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1.1. Food emulsions 

Many products from the food, pharmaceutical, cosmetic, agrochemical, and various other 

fields are dispersions of immiscible liquids, typically oil and water, i.e., are emulsions. 

Emulsions can be either naturally present as in raw milk, but they are often purposely 

manufactured from different components as done for skin creams, paints, salad dressings 

and many more food products (Figure 1.1.). In such food products, water droplets can be 

present in a continuous oil phase (water-in-oil (W/O) emulsions) e.g., margarine, but in most 

cases oil droplets are present in a continuous aqueous phase (oil-in-water (O/W) emulsions) 

e.g., milk and mayonnaise.  

 

Figure 1.1. Examples of food emulsion products: (from left to right) margarine, milk and 
salad dressing.  

1.1.1. Emulsion stability 

Emulsions may be subjected to destabilization, both from a physical or from a chemical 

perspective (Figure 1.2. and elaborated in the respective sections), of which the latter is 

especially relevant for emulsions that contain polyunsaturated fatty acids (PUFAs).  

1.1.1.1. Physical stability  

Emulsions are, in essence, thermodynamically unstable systems due to the molecular 

incompatibility between oil and water. Phase separation in emulsions is driven by the free 

energy of the system (ΔG, J) defined as (Equation 1.1.): 

Δ𝐺 = 𝛾Δ𝐴                                             (Eq. 1.1.) 

where γ is the interfacial tension (N m-1) between oil and water, and ΔA is the total 

interfacial area (m²) in the system (McClements, 2005). The system strives to minimize its 

free energy, and this can be achieved by either a reduction in interfacial area ultimately 

leading to phase separation to minimize the contact area, or by a reduction in interfacial 

tension. 
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The average droplet size in food emulsions generally varies from ~100 nm to 100 µm, 

resulting in an interfacial area of up to several m² per gram of dispersed material (Berton-

Carabin, Sagis, & Schroën, 2018), and typical interfacial tensions between commercial 

vegetable oils and water of ~20 mN m-1 (Coupland, 2015), resulting in a driving force for 

phase separation which can thus be great. 

Furthermore, due to the density difference between both phases, there is a driving force 

for droplet creaming or sedimentation. Such a gravitational separation of droplets from the 

continuous phase is governed by different parameters that are captured in the Stokes 

equation (Equation 1.2.), which applies to dilute emulsions.  

𝑣 =  
2 (𝜌𝑑− 𝜌𝑐) 𝑔 𝑟2

9 𝜂
                                                       (Eq. 1.2.) 

where v is the velocity (m s-1) at which the droplets cream or sediment, ρd and ρc are the 

densities (kg m-3) of the dispersed and continuous phase, respectively, g is the gravitational 

acceleration (m s-2), r is the radius of the droplet (m) and η is the viscosity of the continuous 

phase (kg m-1 s-1). From this equation it is clear that the size of the droplets is of great 

importance for ensuring emulsions with sufficient physically stability. An increase in 

viscosity of the continuous phase can be achieved using thickeners such as xanthan gum 

and alginates (Tadros, 2009). In turn, this also slows down physical destabilization 

mechanisms such as droplet flocculation and coalescence (McClements, 2005), of which the 

latter is irreversible, and ultimately leads to complete demixing (oiling off). 

Emulsifiers are generally used to provide kinetic stability, that is, to slow down 

thermodynamically favorable phase separation. They decrease the interfacial tension 

between oil and water, which favors droplet breakup during emulsification, decreases the 

total free energy of the system, and prevents flocculation and coalescence via steric and/or 

electrostatic repulsion between droplets. Conventional food emulsifiers include low 

molecular weight components, generally called surfactants, and amphiphilic biopolymers, 

which are mostly proteins. Low molecular weight components are small surface-active 

molecules constituted of a lipophilic tail and a hydrophilic head group, which can be very 

efficient in emulsion stabilization (Berton-Carabin, Ropers, & Genot, 2014). Their position is 

not fixed to the interface due to their small size; they have lateral mobility at the interface, 

and can even leave it by exchanging with components present in the bulk. A number of 

food-grade surfactants are synthetic molecules, and therefore they can be expensive, do 

not comply with the clean-label trend, and sometimes give undesirable taste (Birch & 
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Ogunmoyela, 1980; Dickinson, 1993). Biopolymers such as proteins are amphiphilic because 

they have lipophilic and hydrophilic domains distributed along their chain, which leads to 

conformational changes after adsorption. They form thicker layers, which generally give 

more steric repulsion between droplets, compared to surfactants, although surfactants with 

large head groups, such as polysorbates, also give steric repulsion. Dairy proteins are widely 

used for this purpose, and some of them have also shown to form covalent intermolecular 

bonds, resulting in a strong viscoelastic network at the interface.  

Currently, plant proteins also attract a lot of attention as more sustainable alternatives for 

dairy-based components. They are generally rather cheap, abundantly available, and 

already well studied in some cases such as soy proteins. The big question is, however, 

whether they can also be used to make physically stable emulsions. The general tendency 

is that this question should be answered in a negative way. 

From the above it is clear that emulsions stabilized with traditional emulsifiers can be 

subject to various instability phenomena, and may be criticized because of the use of 

components that do not comply with clean-label strategies. This shows that alternative 

approaches are relevant for food applications. 

1.1.1.2. Oxidative stability  

Although the use of oils and fats containing PUFAs has beneficial health effects in relation 

to, amongst others, cardiovascular diseases, their use makes food emulsions prone to 

chemical destabilization during processing, storage and end-use. This is due to oxidative 

reactions, of which lipid oxidation leads to the formation of a broad range of compounds 

that have noticeable rancid off-flavors at low detection thresholds, and to the degradation 

of compounds of nutritional interest (e.g., vitamins and the PUFAs themselves). Besides, 

potentially toxic compounds can be formed (El-beltagi & Mohamed, 2013).  

The lipid oxidation reaction has been investigated for decades and three stages are 

distinguished: initiation, propagation and termination (Schaich, 2005). Initiation consists of 

the abstraction of a hydrogen atom from an unsaturated fatty acid, resulting in alkyl radical 

formation (Figure 1.2.). During the propagation stage, the alkyl radical rapidly reacts with 

triplet oxygen, forming a peroxyl radical. This peroxyl radical is unstable, and can abstract a 

hydrogen atom from another unsaturated fatty acid, leading to the formation of a 

hydroperoxide, and of a new alkyl radical (i.e., propagating the reaction). In the termination 
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stage, radicals may recombine into non-radical compounds, and concomitantly, 

hydroperoxides may undergo decomposition into a broad range of compounds that are 

mostly responsible for off-flavors (Falkeborg, Berton-Carabin, & Cheong, 2016).  

It is commonly assumed that lipid oxidation in emulsions is controlled, at least partly, by the 

chemical composition and structural organization of the oil-water interface (Berton-

Carabin, Ropers, & Genot, 2014). In fact, lipid oxidation is presumably initiated at the 

interface, the region where unsaturated lipids come into close contact with aqueous phase 

pro-oxidants (e.g., metal ions and reactive oxygen species).  

Figure 1.2. Schematic representation of the main physical and chemical destabilization (lipid 
oxidation) mechanisms in O/W emulsions: LH = unsaturated fatty acid, L• = alkyl radical, 
LOO• = peroxyl radical and LOOH = hydroperoxide. 



General introduction 

12 
 

Several characteristics of the oil-water interface have been described to influence lipid 

oxidation, such as the emulsifier itself and its electrostatic charge, which depends on the 

properties of the aqueous phase (pH, ionic strength). A negatively charged interface may 

attract positively charged pro-oxidant metal ions resulting in relatively fast oxidation, 

whereas a negatively charged interface is hypothesized to repel them (Mancuso, 

McClements, & Decker, 1999). This relation has been suggested for low molecular weight 

surfactants, but failed to be generalized to protein-covered interfaces that may differ in 

their metal chelating and free radical scavenging properties (Berton, Ropers, Bertrand, Viau, 

& Genot, 2012), and thus antioxidant properties. Additionally, lipid oxidation products (e.g., 

hydroperoxides) are more surface-active than the triglycerides they originate from 

(Abousalham, Fotiadu, Buono, & Verger, 2000; Nuchi, Hernandez, McClements, & Decker, 

2002) and accumulate at the oil-water interface, where they may further decompose.  

Although, in general, it is assumed that the thickness, density, and structural homogeneity 

of the interface influence lipid oxidation, results from literature are contradictory, which 

hampers establishing a concise emulsion formulation strategy that does not require the use 

of synthetic antioxidants. In the food industry large amounts of these components, e.g., 

butylated hydroxytoluene, a free radical scavenger (BHA, E320), and 

ethylenediaminetetraacetic acid (EDTA, E385), a metal chelator (McClements & Decker, 

2000) are used to keep products chemically stable. The latter is known to be very efficient 

in products such as mayonnaises, that contain phosvitin from egg and associated iron 

(Samaraweera, Zhang, Lee, & Ahn, 2011). Alternatively, natural antioxidants such as 

tocopherols and rosemary extracts have also been considered, but they are unfortunately 

not optimally effective because they preferentially locate in the bulk oil or water phases 

due to their chemical nature, but not at the oil-water interface where lipid oxidation is 

initiated.  

It is known that the efficiency of natural antioxidants can be enhanced by tuning their 

hydrophobicity such that they have affinity for the interface (Laguerre et al., 2013; Laguerre 

et al., 2015; Lomova, Sukhorukov, & Antipina, 2010; Yuji et al., 2007). This has been 

confirmed by Laguerre et al. (2010) who chemically modified hydrophilic phenolic 

antioxidants through lipophilization, and found that antioxidant efficiency increased with 

the length of the alkyl chain grafted, until an optimum beyond which further increase led to 

a collapse in antioxidant efficiency (Laguerre et al., 2013, 2010). This non-monotonic 
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dependency, referred to as the cut-off effect, is associated with the propensity of medium 

chain-grafted molecules to position at the oil-water interface (Laguerre et al., 2009, 2011). 

Large scale implementation of these so-called phenolipids is, however, hampered by their 

cost, and the fact that they are no longer natural molecules (Ghorbani Gorji, Smyth, Sharma, 

& Fitzgerald, 2016).  

From a chemical point of view it is clear that alternative strategies to increase natural 

antioxidant efficiency in food systems are very relevant, and as mentioned previously, this 

would also be the case for improvement of physical stability. In this thesis, we explore food 

emulsions with a new and controlled microstructure, using particles that either have or 

allow incorporation of natural antioxidants, and that thus nest in the interface to achieve 

high physical stability, and may also influence oxidative stability.  

1.2. Pickering emulsions 

In recent years, interest has been on the rise regarding the use of particles as emulsifiers in 

food products (Berton-Carabin & Schroën, 2015). These so-called Pickering particles are 

known to provide high stability against coalescence as compared to conventional 

surfactant- or protein-stabilized emulsions; however, putting these particles in an interface, 

making particles with the right properties, and in sufficient quantities is far from trivial.  

1.2.1. Physical stability aspects 

Particle-stabilized emulsions have already been known since the beginning of the twentieth 

century (Pickering, 1907; Ramsden, 1903). They have also been unintentionally used in food 

products such as mayonnaise and margarine, in which mustard seeds and fat crystals act as 

Pickering particles (Fox, 1983), but mostly they remained unexplored for a long time 

(Rayner, Timgren, Sjöö, & Dejmek, 2012). In the last decade, attention for Pickering 

stabilization has peaked due to the potentiality to make emulsions with high physical 

stability (Berton-Carabin & Schroën, 2015) and the high demand for clean-label products 

(Linke & Drusch, 2018).  

The mechanism through which solid particles stabilize emulsions is fundamentally different 

compared to conventional emulsifiers; their tendency to adhere at interfaces can be 

understood from the perspective of wetting, rather than amphiphilicity (Finkle, Draper, & 

Hildebrand, 1923); the energy involved is related to the size of the particle, the interfacial 

tension of oil-water interface, and the contact angle of the particle at the interface, which 
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determines the position of the particle at the interface (Figure 1.3). For spherical particles, 

the desorption energy (Ga, J) is expressed by Equation 1.3:  

Δ𝐺𝑎 =  𝜋𝑟2𝛾𝑜𝑤 (1 − cos 𝜃)2                    (Eq. 1.3.) 

with r the particle radius (m), γow the oil‐water interfacial tension (N m-1), and 𝜃 the contact 

angle. The adsorption energy of the particle at the interface may exceed the thermal energy 

(indicated by the dashed line) by orders of magnitude, ensuring their irreversible anchoring 

(Figure 1.4.).  

Other particle attributes that influence Pickering stabilization include particle shape, surface 

charge and inter-particle interactions (Binks, 2002; Tcholakova, Denkov, & Lips, 2008b). 

Substantial work has been performed on model systems (i.e., with silica particles), and it 

was often necessary to chemically modify the particle surface to ensure good anchoring at 

the interface. In principle, from these investigations, guidelines for the design of food 

Pickering emulsion may be derived.  

To make acceptable food Pickering emulsions, it is key to find food-grade particles with the 

right size and contact angle, that can be produced at large scale; and ideally, without 

chemical modification. Most of the food-related particles that have been suggested for 

Pickering stabilization of O/W emulsions are protein- or carbohydrate-based, e.g., protein 

aggregates and hydrophobized starch granules, that often are produced via solvent-induced 

precipitation or heating (Tan et al., 2014), and derivatization with octenyl succinic anhydride 

(Timgren, Rayner, Dejmek, & Marku, 2013), respectively, and therefore do not comply with 

the requirements pointed out earlier.  

In this thesis, we first chose to explore lipid-based particles for the Pickering stabilization of 

O/W emulsions. Such particles have already been recognized as stabilizers for W/O 

emulsions, due to their intrinsic hydrophobic nature (Rousseau, 2013). To make lipid-based 

particles effective for Pickering stabilization of O/W emulsions, surface-active hydrophilic 

molecules such as proteins or surfactants have been used in the present work. We first built 

particles via a bottom-up approach to have high control over their composition and 

properties, and generate a proof of concept for their efficacy as physical stabilizers. 

Furthermore, we have used natural plant-based particles, using existing structures that only 

require size reduction, thereby obtained through a top-down approach. 
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Figure 1.3. Single colloidal solid particle at the oil-water interface with its positioning 
determined by its three-phase contact angle.  

 

Figure 1.4. Plot illustrating the desorption energy of a single colloidal solid particle at the oil-
water interface with a three-phase contact angle of 10°, 50° or 90° as function of particle 
radius, for oil‐water interfacial tensions of 20 and 40 mN m-1. The dashed line represents 
thermal energy at 298 K (1 kBT). Source: Berton‐Carabin & Schroën (2015). 

1.2.2. Oxidative stability aspects  

Lipid oxidation in emulsions stabilized by Pickering particles has so far only been discussed 

in a few papers (Kargar, Fayazmanesh, Alavi, Spyropoulos, & Norton, 2012; Kargar, 

Spyropoulos, & Norton, 2011; Pan, Tikekar, Wang, Avena-Bustillos, & Nitin, 2015; Xiao, Li, 

& Huang, 2015; Zeng et al., 2017). It has been reported that the amount of primary lipid 

oxidation products (i.e., hydroperoxides) in emulsions stabilized by silica particles was lower 

compared to Tween 20‐stabilized emulsions, but higher compared to sodium caseinate‐

stabilized emulsions (Kargar et al., 2011b). Whether this protective effect of silica particles 

was a physical effect only, i.e., by decreasing the interface permeability to aqueous phase 

kBT (298 K) 
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pro-oxidants, is questionable (Zhao, Elias, & Coupland, 2015) given the size of these 

particles, and therefore the interfacial gaps existing between them.  

1.3. Problem definition and research aim 

In food emulsion formulation, the amount of PUFAs has increased over the past decades, 

which leads to products that are prone to lipid oxidation. Currently, mostly synthetic 

antioxidants are used to mitigate this issue, but they are becoming more and more a topic 

of hot debate amongst consumers, and therefore industry has been pushed to minimize 

their use (Berton-Carabin & Schroën, 2019). From what is described earlier, we hypothesize 

that Pickering particles could lead to an increase in both the physical and oxidative stability 

of emulsions. Finding appropriate and efficient strategies to make food emulsions with such 

a dual stability is the core of this thesis. We consider particles that contain antioxidants that 

are naturally present, or to which antioxidants are added on purpose, and that 

simultaneously enhance physical stability of the emulsion (Figure 1.5.).  

Figure 1.5. Left: Conventional protein-stabilized emulsion with antioxidants either in the bulk 
oil or water phase. Right: Proposed Pickering emulsion system with active food-grade 
particles adsorbed at the oil-water interface where they boost antioxidant efficiency.  

1.4. Outline of the thesis 

Chapter 2 provides detailed information about Pickering emulsions in general, and their 

possible use in food applications, including the delivery of food bioactive compounds. This 

chapter also highlights relevant regulations regarding health and safety. In Chapter 3, we 

introduce a new type of lipid-based particles, referred to as colloidal lipid particles (CLPs), 

which we use as Pickering stabilizers. We investigate how the solid–liquid fat ratio affects 
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particle nanostructure and morphology, and their stabilization performance. Chapter 4 

revolves around the coalescence stability of CLP-stabilized emulsions, investigated using a 

microfluidic coalescence chamber, highlighting the effect of the particle coverage at the 

droplet surface. Lipid oxidation in these CLP-stabilized emulsions is investigated in Chapter 

5, and compared with that of emulsions stabilized with conventional emulsifiers. In Chapter 

6, we investigate the use of CLPs as a reservoir for -tocopherol, a model lipophilic 

antioxidant, and focus on the morphology and crystalline structure of CLPs in relation to the 

chemical stability of -tocopherol. In Chapter 7 we use -tocopherol-containing CLPs as 

Pickering stabilizers for O/W emulsions and compare their oxidative stability with that of an 

emulsion with the exact same structure, but with -tocopherol in the core of the oil 

droplets. This leads to a proof of principle: the two main instability issues (i.e., physical and 

chemical) in emulsions can be mitigated through one single approach. Chapter 8 focusses 

on the physical and chemical stability of emulsions stabilized by antioxidant-containing 

Pickering particles from several natural sources that were produced via a top-down 

approach. With this, we show that our proof of principle can be extended to natural 

materials with intrinsic antioxidant properties. A general discussion of the results of this 

thesis is presented in Chapter 9, in which we propose strategies that can be used to make 

food emulsions both physically and oxidatively stable. We also put our findings into a wider 

perspective, with links to prospective industrial applications.  
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Summary 

Pickering emulsions are liquid dispersions that are physically stabilized by colloidal solid 

particles. The surface of suitable particles should be partially wetted by both oil and water, 

and the relative affinity of the particles for both liquids determines whether an oil‐in‐water 

(o/w) or water‐in‐oil (w/o) emulsion is formed. Even though most of the research on 

Pickering emulsions has been conducted on model, non‐food systems, the interest in food-

grade Pickering emulsions has increased sconsiderably, i.e. for the delivery of bioactive 

components in foods. This chapter first explains the mechanisms through which particles 

physically stabilize o/w emulsions. Then, the composition of food-grade systems that have 

proved suitable for Pickering stabilization is discussed. The feasibility of using Pickering 

emulsions for delivery of food active compounds is also reviewed, including the behavior of 

these systems during in vitro and in vivo digestion. Finally, the regulations for health and 

safety regarding the use of submicron particles in foods are discussed, as this could be a key 

factor in the development of Pickering emulsions for real food applications.  
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2.1. Introduction 

At the beginning of the twentieth century, Ramsden and Pickering independently 

discovered that particles could be used as efficient interface stabilizers (Pickering, 1907; 

Ramsden, 1903). Ramsden’s work focused on the adsorption of organic soft solid particles 

called “proteids” (e.g., albumin) at air-water interfaces (Chevalier and Bolzinger, 2013). 

Despite the absence of experimental proof, Ramsden claimed that solid particles were able 

to adsorb at the oil-water interface (Ramsden, 1903), which was confirmed 4 years later by 

Pickering who published a paper on the formation of paraffin oil-in-water (o/w) emulsions 

stabilized by interfacial adsorbed solid particles (Pickering, 1907). Although Pickering 

acknowledged Ramsden’s work, the term “Pickering particle” is now commonly used for 

colloidal solid particles that have the ability to physically stabilize emulsions, termed 

Pickering emulsions. 

Interestingly, it was later recognized that Pickering stabilization was part of earlier patents 

by William Haynes (Haynes, 1860) and the Bessel brothers (Bessel, 1877), with the latter 

patent illustrating the adsorption of graphite flakes to bubbles (Hubbard, 2004). In 

Pickering’s time, it was immediately evident that particle stabilization had advantages 

(specifically in terms of stability) compared to surfactant stabilization. Despite this, 

Pickering emulsions remained relatively unexplored in research, while particle stabilization 

has been used unintentionally in food products such as mayonnaise, table spreads, and 

whipped cream (Douaire et al., 2014a). Only in the last two decades has research attention 

to Pickering stabilization increased, for example, in the fields of soft matter and physics 

targeting assembly of colloidal particles into supracolloidal structures (e.g., colloidosomes) 

(Dinsmore et al., 2002). 

Most of the research on Pickering emulsions has been conducted on model systems, based 

on synthetic, inorganic materials, yet the generated knowledge indicates many potential 

applications for food, cosmetics, and pharmaceuticals. Food-grade particles are currently 

gaining interest, as evidenced by the growing number of related scientific publications in 

the last few years (Berton-Carabin and Schroën, 2015). Improving the physical stability of 

emulsions is the primary target in Pickering emulsion research. Additionally, enhanced 

functionality (e.g., novel texture, targeted delivery in the gastrointestinal tract) and 

improved chemical stability have been mentioned (Berton-Carabin and Schroën, 2015). 

Moreover, having a surfactant-free label, Pickering emulsions may be an attractive 
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alternative for cosmetic and pharmaceutical applications where surfactants often show 

adverse effects (e.g., irritancy and hemolytic action) (Chevalier and Bolzinger, 2013). 

Particles can be used for stabilizing both o/w and w/o emulsions, irrespective of droplet 

size, as long as the particle surface can be partially wetted by both liquids (Finkle et al., 

1923). Other important particle characteristics include size (from a few nanometers up to 

several micrometers), shape (e.g., spherical, rod or disk), and surface charge (Pawlik and 

Norton, 2014), all of which will be discussed in this chapter. Besides, it is challenging to find 

biobased, food-grade particles with good emulsifying properties. Thus, it is often necessary 

to fine-tune surface chemistry to ensure good anchoring at the interface, but this is difficult 

due to limited food-compatible options (Monteillet, 2015) or processing conditions (e.g., 

emulsification) that may be too harsh to maintain particle integrity (Chevalier and Bolzinger, 

2013). It is clear that these considerations need to be addressed before Pickering food 

emulsions can be formulated. 

