 

as flexibility provider by assuring guaranteed revenues for DR provision. The flexibility 

aggregator receives a share of the DR measure revenues in return for providing services 

and taking financial risks. Literature usually calls the amount of reduced risks with 

such guarantees by the term risk mitigation capability (Töppel and Tränkler, 2019).  

Nevertheless, studies on risk transfer instruments related to DR investments are still 

scarce. To contribute to the closure of this research gap, we examine the risk transfer 

capability of Flexibility Performance Contracts (FPC). An FPC issuer, therefore, grants 

a certain remuneration to a flexibility provider for the use of the flexibility, 

independent of the market results. Two FPC types are derived in the research article, a 

flexibility performance insurance contract (FPIC) which only activates when flexibility 

remuneration falls below a predefined level and a flexibility savings guarantee (FSG) 

which guarantees a certain level of flexibility remuneration. For the two FPC designs, 

the corresponding cash flow structures were derived. Evaluation is based on Value-at-

risk in order to identify the FPC, which minimized the financial performance risk for a 

risk averse decision maker. For the evaluation, we conduct a simulation-based model 

for an industrial refrigeration system, which provides flexibility through the 

application of a ToU tariff. Forecasted electricity prices are processed within a linear 

programming model to derive the optimal electricity consumption strategy of the 

refrigeration system. Finally, we perform a simulation for the present value of annual 

electricity bill savings. Our results reveal that the implementation of a ToU tariff entails 

high risks as electricity market price developments lead to temporarily or permanently 

increasing electricity prices for the ToU tariff. In some cases, electricity bill savings do 

not materialize at all for the flexibility provider. Hence, the ToU tariff can be even 

unfavorable compared to a conventional constant electricity tariff.  

The results of the performed simulation study finally illustrate, that FPC are-well 

suited instruments to reduce risks associated with flexibility provision, though the risk 

mitigation capability of FPCs is very sensitive to the determination of individual 

contract parameters. Thereby, the FSG is beneficial with respect to the applied risk 

measure and is even superior to the FPIC. Only for very high guaranteed electricity bill 

savings, the preference will be in favor of the FPIC.  
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As the results are very sensitive, the importance of determining contract parameters 

with appropriate risk mitigation increases. Although existing IS already provide the 

technological foundation that enables the efficient execution of DR measures, these 

findings underline the necessity for risk transfer instruments to foster a broad 

implementation of DR measures. To issue FPCs with appealing incentives for flexibility 

providers and meanwhile an expectable positive business case for the FPC issuer, 

advanced IS for data collection, processing and analyzing are necessary. 
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VIII.3 Research article 3: The search for the perfect match: Aligning 
power market products to the energy transition 

 

Authors: 

Gilbert Fridgen, Anne Michaelis, Maximilian Rinck, Michael Schöpf, Martin 

Weibelzahl 

Currently under review 

Citation:  

- 

Extended abstract: 

In the past decades, most countries liberalized their wholesale electricity markets (Graf 

and Wozabal 2013). In contrast to a traditional independent system operator that 

centrally managed and controlled the entire power system as kind of omniscient 

planner in the pre-liberalization era, information asymmetries typically imply that 

liberalized markets can realize an increased efficiency compared to a traditional 

centralized dispatch (Arentsen and Künneke 1996). To tackle this general problem of 

information asymmetry, markets set explicit monetary incentives in form of market 

prices to disclose such relevant private information on the available flexibility options 

using corresponding bids. Given the general existence of information asymmetries, the 

current development of renewables significantly increases the need for appropriate 

market structures to incentivize market participants to disclose their individual and 

asset-specific information. In particular, due to the highly fluctuating generation of 

renewables, flexibility gained growing importance (Kubli et al. 2018). To address the 

growing flexibility gap associated with the increasing share of renewables and the 

planned phase-out of conventional power plants like nuclear or coal, the length and 

gate closure time of intraday market products were already shortened in many 

countries over the past years. Notwithstanding these attempts on intraday markets to 

better balance demand and fluctuating supply, the current product design still bases 

on average power volumes that are contracted by the market participants. Thus, in 

contrast to self-designable products that are traded over-the-counter, products 

merchandised on the power exchange cannot be defined individually by the market 

participants and are instead specified by the power exchange operator itself. The 



63 

trading of such standardized products typically ensured low transaction costs as well 

as a corresponding power-consumption measurement and billing in an easy-to-

implement fashion in the past. 

On a grid level, renewables are inherently characterized by specific power profiles like 

solar ramps whose concrete shape depends on unknown weather conditions (Goutte 

and Vassilopoulos 2019). These new power profiles result in rapid changes of residual 

load, which occur increasingly in the morning and evening hours. As power market 

trade is still often organized on an hourly basis, corresponding challenges for grid 

operation due to frequency fluctuations occur daily and typically during hour changes 

(Weissbach and Welfonder 2009). Especially during changes of the hour, there are 

large imbalances between the contracted average power and the actual power profile. 

The reason for such frequency deviations may lie – at least to some degree –in the 

described product design, which bases on average power volumes.  