As with any new technology, the potential safety risks must be examined. There are 

concerns regarding the use of nano-sized solid particles in foods, especially when they are 

purposely manufactured (Bleeker et al., 2012). At first glance, this may seem to limit the 

development of Pickering emulsions and particles, but recent advances are promising and 

include innovative usage of natural ingredients such as fat, carbohydrate or protein (Rayner 

et al., 2014). 

2.2. Formation and stability of Pickering emulsions  

Emulsion formation requires mechanical energy to break up the dispersed phase, so that 

small droplets of one liquid become dispersed throughout the other liquid phase (Walstra, 

1993). To prevent immediate phase separation after formation, emulsifiers have to be used. 

Conventional emulsifiers (surfactants and biopolymers) are surface-active compounds due 

to their amphiphilic character (i.e. they possess hydrophilic and hydrophobic moieties). This 

allows them to decrease the interfacial tension between the dispersed and continuous 

phases and subsequently facilitate droplet break-up (Dickinson, 2013; Genot et al., 2013; 

Rayner, 2015). Solid particles are generally not amphiphilic and their adsorption at the 

interface is not spontaneous (Rousseau, 2013). Still, particles lower the free energy of the 

system by reducing the liquid-liquid contact area (Bott, 2014; Kaewsaneha et al., 2013). 
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Although the formation and stabilization of emulsions by solid particles are fundamentally 

different from conventional emulsifiers, many basic rules can be extrapolated, as 

extensively reviewed by Binks (2002) and Tcholakova et al. (2008). For example, the 

quantification of the hydrophilic-lipophilic balance (HLB) for surfactants can be compared 

to the wettability via the three-phase contact angle for particles. Particle characteristics 

mainly determine Pickering emulsion formation and stability, with partial wetting by both 

liquid phases being the most important prerequisite for solid particle attachment at the 

interface, which is influenced by the particle surface composition. Other important 

characteristics to consider for Pickering stabilization include size, shape, and surface charge 

(Bott, 2014; Dickinson, 2012; Finkle et al., 1923; Hunter et al., 2008). All these aspects are 

discussed in this chapter and are related to both physical and chemical stability of 

emulsions. 

2.2.1. Particle characteristics  

2.2.1.1. Particle wettability  

The tendency of a particle to adhere at an interface can be understood from the perspective 

of wetting, rather than amphiphilicity. The wettability of a particle determines its position 

at the interface and can be characterized through the three-phase contact angle (Figure 

2.1.) that is expressed for the most polar liquid. The contact angle is a result of the balance 

of the surface free energy of the particle at the water-oil, particle-water, and the particle-

oil interfaces, as expressed by Young’s equation (Equation 2.1.): 

cos 𝜃 = (𝛾𝑝𝑜 − 𝛾𝑝𝑤)/𝛾𝑜𝑤                                          (Eq. 2.1.) 

where γpo, γpw, and γow are the surface free energies (that can be interpreted as interfacial 

tensions) of particle-oil, particle-water and oil-water interfaces, respectively.  

Finkle et al. (1923) first described the relationship between the wettability of colloidal 

particles and their ability to stabilize either o/w or w/o emulsions. Particles with a contact 

angle ranging from 0 ≤ 𝜃 < 90° have a greater affinity for water and will generate o/w 

emulsions, while particles with a contact angle ranging from 90° < 𝜃 ≤ 180° will form w/o 

emulsions. Simply, particles will make the interface bend towards the phase for which their 

affinity is lower, as illustrated in Figure 2.1. Particles that have the same affinity for oil and  
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𝜃 > 90° 

W/O emulsion 

𝜃 = 90° 

Either W/O or O/W emulsion 

𝜃 < 90° 

O/W emulsion 

     

Figure 2.1. Location of a colloidal solid particle at the oil-water interface, as determined by 
the contact angle, 𝜃, measured through the aqueous phase. 

water have a contact angle of 𝜃 = 90°, and should in theory be able to stabilize o/w as well 

as w/o emulsions. 

Surface modification of particles (i.e. by either chemical grafting of organic molecules or 

adsorption of different molecules) can be used to tailor the wettability (Bott, 2014), which 

ensures appropriate anchoring of the particles at the interface (Monteillet et al., 2014). 

Examples to modify the wettability of particles for food applications are the derivatization 

of starch granules with octenyl succinic acid (OSA) (Rayner et al., 2012) and the in situ 

adsorption of surfactants to the particle surface (Binks et al., 2017). However, chemical 

modifications are limited for clean-label purposes. 

In summary, particle wettability ensures appropriate anchoring of Pickering particles at the 

interface, and concomitantly largely determines their stabilization efficiency. 

2.2.1.2. Particle size  

Besides appropriate wettability, the size of particles plays an important role, since the 

adsorption energy is proportional to the contacting area (Figure 2.2.), which will be 

explained in detail later (Equation 2.6). In general, it is recommended to use colloidal 

particles that are substantially smaller (at least one order of magnitude) than the emulsion 

droplets in order to form structured interface layers (Dickinson, 2012; Gould et al., 2013). 

Nevertheless, some food-grade Pickering emulsions have been claimed to be formed with 

similar size of oil droplets and Pickering particles (Kurukji et al., although it should be noted 

that the authors measured particle size prior to emulsification and did not consider possible 

particle disruption during homogenization nor exclusive stabilization by the smallest 

particles (Gould et al., 2013).  
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Figure 2.2. Schematic representation of a Pickering particle adsorbed at the oil‐water 
interface, with its position defined by the contact angle, θ, and surface free energy as 
described in Equation 2.3 (situation a, left). For situation b, the surface free energy is defined 
in Equation 2.5; the difference in free energy between situation a and b is the desorption 
energy. 

2.2.1.3. Particle shape 

The stabilization performance of particles is mostly studied using model particles (i.e. 

monodispersed, solid, spherical), while food-grade particles are often much more complex 

(i.e. polydispersed, deformable, and non-spherical). Therefore, it is important to chart 

shape anisotropy effects on interfacial packing and orientation, as well as on capillary 

interactions (see section 2.2.2.2). The aspect ratio (the length to width ratio) of particles 

with similar surface chemical characteristics has been related to emulsification efficiency. 

Higher aspect ratio particles (>4.6) that sufficiently wet both liquid phases are efficient in 

Pickering stabilization while low aspect ratio particles are in some cases incapable of 

forming emulsions (Lou et al., 2016; Madivala et al., 2009). This has been linked to an 

increase in the capillary attractive forces with increasing particle aspect ratio (Dugyala et 

al., 2013). 

When comparing cubic and peanut-shaped particles, unique interfacial packings and 

orientations were found due to particle anisotropy (de Folter et al., 2014), which was 

confirmed through computer simulations (Cheng and Wang, 2013). Furthermore, it has 

been found that rods have a 31.5% higher desorption energy compared to spherical 

particles and disks 57.0%, all at 90° contact angle (Horozov and Binks, 2006). Besides, 

complex anisotropic particles (microbowl particles with holes on their surface) can be used 

to stabilize supracolloidal systems, such as non-spherical droplets and double emulsions 

(Nonomura et al., 2011). 

 

Water Water

, 
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Both surface coverage and contact area may be enhanced through the use of deformable 

particles that can adapt their shape to the interface after adsorption (e.g., flattening). Such 

deformation may occur depending on the molecular interactions between particles, 

particles and the interface, and the elastic properties of the particles (Mehrabian et al., 

2016). For example, microgel particles have been shown to adopt a core corona (also called 

fried egg) shape at the oil-water interface, which can be influenced by emulsification energy 

(Destribats et al., 2011, 2013). High shear rates led to strong flattening of microgel particles 

at oil-water interfaces whereas low shear rates led to dense monolayers where microgels 

are laterally compressed (Destribats et al., 2013; Monteillet et al., 2014; Schmitt and 

Ravaine, 2013). 

In summary, non-spherical particles are often an asset in terms of emulsion stability, not 

only through better nesting (i.e. more interfacial coverage), but also through the formation 

of a viscoelastic interfacial network (e.g., jamming as a result of capillary interactions) (de 

Folter et al., 2014; Dugyala et al., 2013).  

2.2.2. Physical stability of emulsions 

Emulsions are thermodynamically unstable systems, due to an imbalance of molecular 

forces at the interface, expressed by the interfacial tension, γow. In other words, there is 

excess free energy (G) associated with the interfacial area between two liquid phases, 

defined as: 

𝐺 =  𝛾𝑜𝑤 ∗  𝐴𝑜𝑤                                           (Eq. 2.2.) 

with γow representing the interfacial tension between oil and water, and ∆Aow the total 

interfacial area between oil and water. 

As stated before, conventional emulsifiers reduce the interfacial energy by lowering γow and 

provide steric and electrostatic repulsion between droplets. In contrast, solid particles 

reduce ∆Aow (Kaewsaneha et al., 2013) and ensure the physical stability of emulsions 

through different mechanisms: interactions between particles and the dispersed and 

continuous phases lead to high desorption energy; attractive interactions between particles 

at the interface (resulting from capillary forces) induce jamming and hence the formation 

of a strong interfacial shell; and attractive interactions between particles in the continuous 

phase induce network formation which may set the whole emulsion structure and induce a 

yield stress (Pawar et al., 2011).  
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2.2.2.1. Desorption energy 

The main mechanism by which colloidal particles stabilize emulsions relates to their 

interaction energy with the interface (Whitby et al., 2011), the attachment/detachment 

energy being the difference between the free energy of an adsorbed solid colloidal particle 

and the free energy of the particle in solution (Rayner et al., 2014; Young, 1805). The free 

energy (Ga) of the adsorbed particle (Situation a, Figure 2.2.) is defined by: 

𝐺𝑎 =  𝛾𝑜𝑤 ∗  𝐴𝑜𝑤(𝑎) + 𝛾𝑝𝑤 ∗  𝐴𝑝𝑤(𝑎) + 𝛾𝑝𝑜 ∗  𝐴𝑝𝑜(𝑎)                   (Eq. 2.3.) 

where γpo, γpw, and γow are the particle-oil, particle-water and oil-water interfacial tensions, 

Aow(a) is the area of the oil-water interface, and Apo(a) and Apw(a) are the surface areas of the 

particle in contact with the water and oil phases, respectively. The total surface area of the 

particle equals:  

𝐴𝑝𝑤(𝑎)+ 𝐴𝑝𝑜(𝑎) = 𝐴𝑝                                              (Eq. 2.4.)  

in which Apw and Apo are the surface areas of the particle in contact with either water or oil, 

respectively. When present in the water phase (Situation b, Figure 2.2.), the surface free 

energy of the particle (Gw) is given by: 

𝐺𝑤 = 𝛾𝑜𝑤 ∗  𝐴𝑜𝑤(𝑏) + 𝛾𝑝𝑤 ∗  𝐴𝑝𝑤(𝑏)                                  (Eq. 2.5.) 

where Aow(b) represents the oil-water interfacial area of a dispersed droplet without 

particles being adsorbed. The difference in free energy between Situations a and b (Gdw) 

is the free energy of detachment of a colloidal particle from the interface into the water 

phase (Equation 2.6).  

Δ𝐺𝑑𝑤 = 𝐺𝑤 − 𝐺𝑎 = 𝛾𝑜𝑤 ∗  𝐴𝑜𝑤 + 𝛾𝑝𝑤 ∗  𝐴𝑝𝑤 − 

(𝛾𝑜𝑤 ∗  𝐴𝑜𝑤 + 𝛾𝑝𝑤 ∗  𝐴𝑝𝑤 + 𝛾𝑝𝑜 ∗  𝐴𝑝𝑜)                             (Eq. 2.6.) 

Assuming that particles are spherical, the detachment energy can be expressed by: 

Δ𝐺𝑑𝑤 =  π𝑟2𝛾𝑜𝑤  (1 − cos 𝜃)2                                         (Eq. 2.7.) 

The desorption energy of particles relates directly to Pickering emulsion stability and 

depends strongly on the particle size and contact angle, as is seen from Equation 2.6 and 

Figure 2.3., in which various particle properties are compared (Berton-Carabin and Schroën, 

2015). This energy is generally several thousands of kBT (with kB the Boltzmann constant 

and T the absolute temperature) for colloidal particles of 10–1000 nm, which is much larger 

than the energy involved in Brownian motion (dashed line in Figure 2.3). Thus, the free 

energy required for desorption of particles with appreciable wettability is much greater 

than the thermal energy, which makes it highly unlikely that these particles will be released, 

and accordingly they can be considered as irreversibly adsorbed. 
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As a result of this, particles form a steric barrier that can efficiently prevent droplet 

coalescence. If the interface is insufficiently covered, emulsion droplets may coalesce, 

decreasing the total emulsion droplet surface area, until the surface coverage is high 

enough to provide stability. Because of the high particle desorption energy, the binary 

fusion of two droplets into one spherical droplet can be arrested at an intermediate state. 

The shape relaxation of such an anisotropic droplet is retarded by interfacial (or in some 

cases internal) droplet elasticity (e.g., due to jamming of particles) that offsets the Laplace 

pressure driving force (Pawar et al., 2011, 2012). This arrested coalescence is a special 

feature of Pickering emulsions, which can be used to design complex anisotropic colloidal 

structures.  

The high-energy barrier also implies that adsorption of colloidal particles is not a 

spontaneous process, and mechanical action is needed, especially for large particles, to 

bring them into the interface. These effects are strongest for particles with a contact angle 

of 90°, resulting in a cos θ of zero, that have the highest desorption energy ∆Gdw, as 

illustrated in Figure 2.3 (Berton-Carabin and Schroën, 2015; Rayner et al., 2014; Yusoff and 

Murray, 2011). From this figure, it is also clear that surfactants (or very small particles) have 

a desorption energy that is in the same order of magnitude as the thermal energy (<1 nm; 

less than 10 kBT), which facilitates rapid adsorption and desorption from the interface within 

short time-scales (which also explains the relative instability of these systems). 

As mentioned, particle size, shape, and wettability largely determine the stability of 

Pickering emulsions. Nevertheless, changes in environmental conditions may affect the 

physicochemical characteristics of the particles; for example, particles can undergo 

chemical modifications (changes in surface chemistry) in response to changes in pH or salt 

concentration (Tang et al., 2015), resulting in changes in electrostatic and steric interactions 

and subsequent alteration of particle interaction with the surroundings (Tavernier et al., 

2016). This also affects contact angle and hence desorption energy, resulting in stimuli-

dependent emulsion stability. These effects occur with both organic (Zhang et al., 2014) and 

inorganic particles (de Folter et al., 2012), and can be used in controlled-release systems. 

For example, food applications could utilize pH-responsive systems to release bioactive 

compounds when exposed to various physiological pH levels. Alternatively, thermo-

responsive systems can also be considered, which utilize a change in physical state of the 

particle, such as particle disintegration as a result of melting (Tang et al., 2015). In addition, 



Chapter 2 
 

31 
 

the dense interfacial layer and particle network of Pickering emulsions may be shear 

sensitive and disruption can compromise stability by inducing coalescence. Such shear-

induced coalescence can be used in applications where the system only needs to be stable 

under quiescent conditions (Whitby et al., 2011). On the other hand, the heat or shear 

sensitivity of particles, or the very restricted pH or salt range in which particles perform well, 

can be a limitation for food processing and their applicability in a wide range of applications.  

In summary, the desorption energy of Pickering particles is generally much higher than 

thermal energy, resulting in irreversible adsorption, but strongly depends on particle size, 

shape, and wettability. In addition, changes in environmental conditions that influence 

particle wettability, thermal, and shear triggers can alter emulsion stability which may be 

used to induce controlled release. 

 

Figure 2.3. Plot illustrating the desorption energy of a single colloidal solid particle with 
contact angle 10°, 50° or 90° as function of particle radius, for oil‐water interfacial tension 
of 20 mN m-1 and 40 mN m-1. The dashed line represents thermal energy at 298 K (1 kBT). 
Source: Berton‐Carabin et al. (2014). Reproduced with permission of John Wiley & Sons. 

kBT (298 K) 
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2.2.2.2. Capillary forces (particle-particle interactions) 

Aside from particle attachment, lateral capillary forces also contribute to Pickering 

stabilization (Figure 2.4.). Capillary forces, which are attractive, appear when perturbations 

caused by the contact between particles and the interface overlap. The larger the 

perturbations induced by the particles, the stronger the capillary interaction between them. 

Such interfacial deformations can have different origins. First of all, particles larger than 10 

µm can deform the interface and hence induce capillary forces by their weight (buoyancy 

force). As most Pickering particles are smaller than 10 µm buoyancy forces are generally not 

relevant for particle-stabilized emulsions (Kralchevsky and Nagayama, 2000; Lucassen, 

1992). The second way to induce interfacial deformations is by particle confinement in the 

liquid film, which is related to particle wetting properties (i.e. to the position of the contact 

line and the magnitude of the contact angle), this even being operative for very small 

particles, as long as they are significantly larger than the solvent molecules.  

Kralchevsky et al. discussed the dependence of capillary attraction forces on particle radius, 

interparticle distance, surface tension, and capillary charge, the latter being a measure to 

characterize the magnitude of the interfacial deformation (depending on, for example, 

particle charge), which can be both positive and negative (Kralchevsky and Nagayama, 2000; 

Zeng et al., 2012). Non-spherical particles require a non-uniform deformation of the 

interface near the particles, which, together with the higher desorption energy of such 

particles, explains the higher emulsion stability obtained with plate and rod-like particles 

compared to spherical particles (Madivala et al., 2009). Lateral capillary attractive forces 

may result in a cohesive interfacial two-dimensional network (Hunter et al., 2008; Levine 

and Bowen, 1993) with considerably higher surface shear and dilatational moduli than 

interfaces stabilized by conventional emulsifiers, resulting in remarkable physical stability 

(Sagis and Scholten, 2014). 

 

Figure 2.4. Interfacial deformation and associated capillary attractive force between solid 
particles at an oil‐water interface. 
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2.2.2.3 Network formation 

Classically, an interfacial layer may be represented as two dense monolayers separating 

adjoining droplets, as illustrated in Figure 2.5.A (Dickinson, 2010). However, severe bridging 

can occur when particle contact angle is significantly smaller than 90°; a single particle can 

adsorb at two droplet interfaces at the same time (Figure 2.5.B). It should be noted that 

there is a difference between bridging in Pickering emulsions and polymer-stabilized 

emulsions, where bridging only occurs when insufficient emulsifier is present, whereas in 

Pickering emulsions bridging can occur independent of particle concentration (Monteillet 

et al., 2014).  

Besides an ordered interfacial network, particles can also form a disordered network. The 

particles need to be in a state of (weak) aggregation and can contribute to physical emulsion 

stability through the formation of a viscoelastic network for which rather large amounts of 

particles are needed. The network supplies the emulsions with a yield stress, which can 

arrest droplet motion and as a result, creaming and coalescence may be prevented (Figure 

2.5.C) (Dickinson, 2010; Rayner et al., 2014). The related emulsion stability depends strongly 

on the ratio of particles/interfacial area and the dispersed phase volume fraction; dilution 

or shearing may be detrimental to the network, leading to emulsion destabilization (Whitby 

et al., 2011), and as a result, the rheological properties of Pickering emulsions may largely 

vary. The yield stress and emulsion viscosity are largely determined by three-dimensional 

network formation (Benjamins et al., 2009).  

A 

 

C 

B 

 
Figure 2.5. Schematic representation of particles at the surface of two neighboring emulsion 
droplets: (A) two dense particle monolayers separating two adjoining droplets; (B) single 
particles adsorbed at two distinct adjoining droplets; (C) low‐density network of aggregated 
Pickering particles. 
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When considering a practical Pickering emulsion made with polydispersed particles, it is 

expected that the finest particles are at the oil-water interface, meaning less energy is 

needed to put them there, while the larger particles are in the continuous phase (Gould et 

al., 2013), where they may contribute to stability by network formation. At low particle 

concentrations, emulsion droplet size will depend on the availability of particles, including 

aggregated ones, while at high concentrations the droplet size is most affected by 

homogenization pressure (Arditty et al., 2003). 

In summary, the structural arrangement of Pickering particles can differ (i.e. monolayers, 

bridges, or aggregated structures) and may influence emulsion physical stability. 

2.2.3. Chemical aspects related to emulsion stability 

Chemical degradation (e.g., oxidation of unsaturated fatty acids) influences the nutritional 

and sensory characteristics of food products. In addition, emulsion physical stability can be 

affected because the interface plays an instrumental role in lipid oxidation in emulsions. 

The interface is the region where unsaturated fatty acids meet water-soluble reactants, 

including oxygen and reactive pro-oxidants in the aqueous phase (Berton-Carabin et al., 

2014; McClements and Decker, 2000). The potential of Pickering emulsions to protect 

emulsified oil against chemical degradation is still largely unexplored, but some authors 

have speculated that, in this respect, a closely packed particle layer may have better barrier 

properties than a protein or surfactant emulsifier layer. 

Kargar et al. (2011) found that the formation of primary lipid oxidation products (i.e. 

hydroperoxides) was lower in emulsions stabilized by silica particles compared to Tween 

20-stabilized emulsions, but not as low as found for sodium caseinate-stabilized emulsions. 

When comparing different Pickering particles, the same group found that microcrystalline 

cellulose particles were more effective against oxidation compared to modified starch 

particles, and they attributed this to the higher oxygen-scavenging ability of microcrystalline 

cellulose particles (negative charge and thicker interfacial film) compared to modified starch 

particles (Kargar et al., 2012). 

In another study, zein/chitosan complexes containing curcumin were found to be more 

effective in inhibiting lipid oxidation than single zein or chitosan as a result of steric 

hindrance of particles and the antioxidant properties of curcumin (Wang et al., 2015). 

Antioxidant activity was also claimed for polyphenol-beta-lactoglobulin nanocomplexes 
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(Von Staszewski et al., 2014), and kafirin nanoparticles at interfaces, in relation to specific 

amino acids in the kafirin chain (Xiao et al., 2015). Besides, it was mentioned that the use of 

silica aggregates led to enhanced chemical stability of curcumin compared to single 

interfacial silica nanoparticles (Zhao et al., 2014) which was related to the thickness of the 

interfacial layer (Zhao et al., 2015).  

From the above, it is clear that various claims have been made, and explanations are given, 

leading us to believe that particle stabilization may positively contribute to enhanced 

chemical stability. However, a comparison with regular emulsifiers is mostly missing in these 

studies, which makes it hard to draw concrete conclusions.  

2.3. Pickering emulsions for food applications 

Food delivers energy and essential nutrients that are critical for human health, and ideally, 

our diet should contain all components, including vitamins and minerals, and bioactive 

phytochemicals such as polyphenols, curcuminoids, carotenoids or phytosterols, that play 

important roles in reducing health risks (e.g., cancers, cardiovascular diseases, diabetes, 

etc.) (Kris-Etherton et al., 2002). A major food application for Pickering emulsions is 

bioactive delivery, and for this, functional and technical requirements such as loading 

capacity, efficiency, ingredient compatibility, and physicochemical stability need to be met. 

The starting point is to use food-grade ingredients, and to ensure food matrix compatibility, 

followed by scale-up and economic feasibility (McClements and Li, 2010). 

To date, most research performed on Pickering emulsions has been conducted with 

inorganic particles based on silica or latex, which are used as model Pickering stabilizers for 

non-food-grade emulsions. Silica particles are commercially available with a wide range of 

characteristics: well-defined particle sizes from nanometer scale to micrometer scale, 

promising surface areas, and hydrophobicity, which can be modified by chemical treatment 

(e.g., with alkylsilane), coated or substituted with functional groups (Berton-Carabin and 

Schroën, 2015; Destribats et al., 2014; Ngai and Bon, 2014). In actual food and pharma 

products, this knowledge could be applied for delivery systems for active ingredients or to 

develop non-Newtonian textures (e.g,. thixotropy) while simultaneously making use of the 

improved physical and chemical stability of Pickering emulsions (Chen et al., 2011). Besides, 

surfactant-containing products may show adverse effects in the body, such as irritancy and 

hemolytic action (Laredj-Bourezg et al., 2013), while Pickering emulsions offer a surfactant-

free alternative. 
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The following section describes how food-grade Pickering emulsions can be prepared with 

a strong focus on the food-grade particles used in literature. 

2.3.1. Composition of food emulsions  

Food products are complex, multicomponent systems, which very likely contain compounds 

that are surface-active, which may be either advantageous or disadvantageous to particle 

stabilization (Berton-Carabin and Schroën, 2015). Surface-active compounds may be added 

both before or after emulsification, which may affect the emulsion differently. 

Hu et al. (2015) studied the effect of in situ adsorption of cationic surfactants on anionic 

cellulose nanocrystal stabilized Pickering emulsions. They found that surfactants adsorbed 

with their head group onto the particle surface at low concentrations, and in an aggregated 

morphology above the critical micelle concentration, leading to either hydrophobic or more 

hydrophilic particles. The change in particle wettability was directly correlated to emulsion 

stability and could even be used to induce phase inversion (Nesterenko et al., 2014). 

Furthermore, Lacava et al. (2014) showed that the stability and structure of particle-

containing emulsions strongly depend on the type of surfactant. Strong surfactants such as 

sodium dodecylsulfate (SDS) fully blocked the oil-water interface for particles, whereas 

surfactants with intermediate interfacial activity (e.g., Span 20) formed synergistic mixtures 

with the particles at the interface. 

Proteins can also interact synergistically with particles for interfacial stabilization (Pichot et 

al., 2010); smaller emulsion droplets were formed when sodium caseinate was combined 

with silica particles, due to the enhanced shear viscosity of the interfacial layer (Murray et 

al., 2011). In addition, it has been proven that the method of preparation substantially 

affects emulsion formation and stability (Binks et al., 2007; Eskandar et al., 2007); for 

example, droplet size and interfacial packing vary depending on the phase in which the 

particles are initially dispersed, and the order in which the phases are emulsified (Eskandar 

et al., 2007).  

To summarize, some studies have been performed on the synergies between particles and 

molecular emulsifiers for emulsion formation and stabilization, and various effects were 

reported, although it should be mentioned that the outcomes are still highly unpredictable. 

This also has to do with the fact that particles diffuse much slower than surfactants 
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(Eskandar et al., 2007), so both equilibrium emulsifier-particle interactions and kinetic 

effects contribute to the final emulsion’s properties. 

2.3.2. Composition of Pickering particles  

A limited amount of particles have been suggested to adsorb at liquid interfaces and 

stabilize food emulsions, including inorganic particles and biobased particles (protein-, 

carbohydrate- or lipid-based) (Berton-Carabin and Schroën, 2015). In the following sections, 

all these particles are reviewed.  

2.3.2.1. Inorganic particles 

Silica, alumina, clay, and other materials have been investigated as Pickering particles. Silica 

(SiO2) is most studied as it can be synthesized with reasonable monodispersity in size 

ranging from approximate 5 to a few hundred nanometers via, for example, Stöber 

synthesis (Ngai and Bon, 2014), for which water, ethanol, and tetraethylorthosilicate (TEOS) 

are used with ammonia as a catalyst for the hydrolysis of TEOS. Silica is formed through 

condensation of silanol groups:  

Si(OC2H5)4 + 2H2O → SiO2 + 4C2H5OH   (Eq. 2.8) 

The characteristics of the particles can be tuned through the reaction conditions: pH, 

temperature, reaction time and amount of water, and after-treatment. Silica particles are 

mostly hydrophilic and, through chemical or thermal treatment, their surface 

hydrophobicity (i.e. wettability) can easily be modified, which is imperative for Pickering 

stabilization. White et al. (2011) showed that a thermal treatment below 170 °C can be used 

to remove water from the surface, whereas at >180 °C, silanol groups condense to siloxane 

bridges, both leading to increased hydrophobicity. Besides, chemical treatments can be 

used, leading to substitution of silanol groups by, for example, alkylsilane.  

2.3.2.2. Protein particles 

Proteins are natural amphiphilic polymers, which can be obtained from several plant (e.g., 

soy) and animal sources (e.g., milk and meat). Proteins, protein micelles, and protein 

aggregates are generally not considered solid particles as they unfold, disassociate or 

rearrange upon adsorption. Nevertheless, protein particles have successfully been used for 

Pickering stabilization. For example, submicron-sized beta-lactoglobulin particles or 

microgels have been produced using a thermal process far from the isoelectric point 

(Santipanichwong et al., 2008). Destribats et al. (2014) produced whey protein microgels as 

Pickering stabilizers by sonication, and zein-based solid particles were also produced by 
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solvent-induced precipitation (Chen and Zhong, 2015; Pan et al., 2015). Also, soy and 

hydrophobin-based solid particles have been used as Pickering stabilizers in food (Liu and 

Tang, 2013). 

2.3.2.3. Polysaccharide particles 

Polysaccharides are natural polymeric carbohydrates mostly found as structural building 

blocks (e.g., cellulose or chitin) or storage polysaccharides (e.g., starch and glycogen). Starch 

granules are mostly used as thickeners and gelling agents, but recently also as Pickering 

stabilizers. Native starch granules can be found in a size range from several nanometers 

(rice: <5 nm) to micrometers (quinoa: 500 nm to 3 μm) (Ngai and Bon, 2014), and are highly 

hydrophilic but not water soluble as they are partly crystallized. Yet physical (e.g., thermal 

or mechanical treatments) and chemical treatments (e.g., by cross-linking, substitution or 

conversion reactions) can be used to tailor particle wettability. The most widely used 

method is by substituting hydroxyl groups using alkenyl succinyl anhydrides such as oxtenyl 

succinic acid (OSA), which has been approved for food use up to 3% with the level of free 

OSA not exceeding 0.3%. This method was also applied to quinoa starch granules (Rayner 

et al., 2012), rendering optimal emulsifying properties at 2–3% OSA (Rayner et al., 2012). 

Furthermore, polycaprolactone (PLC) grafting to starch granules has been suggested (Habibi 

and Dufresne, 2008), along with a physical, thermal treatment (Rayner et al., 2012) and 

freeze-milling to reduce polydispersity (Luo et al., 2011). 

Other carbohydrate-based particles that are used for Pickering stabilization can be found in 

Berton-Carabin and Schroën (2015) and include, amongst others, microcrystalline cellulose 

particles (Kargar et al., 2012; Kovačević et al., 2014; Wen et al., 2014; Hu et al., 2015), cocoa 

particles (Gould et al., 2013), and chitin nanocrystals (Tzoumaki et al., 2013).  

2.3.2.4. Lipid particles 

Lipids are a large and diverse group of naturally occurring organic compounds that include 

fats, waxes, sterols, fat-soluble vitamins, phospholipids, glycerides, and glycolipids. The 

most widely used lipid-based particles for Pickering stabilization are fat crystals. Since 

triacylglycerols may crystallize into different polymorphs, they offer versatility in wetting 

properties. Fat crystals are predominantly hydrophobic, thus favoring stabilization of w/o 

emulsions albeit through different mechanisms (i.e. by surface templated crystallization, 

adsorption of solid particles at the interface, or shearing-induced agglomeration) 

(Rousseau, 2013). Lipid particles may also be mixed with more hydrophilic compounds or 
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contain several hydrophilic groups to make them applicable to o/w emulsions, and solid 

lipid nanoplatelets, flavonoid, and phytosterol particles have been successfully used (see 

also section 2.5) (Gupta and Rousseau, 2012; Liu and Tang, 2014b; Luo et al., 2012). The 

lipid interior of some lipid particles allows incorporation of lipophilic compounds, which 

makes them potentially useful as delivery systems. 

2.3.2.5. Janus particles 

The particles described so far have a relatively homogeneous surface composition, but 

particles with mesoscale chemical anisotropy can also be used to stabilize emulsions. These 

particles have two sides and are known as “Janus” particles (named after the Roman god 

with two faces), with different surface chemistry, and can be produced with high precision 

(Kumar et al., 2013). 

It has repeatedly been shown that Janus particles with average contact angles approaching 

either 0° or 180° remain strongly attached at the interface Binks, 2002; Bott, 2014; Kumar 

et al., 2013), and show strong attractive interactions when in the interface due to the 

distinct hydrophobic and hydrophilic parts (Figure 2.6.A), resulting in cohesive films. Janus 

particles with dumbbell, plate-like, and ellipsoid shapes have been produced (Janus 

boundary; see Figure 2.6.), and showed a distinct formation of closely packed interfacial 

films and decrease in interfacial tension as they arrange differently at the interface (Ruhland 

et al., 2011). The synthesis of such particles when starting from two materials is rather 

complex, due to material incompatibility (Kumar et al., 2013); however, modification of 

homogeneous particles after adsorption at the interface may also be considered 

(Kaewsaneha et al., 2013). It is expected that production of food-compatible Janus particles 

can be achieved in the near future, using protein- or carbohydrate-based polymers (Ruhland 

et al., 2011).  
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Figure 2.6. Schematic illustration of Janus particles with several shapes and clear Janus 
boundaries: (A) spherical‐shaped particles showing the attractive capillary interaction 
arising from undulations in the Janus boundary, (B) dumbbell shaped, (C) ellipsoid shaped, 
and (D) cylinder shaped. 

2.4. Characterization of Pickering emulsions 

To achieve food-grade Pickering emulsions, bulk physicochemical properties, colloidal 

properties of droplets and/or particles, and physical stability of the final emulsion during 

shelf-life need to be assessed. Since mostly non-food-grade particles have been tested in 

Pickering emulsion research, the existing knowledge base needs to be extended to the study 

of food-grade particles. Several specific analytical techniques and methodologies have been 

used for this purpose such as contact angle, interfacial rheology and surface coverage 

measurements, and microscopy techniques, as discussed below in greater detail. For more 

general characterization techniques, we refer the interested reader to other chapters. 

2.4.1. Contact angle measurements 

Dual wettability of particles, as reflected in the three-phase contact angle 𝜃, plays a crucial 

role in the formation and stability of Pickering emulsions as it determines the particle 

position in the interface, and related to that the energy needed to remove the particle from 

the interface. The contact angle can be measured in several ways; drop shape analysis using 

the Young–Laplace equation is one of the simpler methods that needs to be applied to a 

larger solid model surface (e.g., consisting of compressed particles), which makes it 

sometimes challenging to reflect the wettability of the actual particles, especially for 

composite ones. Besides, an advancing or receding contact line may lead to different 

contact angle values, and that is a point of attention (Hu et al., 2015). To determine contact 

angles in situ, the three-phase contact angle of colloidal particles needs to be measured, for 

which the gel trapping technique (GTT) was proposed by Paunov (2003). The particles are 

spread onto an oil-water interface, after which the water phase is gelled with a non-
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adsorbing polysaccharide (gellan) at lower temperature. The oil is removed and replaced by 

a polysilicon elastomer (mostly polydimethylsiloxane), which is peeled off after 

polymerization, and imaged with a scanning electron microscope so that the imprint of the 

particles in the polymerized elastomer can be analyzed. Although this technique works 

relatively well, it should be mentioned that GTT is an indirect method that involves many 

steps that may have an impact on the obtained contact angle (Paunov, 2003), and the 

method is limited to particles of 500 nm and larger (Horozov et al., 2008). The contact angle 

of particles as small as 10 nm can be measured by freeze-fracture shadow-casting cryo-

scanning electron microscopy (FreSCa cryo-SEM) (Binks et al., 2013). For this, particle-

stabilized interfaces are rapidly frozen, coated with a thin metal layer at an oblique angle, 

and fractured. Due to the coating, a shadow is created behind each of the particles from 

which the height of the particle can be calculated and hence the contact angle. The method 

is limited to contact angles below 150° in order to obtain a clear shadowing effect (Geisel, 

2015), and may be susceptible to particle deformation that will influence the measured 

values (Geisel et al., 2014). For more information on contact angle measurement of micro- 

and nanoparticles at liquid interfaces, see the recently published review by Zanini and Isa 

(2016).  

2.4.2. Microscopy 

The microstructure of Pickering emulsions is linked to functionality, sensory attributes, and 

stability of the system, and to visualize this, various microscopic techniques are used that 

help elucidate various levels of detail, as discussed below.  

2.4.2.1. Confocal laser scanning microscopy (CLSM) 

In CLSM, a spatial pinhole is placed at the confocal plan to eliminate out-of-focus light, 

which increases optical resolution and contrast and makes it possible to study Pickering 

emulsions at different depths of the sample (Nie et al., 2008; Tan et al., 2012a), thereby 

allowing three-dimensional imaging of the degree of coverage and shape of the droplet. 

CLSM can be used for (co)-localization: one or several dyes may be incorporated in the 

emulsion to stain the different phases (i.e. oil phase, water phase, and the colloidal 

particles), and an overall picture of the emulsion structure can be created, including the 

location of the particles ranging from monolayer to network in the continuous phase. To 

quantify mobility of particles in the interface, fluorescence recovery after photo-bleaching 
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(FRAP) can be used. For Pickering particles, no recovery of the fluorescence label is 

expected, which is linked to absence of mobility in the interfacial layer (Dickinson, 2010).  

2.4.2.2. High-resolution microscopy 

An even greater level of detail can be investigated by high-resolution microscopy, including 

atomic force microscopy (AFM) and electron microscopy. In AFM, the resolution limit can 

be as low as 2 nm in non-contact mode, and information is generated through the action of 

a mechanical probe that measures interfacial forces between a (soft) surface and the AFM 

nano-scaled probe. Tan et al., (2012b) used AFM to probe the mechanical properties of clay-

stabilized emulsion droplets to develop structure-function correlations at different pH, and 

under compression with a colloidal probe (Tan et al., 2012). The major advantage of AFM is 

that it does not require sophisticated sample preparation (Shah et al., 2015). 

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are direct 

methods used to visualize nanoparticles. As electron beams have much shorter wavelengths 

compared to visible light, much higher resolutions can be reached, which is a major 

advantage of this technique. This allows visualization of morphological details of nano-sized 

structures, and also the three-dimensional structure of the particle may be elucidated (Binks 

and Kirkland, 2002; Sihler et al., 2015; Yan et al., 2015). However, it should be noted that 

samples need to be viewed in vacuum, which may make sample preparation procedures 

time-consuming. In general, samples of hydrated materials such as emulsions are subjected 

to quick freezing and possibly staining to increase the electron optical contrast, and this 

may alter the sample, leading to artefacts that further complicate interpretation (Yan et al., 

2015).  

2.4.2.3. Super resolution microscopy: iPAINT 

In the last decade, super resolution microscopy has emerged as an attractive, non-invasive, 

three-dimensional imaging technique to study relatively simple interfaces with nanometer 

resolution. The technique relies on the switching of fluorescent markers between a dark 

and a bright fluorescent state that is achieved by an external trigger, for example UV light 

(photo-activation process – PALM) (Betzig et al., 2006), chemical reactions (stochastic 

blinking – STORM) (Huang et al., 2008), or change in hydrophobicity (accumulation of 

binding probes – PAINT) (Chakraborty et al., 2016) and DNA-PAINT (Jungmann et al., 2010). 

The common ground among these techniques is the covalent labeling of the surface of the 

object by switchable dyes, or alternatively by specific ligand/receptors pairs. 
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Unfortunately, several surfaces of major interest in soft matter cannot be investigated; 

neither of the labeling methods works due to their very nature (e.g., emulsions and ice 

crystals). To overcome this, interface point accumulation for imaging in nanoscale 

topography (iPAINT) was developed, which is based on the reversible adsorption of polymer 

chains carrying a photo-activatable moiety that specifically labels the object of interest. The 

adsorption of such a polymer has been proven to occur at any interface, irrespectively of 

the surface chemistry (Aloi et al., 2016) or presence of charges (Olijve and Voets, 2016). 

Analyzing the super resolution images showing the particles and fluid interface, the three-

phase contact angle can be determined using geometrical relations (Sabapathy et al., 2015). 

Although still new, iPAINT shows clear promise as a tool to investigate the shape and contact 

angle of particles at liquid interfaces, in situ and in a non-invasive way. 

2.4.3. Surface coverage and interfacial rheology 

The stability of interfaces stabilized by particles is co-determined by the surface coverage 

and resulting rheological properties. A distinct feature of Pickering emulsions is the strong 

and irreversible adsorption of colloidal particles, that can be used to study the interfacial 

coverage based on droplet size, as proposed by Destribats et al. (2011). If the interface is 

insufficiently covered, coalescence may take place to reduce the total amount of interfacial 

area, and increase surface coverage up to the point that the surface coverage is high enough 

to halt coalescence (Pawar et al., 2011). By using different concentrations of particles, the 

average droplet size will change, from which the interfacial particle coverage can be directly 

deduced (Equation 2.9.) (Destribats et al., 2014):  

1

𝐷
=

𝑛𝜋𝑑2

24 𝐶𝑉𝑑
                                                                (Eq. 2.9.) 

where D is the droplet size, n is the total number of particles, d is the hydrodynamic 

diameter of the particles, Vd is the oil volume, and C is a parameter characterizing the 

particle packing that can be obtained directly from the 1/D curve. The droplet and/or 

particle size can be measured with widely available dynamic light scattering and laser 

diffraction techniques.  

At high interfacial coverage, colloidal particles can orient and interact in different ways at 

the interface, for example forming two-dimensional particle gels, a glass phase or crystalline 

structures that have high shear and dilatational moduli compared to protein or surfactant 

stabilized interfaces. These mechanical properties can be quantified through interface 

dilatational rheological measurements under isotropic compression or extension, using 
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tensiometry on either a flat surface of a Langmuir trough or a single droplet in a droplet 

volume tensiometer. In a Langmuir trough, the interface is deformed by moving a barrier, 

and in a droplet volume tensiometer, a droplet is oscillated by pumping fluid in and out of 

the droplet (Sagis and Scholten, 2014); in both cases, interfacial tension is measured as a 

function of time from which the previously mentioned moduli can be derived. Alternatively, 

Lissajous plots can be constructed to extract insights regarding dynamic interfacial behavior 

(Berton-Carabin et al., 2016). It is challenging to position particles at (droplet) surfaces 

(Henneke, 2011; Ruhland et al., 2011), as most particles do not adsorb spontaneously. 

Despite this, several methods have been shown to be suitable. For example, a micro-syringe 

has been used to deposit nanoparticles in a spreading solvent at the interface in desired 

numbers (Fernandez-Rodriguez et al., 2014; Monteux et al., 2007).  

2.4.4. Microfluidics 

Although mostly used in combination with emulsifiers, some work on microfluidics has been 

done with particles. It has been reported that microfluidic channels are well suited to 

control particle load at the interface by varying particle concentration and the continuous 

phase flow rate (Nie et al., 2008). The dimensions of the microfluidic channel determine the 

size of the droplets and the extent of deformation (Guido and Preziosi, 2010), which may 

lead to buckling and crumpling, and other droplet shape changes. Buckling and crumpling 

are caused by deformation of a droplet with a solid-like or jammed interfacial layer, and 

droplet deformation was found to increase with increasing capillary number for amine-

modified silica particles (Mulligan and Rothstein, 2011), which are interesting starting points 

for the formation of microcapsules for delivery of active compounds (Lee and Weitz, 2008). 

A number of microfluidics-based systems have been developed to study emulsion stability 

(coalescence cell and micro-centrifuge), and will provide added benefits when investigating 

the stability of Pickering emulsions (Krebs et al., 2012, 2013).  

2.4.5. Sensory aspects of Pickering emulsions  

The ultimate test for a food Pickering emulsion is sensory analysis, which could determine 

the acceptability of the emulsion consistency or of the product as a whole. The minimum 

particle size that can be detected by the palate is approximately 25 µm (Kilcast and Clegg, 

2002). Considering this, Pickering emulsions are expected to have a unique structure, and 

potentially a unique sensory profile, as particle stabilization not only allows the presence of 

stable, bigger sized droplets, but also thicker interfacial films and three-dimensional 
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structures in the continuous phase. Thus, development of Pickering emulsion food products 

can provide opportunities to formulate a wider range of textures or consistencies compared 

to conventional emulsions. Despite this, to the best of our knowledge, no results have yet 

been published on the sensory perception of Pickering emulsions. 

In principle, sensory tests available for conventional emulsions can also be used to 

characterize Pickering emulsions, and some sensory attributes may be deduced from 

knowledge of conventional emulsions. For example viscosity and partial coalescence during 

oral processing are related to creaminess (Benjamins et al., 2009), and although Pickering 

emulsions may be very viscous, partial coalescence is expected to take place to a lesser 

extent due to the high stability of these emulsions, thereby counteracting the expected 

increase in creaminess. In addition, the distinct interfacial structure formed by particles 

influences flavor release kinetics as well, which will also influence aroma and taste 

perception (Chung et al., 2015; Pawlik and Norton, 2014). When applied in pharma 

products, for example, sensory attributes of Pickering emulsions can be characterized 

through the standard tests used in this field, such as visual appearance, feel of cream, 

skinfeel during and after application, wateriness, thickness, and stickiness (Marku et al., 

2012).  

2.5. Pickering emulsions as carriers for active compounds 

Pickering particles have been used to produce emulsions with good physical stability (Dai et 

al., 2005; Kargar et al., 2011 Tarimala and Dai, 2004). This makes them interesting 

candidates for delivery systems. Non-food Pickering emulsions have been developed with 

interfaces that adapt to dynamic environmental changes (Destribats et al., 2014; Richtering, 

2012; Schmitt and Ravaine, 2013). For food, this implies that strategic release of active 

compounds could be achieved (e.g., induced by pH changes in the gastrointestinal tract) 

and is within reach (Berton-Carabin and Schroën, 2015). In the next sections, we will give 

an overview of developments in the food field that may ultimately lead to Pickering-based 

controlled-release systems. 