To ensure an economically efficient and stable future power system in times of an 

increased feed-in of renewable energies and an associated growing flexibility demand, 

adjustments to the existing power trading system will be necessary. Therefore, this 

paper elaborates in the first step on four different evolutionary adjustments of existing 

power market products at the power exchange. In particular, the focus of the described 

adjustments lies on various parameters that determine current power market products 

and corresponding trading. These parameters include (1) local pricing, (2) temporal 

granularity, (3) gate closure times, and (4) minimum volumes. Enabled by substantial 

advances in technologies for data collection and processing, in a second step we also 

highlight the need to change the current perspective of power trade and to bring trade 

much closer to the possible operating modes of power plants, including their 

underlying flexibility potentials.  

We discuss a shift in power trade with market participants that are able to define 

products in form of individualized power profiles. In order to trade such individual 

power profiles, it will be necessary to include the actual profile of power consumption 

or feed-in as a new parameter in the design and pricing of power products. Such a shift 

in electricity trading will require a change in current matching procedures on intraday 

markets towards so-called cross-matching, i.e., the matching of multiple orders instead 

of current bilateral intraday trade and the introduction of power as a new product 

parameter. To be able to implement profile trading, it will be necessary to measure the 



64 

actual quantity of power with a finer temporal granular resolution within the 

imbalance settlement period, for example by using smart meters.  

The proposed new perspective on power trade opens up a number of technical, legal 

and economic questions that research and policy must address in the future. Overall, 

an important policy task will lie in the determination of the right balance between 

arising system transformation costs and the expected benefits of the new system by 

taking effects on the different stakeholders into account. 
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Technologies on the Economic Demand Response Potential in 
Industrial Processes 

 

Authors: 
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Citation:  
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Extended abstract: 

The industrial sector offers extensive research opportunities for demand response, as 

it is the most electricity-intensive sector in many countries., still, a large share of the 

demand response potential in industrial processes is still unexploited (Alcázar-Ortega 

et al. 2015) and (Müller and Möst 2018). One important barrier to a further 

exploitation of the demand response potential in the industrial sector concerns the fact 

that the monetary rewards for a demand response provision can often not compensate 

for the increased production costs associated with the respective flexibility supply, 

which will typically involve additional risks for the industrial enterprise. Therefore, 

existing research distinguishes between the theoretical, technical, economic, and 

practical demand response potential (Gils 2014) and (Grein and Pehnt 2012). Focusing 

on the economic potential, the authors of (Paulus et al. 2011) and (Grein and Pehnt 

2012) indeed find the highest potential in large-scale and energy-intensive industrial 

processes. However, the economic potential of those processes always depends on the 

respective production utilization of the process or technology (Müller and Möst 2018). 

Obviously, if a process has a utilization of 100 percent, the remuneration for demand–

response provision must exceed the opportunity costs for lost production in order to 

allow for an economically reasonable supply of demand response from the enterprises’ 

point of view. Accordingly, the economic potential of demand response increases with 

sinking capacity utilization. 
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Therefore, we argue that a more comprehensive analysis of high energy-intensive 

production processes is necessary to understand their economic demand response 

potential better. We consider an industrial production process with substituting 

technologies that differ in their required input factors. For such a production setting, 

we provide a generic, linear optimization model, where under certain input-price 

combinations a given production technology may possibly be substituted by another 

technology in the derived optimal production schedule. For an analysis of the effects 

of a substitution of production technologies in the paper industry, we collected real-

world data for a production site of a large, international paper producer. We consider 

two production stages with a special focus on the production of pulp in the first stage, 

which involves the technologies TMP and DIP. The aggregated production capacity of 

the two technologies TMP and DIP amounts to around 112 percent of the given final 

demand implying that there are indeed production overcapacities in the system. While 

electricity is used as an input factor for both technologies, we only take the input 

materials wood chips for TMP and recovered paper for DIP into account. We consider 

26,304 time periods that correspond to the different hours of the past three years. 

Electricity prices vary between time periods according to real-world data, where we use 

fluctuating day-ahead spot prices (historical time series of prices for the 

German/Austrian EPEX Spot Market from 6 January 2015 to 5 January 2018 are 

used). The prices for the input materials wood chips and recovered paper are assumed 

to be constant over the time horizon and only vary between different simulation 

scenarios.  

The described results illustrate, that the economic demand response potential 

significantly depends on the absolute level of input-material prices as well as on their 

relative relation between each other. In fact, industrial enterprises must account for 

such influencing factors including all relevant input parameter constellations in their 

decision-making processes. This applies both on the operational (e.g., production 

planning based on input prices) as well on the strategic level (e.g., planning of 

investments in processing-capacity) in order to react to current energy-market 

developments. Ultimately, it is therefore necessary to adjust and extend current 

decision-support systems of industrial enterprises to maximize the realized, economic 

demand response potential on a micro-economic level. For industrial enterprises, 

these findings have implications in the short- as well as in the long-run. While 
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operational short-run decisions of industrial enterprises regarding an efficient supply 

of demand flexibility may highly be driven by price fluctuations of input materials, 

long-run investments in flexibility options may be affected by expected price 

developments and fluctuations of main input factors in the future. The latter long-run 

consideration of the demand response potential is not only relevant for individual 

enterprises, but also for decisions on a macroeconomic and policy level. As the future 

power system with a steadily growing penetration of renewables requires additional 

flexibility, information on the availability of the demand response potential as well as 

on its main influencing factors is crucial. Research on demand response should 

therefore account for the relevant scenarios with respect to input factor price 

developments in order to make valid projections about the available demand response 

potential in the future. 