2.5.1. Inclusion of active ingredients in Pickering emulsions  

Oil-in-water emulsions are among the most relevant and versatile delivery systems for food 

applications. In general, active compounds are most frequently incorporated in the oil 

phase of an emulsion but in particle-stabilized emulsions, they can also be formulated in 
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the particles or at the interface, depending on composition and solubility. Lipophilic 

compounds are most suitable for incorporation in the dispersed lipid phase or in particles, 

if they have high solubility, while amphiphilic compounds are found at the interface, 

depending on particle hydrophobicity. If double emulsions are considered, hydrophilic 

compounds can also be encapsulated.  

Curcumin, a hydrophobic polyphenol that shows oxidative instability, is one of the best 

studied bioactives in Pickering emulsions (Salem et al., 2014). Silica particle-stabilized o/w 

emulsions have been used as controlled-release vehicles for curcumin, leading to >80% 

retention after gastric digestion and >60% release of curcumin within 2 hours of intestinal 

digestion (Tikekar et al., 2013). However, no comparisons were made with conventional 

emulsifiers, so it is difficult to conclude if the Pickering emulsion enhanced performance 

compared to other emulsion systems. 

The authors also independently tested the effects of bile salts on Pickering emulsion 

stability and found that destabilization during digestion was likely driven by the 

combination of bile and calcium salts with digestive enzymes. This is potentially caused by 

partial removal of the Pickering particles from the interface while exposed to digestive 

conditions. Considering the high desorption energy of Pickering particles, further studies 

are needed to elucidate if interfacial particles are truly displaced during digestion, or if 

lipase and bile salts adsorb on top of existing particles at the interface (Tzoumaki et al., 

2013). 

Starch granule-stabilized Pickering emulsions have also been studied for stabilizing 

curcumin (Wang et al., 2014) and exhibited higher oxidative stability (stored at room 

temperature) compared to Tween 20-stabilized emulsions. As expected, the rate of 

curcumin release increased as a function of amylase concentration over 1 hour. Overall, 

these results suggest that Pickering emulsions can provide high chemical stability during 

storage and can be designed to release curcumin under certain environmental conditions. 

Carotenoids are hydrophobic terpenoids that have high susceptibility to light, heat, and 

oxidation (Khachik et al., 1992), and can potentially be stabilized in Pickering emulsions. 

Currently, the most common carotenoid-loaded Pickering emulsions reported in literature 

are stabilized with protein particles and report gel-like properties as a driver for stability. 

Freeze-dried pea protein particles have been used to stabilize Pickering emulsions (pH = 3) 
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for beta-carotene delivery at oil fractions 0.3 or 0.6, the latter of which was found to limit 

lipid hydrolysis and carotenoid bioavailability due to an increased viscosity and gel-like 

emulsion structure (Shao and Tang, 2016). Although the authors did not directly compare 

Pickering emulsions with conventional emulsions, beta-carotene bioaccessibility (for both 

oil fractions) was higher than in bulk oil. Similarly, the presence of a gel-like emulsion 

structure was reported for soy protein particle-stabilized emulsions following heat 

treatment (Liu and Tang, 2013, 2014a). 

In another study, beta-carotene-loaded soy protein Pickering emulsions exhibited gel-like 

properties but had similar beta-carotene release during digestion compared to control 

whey- and sodium caseinate-stabilized emulsions (Liu and Tang, 2016). While none of the 

emulsions showed dramatic beta-carotene degradation, these Pickering particles could be 

considered genuine alternatives to classic emulsifiers for carotenoid delivery. 

Pickering emulsions show an ability to stabilize and facilitate the release of lipophilic 

bioactives. Studies suggest that particle-stabilized interfaces allow for good 

physicochemical stability during storage and targeted release in the gastrointestinal (GI) 

tract (Liu and Tang, 2016; Shao and Tang, 2016). Ideally, comparable conventional 

emulsions should be used as controls to determine whether enhanced stabilization is due 

to Pickering stabilization. Aside from digestibility and bioaccessibility (the solubilization and 

potential intestinal uptake) of active ingredients, bioavailability (intestinal epithelial uptake 

and transport) should also be considered for future in vitro studies. The bioavailability (and 

eventual physiological utilization) of a bioactive depends heavily on intestinal uptake (e.g., 

passive or active transport), intestinal solubility, and metabolism (among other factors), 

which have not yet been extensively studied for food Pickering emulsions. 

There are also examples in the field of food safety. Pickering emulsions containing Artemisia 

argyi oil, an antimicrobial agent, demonstrated >83% bacterial inhibition rates of 

Staphylococcus aureus and Escherichia coli after 60 days of storage at 37 °C (Hu et al., 2013), 

although there was no direct comparison with free oil. Bi et al. (2011) found that chemically 

stable nisin had prolonged antibacterial activity against Listeria monocytogenes in a 

carbohydrate-stabilized Pickering emulsion. Following 40 days of storage, the Pickering 

emulsion inhibited bacterial growth, while Tween 20-stabilized interfaces and free nisin 

were not capable of doing so. Although these results show the potential of Pickering 

emulsions for food safety, further investigation of the interactions between Pickering 
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particles and active ingredients is needed to better target bacteria for future food 

applications. 

2.5.2. Inclusion of active ingredients in Pickering particles  

Solid bioactive ingredients, such as flavonoids, may be used directly as Pickering particles 

(Luo et al., 2011). Flavonoids are a class of secondary plant metabolites commonly found in 

fruits, vegetables, and food products (chocolate and red wine). Their consumption has been 

associated with anti-inflammatory and antioxidant functionalities both in vitro (Henson et 

al., 2008; Vinson et al., 1995) and in vivo (Illek et al., 1998; Wu et al., 2015). Flavonoids can 

also form complexes (Wieca et al., 2013) or be used in combination with biopolymers to 

stabilize novel Pickering particles. The flavonoid rutin was found to improve oxidative 

stability of whey protein-stabilized sunflower o/w emulsions stored at 50 °C (Atarés et al., 

2012) and improved stability against coalescence, which is possibly due to rutin particles 

coadsorbing or replacing whey protein at the interface. Although the non-spherical rutin 

particles form a densely adsorbed layer at the interface, it is unclear if the protective effect 

is due to the formed layer, the antioxidant capacity of the bioactive, or a combination of 

both. 

Some proteins, such as lactoferrin, have been described as having additional health benefits 

in the medical field (Crouch et al., 1992; Damiens et al., 1999). Lactoferrin-based Pickering 

systems, in combination with alginate and carrageenan, demonstrated improved emulsion 

stability against proteolysis during in vitro gastric digestion compared to conventional 

emulsifiers (Shimoni et al., 2013). However, further study would be needed to assess if the 

lactoferrin exhibits a biological benefit when used in this manner.  

Furthermore, phytosterol particles have been reported to be surface-active at the water-

hexadecane interface (Cercaci et al., 2007), albeit potentially producing toxic byproducts 

when oxidized (Ryan et al., 2005). When coated with whey protein, these particles were 

found to be capable of stabilizing a gel-like emulsion (Liu and Tang, 2014b). Clearly, chemical 

stability and digestibility need to be confirmed, but it is obvious that these particles hold 

promise for Pickering stabilization. 

It should be noted that the interface is a critical site for chemical reactions to take place 

(e.g., oxidation) (Berton-Carabin et al., 2014; Genot et al., 2013), and if a bioactive 

compound is used, chemical stability and functionality should be considered. Additionally, 
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if a bioactive compound is used in combination with a biopolymer as a Pickering particle 

(e.g., protein-polyphenol or protein-carotenoid complex), the chemical stability and 

potential bioavailability could be altered. For example, in bulk systems, carotenoids are 

chemically stable but less bioavailable when bound to proteins (Britfon, 1995; van het Hof 

et al., 2000), but show enhanced functionality for cancer therapy when coupled with a 

carrot pectic polysaccharide (Natarajmurthy et al., 2016). Similarly, protein-phenolic 

interactions can result in lower antioxidant capacity compared to that of the individual 

protein and polyphenol (Arts et al., 2002; Ozdal et al., 2013). The dosage chosen should be 

such that toxicity levels are not reached. 

Nushtaeva (2016) reported that mustard and cinnamon can be used safely as Pickering 

particles, but nutmeg required concentrations much higher than the recommended 

acceptable concentration (>0.1%). Conversely, the amount of particles that can be used in 

a formulation may not be high enough to yield a measurable biological effect, or may lead 

to undesired organoleptic changes. For example, polyphenol-protein binding can promote 

hydrophobicity and cross-linking, potentially enhancing functionality but also causing 

precipitation and astringency (Rodriguez et al., 2003). It is good to keep these effects in 

mind, together with digestibility and biological fate in vivo, since food Pickering emulsions 

are still in the early stages of development. 

2.6. In vitro and in vivo digestion of Pickering emulsions  

In recent years, Pickering emulsions have gained interest as controlled-release systems for 

the GI tract and delivery systems for the skin (Chevalier et al., 2015). In order to be effective 

in the GI tract, food Pickering emulsions need to be protected against conditions in the 

human digestive tract that has evolved towards highly efficient digestion, while still allowing 

release of the active component at the target location. This may be accomplished by, for 

example, slowing down lipolysis to deliver substrates into the ileum, thereby enhancing 

natural gut-brain signaling pathways of satiety that are normally induced by meal intake 

(Corstens et al., 2017). 

A first impression on the potential mechanisms of digestion can be obtained through in vitro 

studies, but a test in humans is needed due to the complexity of the GI tract. To the best of 

our knowledge, Pickering emulsion systems have not been tested in human clinical trials, 

but the first animal studies have been reported by the research group of Clive Prestidge, 

from the University of South Australia. This group used dried Pickering-like systems and 
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compared seven orally dosed formulations (n = 5 rats) against a control (intravenously 

dosed indomethacin). They found that these Pickering-templated lipid microcapsules 

showed improved dissolution kinetics as a result of improved lipolysis kinetics, which 

enhanced the bioavailability of the poorly soluble drug compared to aqueous solutions or 

conventional o/w emulsions (Simovic et al., 2009, 2010). 

As described in the previous section, only very limited in vivo work has been carried out, but 

more in vitro studies have been done, as summarized in Table 2.1. For Pickering emulsions 

stabilized by lactoferrin particles, similar oral behavior occurred compared to emulsions 

stabilized by native lactoferrin (Shimoni et al., 2013). This similarity is most probably caused 

by destabilization in the stomach, and could be circumvented by the use of alginate or 

carrageenan as additional layers. The authors found improved oral stability and reduced 

gastric proteolysis, which make these emulsion systems suitable as a delivery system 

(Shimoni et al., 2013). Pickering emulsions stabilized by kafirin (a globular storage protein 

from sorghum) showed a better stability in an acid environment compared to a basic 

environment, but had no resistance against gastric proteolysis (Xiao et al., 2015), and the 

same was found for emulsions stabilized by whey protein microgels (Sarkar et al., 2016). 

This implies that gastric proteolysis removed the barrier of protein-based Pickering particles 

(Sarkar et al., 2016). 

When looking at more complex Pickering emulsions, kafirin Pickering double emulsions did 

not provide additional protection against simulated gastric and intestinal fluid (Xiao et al., 

2017a), but susceptibility to gastric digestion was improved by incorporating kafirin 

Pickering emulsions in calcium-alginate hydrogels (Xiao et al., 2017b). Alternatively, a silica-

based Pickering emulsion was found to survive passage through the stomach, and released 

the lipophilic drug curcumin at 60% during the intestinal phase as a result of emulsion 

destabilization (Tikekar et al., 2013). 

For targeting the small intestine, chitin nanocrystal-stabilized emulsions showed promising 

results, as they reduced intestinal lipolysis compared to emulsions containing adsorbed 

whey proteins or caseinate (Tzoumaki et al., 2013). In addition, emulsions stabilized by 

particles made of Ginkgo biloba extracts or their flavonoid glycosides fraction showed a 

lower rate and extent of intestinal lipolysis compared to conventional Tween 20-stabilized 

emulsions (Yang et al., 2014), which may be related to the strong irreversible adsorption of 

the particles. 
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In addition to the resistance of interfacial structure, the release kinetics from Pickering 

emulsions have also been related to gel formation, either of the protein-gel layer, as 

discussed before (Sarkar et al., 2016), or of the whole system (Liu and Tang, 2016; Shao and 

Tang, 2016). For example, at higher oil fraction of 60%, a 2–3-fold lower intestinal release 

of the lipophilic model drug beta-carotene was measured compared to 30% oil emulsions 

(Shao and Tang, 2016), which was confirmed with heat-treated glycinin particles that are 

known to form a gel-like Pickering emulsion (Liu and Tang, 2016). It should be mentioned 

that these authors focused on intestinal digestion only, while glycinin most likely undergoes 

proteolysis in the stomach and will be degraded there (Sarkar et al., 2016; Xiao et al., 2015). 

In conclusion, there may be an effect of Pickering emulsions on intestinal digestibility but 

currently, the effect cannot be clearly attributed to either the Pickering stabilization itself 

or the difference in material used as reference in standard emulsions. 

2.7. Pickering emulsions: Rules and regulations for health and safety  

Nanomaterials have unique physicochemical characteristics (such as quantum size, shape, 

charge, area to volume ratio, surface roughness) and biological properties, which differ in 

toxic manifestations compared to the base material, and need to be well characterized to 

ensure appropriate usage (Bleeker et al., 2013). Unfortunately, legislation trails compared 

to technological development. Hence, it takes a relatively long time before the risks of 

nanomaterials are officially defined. 

A recommendation of the European Commission in 2011 defines nanomaterials as “natural, 

incidental or manufactured materials containing particles, in an unbound state or as an 

aggregate or as an agglomerate and where, for 50% or more of the particles in the number 

size distribution, one or more external dimensions is in the size range 1–100 nm (Bleeker et 

al., 2012; EU, 2011a). It also states that: “In specific cases, where warranted by concerns for 

the environment, health, safety or competitiveness (e.g., by other compounds), the number 

size distribution threshold of 50% may be replaced by a threshold between 1% and 50%.” 

This definition covers all kinds of particles independent of shape, charge, ratio of surface 

area to volume or other physical or chemical properties. Although Pickering particles are 

often considered as nanomaterials, many of them do not belong to this group, based on 

size (Figure 2.7.).  
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Figure 2.7. Size of objects (mainly of biological origin) on a nanometer scale to represent the 
size of Pickering stabilizers with respect to the definition of nanomaterials. 

The main concern regarding Pickering emulsions is related to the small size of Pickering 

particles as size may alter their biological fate of absorption, distribution, metabolism, and 

excretion (ADME) in vivo (McClements and Rao, 2011). An illustrative example of such a 

particle is asbestos. Nanoparticles can have altered persistence in the human body, 

compared to dissolved molecules or larger materials, thereby increasing their potential 

toxicity. They may induce oxyradical generation, which leads to oxidative cellular damage, 

accumulation in organs, or cytotoxicity. EU Regulation No. 1169/2011 on the provision of 

food information to consumers states that: “all ingredients present in the form of 

engineered nanomaterials shall be clearly indicated in the list of ingredients” and the names 

of such ingredients shall be followed by the word “nano” in brackets (Bleeker et al., 2012; 

EU, 2011b). If the ingredient is added as a nano-sized material that changes to a non-nano-

sized material (e.g., by dissolution), the name of the ingredient does not have to be followed 

by “nano.” In addition, if nanomaterials fall in the category “ingredients for which an 

omission from the list of ingredients is allowed,” labeling is also not required. 

There is concern not only regarding the risks of nanoparticle use in food, but also regarding 

consumer acceptability. This was nicely stated by Dickinson (2010), who wrote that “it is a 

key challenge for the food industry to produce nanoparticles and microparticles that are 

both effective and also acceptable for use in food products on a commercial scale.” 
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Chau et al. (2007) and Alkilany and Murphy (2010) reviewed major health concerns 

regarding nano-sized materials, including potential inhalation, cellular endocytosis, and 

blood–brain barrier penetration for particles smaller than 20 (Oberdörster et al., 2004), 30 

(Conner and Schmid, 2003), and 12 nm in diameter (Oberdörster et al., 2004; Sarin et al., 

2008; Sonavane et al., 2008), respectively. Biodegradable nanoparticles are generally 

considered safe because they have a low risk of accumulation (compared to inorganic 

materials), as do many “naturally” occurring nano-sized food components that have been 

proven safe by hundreds of years of consumption. For example, casein micelles in milk 

reportedly span a wide range of nano sizes from approximate 55 to 115 nm (de Kruif and 

Huppertz, 2012), yet have been safely consumed in commercially pasteurized milk since the 

late 1800s. 

Inorganic materials and, specifically, small positively charged particles are suspected of 

causing serious health issues, and these particles are not typically used in food formulations. 

However, despite the fact that inorganic particles have greater toxicity risks, some have 

already been applied in food or cosmetics. For example, titanium dioxide is widely applied 

as a colorant and UF filter in concentrations up to 25% w/w (EU, 2016).  

Silicon dioxide and silicates have been reviewed by the US Food and Drug Administration 

(FDA) and the European Food Safety Authority (EFSA). In a technical report from the Select 

Committee on Generally Recognized As Safe (GRAS) substances, the FDA concluded that 

there is no evidence in the available literature that suggests reasonable grounds to suspect 

a hazard to the public when the various silicates (including silicon dioxide) are used at 

specified or reasonable levels expected in food (Lewis and Harrison, 2009). Silica is used in 

food formulations as a thickening agent (hygroscopic applications) and flowing agent in 

powdered foods. Silicon dioxide can be used as a direct ingredient in food and as a 

component of food packaging materials, at levels in accordance with good manufacturing 

practices, and silica can also be used indirectly in the manufacture of adhesives, coatings, 

defoaming agents, greases and lubricants, paper and paperboard and polymers that are 

then used as components of food packaging materials. Although the exposure level for 

silicon dioxide in food products is up to 1500 mg per day (EFSA, 2009), it seems advisable to 

develop biobased, food-grade particles for Pickering stabilization in food applications as 

these carry a lower toxicity risk. 
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The biological fate, bioavailability, and potential toxicity of nano-emulsions (size range 1–

100 nm) was reviewed by McClements and Rao (2011) and was described as depending on 

composition and physicochemical properties. No evidence was found that edible 

nanoparticles fabricated from components that are normally digested within the GI tract 

pass the GI system intact and cause discomfort or harm. However, quantifying nanoparticles 

in complex materials such as food is difficult, and low numbers of nanoparticles have been 

studied, which makes it difficult to draw conclusions. Raynes et al. (2014) reviewed the use 

of protein nanostructures in foods and recognized that some are toxic and associated with 

disease, such as protein amyloid fibrils, but no general statement can be made on toxicity 

of nano-sized proteins.  

In conclusion, Pickering emulsions for commercial food applications need to be developed 

according to the regulations on human exposure to nanomaterials (Aschberger et al., 2015; 

Berton-Carabin and Schroën, 2015); similar to conventional chemical agents, new products 

can only be launched when proven safe. The risks connected to Pickering particles in foods 

are mostly low, but the European regulation makes classification of the various particles 

difficult, since it only uses size as a distinguishing factor. Given the rapid development in the 

field of applications for nanomaterials, it would be advisable to extend legislation, to give 

clarity not only to manufacturers but also consumers.  

2.8. Conclusions and future directions 

In this chapter, we reviewed the mechanisms through which particles physically stabilize 

emulsions, with a main focus on food-grade particles that could potentially be applied in 

delivery systems for bioactive components. Substantial work has been aimed at 

understanding model, non-food Pickering emulsions, yet the knowledge generated 

indicates many potential applications and benefits for food, cosmetic, and pharmaceutical 

applications, by using biobased ingredients such as fat, carbohydrates, and proteins. Particle 

stabilization may positively contribute to enhanced chemical stability of bioactive 

components, making Pickering emulsions efficient delivery systems. However, in-depth 

studies on the fate of Pickering emulsions in digestive conditions are still lacking. Moreover, 

the regulations regarding health and safety of biobased particles are in development. 

Existing toxicity concerns are primarily associated with particle size, dose, and 

biopersistance (e.g., inorganic versus organic), and have to be considered before such 

particles can be applied in food.  
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Abstract 

Sub-micron colloidal lipid particles (CLPs) can successfully be used as Pickering stabilizers in 

oil-in-water (O/W) emulsions, leading to enhanced stability compared to conventional 

emulsifier-stabilized emulsions. Varying the lipid solid-liquid ratio leads to particles with 

distinct nanostructure and morphology, resulting in tunable emulsion stabilization 

performance. Our CLPs are produced by hot high pressure homogenization of high melting 

point fats in water, and subsequent cooling to induce lipid crystallization. Lath-like 

tripalmitin and palm stearin CLPs form jammed, cohesive interfacial layers that prevent 

relaxation of emulsion droplets, and form a three-dimensional network in the continuous 

aqueous phase. CLPs consisting of a mixture of solid tripalmitin and liquid tricaprylin are 

polycrystalline platelet-like particles that form O/W emulsions with spherical and bridged 

droplets covered by a thin particle layer. Our results present a versatile approach to 

interfacial design that also opens up new perspectives for development of novel delivery 

systems for active ingredients. 
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3.1. Introduction 

Particle-stabilized emulsions, better known as Pickering (Pickering, 1907) or Ramsden 

(Ramsden, 1903) emulsions, are known for their enhanced stability against coalescence and 

Ostwald ripening as compared to conventional surfactant- or polymer-stabilized emulsions. 

The use of colloidal particles as emulsion stabilizers has seen a surge of interest, for example 

in the food, pharmaceutical and cosmetic industry (Berton-Carabin & Schroën, 2015a; 

Frelichowska, Bolzinger, Pelletier, Valour, & Chevalier, 2009; Marku et al., 2012; Rayner et 

al., 2014; Schröder, Corstens, Ho, Schroën, & Berton-Carabin, 2018), in separation processes 

(Monteillet et al., 2014) and in the fabrication of new emulsion-templated materials, such 

as colloidosomes (Kotula & Anna, 2012; Thompson, Williams, & Armes, 2014). Over the past 

decades a variety of organic and inorganic particles, such as inorganic silica and clay 

particles and polymeric latex colloids have been used for those purposes (Binks & Kirkland, 

2002; Binks & Lumsdon, 2001; Horozov & Binks, 2006; Zang, Stocco, Langevin, Wei, & Binks, 

2009). Their effectiveness as Pickering stabilizers depends strongly on their wettability, size, 

shape, inter-particle interactions and concentration (Binks, 2002; Tcholakova et al., 2008a).  