 

References:  

Alcázar-Ortega, Manuel; Calpe, Carmen, Theisen, Thomas; Carbonell-Carretero, 

José. F. (2015): Methodology for the identification, evaluation and prioritization of 

market handicaps which prevent the implementation of Demand Response: 

Application to European electricity markets. In Energy Policy 86, pp. 529–543. 

Gils, Hans Christian (2014): Assessment of the theoretical demand response potential 

in Europe. In Energy 67, pp. 1–18. 

Grein, Arne; Pehnt, Martin (2011): Load management for refrigeration systems: 

Potentials and barriers. In Energy Policy 39(9), pp. 5598–5608. 

Müller, Theresa, and Dominik Möst (2018): Demand response potential: available 

when needed? Energy Policy 115 pp. 181–198. 

Paulus, Moritz, and Frieder Borggrefe (2011): The potential of demand-side 

management in energy-intensive industries for electricity markets in 

Germany." Applied Energy 88(2), pp. 432–441. 

 
 
 
 
  



68 

VIII.5 Research article 5: Don’t lose sight of the big picture: A holistic 
view on sector coupling 

 

Authors: 
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Citation:  
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Extended abstract: 

Sector coupling (SC) describes the concept of a purposeful connection and interaction 

of energy sectors to increase the flexibility of supply, demand and storing. While it 

currently focusses on counteracting the challenge of temporal energy balancing 

induced by the volatile feed-in of renewable energy sources, research considers SC as 

one of the most promising concepts to succeed the energy transition. 

The currently prevailing understanding of SC, however, focusses on counteracting 

temporal RES challenges (Robinius et al. 2017), while it does not encompass the 

dimension of spatial energy balancing. We, therefore, reflect that the current 

understanding of SC – which we hereinafter refer to as inter-sectoral energy flow – 

should only be considered as a subpart of SC. In contrast, most approaches that 

consider spatial energy transportation (Lund and Kempton 2008; Brown et al. 2018) 

reflect one sector only (hereinafter referred to as intra-sectoral energy flow) (Lund et 

al. 2017; Mancarella 2014). 

Moreover, since prevailing research on SC considers separate approaches consisting of 

inter-sectoral couplings, it does not examine the requirements and challenges induced 

by an efficient coordination of several sectors, grids and energy flows. Applying a 

holistic view – including cross-sectoral coupling for spatial energy transportation – 

consequently lead to the reflection of all grids that transport energy in any form. We 

broaden the scope of the current perception of energy carriers and energy grids by 

including energy that is bound by its conversion to the consumer for its respective use: 

The power-to-product concept provides the idea of a purposeful usage of physical 

products as means of energy storage (Schumm et al. 2018; Khripko et al. 2017). 
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Extending this idea further to non-physical products (like digital commodities), we also 

reflect communication grids to be part of SC for the virtual transportation of energy 

(Fridgen et al. 2017a). Therefore, we introduce a holistic view on sector coupling, which 

incorporates cross-sectoral energy flows, i.e. the coupling of several sectors, thereby 

merging intra- and inter-sectoral energy flows.  

This view provides an opportunity to establish new methods for minimizing losses or 

costs of spatial energy transportation by cross-sectoral energy flows, thereby leading 

to an enhanced definition of SC. For modelling energy flows in a holistic view on SC, 

we adopt the traffic assignment problem (TAP) that research on logistics and routing 

optimization widely uses to calculate the most efficient allocation of (spatial) traffic 

flows (Sheffi 1985). By using different loss structures, we illustrate how a holistic view 

on SC minimizes transportation losses.  

We demonstrate two scenarios to illustrate possible cross-sectoral energy flows. 

Scenario 1 encompasses the coupling of an electricity grid with a transportation grid. 

Scenario 2 encompasses the coupling of an electricity grid with a communication grid. 

Based on this model, we derive the implications that SC can minimize losses of a spatial 

energy transportation by reflecting cross-sectoral energy flows, SC should include all 

grids that transport energy in any form and that SC can reduce the planning of 

infrastructural excess capacities.  

Still, to allow these potential to be realized, policy makers need to shape incentivizing 

market mechanisms and – where necessary – according to the desired goals of the 

energy system. A further challenge arises from the fact, that national borders do not 

stop energy flows. As there are different goals in the energy systems and different 

degrees of competition allowed, it is currently not feasible to build a consistent 

framework of incentives on a transnational level. Facing increasing efforts on climate 

change mitigation, also an increasing harmonization of energy policy and an 

international view on cross-sectoral energy flows is necessary. 
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