The particle wettability, as characterized by the three-phase contact angle, determines the 

position of the particles in the interface and their adsorption energy (Leal-Calderon & 

Schmitt, 2008). Moreover, it determines the preferred emulsion type: O/W emulsions are 

more effectively stabilized by particles that are preferentially wetted by water, whereas 

water-in-oil (W/O) emulsions are most effectively formed by relatively hydrophobic 

particles, which are mostly wetted by the oil (Aveyard, Binks, & Clint, 2003; Dickinson, 

2010b; Finkle et al., 1923). As colloidal particles anchor in the interface, they provide an 

excellent mechanical barrier to droplet coalescence. The remarkable stability of Pickering 

emulsions results from the strong attachment of particles in the interface, quantified by the 

adsorption energy Ga:  

                                               Δ𝐺𝑎 =  𝜋𝑟2𝛾𝑜𝑤  (1 − cos 𝜃)2                                               (Eq. 3.1.) 

where r is the particle radius, γow, the interfacial tension between the two immiscible fluids 

and 𝜃 the three phase contact angle. Even for small particles, adsorption energies invariably 

exceed the thermal energy by orders-of-magnitude, ensuring their irreversible anchoring at 

liquid interfaces. Due to their practically irreversible adsorption, they can also create high 

interfacial pressures that can prevent mass transfer across the interface in a process known 

as Ostwald ripening. In addition, inter-particle interactions are key to control the stability of 

Pickering emulsions: in the continuous phase, such interactions lead to the formation of a 
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three-dimensional network of aggregated particles that contributes to emulsion stability 

(Lam, Velikov, & Velev, 2014); at the interface, attractive inter-particle interactions also 

occur due to capillary forces (Lucassen, 1992) resulting in cohesive (jammed) interfacial 

networks. Model particles can be produced with high monodispersity, in various sizes, and 

can be made perfectly spherical and truly solid.  

However, it is challenging to produce particles not only suitable for Pickering stabilization 

of O/W emulsions but which consist of sustainable biobased materials, are available in 

sufficient quantify and whose production enables industrial application at scales 

significantly larger than those typically explored in laboratory studies. Protein- or 

carbohydrate-based particles have been suggested for Pickering stabilization (Destribats, 

Rouvet, et al., 2014a; Liu & Tang, 2013; Rayner, Sjöö, et al., 2012), possibly after surface 

modification to ensure appropriate wettability (Dokića, Krstonošićb, & Nikolića, 2012; 

Timgren et al., 2013; Yusoff & Murray, 2011) and thereby strong anchoring of particles at 

the interface.  

A few examples report on the stabilization of W/O emulsions (Pawlik, Kurukji, Norton, & 

Spyropoulos, 2016a) or bubbles (Brun, Delample, Harte, Lecomte, & Leal-Calderon, 2015) 

with lipid-based particles such as fat crystals (Ghosh & Rousseau, 2011). It is even possible 

to modify the surface properties of fat particles, e.g., through introducing polar groups or 

mixing with hydrophilic molecules (e.g., proteins (Pawlik et al., 2016a)) to make them 

adequate for O/W emulsion stabilization (Gupta & Rousseau, 2012; Kurukji et al., 2013; Liu 

& Tang, 2014b; Luo et al., 2011; Ye, Zhu, & Singh, 2013). For instance, water-insoluble 

phytosterol crystals (Liu & Tang, 2014b), solid lipid nanoplatelets from glyceryl stearyl 

citrate (Gupta & Rousseau, 2012) and casein-coated hexadecane droplets (Ye et al., 2013) 

have been successfully used in Pickering emulsions. Despite these examples, which 

illustrate the feasibility of a biobased and sustainable route to producing Pickering 

emulsions, no clear design rules that link the properties of biobased particles to emulsion 

stability have been established.  

In this paper, we explore the use of colloidal lipid particles (CLPs) in the tailored design of 

biobased Pickering emulsions. The choice of the lipid allows tailoring of the particle 

microstructure, such as its internal crystallinity; we show how this affects the particle 

morphology and its ability to stabilize Pickering emulsions. We systematically explore these 

effects to elucidate the involved mechanisms of Pickering stabilization.  
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3.2. Experimental section 

3.2.1 Materials 

Tripalmitin (#T8127, purity > 99%), tricaprylin (#91040, purity > 90%), Tween 40 (#P1504), 

sodium phosphate monobasic (#S9638), sodium phosphate dibasic (#S9763), 1,1′-

dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiOC18(3)) (#468495), 

ammonium thiocyanate (#1.01213) and methylene chloride (#270997) were purchased 

from Sigma-Aldrich. Palm stearin (palmitic acid, 82 %; oleic acid, 9 %; stearic acid, 5 %) was 

supplied by ADM (Saint Laurent Bangy, France) (composition can be found in Supporting 

information, Figure S3.2.). Cobalt nitrate hexahydrate was purchased from ACROS Organics. 

Sunflower oil was obtained from a local supermarket, and stripped with alumina powder 

(MP EcoChrome™ ALUMINA N, Activity: Super I, Biomedicals) to remove impurities and 

tocopherols (Berton, Genot, & Ropers, 2011). Ultrapure water obtained from a Milli-Q 

system (Millipore Corporation, Billerica, Massachusetts, USA) was used throughout. All 

other chemicals used were of analytical grade.  

3.2.2. Preparation and characterization of CLP dispersions 

Briefly, we melted the lipid phase (5% w/w tripalmitin, palm stearin or tripalmitin/tricaprylin 

(4:1 w/w)) at 80 °C in a water bath and added it to an aqueous phase (95% w/w) containing 

2% w/w Tween 40 in 10 mM phosphate buffer at pH 7.0 at the same temperature. A coarse 

emulsion was prepared by high speed stirring at 11,000 rpm for one min using a preheated 

rotor stator homogenizer (Ultra-turrax IKA T18 basic, Germany). This coarse emulsion was 

then homogenized at 800 bar for 5 cycles through a high pressure homogenizer 

(Microfluidizer® Processor MF 110Y with Y-shaped interaction chamber (F12Y; min. internal 

channel: 75 μm), Microfluidics, Newton, Massachusetts, USA) operated at 80 °C to obtain 

submicron-sized melted fat droplets. It was then left to cool to 20 °C over the course of ~ 6 

h by turning off the water bath, during which the lipid crystallized. The resulting dispersions 

of colloidal lipid particles were stored at 4 °C (Figure 3.1., first step).  

The particle size distribution and average diameters were measured by static light scattering 

(Malvern Mastersizer 2000, Malvern Instruments Ltd., Malvern, Worcestershire, UK). The 

following optical properties were used: refractive indices of 1.540 (solid lipid) and 1.330 

(water) with an absorption index of 0.01.  
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The hydrodynamic diameter (z-average) and the polydispersity index (PI) of the CLPs were 

determined by dynamic light scattering (Zetasizer Nano, Malvern, Worcestershire, UK) at 

25 °C. Typically, the particle dispersions needed to be diluted 100 fold in 10 mM phosphate 

buffer at pH 7 to prevent multiple scattering.  

Transmission electron microscopy (TEM) was performed on CLPs which were deposited 

onto a freshly glow discharged carbonized copper grid (200 mesh) from a 0.5% w/w CLP 

dispersion. The excess solvent was blotted using standard filter paper; the particles were 

stained using a 3% w/w ammonium molybdate solution in water at pH 6.8. Samples were 

imaged using a JEOL JEM1011 TEM (Peabody, USA) operating at 80 kV in combination with 

a 2K x 2K SIS Veleta camera. To create a tomogram, images were taken at every degree 

ranging from -60 to 60 in a JEOl 2100 TEM operated at 200 kV. Images were aligned and a 

tomogram was reconstructed using IMOD software, and visualized using Chimera.  

The melting and crystallization behavior of the high melting point lipids either in the bulk 

phase or in the form of CLPs was investigated by differential scanning calorimetry (DSC) 

(Pyris Diamond DSC, Perkin-Elmer, DSC 8000, Norwalk, USA). Approximately 5 mg of bulk 

lipid material was placed in a stainless steel pan, after which it was sealed hermetically. An 

empty pan was used as reference. Both pans were heated from -10 °C to 75 °C at  

1 °C min-1, cooled down to -10 °C at 1 °C min-1, after which the pans were held at -10 °C for 

1 min, followed by two identical heating/cooling cycles. The CLP dispersions were diluted in 

phosphate buffer (10 mM, pH 7) to 0.125% w/w lipid prior to analysis, and were loaded into 

a VP-DSC (Microcal, Northampton, MA) in which the heat flux was measured relative to 

phosphate buffer. Each aliquot was heated from 5 °C to 70 °C at 1 °C min-1, cooled down to 

5 °C at 1 °C min-1, followed by two identical heating/cooling cycles.  

The non-adsorbed Tween 40 concentration in the aqueous phase of CLP dispersions was 

quantified by spectrophotometric analysis (Khossravi, Kao, Mrsny, & Sweeney, 2002). 

Freshly prepared (non-crystallized) CLP dispersions, cooled CLP dispersions, and a Tween 40 

solution with known concentration were centrifuged using ultrafiltration-centrifugation 

units (Amicon cells, cut-off 100 kDa, Sigma Aldrich, Saint Louis, MO, USA) at 4000 g for 30 

min at 40 °C (non-crystallized dispersions) or 4 °C (cooled dispersions and Tween 40 

solution). The permeate (i.e., the aqueous phase of the dispersion) was recovered and 1 mL 

was added to 1 mL methanol. The solution was evaporated to dryness under nitrogen at 

85 °C, then cooled down. Ammonium cobalt thiocyanate (ACTC) reagent was prepared by 
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dissolving 4.35 g of ammonium thiocyanate and 0.70 g of cobalt nitrate hexahydrate in 25 

mL of a 10 mM phosphate buffer at pH 7.0 (Khossravi et al., 2002). Then 0.4 mL of ACTC 

reagent and 0.8 mL of methylene chloride were added to the dried samples. Subsequently, 

the samples were mixed and centrifuged at 2000 g for 15 min. The absorbance of the 

bottom methylene chloride layer was measured at 620 nm. A calibration curve was 

generated with Tween 40 solutions with known concentrations ranging from 0.005 to 0.04% 

w/w.  

3.2.3. Preparation and characterization of O/W emulsions  

Sunflower oil, stripped from surface-active impurities, was dispersed using CLP dispersions 

as the stabilizer to prepare O/W emulsions. This was done either by high pressure 

homogenization or manually. For the high pressure homogenization procedure, a primary 

emulsion was first formed by high speed stirring at 7000 rpm for 1 min using a rotor stator 

homogenizer (Ultra-turrax IKA T18 basic, Germany). This primary emulsion was passed 

through a high pressure homogenizer (Microfluidizer® Processor MF 110Y with Y-shaped 

interaction chamber (F12Y; min. internal channel: 75 μm), Microfluidics, Newton, 

Massachusetts, USA) at 400 bar for 5 cycles. Manual emulsion preparation implied forcefully 

shaking the emulsion by hand for 10 seconds in 15 mL centrifuge tubes (see Figure 3.1. for 

an overview). Emulsions were prepared with aqueous dispersions containing 1% w/w CLPs 

and 10% w/w oil, or with 5% w/w CLPs and 50% w/w oil, and stored at 4 °C. 

The droplet size was measured by static light scattering (Malvern Mastersizer 2000, Malvern 

Instruments Ltd., Malvern, Worcestershire, UK) as described previously. The following 

optical properties were used: refractive indices of 1.465 (sunflower oil) and 1.330 (water) 

with an absorption index of 0.01.  

The microstructure of the emulsions stabilized by CLPs was evaluated by light microscopy 

using a Carl Zeiss Axioscope A1 optical microscope equipped with a camera (AxioCam Mrc5) 

and polarization filters. 

Confocal microscopy images of O/W emulsions stabilized by CLPs were obtained on a Zeiss 

Axiovert 200M with an LSM 5 exciter using a 100x oil immersion objective (Göttingen, 

Germany). For visualization of the CLPs the high melting point lipid was dyed by 

incorporation of 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO) (0.5 mg/g), dissolved in 

the lipid prior to particle formation. The fluorescent dye was excited with the 488 nm line 
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of an argon laser and the fluorescence light was collected with a bandpass filter between 

490-505 nm. Fluorescence recovery after photobleaching (FRAP) was used to study the 

mobility of the CLPs within the interfacial layer. The fluorescence of the interfacial layer was 

recorded with 50 images, and immediately after the area was photobleached by localized 

exposure to intense laser illumination; after this, 800 confocal fluorescence images were 

recorded. From this, the fluorescence recovery was deduced, using the background signal 

as a reference.  

All measurements were repeated three times on samples that were prepared at least in 

duplicate in independent experiments. Results are presented as the average over these 

experiments including their standard deviation. 

 

 

Figure 3.1. Schematic overview of the production process of CLP dispersions, and CLP-
stabilized emulsions.  
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3.3. Results & discussion 

To explore the use of CLPs with different design as Pickering stabilizers for O/W emulsions, 

we applied a hierarchical approach, which started with preparing CLPs by hot high pressure 

homogenization of high melting point fat (tripalmitin, tripalmitin/tricaprylin (4:1 w/w) or 

palm stearin) in an aqueous phase containing Tween 40. When no or a low surfactant 

concentration (< 2% w/w) was used, extensive aggregation and gelling took place when the 

system was allowed to cool down (Supporting information, Figure S3.1.). In order to prevent 

this, 2% w/w Tween 40 was chosen as a suitable concentration. Tween 40 is a food-grade 

surfactant and mainly contains palmitic acid (C16:0) as the hydrophobic tail, which is also 

the main fatty acid in tripalmitin and palm stearin. Therefore, Tween 40 hydrophobic tails 

can tightly align with alkyl chains of the fat phase and induce surfactant-templated 

crystallization, therewith mediating crystallization (Salminen, Gömmel, Leuenberger, & 

Weiss, 2016). After fat crystallization, CLP aqueous dispersions were homogenized with low 

melting point oil to make Pickering emulsions (Figure 3.1.). We first report on the physical 

characterization of CLPs, after which their ability to physically stabilize emulsions is 

discussed.  

3.3.1. Particle characterization 

The mean diameter of all three CLPs as determined by static light scattering was 

approximately 120 nm, with a fairly unimodal size distribution (Figure 3.2.A-C), which is not 

affected by fat crystallization. When using dynamic light scattering, we found that the 

hydrodynamic diameter of CLPs made of tripalmitin/tricaprylin (4:1 w/w) was slightly 

smaller than that of CLPs made of tripalmitin or palm stearin (~130 nm, vs. ~160 nm), which 

can be attributed to the lower viscosity of tricaprylin that facilitates droplet break-up 

(Supporting information, Table S3.3.).  

While light scattering techniques allow us to measure the average diameter of the CLPs, 

they do not give insight into their morphology and structural organization; for that we used 

DSC melting thermograms and TEM. We were able to produce particles with distinct 

differences in morphology depending on their lipid composition (Figure 3.2.D-F). Tripalmitin 

CLPs had a lath-like morphology with a length of ~250 nm and a width of ~70 nm. Particles 

composed of a tripalmitin/tricaprylin mixture (4:1, w/w) existed as individual yet connected 

crystalline structures, also called crystallites or grains, and consisted of cubic or plate-like 

structures of ~70 to 300 nm in size (Supporting information, Figure S3.4.A). Palm stearin 
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CLPs showed a lath-like morphology comparable to that found for tripalmitin, but were 

slightly shorter with a smaller aspect ratio (length ~100 to 250 nm, and width ~70 to 100 

nm). The sizes obtained by TEM and light scattering are in good agreement. In addition, DSC 

melting thermograms of CLPs showed a sequence of melting peaks corresponding to a 

complex layered structure within the particles, which melted in multiple identifiable events 

from the particle surface (Bunjes, Koch, & Westesen, 2000; Coupland, 2002; Unruh, Bunjes, 

Westesen, & Koch, 2001) (Figure 3.3.A-C). Such a physical organization was corroborated 

by the TEM images and reconstructed 3D tomogram (Supporting information S3.4.B and 

Figure S3.5.) that clearly showed a layered structure within the tripalmitin/tricaprylin-based 

CLPs.  

 

Figure 3.2. Characterization of tripalmitin (left), tripalmitin/tricaprylin (4:1 w/w) (middle) 
and palm stearin (right) CLP dispersions. Upper row: particle size distributions (specifics in 
the supporting information); Bottom row: TEM images.  

All three CLPs were non-spherical, and have clear morphological differences related to the 

crystalline microstructure within the particles. To further investigate the crystal 

polymorphism we studied the cooling thermograms from DSC experiments, which showed 

that the three systems had different crystallization behavior, both as bulk fat phases and 
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dispersed as particles (Figure 3.3.D-F). For all three CLPs, the DSC profiles did not change 

over the tested storage period (2 months) (data not shown), indicating that the crystalline 

polymorph was at least metastable. Bulk tripalmitin showed a small exothermic peak at 

43 °C followed by a main exothermic peak at 41 °C, most probably corresponding to the 

formation of β’ and β-subcell crystals (see Supporting information, Figure S3.6.) (Helgason, 

Awad, Kristbergsson, McClements, & Weiss, 2009a; Rønholt, Mortensen, & Knudsen, 2013; 

Salminen, Helgason, Kristinsson, Kristbergsson, & Weiss, 2013; Sato, 2001), while the 

corresponding CLPs showed two exothermic peaks, at ~24 and 29 °C, which are also 

expected to correspond to the needle or platelet shaped β’ and β-subcell crystals (Helgason, 

Awad, Kristbergsson, McClements, & Weiss, 2009b). The bulk mixture of tripalmitin and 

tricaprylin (4:1 w/w) showed a broad crystallization peak with three maximums (at ~35, 36 

and 37.5 °C) corresponding to several structural forms within the crystalline matrix, while 

the analogous CLPs show two broad exothermic peaks at ~16 and 25 °C, most probably 

corresponding to β’ and β-subcell crystals. Bulk palm stearin showed two exothermic peaks 

at ~36 and 38 °C, which may suggest again that β’ and β polymorphisms coexisted, while 

CLPs show β’ and β-subcell crystallization peaks at ~21 and 24 °C, respectively.  

These results showed that crystalline domains were formed within all particles, present in 

two polymorphic forms that also existed in the bulk. Interestingly, we noted a strong super-

cooling effect within the nanoparticles, as the crystallization temperature of the CLPs was 

shifted by ~13 to 20 °C as compared to the bulk lipid, which is in accordance with previous 

studies (Bunjes, Westesen, & Koch, 1996; Westesen & Bunjes, 1995). This may be due to 

two effects: first, in bulk fat, nuclei formation is heterogeneous, due to the presence of 

impurities which may act as crystal templates (Chen, McClements, & Decker, 2011; Yu, Lin, 

Yu, & Liu, 2015), but when fat is emulsified into submicron-sized droplets, the probability 

that an impurity is present is dramatically decreased, and consequently crystallization in the 

CLPs is predominantly a result of homogeneous nucleation, which requires super-cooling. 

Secondly, the large curvature induced Laplace pressure in the sub-micron sized droplets 

decreases the nucleation rate and accordingly the crystallization temperature (Li, Donadio, 

& Galli, 2013). The crystallization peaks of CLPs are also broader compared to those of bulk 

lipids, especially in the case of the tripalmitin/tricaprylin system. This can be attributed to a 

decrease in crystalline order within the particles (Kovačević et al., 2014) due to 

confinement, which especially occurs for particles made of triglyceride blends.  
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Figure 3.3. Characterization of tripalmitin (A, D), tripalmitin/tricaprylin (4:1 w/w) (B, E) and 
palm stearin (C, F) CLP dispersions. DSC thermograms of bulk material (top line) and CLPs 
(bottom line). Top row: Melting thermograms; Bottom row: Crystallization thermograms.  

These results illustrate how the morphology of submicron-sized particles can be tailored by 

changing the composition of the lipid phase. Pure compounds, such as tripalmitin, form 

almost perfect needle or platelet shaped β’ and β crystals, which results in long lath-like 

structures that may protrude through the particle surface (Douaire et al., 2014b; Leal-

Calderon & Schmitt, 2008). In palm stearin CLPs (82% palmitic acid, 9% oleic acid, 5% stearic 

acid), some crystallographic mismatches occurred, eventually leading to shorter and wider 

colloidal structures composed mainly of β’ sub-cell crystals (Yu et al., 2015). In CLPs made 

of mixed tripalmitin and tricaprylin (4:1 w/w), liquid and crystalline domains coexisted 

within the particles, resulting in a complex organization in the form of a layered 

nanostructure.  

3.3.2. Formation and characterization of CLP-stabilized emulsions 

To explore their efficacy in stabilizing emulsions, we started by emulsifying 10% w/w 

sunflower oil in an aqueous dispersion containing 1% w/w CLPs. All emulsions showed a 
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distinctive birefringent polarization ring at the droplet surface in polarized light microscopy 

images, indicating not only that CLPs adsorbed but that they maintained their crystallinity 

at the oil-water interface (Figure 3.4.A-F). The Pickering emulsions prepared with cubic 

tripalmitin/tricaprylin (4:1 w/w) CLPs appeared homogeneous at the macroscopic scale. 

Microscopically, a thin interfacial layer was formed (Figure 3.4.B&E); the oil droplets had a 

spherical shape and showed bridging (indicated by arrows). Bridging is known to occur in 

Pickering emulsion systems when the particles are largely hydrophilic, and occurs 

independent of particle concentration (Dickinson, 2010b). These data suggest that these 

particles adsorbed in a particulate monolayer.  

By contrast, emulsions prepared with tripalmitin or palm stearin CLPs macroscopically 

separated into a phase containing a three-dimensional aggregated network of particles, 

entrapping many oil droplets, and an aqueous phase with little or no oil droplets (Figure 

3.4.A&D, 3.4.C&F). In these systems, we observed that a considerable fraction of the 

droplets adopted and maintained a non-spherical shape. This suggests that CLPs strongly 

adsorbed at the interface and formed a jammed, cohesive interfacial network that 

prevented surface-tension driven shape relaxation of emulsion droplets (Tan, Zhang, Wang, 

Xu, & Sun, 2011).  

The emulsions stabilized by tripalmitin CLPs were further characterized by CLSM (Figure 

3.5.A-C), which revealed an aggregated tripalmitin CLP network fully covering the droplets, 

with a three dimensional CLP network in the continuous phase, that may enhance the 

physical stability of the emulsion (Dong et al., 2014). Fluorescence recovery after 

photobleaching (FRAP) experiments (Supporting information, Figure S3.7.) confirmed that 

the interfacial film was immobile, suggesting that the tripalmitin CLPs were irreversibly 

adsorbed and aggregated at the interface.  

Our two-step emulsification process consisting of sequential particle preparation followed 

by liquid oil emulsification results in the formation of liquid oil droplets surrounded by a 

shell of crystallized CLPs, which can thus be described as Pickering emulsions. For 

comparison purposes, the same starting materials were processed through a one-step 

emulsification process, where tripalmitin (1% w/w), sunflower oil (10% w/w) and an 

aqueous phase containing 2% w/w Tween 40 were directly manually homogenized. In that 

case, tripalmitin separated from the emulsion upon fat crystallization (i.e., big fat clumps 

were formed). No three-dimensional aggregated network was observed in the continuous 
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phase that could enhance emulsion physical stability (Supporting information, Figure S3.9.). 

Furthermore, fast coalescence and oiling-off took place. This clearly shows the added value 

and necessity of the two-step emulsification process for the formation of CLP-stabilized 

Pickering emulsions.  

 

 

Figure 3.4. Polarized light images of emulsions produced by simple shaking with (A, D) 
tripalmitin, (B, E) tripalmitin/tricaprylin (4:1 w/w) (bridging between droplet is indicated by 
arrows) or (C, F) palm stearin CLPs. 

Figure 3.5. CLSM images of emulsions stabilized by tripalmitin CLPs dyed by incorporation of 
1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate: (A) cross section, (B) 
surface and (C) 3D z-stack. 
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We can speculate on how the microstructural properties of the three types of CLPs affected 

their emulsion stabilization efficiency. During CLP solidification, the sub-micron sized fat 

droplets were converted into non-spherical particles, accompanied by a considerable 

increase in specific surface area, especially for lath-like CLPs. In order to make a quantitative 

estimation of this increase, the average surface area of spherical tripalmitin droplets (~120 

nm) was compared to the average surface area of lath-like tripalmitin particles as imaged 

by TEM (i.e., with length of ~ 220 nm and width of ~70 nm), assuming the volume remained 

constant. Accordingly, an increase of about 50% of surface area was found. In addition, the 

concentration of Tween 40 in the aqueous phase of the tripalmitin CLP dispersions was 

quantified before and after fat crystallization. Non-crystallized and crystallized CLP 

dispersions showed a non-adsorbed Tween 40 concentration of 0.61 ± 0.03% w/w and 0.51 

± 0.04% w/w, respectively. Thus the amount of Tween 40 adsorbed at the surface of CLPs 

increased only by ~7% upon crystallization, corresponding to surface coverages of 5.1 and 

3.7 mg/m² for non-crystallized and crystallized CLPs. This shows that crystallization of CLPs 

resulted in a decrease in the interfacial Tween 40 concentration, which probably led to an 

increased hydrophobicity of the particles.  

Tripalmitin/tricaprylin (4:1 w/w) CLPs were less subjected to deformation upon 

crystallization, and thus possibly more hydrophilic than tripalmitin and palm stearin CLPs. 

The higher hydrophilicity of tripalmitin/tricaprylin (4:1 w/w) CLPs could explain their ability 

to bridge interfaces of neighboring droplets, whereas the hydrophobic inter-particle 

interactions of tripalmitin and palm stearin CLPs could explain particle aggregation and 

network formation at the interface, and in the continuous phase (Westesen & Siekmann, 

1997). This could, in turn, have facilitated the formation of a jammed interfacial structure 

that prevents relaxation of emulsion droplets (as reflected in the non-spherical shape of 

some emulsion droplets). 

Another effect contributing to increasing particle hydrophobicity upon crystallization is the 

fact that fat crystals can also protrude throughout thin surfactant interfacial films (Douaire 

et al., 2014a; Fredrick, Walstra, & Dewettinck, 2010; Leal-Calderon & Schmitt, 2008; Whitby 

& Wanless, 2016). This may again promote hydrophobic inter-particle interactions. It is 

expected that the large needle or platelet shaped crystals in tripalmitin and palm stearin 

CLPs are able to penetrate the surface of neighboring particles, resulting in jammed, thick 

and strong interfacial films, and the formation of a solid network in the continuous phase 
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of the emulsion. Conversely, the smaller crystals in tripalmitin/tricaprylin (4:1 w/w) CLPs 

can hardly induce jamming or network formation. Such fat particle-particle bridging is well 

known to occur when particles are covered with thin surfactant layers (Graca, Bongaerts, 

Stokes, & Granick, 2007), and this effect can actually be induced on purpose, such as in ice 

cream processing where surfactants are added to weaken the surface of protein covered 

fat droplets (Fuller, Considine, Golding, Matia-Merino, & MacGibbon, 2015; Fuller et al., 

2014).  

Finally, it should be pointed out that the fact that our CLPs are non-spherical can be an asset 

for emulsion stabilization: it has been reported that the detachment energy of rod and disk 

shaped particles (at contact angles of 90°) is about 32 and 58 % higher compared to 

spherical particles (Binks & Horozov, 2006; Tavernier, Wijaya, Van der Meeren, Dewettinck, 

& Patel, 2016b). The needle, lath or platelet shape of our CLPs is thus certainly an asset, and 

their degree of anisotropy can be conveniently tuned by the fat composition, opening 

perspectives for tailored design routes.  

The fact that CLP-stabilized emulsions could be made in a reproducible manner by simple 

hand shaking (i.e., very low energy input) gave evidence that we had particles with 

remarkable ability to act as Pickering stabilizers, albeit that the emulsion droplets where 

large. To investigate whether Pickering emulsions with smaller droplet sizes could also be 

produced, we applied harsher emulsification conditions (high pressure homogenization) 

using 50% w/w oil and 5% w/w tripalmitin CLPs as stabilizers. The resulting emulsion was 

macroscopically homogeneous and viscous, and this may indicate that an interconnected 

network was formed, that stabilized the emulsion physically. The droplet size distribution 

(Figure 3.6.) shows two distinct peaks corresponding to the individual CLPs (~0.1 μm), and 

to emulsion droplets ranging from ~0.3 – 6.0 μm in size. Size did not change over more than 

6 weeks, indicating that no coalescence or phase separation took place. Polarized light 

microscopy confirmed the presence of small oil droplets with adsorbed tripalmitin CLPs at 

the interface (Supporting information, Figure S3.8.).  

Maybe even more importantly, this indicated that our CLP particles could be used in 

combination with high pressure homogenization. Many biobased particles cannot 

withstand high shear homogenization methods, therefore most of the previous studies on 

Pickering emulsions stabilized by biobased particles involve large emulsions droplets (at 

least a few tens of microns). When a small emulsion droplet size is targeted, alternatives to 
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true Pickering stabilization have been tested: for example nanostructured colloidosomes 

were produced by electrostatic deposition, where negatively charged solid lipid particles 

were adsorbed onto positively charged whey protein-stabilized micron-sized oil droplets 

(Salminen, Helgason, Kristinsson, Kristbergsson, & Weiss, 2016). It is clear that our approach 

is much more versatile as we do not have constrains regarding either the charge of our 

particles, the pH of the system, or the emulsification method used.  

 

Figure 3.6. Particle size distribution of an emulsion prepared with an aqueous dispersion 
containing 5% w/w tripalmitin CLPs and 50% w/w oil produced by high pressure 
homogenization, fresh or after 6 weeks storage (the solid black line is the particle size 
distribution for the CLP dispersions).  

3.4. Conclusions  

In this chapter, we successfully developed CLPs as interface stabilizers for O/W emulsions. 

We show that particles could be modified by changing the composition of the lipid phase, 

resulting in particles with distinct morphology and crystalline structure. This influenced 

their performance as emulsion stabilizers, e.g., by tuning their wettability and affecting 

inter-particle interactions.  

The interfacial structure of O/W emulsions stabilized by lath-like tripalmitin or palm stearin 

CLPs appeared as a jammed, fully covered, cohesive interfacial network that prevented 

relaxation of emulsion droplets into a spherical shape. By contrast, CLPs consisting of a 

mixture of tripalmitin and tricaprylin appeared as polycrystalline cubic or plate like 

structures with clear grain boundaries. They formed O/W emulsions with spherical and 

bridged droplets covered by a thin CLP layer.  
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The nanostructure of CLPs greatly influenced particle adsorption and emulsion structure, 

and could lead to emulsions with remarkable stability. CLPs are a promising novel type of 

Pickering stabilizers for O/W emulsions, due to their simplicity of preparation, tunable 

structure and properties, effectiveness in emulsion stabilization, and resistance against 

homogenization conditions.  

3.5. Supporting information 

   

Figure S3.1. Tripalmitin CLP dispersions produced with 0.5% w/w (left) and 1% w/w (right) 
Tween40 in the aqueous phase.  

 

Table S3.2. Fatty acid composition of palm stearin.  

Component name Percentage average 

C14:0 1.16 

C16:0 82.18 
C18:0 5.12 
C18:1 9.03 
C18:2 1.83 

C18:3 0.02 

C20:0 0.32 

C22:0 0.25 
C22:1 0.04 

C24:0 0.05 
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Table S3.3. Hydrodynamic diameter (z-average) measured by dynamic light scattering, and, 
D[4,3], D[3,2], D10, D50 and D90 measured by static light scattering of CLPs composed of 
tripalmitin, tripalmitin/tricaprylin 4:1, palm stearin. 

Type of lipid z-

average 

(μm) 

PdI D[4,3] A 

(μm) 

D[3,2] 

(μm) 

D10 

(μm) 

D50 

(μm) 

D90 

(μm) 

Tripalmitin 0.162 ± 

0.005 

0.112 ± 

0.02 

0.130 ± 

0.004 

0.118 ± 

0.003 

0.082 ± 

0.002 

0.124 ± 

0.004 

0.184 ± 

0.005 

Tripalmitin/ 

tricaprylin 

(4:1) 

0.130 ± 

0.011 

0.148 ± 

0.02 

0.131 ± 

0.003 

0.117 ± 

0.001 

0.080 ± 

0.004 

0.124 ± 

0.002 

0.191 ± 

0.010 

Palm stearin 0.158 ± 

0.007 

0.199 ± 

0.02 

0.133 ± 

0.002 

0.119 ± 

0.002 

0.081 ± 

0.005 

0.127 ± 

0.000 

0.195 ± 

0.010 

 

 

    

Figure S3.4. TEM images of tripalmitin/tricaprylin (4:1 w/w) CLPs.  

 

B A 
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Figure S3.5. TEM 3D volume model from the tomogram of tripalmitin CLPs. 

 

 

Figure S3.6. Structure models and Gibbs energy (G)–temperature relationship of three 
polymorphs of tripalmitin. Addapted from Sato, 2001 and Rønholt, Mortensen, & Knudsen, 
2013. 
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Figure S3.7. Fluorescence recovery after photobleaching curve of an emulsion stabilized by 
tripalmitin CLPs, showing the normalized fluorescence intensity before bleaching (I), during 
bleaching (II) and during recovery (III).  

 

Figure S3.8. Polarized light image of an O/W emulsion produced by high pressure 
homogenization with 50% w/w oil and 4.5% w/w tripalmitin CLPs.  
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Figure S3.9. Polarized light image of an O/W emulsion produced wth a one-step 
emulsification process, where tripalmitin (1% w/w), sunflower oil (10% w/w) and an aqueous 
phase containing 2% w/w Tween 40 were directly manually homogenized. 
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Abstract 

In the quest to find approaches to prepare food-grade Pickering emulsions, we studied the 

formation and stability to coalescence of colloidal lipid particle (CLP)-stabilized emulsions 

within a cross-flow microfluidic device. We show that the particles can either stabilize or 

destabilize the emulsions depending on the particle adsorption rate versus droplet 

formation rate, and on the resulting surface coverage when the droplet is formed. At low 

surface coverage, when droplet formation is significantly faster than adsorption, CLPs have 

a destabilizing effect as incomplete surface coverage leads to droplet-droplet bridging. At 

high surface coverage, the dense particle layer results in an effective barrier against droplet 

coalescence, resulting in physically stable emulsions. The observed non-monotonic 

dependency of emulsion droplet stability on surface coverage of CLP-stabilized emulsions is 

in stark contrast to what is observed for conventional surfactant-stabilized emulsions, and 

thus should be taken into account for the rational design of Pickering emulsions. 
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4.1. Introduction 

In recent years, biocompatible and food-grade particles have raised a lot of interest for the 

application as emulsion stabilizers (Rayner et al., 2014). Moreover, these days there has 

been considerable empirical evidence that suitable Pickering particles exist in nature, can 

be purposely manufactured, or even have already been used unintentionally such as in 

mayonnaise (Binks, 2007; Firoozmand & Rousseau, 2016; Gould et al., 2013; Luo et al., 2011; 

A. Pawlik, Kurukji, Norton, & Spyropoulos, 2016b). For oil-in-water (O/W) emulsions, most 

reported particles are based on proteins (de Folter et al., 2012; Liu & Tang, 2013) or 

polysaccharides (Mikulcová, Bordes, & Kašpárková, 2016; Rayner, Sjöö, et al., 2012; Timgren 

et al., 2013; Yusoff & Murray, 2011).  

Recently, we have shown that colloidal lipid particles (CLPs) can be used as Pickering 

stabilizers in O/W emulsions, leading to remarkable physical stability compared to 

conventional emulsifiers (Schröder, Sprakel, Schroën, & Berton-Carabin, 2017). CLPs are 

especially promising as they are simple to prepare, have a tunable microstructure, and can 

be used in combination with high pressure homogenization to target for a small emulsion 

droplet size, and this entails the interest to gain knowledge on how such particles form and 

stabilize emulsions (Chevalier & Bolzinger, 2013a; Fouilloux, Malloggi, Daillant, & Thill, 2016; 

Monteux et al., 2007).  

The fact that solid particles can adsorb to liquid-liquid interfaces and confer excellent 

stability to emulsions (Aveyard et al., 2003; McGorty, Fung, Kaz, & Manoharan, 2010), has 

been known since the beginning of the 20th century from the pioneering work of Ramsden 

(Ramsden, 1903) and Pickering (Pickering, 1907), and is the main feature that makes solid 

particles af interest as Pickering stabilizers for biocompatible applications. This remarkable 

physical stability results from a change in the total interfacial energy upon particle 

adsorption, leading to a considerable decrease in free energy (Δ𝐺𝑎):  

Δ𝐺𝑎= 𝜋𝑟2𝛾𝑜𝑤 (1−cos𝜃)2          (Eq. 4.1.) 

where r is the particle radius, 𝛾𝑜𝑤 the interfacial tension between the two immiscible fluids 

and 𝜃 the three phase contact angle (Aveyard et al., 2003; Leal-Calderon & Schmitt, 2008). 

Providing that the particles can be wetted by both oil and water (i.e.,  is substantially 

different from 0 or 180), the decrease in free energy typically exceeds the thermal energy 

by orders of magnitude, hence particle adsorption may be considered irreversible 

(Monteillet et al., 2014), as long as no additional components adsorb onto the particles or 
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at the liquid/liquid interface. Nevertheless, particle wettability is only one of many 

fundamental attributes to control the properties of particle-stabilized emulsions and to 

exploit the use of Pickering particles. Besides, particle size (distribution), shape, 

microstructure, concentration and inter particle interactions are crucial particle properties, 

though many properties are inter-related (Binks, 2002; Destribats et al., 2011; Dugyala et 

al., 2013). 

Pickering particles should not only be able to adsorb, but the oil-water interface needs to 

be sufficiently covered by particles to form an effective barrier against droplet coalescence, 

i.e., to prevent the droplets to come in close contact with each other resulting and to merge 

into bigger droplets (Fouilloux et al., 2016; M. Pan, Lyu, & Tang, 2017). Often it is assumed 

that for such a barrier either monolayer or multilayer coverage is required, depending on 

particle characteristics (e.g., size, shape, charge etc.) and conditions (pH, salt concentration 

etc.), although particular cases where the surface coverage is extremely low have also been 

reported (Figure 4.1.A) (Gautier et al., 2007). Interfacial coverage depends on electrostatic 

interactions , i.e., when particles are neutral or slightly charged they pack more tightly 

compared to highly charged particles with a long-range dipolar moment (Deshmukh, van 

den Ende, Stuart, Mugele, & Duits, 2015; Destribats, Laurichesse, Tanner, & Leal-calderon, 

2014). Furthermore, particles may form bridging monolayers, by embedding themselves 

within the interfaces of two droplets, thus keeping droplets at finite distance, while 

stabilizing the liquid film between droplets (Figure 4.1.B). The droplets may then even be 

stable to coalescence when the entire interfacial layer is closely enough packed (Horozov & 

Binks, 2006; Nagarkar & Velankar, 2012). As mentioned before, particles may also form a 

three dimensional network in the continuous phase, which enhances emulsion physical 

stability (Figure 4.1.C) (Firoozmand & Rousseau, 2016; Horozov & Binks, 2006).  

A number of general aspects regarding the mechanisms of Pickering stabilization are not 

yet fully understood, for example, the dynamic adsorption behavior of colloidal particles at 

fluid interfaces (Garbin, Crocker, & Stebe, 2012). Adsorption of particles at fluid interfaces 

can either occur spontaneously, or significant energy barriers can be present as was mainly 

deduced from self-assembly studies on static flat interfaces. From those experiments it has 

been evidenced that electrostatic interactions between colloidal particles and the interface 

play an important role in particle adsorption: it is experimentally determined that bare air-

water or oil-water interfaces are negatively charged - even though the origin of this negative  
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Figure 4.1. Schematic representation of Pickering particles at the surface and/or in the 
continuous phase of O/W emulsions: (A) Low surface coverage, (B) Monolayer surface 
coverage showing bridging (indicated by arrows), (C) Multilayer coverage and a 3D network 
of aggregated particles in the continuous phase, (D) Particle-particle interactions at the 
interface (capillary forces). 

charge is still in debate - (Beattie & Gray-Weale, 2012; Roger & Cabane, 2012), and 

depending on the ionic strength negatively charged particles would adsorb only slowly, or 

not at all, while positively charged particles may adsorb readily (Deshmukh et al., 2015).  

Additionally, particle adsorption requires particles to breach the oil-water interface, a 

process in which the liquid film that separates the colloidal particle and the fluid interface 

breaks (Kaz, Mcgorty, Mani, Brenner, & Manoharan, 2011). For this to occur, significant 

energy input is needed, which implies that particle adsorption is non-spontaneous 

(Tcholakova et al., 2008a). Other colloidal particle interactions at interfaces have also been 

A B

C D
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investigated; e.g., monodisperse spherical particles can penetrate and anchor in the 

interface without deforming it, whereas non-spherical particles have to deform the 

interface to adopt a constant contact angle resulting in capillary forces between the 

particles (Figure 4.1.D) (McGorty et al., 2010).  

It is clear that particle adsorption rate, and, related to that surface coverage is critical to 

successful formation of a stable emulsion (Chevalier & Bolzinger, 2013a). Until now, 

adsorption rates were mainly investigated using model, inorganic particles (i.e., 

monodispersed, solid, spherical) and in the absence of mechanical energy. However, the 

gained knowledge from these model systems has limited applicability for less well-defined 

particles, as would apply for practical applications in biocompatible systems (Kutuzov et al., 

2007; Tcholakova et al., 2008a). Suitable particles are often highly polydisperse, non-

spherical, and inhomogeneous in composition and structure.  

In the present paper, we aim to gain understanding on how CLPs form and stabilize O/W 

emulsions. For this we use a microfluidic device (T-junction), which enables us to produce 

monodisperse O/W emulsions, to monitor the extent of droplet coalescence, and 

contributes to a better understanding of emulsification processes by decoupling droplet 

stability measurements from droplet formation (Krebs, Schroën, et al., 2012; Pan et al., 

2017; Schroen, Bliznyuk, Muijlwijk, Sahin, & Berton-Carabin, 2015). The findings contribute 

to a better understanding of the dynamic conditions in which CLPs and presumably also 

other biocompatible and food-grade particles can be used as efficient Pickering stabilizers 

at for processing relevant length- and time-scales.  

4.2. Materials & methods 

4.2.1. Materials 

Tripalmitin (#T8127, purity >99 %), sodium phosphate monobasic (#S9638), sodium 

phosphate dibasic (#S9763) and LUDOX® TM-40 colloidal silica (#420786) are purchased 

from Sigma-Aldrich (Saint Louis, MO, USA). Sodium caseinate is supplied by DMV 

International (#41610, spray dried, protein content 91.0%). Sunflower oil is obtained from 

a local supermarket, and stripped with alumina powder (MP EcoChrome™ ALUMINA N, 

Activity: Super I, Biomedicals) to remove impurities and tocopherols (Berton, Genot, & 

Ropers, 2011). Ultrapure water (18 MΩ) for all experiments is prepared using a Milli-Q 
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system (Millipore Corporation, Billerica, MA, USA). All other chemicals or solvents are of 

analytical grade.  

4.2.2. Methods 

4.2.2.1. Preparation of CLP dispersions 

In brief, we heat an aqueous phase (95% w/w) containing 1% w/w sodium caseinate in 

phosphate buffer (10 mM, pH 7.0) at 80 °C in a water bath and add it to melted tripalmitin 

(5% w/w). A coarse emulsion is prepared by high speed stirring at 11,000 rpm for 1 min 

using a preheated rotor stator homogenizer (Ultra-turrax IKA T18 basic, Germany). We then 

repeatedly homogenize this coarse emulsion (Microfluidizer® Processor MF 110Y with Y-

shaped interaction chamber (F12Y; minimum internal dimension: 75 μm), Microfluidics, 

Newton, Massachusetts, USA) at 800 bar (5 cycles) and 80 °C to obtain submicron-sized 

melted fat droplets, which are left to cool down to 20 °C over the course of ~ 6 h by turning 

off the water bath, allowing for the lipid phase to crystallize. All in all, we end with NaCas-

coated CLPs in dispersion.  

Excess sodium caseinate in the aqueous phase of the dispersion is removed by diafiltration 

at 2 bar and room temperature (Amicon® stirred cell, Merck Millipore, Darmstadt, Germany 

equipped with polyethersulfone membranes of 0.03 μm pore size from Sterlitech 

Corporation, US). Fresh buffer is added regularly to maintain the starting volume; the 

resulting CLP dispersion is stored at 4 °C.  

Before use, we filter the CLP dispersion with 5-μm PVDF syringe filters (Millex SV, Millipore 

Corporation, Bedford, MA) to remove any agglomerates that may be formed after 

homogenization, and thus prevent clogging of the microfluidic circuit.  

4.2.2.2. Preparation of O/W emulsions by high pressure homogenization 

Sunflower oil (10% w/w), stripped from surface-active impurities, is mixed with a 1% w/w 

CLP dispersion to make a CLP-stabilized Pickering emulsion. First we prepare a coarse 

emulsion by high speed stirring at 7,000 rpm for 1 min using a rotor stator homogenizer 

(Ultra-turrax IKA T18 basic, Germany). This coarse emulsion is then repeatedly homogenized 

at 400 bar (5 cycles, to obtain small particles) using the previously described high pressure 

homogenizer, now cooled with ice water. In between each cycle, the sample is kept on ice 

water for 1 min to keep the emulsion at ~4 °C.  
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4.2.2.3. Particle size measurements 

The particle and emulsion droplet size distribution and average diameters are measured by 

static light scattering (SLS) (Malvern Mastersizer 3000, Malvern Instruments Ltd., Malvern, 

Worcestershire, UK). The following optical properties are used: refractive indices of 1.540 

(solid tripalmitin), 1.465 (sunflower oil) and 1.330 (water) with an absorption index of 0.01.  

4.2.2.4. Transmission electron microscopy 

Transmission electron microscopy (TEM) is performed on CLP dispersions and CLP-stabilized 

emulsions (both diluted 10 fold using 10 mM phosphate buffer pH 7) deposited onto a 

freshly glown discharged carbonized copper grid (200 mesh). The excess solvent is blotted 

using standard filter paper; the particles are stained using an aqueous 1% w/w 

phosphotungstic acid solution. Images are recorded on a JEOL JEM1011 transmission 

electron microscope (Peabody, USA) operating at 80 kV in combination with a 2K x 2K SIS 

Veleta camera. 

4.2.2.5. Differential scanning calorimetry (DSC) 

The melting and crystallization behavior of the CLPs and bulk tripalmitin is investigated using 

a differential scanning calorimeter (Discovery Series DSC 250, TA Instruments, Zellik, 

Belgium). Approximately 25 µg of CLP dispersion or 2.5 µg of tripalmitin is placed in a Tzero 

pan and closed with a Tzero hermetic lid. An empty pan is used as a reference. Both pans 

are heated from 5 °C to 80 °C at 1 °C min-1, then cooled down to 5 °C at 1 °C min-1 followed 

by two identical heating/cooling cycles. The thermograms are evaluated using TRIOS 

software. Two independent measurements are taken for each sample.  

4.2.2.6. ζ-potential 

The ζ-potential of CLPs is determined by measuring their electrophoretic mobility via laser 

Doppler velocimetry using a Zetasizer Nano ZS (Malvern Instruments Ltd., Malvern, 

Worcestershire, UK). The CLPs are diluted ~100 times in a 10 mM phosphate buffer pH 7.0 

to prevent multiple scattering. The measurements are performed at 25 °C and the results 

are expressed as the average from three independent samples. 

4.2.2.7. Particle surface coverage 

A 2-mL aliquot of CLP suspension is placed in an eppendorf tube and is centrifuged for 3 h 

at 20,000×g (Centrifuge 5424, Eppendorf Hamburg, Germany) to separate the aqueous 

phase containing non-adsorbed proteins from the CLPs. The aqueous phase is collected by 
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cautiously boring a hole in the tube and is centrifuged again for 3 h at 20,000×g to remove 

the remaining CLPs. We determine the protein content in the aqueous phase with the 

bicinchoninic acid (BCA) assay (Mallia et al., 1985) and we estimate the surface coverage 

based on the mean diameter of the CLPs (d3,2) by calculating the difference between the 

total amount of protein used to prepare the CLP dispersion, and that of the aqueous phase 

after centrifugation. The measurements are expressed as the average of two independent 

samples.  

4.2.2.8. Microfluidic experiment 

Custom-designed borosilicate-glass microfluidic chips are purchased from Micronit 

Microtechnologies B.V. (The Netherlands). The chip consists of three channels: the T-

junction, the meandering channel and the collision channel (Figure 4.2.). All three channels 

have a uniform depth of 45 µm. The T-junction has a width of 100 μm and the width and 

length of meandering channel and collision channel are 100 μm x 25.6 mm and 0.5 mm x 

30.0 mm, respectively. The chip contains three inlets: one for the continuous phase (flow 

rate 𝑞𝑐), one for the dispersed phase (flow rate 𝑞𝑑), and one that remains unused. At the 

end of the collision channel, the chip contains one outlet (flow rate 𝑞𝑡).  

 

 

Figure 4.2. Layout of the microfluidic circuit with qc and qd denoting the flow rates of the 
continuous and dispersed phases at the respective inlets, and qt denoting the total flow rate 
at the outlet of the chip. The regions where images are recorded are indicated by rectangles: 
(A) T-junction, (B) inlet collision channel and (C) outlet collision channel. 

We place the microfluidic chip in a chip holder (Micronit Microtechnologies B.V., The 

Netherlands), and connect the inlet and outlet sections of the chip to glass capillaries (ID 
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150, Polymicro Technologies) (Krebs, Schroën, et al., 2012; Muijlwijk, Hinderink, Ershov, 

Berton-Carabin, & Schroën, 2016). The dispersed phase capillary is connected to a glass 

syringe of 1 mL (SGE, Australia) of which the flow rate (1–3 μL min-1) is controlled with a 

syringe pump (NE-300, Prosense, The Netherlands). The continuous phase capillary is 

connected to a plastic centrifuge (Falcon) tube of 15 mL of which the flow rate (30-110 μL 

min-1) is controlled with an OBI1 MKII pressure & flow controller connected to a flow sensor 

(MFS 4, Elveflow, France). 

Before use, we clean the microfluidic chip thoroughly to hydrophilize it. Briefly, we sonicate 

the chip for 10 min in a 5% v/v detergent solution (Decon 90, Decon Laboratories Ltd.), 

extensively rinsed with water, sonicate it in water for another 10 min, and dry it afterwards 

with pressurized air. We then bake out the chip in an oven at 500 °C for at least 2 h, and 

subsequently put it in an oxygen plasma cleaner (Zepto B Plasma Cleaner, Diener Electronic 

GmbH) for 10 min.  

Oil droplets are formed at the T-junction where the continuous aqueous phase and 

dispersed phase come together. The formed droplets pass through the meandering channel 

and flow into the collision channel where they meet, possibly leading to coalescence. 

Droplet formation in the T-junction, and droplet interactions in the collision chamber is 

monitored with a high-speed camera (MotionPro Y4-S2, IDT, USA) connected to an inverted 

light microscope (Axiovert 200 MAT, Carl Zeiss, The Netherlands). During each experiment 

3 movies of 500 images each are recorded at each spot in the chip (indicated by colored 

rectangles in Figure 4.2.) at frame rates of either 7000 frames sec-1 at the T-junction and 

inlet of the collision channel, or 30 frames sec-1 at the outlet of the collision channel. The 

recorded images are processed with ImageJ using a custom-written script (Krebs, Schroën, 

et al., 2012). The measurements are expressed as the average of two independent samples.  

The mean number of coalescence events (Ncoalescence) during the experiment is obtained by 

taking the initial mean droplet area (Ai) and the mean droplet area at the end of the collision 

channel (Af) from all images according to Equation 4.2. 

𝑁𝐶𝑜𝑎𝑙𝑒𝑠𝑐𝑒𝑛𝑐𝑒 =
𝐴𝑓

𝐴𝑖
− 1     (Eq. 4.2.) 

The residence time inside the coalescence channel is calculated from the length of the 

coalescence channel, and the mean droplet velocity (Muijlwijk et al., 2017). 
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Emulsion microstructure and physical stability outside the microfluidic chip is evaluated by 

light microscopy using a Carl Zeiss Axioscope A1 optical microscope equipped with a camera 

(AxioCam Mrc5) and polarization filters to visualize crystal structures. For this, the formed 

emulsion is recovered at the outlet of the microfluidic chip, and small volumes are put on a 

microscopy slide and covered with a cover slip.  

4.3 Results & discussion 

4.3.1. Particle characterization 

Our CLPs are produced by hot high pressure homogenization of the high melting point fat 

tripalmitin in an aqueous phase containing 1% w/w sodium caseinate (NaCas), and 

subsequent cooling. The particle size distribution of crystallized CLPs is unimodal with a 

mean particle diameter (d3,2) of approximately 170 nm (Figure 4.3.A). TEM (Figure 4.3.B&C) 

reveals an almost spherical particle morphology, and particle sizes in the range of ~100-350 

nm, which is in good agreement with the data shown in Figure 4.3.A.  

The melting and crystallization properties of CLPs, which are of great importance during 

processing, provides information on particle microstructure and amongst others influences 

particle performance as emulsion stabilizers, is examined by DSC (Figure 4.3.D) and 

compared to those of bulk tripalmitin (Figure 4.3.E) (Schröder et al., 2017). The melting 

thermogram of the CLPs shows a small exothermic peak at ~42 °C, which may indicate that 

the crystals reorganize and recrystallize in a more stable crystalline form. This small 

exothermic peak is followed by a broad and much bigger endothermic melting peak with a 

maximum at ~62 °C that consists of a series of distinct smaller peaks indicative of several 

structured layers melting in multiple events (Zafeiri, Norton, Smith, Norton, & Spyropoulos, 

2017).  

The melting enthalpy of tripalmitin CLPs is lower than that of bulk tripalmitin (121 vs. 203 J 

g-1 of fat). This difference may point to a relatively lower degree of crystallinity in CLPs, and 

indicates that liquid domains or liquid crystal domains coexist in the crystalline particle 

matrix (Choi, Aditya, & Ko, 2014). Alternatively bulk tripalmitin may crystallize in different 

polymorphic forms with higher melting enthalpies compared to CLPs (Kellens, Meeussen, 

Riekel, & Reynaers, 1990), or polymorphic transitions take place during melting (Bunjes et 

al., 1996).  
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Figure 4.3. Characterization of a NaCas-coated CLPs. (A) Particle size distribution via static 
light scattering, (B&C) TEM micrographs of the CLPs, (D) DSC melting (bottom line) and 
crystallization (top line) thermogram of the CLP dispersion, and (E) DSC melting (bottom line) 
and crystallization (top line) thermogram of bulk tripalmitin.  
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The CLPs have one crystallization peak at 30 °C indicating that the tripalmitin crystallizes in 

one form, and that there is a strong supercooling (~12 °C compared to bulk tripalmitin). The 

probability that an impurity is present in submicron-sized droplets is very low, resulting in 

homogeneous nucleation instead of heterogeneous nucleation that occurs in the bulk that 

crystallizes much more readily (Bunjes et al., 1996). In addition, the small size of the lipid 

particles induces a large Laplace pressure that decreases the nucleation rate, and hence the 

crystallization temperature (Li et al., 2013). Besides differences in crystallization 

temperature, also the crystallization enthalpy is different for emulsified and bulk tripalmitin 

(107 vs. 126 J g-1), which points to a lower degree of crystallinity for CLPs.  

Since it is established that the surface properties of the particles play a large role in their 

ability and efficacy of stabilizing liquid interfaces, we also measure the effective surface 

charge through measurement of the particle electrophoretic mobility. We find that the CLPs 

exhibit a ζ-potential of -37 mV due to the presence of ionizable groups in NaCas at the 

surface of the particle, which induces some repulsion between the particles. The measured 

protein surface coverage of CLPs is 3.7 mg m-². This protein surface coverage corresponds 

to saturated monolayer to multilayer coverage and a film thickness of about 6-10 nm 

(Graham & Phillips, 1979a, 1979b), which makes the particle hydrophilic (𝜃 < 90°), and may 

reduce jamming or network formation of the CLPs by fat crystals that protrude throughout 

the interfacial film (Douaire et al., 2014a). 

4.3.2. Pickering emulsion characterization 

We prepare O/W emulsions using high pressure homogenization (droplet size ~1 μm, which 

does not change over one week) to further evaluate the physical properties of our NaCas-

coated CLPs and to determine if they could successfully be used as Pickering stabilizers. The 

emulsion shows a distinctive ring at the droplet surface in polarized light microscopy images 

(Figure 4.4.A&B), which indicates that the NaCas-coated CLPs are present at the oil-water 

interface, and retain their crystallinity.  

The wettability of our CLPs can be qualitatively estimated from the three phase contact 

angle, 𝜃, at the oil-water interface as visualized by TEM (Figure 4.3.C). 𝜃 is clearly < 90° for 

these hydrophilic particles as they mostly appear as laying onto the oil droplet surface, with 

a large part in the continuous phase (see arrows on Figure 4.4.C). From these observations, 
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we estimate that the corresponding desorption energy (Equation 4.1.) must be at least 105 

kbT (kb is the Boltzmann constant and T is the absolute temperature) per particle, which 

makes thermally-activated desorption practically impossible, and the particles are thus very 

suitable to stabilize O/W emulsions.  

 

Figure 4.4. Emulsion containing 1% w/w CLPs and 10% w/w sunflower oil produced by high 
pressure homogenization (400 bar, 5 passes) (A, B) Polarized light images (C) TEM 
micrograph. Arrows are pointing to particles that are clearly positioned with their largest 
part in the contineous phase. 



Chapter 4     

  

109 
 

4.3.3. Emulsion formation and stability inside the microfluidic chip 

In order to understand how CLPs form and stabilize O/W emulsions, we prepare O/W 

emulsions in a microfluidic T-junction using sunflower oil, stripped from surface-active 

impurities, and a 5% w/w CLP dispersion as the aqueous phase. As a reference, we prepare 

an emulsion with stripped sunflower oil and buffer, without CLPs. We vary the continuous 

phase flow rate (qc, 50 -110 µL min-1) and keep the dispersed phase flow rate  

(qd, 1 μL min-1) constant. This results in droplet formation times ranging from 0.6-3 ms and 

adsorption times from 6-135 ms, which are comparable to conditions used for 

emulsification processes carried out at industrial scale (Muijlwijk et al., 2017). The number 

of coalescence events is determined from the initial droplet size and the mean droplet size 

at the end of the collision channel (Figure 4.5.), following the procedure of Krebs, Schroën, 

et al., 2012. 

4.3.4. Coalescence stability of emulsions stabilized with NaCas-coated CLPs 

For emulsions formed with sunflower oil and buffer almost no coalescence events take 

place at all measured continuous phase flow rates as the residence time in the collision 

channel (varying from ~0.9 to 2.0 sec) is too short to destabilize the emulsion. However, this 

does not imply the emulsion is physically stable (see section: Emulsion stability outside the 

collision channel). The emulsions formed with CLPs show a coalescence dependency on 

continuous phase flow rate going from too high to be analyzed at qc < 50 L min-1, to almost 

0 between 50 and 70 µL min-1 (Figure 4.5.). Surprisingly, it thus appears that the presence 

of the particles can enhance coalescence as compared to systems in which no interfacial 

stabilizer is present. Hence, CLPs can have an active destabilizing effect on emulsion 

droplets and even induce coalescence. We can speculate regarding several causes for this 

unexpected effect; for example, it could be due to a depletion attraction between the fluid 

interfaces mediated by the particles in the continuous phase, or could also be the result of 

surface coverage effects.  
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Figure 4.5. Number of coalescence events as function of continuous phase flow rate for 
sunflower O/W emulsions formed with either buffer or a NaCas-coated CLPs dispersion (5% 
w/w) as the continuous phase. The dispersed phase flow rate was 1 μL min-1  

Depletion attraction arises when small colloidal particles (in this case, the CLPs) are 

introduced to a suspension of larger ones (the emulsion droplets) due to the exclusion of 

the centre-of-mass of the small particles from a depletion zone surrounding the larger 

particles. For undeformable large particles, the attractive strength can be estimated as 

(Crocker, Matteo, Dinsmore, & Yodh, 1999): 
𝑈

𝑘𝐵𝑇
=

3 𝑎𝑒

2 𝑎𝑝
𝛷𝑠            (Eq. 4.3.) 

where 
𝑈

𝑘𝐵𝑇
 is the attraction strength in units of thermal energy kBT, 𝑎𝑒 and 𝑎𝑝 are the radii 

of the emulsion droplets and the CLPs, respectively, and 𝛷𝑠 is the volume fraction of the 

small objects (Laar, Klooster, Schroën, & Sprakel, 2016). 

To test if depletion interactions can be responsible for the destabilizing effects we observe, 

we prepare O/W emulsions in the T-junction using sunflower oil, and add hydrophilic silica 

nanoparticles (Ludox TM-40, 𝑎𝑠~ 7 nm) as depletants at concentrations ranging from 0.4 to 

40% w/w, at a continuous flow rate of 50 μL min-1. These silica nanoparticles do not adsorb 

at the oil-water interface, but induce depletion attractions, whose magnitude is estimated 

between 22 to 2200 kBT using Equation 4.3., which is about 1 to 100 times the attraction 

forces exerted by the CLPs at the concentrations we use (at 5% w/w in the aqueous phase). 

With these reference experiments we observe no coalescence at all tested silica particle 
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concentrations, such that we can rigorously exclude CLP-induced depletion attractions as 

the cause of emulsion destabilization in the presence of CLPs (Supporting information, 

Figure S4.1.).  

A second explanation for emulsion destabilization by CLPs may be droplet-droplet bridging, 

due to a particle simultaneously adsorbing at the surface of two neighboring droplets 

(Monteillet et al., 2014), which is only possible when the surface of the oil droplets is 

incompletely covered. In O/W emulsions, bridging can occur when particles have dual 

wettability yet are largely hydrophilic, i.e., the three phase contact angle is considerably 

smaller than 90°, which is deduced for our CLPs based on TEM images (Figure 4.4.C).  

Although bridging may occur at various surface coverage of the oil-water interface by 

particles, it is favored at low surface coverage, with the particles preferentially accumulating 

in the bridging region (Nagarkar & Velankar, 2012), leaving most of the droplet surface (the 

non-bridging region) nearly particle-free. This particle free surface can be subjected to 

disturbances, allowing the thin region, next to the bridging layer to rupture and 

subsequently the droplets to coalesce. Disturbances are strongly promoted under flow 

conditions, such as in our microfluidic setup, and do normally not occur at substantial rate 

under quiescent conditions (Nagarkar & Velankar, 2012). Hence, particles can actively 

destabilize emulsions due to bridging in circumstances of low surface coverage and in flow 

as coalescence proceeds when droplets are held in close proximity and insufficiently 

covered (Nagarkar & Velankar, 2012). Only when droplets become completely covered with 

(bridged) particles, the droplet surface may become immobile and coalescence is 

suppressed.  

The CLPs have a high desorption energy which makes adsorption practically irreversible, but 

for them to breach the liquid film that separates particle from interface, in order to anchor 

into the oil-water interface an energy barrier must be overcome, resulting from both 

thermodynamic effects, such as a finite critical disjoining pressure, and hydrodynamic 

effects such as substantial lubrication forces. Overcoming this energy barrier can be 

facilitated by the application of mechanical forces, such as hydrodynamic forces that the 

particles experience in the flow field of the microfluidic T-junction. To explain the kinetics 

of particle adsorption, we presume that in the absence of any mechanical forcing, particle 

adsorption is thermally-activated following an Eyring process:  
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𝑘𝑎𝑑 = 𝜔0 ∗  𝑒𝑥𝑝
−𝐸𝑎
𝑅𝑇                                                         (Eq. 4.4.) 

in which 𝑘𝑎𝑑  is the adsorption rate, and ω the attempt frequency, typically set by the 

diffusion rate of particle towards the interface. In a fluid flow field, a particle experiences a 

drag force F exerted by the continuous phase, approximated by Stokes law as 𝐹 = 6𝜋𝜂𝑟𝑣, 

in which 𝜂 is the fluid viscosity, r the particle radius and v the flow velocity of the fluid 

relative to the particle (Dong, Zheng, Zhang, & Lin, 2014; Laar et al., 2016). We propose that 

these hydrodynamic forces exponentially enhance the adsorption rate in a Kramers process 

(Kramers, 1940): 

𝑘𝑎𝑑 = 𝜔0 ∗  𝑒𝑥𝑝
−𝐸𝑎+ 𝐹𝛿

𝑅𝑇                                                      (Eq. 4.5.) 

where δ is a characteristic activation length, which is related to the thickness of the 

interfacial film that needs to break for particle adsorption. This would predict a significant 

enhancement of particle adsorption under the effect of fluid flow forces, thereby leading to 

exponentially increasing particle adsorption rates that ultimately may prevent coalescence. 

We also see an exponential decrease in coalescence events with increasing continuous 

phase flow rate, which lets us conclude that indeed at low adsorption rates and hence low 

surface coverage the CLPs destabilize the emulsion due to bridging, while at high adsorption 

rates, surface coverage is sufficiently high to prevent coalescence. 

We note that with increasing qc (50-110 μL min-1), the droplet volume fraction in the 

collision channel decreases from ~2 to ~1 vol%, which may have reduced droplet collision 

probability. Furthermore, droplet size decreases from 96 to 57 µm (Supporting information, 

Figure S4.2.). These effects of droplet volume fraction and size leads to a decrease in the 

amount of oil-water interface (0.25 vs 0.19 m² per 100 mL emulsion for a qc of 50 or 110 μL 

min-1, respectively) (Supporting information, Figure S4.2.). Additionally, the amount of 

available particles increases slightly due to the change in oil fraction (4.90 - 4.95 % w/w per 

100 mL; Supporting information, Figure S4.2.). This leads us to conclude that in our 

experiments the amount of particles available per interfacial area varies from 20 to 26 gram 

of particles per m2. Although this difference is small, and particles are in large excess in all 

cases, it may contribute to droplet stability, and is investigated further.  

4.3.5. Effect of particle concentration and continuous phase flow rate 

We dilute our CLP dispersion (0.005% w/w to 5% w/w) and monitor the number of droplet 

coalescence events at continuous phase flow rates above the previously determined 

threshold for coalescence (qc of 90, 100 and 110 μL min-1, Figure 4.6.). In general, we 
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observe that droplet stability increases with increasing particle concentration and qc. 

Emulsions formed with either buffer or a 5% w/w CLP dispersion do not show coalescence 

events. This dependency on concentration confirms the lack of a substantial role of 

depletion forces for emulsion destabilization. Interestingly, at qc of 100 and 110 μL min-1, 

emulsions formed with 0.05% w/w CLPs in the aqueous phase show more coalescence 

events than the ones formed with 0.005% w/w CLPs, which may reveal a non-monotonic 

dependency of particle concentration on emulsion stability. At very low particle 

concentration, the droplets do not coalesce because of a low bridging probability, while at 

intermediate concentration, instability occurs due to a greater droplet-droplet bridging 

probability. At even higher particle concentrations, droplet stability increases due to the 

formation of a protective particle layer around the emulsion droplets. In order to shed more 

light on emulsion physical stability vs surface coverage, we investigate samples collected 

from the coalescence chamber, of which the results are shown next.  

Figure 4.6. Number of coalescence events as a function of the continuous phase flow rate 
(µL min-1) for sunflower O/W emulsions formed with various concentrations of NaCas-coated 
CLPs in the continuous phase. The dispersed phase flow rate was 1 μL min-1. No coalescence 
events are observed for phosphate buffer and the 5% w/w CLP dispersion. 
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4.3.6. Emulsion stability outside the collision channel 

The morphology and stability of droplets formed with 5% w/w CLPs is also studied by 

polarized light microscopy, after collecting samples from the microfluidic chip, which allows 

us to probe stability at a different time scale. Emulsions formed with buffer at any qc or with 

CLPs at qc ≤ 70 μL min-1 are highly unstable, show (extensive) coalescence, and no bright 

birefringent polarization ring around the droplets, which is indicative of the absence of 

particles at the interface (Table 4.7.; Supporting information, Table S4.3.).  

At qc > 70 μL min-1, the droplets formed with CLPs are physically stable (they do not coalesce 

on the microscopic slide), and a birefringent polarization ring is clearly seen, indicating that 

CLPs adsorb at the oil-water interface. In addition, the polarization ring becomes brighter 

with increasing qc, indicating increasing amounts of CLPs adsorb at the interface, while 

substantial amounts of CLPs remain in the continuous phase as is clear from the continuous 

phase polarization.  

We thus show that the physical stability of CLP-stabilized emulsions strongly depends on 

the particle adsorption rate. CLPs destabilize emulsion droplets by bridging at insufficient 

surface coverage, while at high coverage coalescence inside the coalescence channel is 

prevented, as well as outside the coalescence channel. Contrary to surfactants that adsorb 

rapidly and spontaneously, a certain amount of energy is needed for particles to anchor in 

the interface. If this is successfully achieved, this leads to emulsions that are exceptionally 

stable, and that do not even show coalescence dependency as function of the approach 

velocity of colliding droplets, unlike surfactant stabilized emulsions (Krebs, Schroen, & 

Boom, 2012). 
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Continuous 

flow rate  

(μL min-1) 

Images at the outlet of the collision channel Polarized light microscopy 

images of emulsions outside 

the microfluidic chip 

 

40 

 

Highly unstable 

50 

 

Highly unstable 

70 

 

 

80 

 

 

90 

 

 

110 

 

 
Table 4.7. Light microscopy images of sunflower O/W emulsions (5% w/w NaCas-coated CLP 
of which flow rate indicated at the left) at the end of the coalescence channel, and polarized 
images after collection from microfluidic set-up (right).  
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4.4. Conclusions 

The coalescence stability of CLP-stabilized emulsions is investigated using a microfluidic T-

junction. The CLPs have an almost spherical morphology and a unimodal size distribution 

with a mean particle diameter of ~170 nm. The three phase contact angle at the oil-water 

interface is < 90°, which makes the particles suitable to stabilize O/W emulsions.  

Depending on the continuous phase flow rate, particles obtain sufficient kinetic energy to 

anchor into the interface. We show that the tendency of emulsion droplets to coalesce 

strongly depends on particle coverage. CLPs have a destabilizing effect on the emulsion 

droplets at low surface coverage, probably as a result of bridging. At higher surface 

coverage, droplet coalescence could be prevented, and emulsions are physically stable 

when particles are prominently present in the interface. The observed non-monotonic 

dependency of emulsion droplet stability on surface coverage is distinctly different from the 

classic behavior found for surfactant-stabilized emulsions, and this understanding is of great 

importance for the formulation of Pickering emulsions.  
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4.5. Supporting information 

  

 

Buffer 

 

  

 

Ludox  

0.4% w/w  

U ~ 22 𝒌𝑩𝑻 

 

  

 

Ludox  

4% w/w 

U ~ 220 𝒌𝑩𝑻 

 

  

 

Ludox  

40% w/w 

U ~ 2200 𝒌𝑩𝑻 

 

Figure S4.1. Microscopy images of stripped sunflower oil-in-water emulsions formed in a 
microfluidic device with phosphate buffer, or 0.4, 4.0 or 40% w/w Ludox particles in the 
continuous phase, at the inlet or outlet of the collision channel.  
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Figure S4.2.(Right) Droplet size as function of the continuous phase flow rate for emulsions 
formed with (Blue) buffer and (Red) NaCas-coated CLPs (5 wt.% in the continuous phase). 
(Left) (Triangles) Total interfacial area (m2/100 mL emulsion) and (Squares) mass 
concentration of NaCas-coated CLPs in the continuous phase for emulsions formed with 5% 
w/w CLPs in the continuous phase at different continuous phase flow rates. The dispersed 
phase flow rate was 1 μL min-1. The dispersed phase flow rate was 1 μL min-1. 
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Table S4.3. Polarized light microscopy images of sunflower oil-in-water emulsions (5% w/w 
NaCas-coated CLP of which flow rate indicated at the left) after collection from microfluidic 
set-up. 
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flow rate  
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Polarized light microscopy images 

of emulsions outside the 

microfluidic chip 

 

  

40 Highly unstable   

50 Highly unstable   

60 

 

90 

 
70 

 

100 

 
80 

 

110 

 

  



Coalescence stability of Pickering emulsions produced with lipid particles: A microfluidic study 

 

120 
 

4.6. References 

Aveyard, R., Binks, B. P., & Clint, J. H. (2003). Emulsions stabilised solely by colloidal particles. Advances 
in Colloid and Interface Science, 100–102(SUPPL.), 503–546. 

Beattie, J. K., & Gray-Weale, A. (2012). Oil/water interface charged by hydroxide ions and 
deprotonated fatty acids: A comment. Angewandte Chemie - International Edition, 51(52), 
12941–12942. 

Berton, C., Genot, C., & Ropers, M.-H. (2011). Quantification of unadsorbed protein and surfactant 
emulsifiers in oil-in-water emulsions. Journal of Colloid and Interface Science, 354(2), 739–748. 

Binks. (2002). Particle as surfactants - Similarities and differences. Current Opinion in Colloid & 
Interface Science, 7, 21–41. 

Binks, B. P. (2007). Colloidal particles at liquid interfaces. Physical Chemistry Chemical Physics, 9(48), 
6298–6299. 

Bunjes, H., Westesen, K., & Koch, M. H. J. (1996). Crystallization tendency and polymorphic transitions 
in triglyceride nanoparticles. International Journal of Pharmaceutics, 129(1–2), 159–173. 

Chevalier, Y., & Bolzinger, M. A. (2013). Emulsions stabilized with solid nanoparticles: Pickering 
emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 23–34. 

Choi, K.-O., Aditya, N. P., & Ko, S. (2014). Effect of aqueous pH and electrolyte concentration on 
structure, stability and flow behavior of non-ionic surfactant based solid lipid nanoparticles. 
Food Chemistry, 147, 239–244. 

Crocker, J. C., Matteo, J. A., Dinsmore, A. D., & Yodh, A. G. (1999). Entropic attraction and repulsion in 
binary colloids probed with a line optical tweezer. Physical Review Letters, 82(21), 4352–4355. 

de Folter, J. W. J., van Ruijven, M. W. M., & Velikov, K. P. (2012). Oil-in-water Pickering emulsions 
stabilized by colloidal particles from the water-insoluble protein zein. Soft Matter, 8(25), 6807–
6815. 

Deshmukh, O. S., van den Ende, D., Stuart, M. C., Mugele, F., & Duits, M. H. G. (2015). Hard and soft 
colloids at fluid interfaces: Adsorption, interactions, assembly &amp; rheology. Advances in 
Colloid and Interface Science, 222, 215–227. 

Destribats, M., Lapeyre, V., Wolfs, M., Sellier, E., Leal-Calderon, F., Ravaine, V., & Schmitt, V. (2011). 
Soft microgels as Pickering emulsion stabilisers: role of particle deformability. Soft Matter, 7(17), 
7689–7698. 

Destribats, M., Laurichesse, E., Tanner, H., & Leal-calderon, F. (2014). Pickering Emulsions : What Are 
the Main Parameters Determining the Emulsion Type and Interfacial Properties ? Langmuir, 30, 
9313-9326. 

Dong, S., Zheng, L., Zhang, X., & Lin, P. (2014). Improved drag force model and its application in 
simulating nanofluid flow. Microfluidics and Nanofluidics, 17(2), 253–261. 

Douaire, M., Di Bari, V., Norton, J. E., Sullo, A., Lillford, P., & Norton, I. T. (2014). Fat crystallisation at 
oil-water interfaces. Advances in Colloid and Interface Science, 203, 1–10. 

Dugyala, V. R., Daware, S. V., & Basavaraj, M. G. (2013). Shape anisotropic colloids: synthesis, packing 
behavior, evaporation driven assembly, and their application in emulsion stabilization. Soft 
Matter, 9(29), 6711. 

Firoozmand, H., & Rousseau, D. (2016). Microbial cells as colloidal particles : Pickering oil-in-water 
emulsions stabilized by bacteria and yeast. FRIN, 81, 66–73. 

Fouilloux, S., Malloggi, F., Daillant, J., & Thill, A. (2016). Aging mechanism in model Pickering emulsion. 
Soft Matter, 12(3), 900–904. 

Garbin, V., Crocker, J. C., & Stebe, K. J. (2012). Nanoparticles at fluid interfaces: Exploiting capping 
ligands to control adsorption, stability and dynamics. Journal of Colloid and Interface Science, 
387(1), 1–11. 



Chapter 4     

  

121 
 

Gautier, F., Destribats, M., Perrier-Cornet, R., Dechézelles, J., Giermanska, J., Héroguez, V., … V. 
Schmitt. (2007). Pickering emulsions with stimulable particles: from highly- to weakly-covered 
interfaces. Physical Chemistry Chemical Physics : PCCP, 9(48), 6455–6462. 

Gould, J., Vieira, J., & Wolf, B. (2013). Cocoa particles for food emulsion stabilisation. Food & Function, 
4(9), 1369–1375. 

Graham, D. E., & Phillips, M. C. (1979a). Proteins at liquid interfaces II. Adsorption isotherms. Journal 
of Colloid and Interface Science, 70(3), 415–426. 

Graham, D. E., & Phillips, M. C. (1979b). Proteins at liquid interfaces III. Molecular structures of 
adsorbed films. Journal of Colloid and Interface Science, 70(3), 427–439. 

Horozov, T. S., & Binks, B. P. (2006). Particle-stabilized emulsions: A bilayer or a bridging monolayer? 
Angewandte Chemie - International Edition, 45(5), 773–776. 

Kaz, D. M., Mcgorty, R., Mani, M., Brenner, M. P., & Manoharan, V. N. (2011). Physical ageing of the 
contact line on colloidal particles at liquid interfaces. Nature Materials, 11(2), 138–142. 

Kellens, M., Meeussen, W., Riekel, C., & Reynaers, H. (1990). Time resolved x-ray diffraction studies 
of the polymorphic behaviour of tripalmitin using synchrotron radiation. Chemistry and Physics 
of Lipids, 52(2), 79–98. 

Kramers, H. A. (1940). Brownian motion in a field of force and the diffusion model. Physica, (4), 284–
304. 

Krebs, T., Schroen, K., & Boom, R. (2012). A microfluidic method to study demulsification kinetics. Lab 
on a Chip, 12(207890), 1060–1070. 

Krebs, T., Schroën, K., & Boom, R. (2012). Coalescence dynamics of surfactant-stabilized emulsions 
studied with microfluidics. Soft Matter, 8(41), 10650–10657. 

Kutuzov, S., He, J., Tangirala, R., Emrick, T., Russell, T. P., & Böker, A. (2007). On the kinetics of 
nanoparticle self-assembly at liquid/liquid interfaces. Physical Chemistry Chemical Physics, 9, 
6351–6358. 

Laar, T. Van De, Klooster, S., Schroën, K., & Sprakel, J. (2016). Transition-state theory predicts clogging 
at the microscale. Nature Publishing Group, (April), 1–8. 

Leal-Calderon, F., & Schmitt, V. (2008). Solid-stabilized emulsions. Current Opinion in Colloid and 
Interface Science, 13(4), 217–227. 

Li, T., Donadio, D., & Galli, G. (2013). Ice nucleation at the nanoscale probes no man’s land of water. 
Nature Communications, 4(May), 1–6. 

Liu, F., & Tang, C.-H. (2013). Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-
water emulsions. Journal of Agricultural and Food Chemistry, 61(37), 8888–8898. 

Luo, Z., Murray, B. S., Yusoff, A., Morgan, M. R. a, Povey, M. J. W., & Day, A. J. (2011). Particle-
stabilizing effects of flavonoids at the oil-water interface. Journal of Agricultural and Food 
Chemistry, 59(6), 2636–2645. 

Mallia, A. K., Frovenzano, M. D., Fujimoto, E. K., Olson, B. J., Klenk, D. C., & Company, P. C. (1985). 
Measurement of Protein Using Bicinchoninic Acid. 85, 76–85. 

McGorty, R., Fung, J., Kaz, D., & Manoharan, V. N. (2010). Colloidal self-assembly at an interface. 
Materials Today, 13(6), 34–42. 

Mikulcová, V., Bordes, R., & Kašpárková, V. (2016). On the preparation and antibacterial activity of 
emulsions stabilized with nanocellulose particles. Food Hydrocolloids, 61, 780–792. 

Monteillet, H., Workamp, M., Appel, J., Kleijn, J. M., Leermakers, F. a. M., & Sprakel, J. (2014). 
Ultrastrong anchoring yet barrier-free adsorption of composite microgels at liquid interfaces. 
Advanced Materials Interfaces, 1, 1300121. 

Monteux, C., Kirkwood, J., Xu, H., Jung, E., & Fuller, G. G. (2007). Determining the mechanical response 
of particle-laden fluid interfaces using surface pressure isotherms and bulk pressure 
measurements of droplets. Physical Chemistry Chemical Physics, 9, 6344− 6350. 



Coalescence stability of Pickering emulsions produced with lipid particles: A microfluidic study 

 

122 
 

Muijlwijk, K., Colijn, I., Harsono, H., Krebs, T., Berton-Carabin, C., & Schroën, K. (2017). Coalescence of 
protein-stabilised emulsions studied with microfluidics. Food Hydrocolloids, 70, 96–104. 

Muijlwijk, K., Hinderink, E., Ershov, D., Berton-Carabin, C., & Schroën, K. (2016). Interfacial tension 
measured at high expansion rates and within milliseconds using microfluidics. Journal of Colloid 
and Interface Science, 470, 71–79. 

Nagarkar, S. P., & Velankar, S. S. (2012). Morphology and rheology of ternary fluid–fluid–solid systems. 
Soft Matter, 8(32), 8464. 

Pan, M., Lyu, F., & Tang, S. K. Y. (2017). Methods to coalesce fluorinated Pickering emulsions. Anal. 
Methods, 4622–4629. 

Pawlik, A., Kurukji, D., Norton, I., & Spyropoulos, F. (2016). Food-grade Pickering emulsions stabilised 
with solid lipid particles. Food Funct. 

Pickering, S. U. (1907). Emulsions. Journal of the Chemical Society, 91, 2001–2021. 
Ramsden, W. (1903). Separation of Solids in the Surface-layers of Solutions and “suspensions” 

(observations on Surface-membranes, Bubbles, Emulsions, and Mechanical Coagulation). 
Proceedings of the Royal Society of London, 72, 156–164.  

Rayner, M., Marku, D., Eriksson, M., Sjöö, M., Dejmek, P., & Wahlgren, M. (2014). Biomass-based 
particles for the formulation of Pickering type emulsions in food and topical applications. 
Colloids and Surfaces A, 458, 48–62. 

Rayner, M., Sjöö, M., Timgren, A., & Dejmek, P. (2012). Quinoa starch granules as stabilizing particles 
for production of Pickering emulsions. Faraday Discussions, 158, 139. 

Roger, K., & Cabane, B. (2012). Why are hydrophobic/water interfaces negatively charged? 
Angewandte Chemie - International Edition, 51(23), 5625–5628. 

Schröder, A., Sprakel, J., Schroën, K., & Berton-Carabin, C. (2017). Tailored microstructure of colloidal 
lipid particles for Pickering emulsions with tunable properties. Soft Matter, 3190–3198. 

Schroen, K., Bliznyuk, O., Muijlwijk, K., Sahin, S., & Berton-Carabin, C. C. (2015). Microfluidic 
emulsification devices: From micrometer insights to large-scale food emulsion production. 
Current Opinion in Food Science, 3, 33–40. 

Tcholakova, S., Denkov, N. D., & Lips, A. (2008). Comparison of solid particles, globular proteins and 
surfactants as emulsifiers. Physical Chemistry Chemical Physics : PCCP, 10(12), 1608–1627. 

Timgren, A., Rayner, M., Dejmek, P., & Marku, D. (2013). Emulsion stabilizing capacity of intact starch 
granules modified by heat treatment or octenyl succinic anhydride. 

Yusoff, A., & Murray, B. S. (2011). Modified starch granules as particle-stabilizers of oil-in-water 
emulsions. Food Hydrocolloids, 25(1), 42–55. 

Zafeiri, I., Norton, J. E., Smith, P., Norton, I. T., & Spyropoulos, F. (2017). The role of surface active 
species in the fabrication and functionality of edible solid lipid particles. Journal of Colloid and 
Interface Science. 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is published as Schröder, A., Sprakel, Boerkamp, W., Schroën, K. and Berton‐
Carabin, C. C. (2019). Can we prevent lipid oxidation in emulsions by using fat-based 
Pickering particles? Food Research International. 120, 352-363. 

5 
 

Can we prevent lipid oxidation in emulsions 

by using fat-based Pickering particles? 



Can we prevent lipid oxidation in emulsions by using fat-based Pickering particles? 

    

124 
 

Abstract: 

Interest has recently been rising in the development of food-compatible Pickering 

emulsions, i.e., particle-stabilized emulsions, and various biobased particles have been 

demonstrated as useful for such a purpose. Most of the related work has focused on the 

physical stability of the emulsions, but whether such particles can be advantageous in terms 

of chemical stability, and in particular, with regard to lipid oxidation, is largely unexplored. 

Recently, we found that colloidal lipid particles (CLPs) are efficient Pickering stabilizers, and 

the objective of the present study was to investigate the oxidative stability of emulsions 

containing these particles. Three types of sunflower oil-in-water (O/W) emulsions were 

considered: Pickering emulsions stabilized with colloidal lipid particles (CLPs) made of high 

melting point (HMP) fat (tripalmitin or palm stearin), adsorbed onto the liquid oil droplets; 

and, as references, two conventional sodium caseinate-stabilized emulsions, of which one 

contained only liquid oil, and the other liquid oil mixed with HMP fat as the core of the 

emulsion droplets.  

In the presence of iron, the latter oxidized faster than conventional liquid oil and Pickering 

emulsions, resulting in 2- to 3-fold higher amounts of primary and secondary lipid oxidation 

products. This may be due to intra-droplet HMP fat pushing oxidizable lipids towards the 

oil-water interface, which would promote lipid oxidation. This shows that the localization 

of solid fat in O/W emulsions affects lipid oxidation. We also found that CLP-stabilized 

Pickering emulsions had similar oxidation rates as conventional sodium caseinate-stabilized 

emulsions containing only liquid oil. This suggests that the potential of such Pickering 

particles to prevent lipid oxidation is limited. This could be because diffusion of small pro-

oxidant molecules is not hindered by Pickering particles, as they cannot form an interfacial 

barrier that is structurally homogeneous at such a small scale. 
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5.1. Introduction 

In many food products, lipids are dispersed in an aqueous phase, i.e., are oil-in-water (O/W) 

emulsions. If the lipid phase contains unsaturated fatty acids, lipid oxidation can occur, 

which decreases the nutritional and sensory quality of the food product (El-Beltagi & 

Mohamed, 2013; Schaich, Shahidi, Zhongy, & Eskin, 2013).  

It is well established that lipid oxidation in multiphase systems, such as emulsions, is 

affected by many compositional factors. This is, at least in part, explained by the chemical 

reactivity of some ingredients (e.g., antioxidants, transition metals, proteins) (Chen et al., 

2011; Laguerre, Bily, Roller, & Birtic, 2017; D.J. McClements & Decker, 2000a). A few factors 

have clearly been identified as protecting lipids against oxidation in emulsion systems. In 

particular, high concentrations of non-adsorbed proteins greatly prevent oxidation, which 

is due to their ability to chelate metal ions, or to scavenge free radicals (Berton, Genot, & 

Biopolym, 2011; Berton, Genot, & Ropers, 2011; Faraji, McClements, & Decker, 2004; Koh, 

2002; Osborn & Akoh, 2004).  

Furthermore, it is commonly accepted that lipid oxidation is initiated at the oil-water 

interface, the region where unsaturated lipids and aqueous pro-oxidants, such as metal 

ions, come into close contact (Berton-Carabin et al., 2014c). Therefore, lipid oxidation 

depends to a large extent on the composition of the oil-water interface (Berton, Ropers, 

Viau, & Genot, 2011; Genot; Berton, Claire; Ropers, 2013). For instance, the location of 

antioxidants at the oil-water interface promotes oxidative stability, since these compounds 

are more efficient when located near the initiation reaction site (Laguerre et al., 2015; Yuji 

et al., 2007). For many other factors, the effects on lipid oxidation are controversial and very 

much system-dependent (e.g., type of emulsifier, pH of the continuous phase, minor 

hydrophilic or lipophilic components). It is often mentioned that the structure of the oil-

water interface, and in particular, its thickness (Salminen, Helgason, Kristinsson, 

Kristbergsson, & Weiss, 2017) and structural homogeneity (Genot et al., 2013) can have a 

protective effect on lipid oxidation in emulsions; however, experimental evidence is scarce .  

Recently, strong interest has emerged regarding the development of Pickering emulsions 

for food applications (Berton-Carabin & Schroën, 2015). Pickering emulsions are particle-

stabilized emulsions, and are known for their high physical stability compared to 

conventional emulsifier-stabilized emulsions. The particles strongly attach to the interface, 
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exceeding the thermal energy of desorption by orders-of-magnitude, unlike regular 

emulsifiers for which these two energies are much closer, facilitating desorption and 

possible emulsion destabilization.  

Although the state-of-the-art research in this field has historically been established with 

inorganic particles, such as silica particles, substantial work over the past decade has 

demonstrated that biobased particles (e.g., starch granules, insoluble protein particles) can 

also be useful for the physical stabilization of emulsions (Berton-Carabin & Schroën, 2015). 

Yet, whether Pickering particle layers can affect lipid oxidation is largely unexplored; only a 

few studies on this topic have been reported (Kargar et al., 2012; Kargar, Spyropoulos, & 

Norton, 2011a; Kargar et al., 2011b; Xiao et al., 2015; T. Zeng et al., 2017; Yuan Zhao et al., 

2015). Some authors speculate that a closely packed particle layer may have better barrier 

properties than a protein or surfactant emulsifier layer. Kargar et al. (2011a) found that 

emulsions stabilized by silica particles were more oxidatively stable than Tween 20-

stabilized emulsions, but less oxidatively stable than sodium caseinate-stabilized emulsions 

(Kargar et al., 2011a). In another study, the same authors found that lipid oxidation was 

lower in emulsions stabilized by microcrystalline cellulose particles compared to emulsions 

stabilized by modified starch particles, which was explained by the free radical scavenging 

properties of the microcrystalline cellulose particles, and their ability to form a thick 

interfacial layer (Kargar et al., 2012).  

Recently, we have developed a new type of food-grade particle-stabilized emulsions, using 

colloidal lipid particles (CLPs) as Pickering stabilizers (Schröder, Sprakel, Schroën, & Berton-

Carabin, 2017; Schröder, Sprakel, Schroën, Spaen, & Berton-Carabin, 2018). Our CLPs are 

made of edible high melting point (HMP) lipids, and of a small amount of emulsifier. They 

can form a thick and mechanically resistant layer at the surface of oil droplets. In the present 

work, we investigate what the effect of such layers could be on lipid oxidation, and in 

particular, whether they protect the dispersed oil phase against oxidation. 

To study how such particles affect lipid oxidation in emulsions, we studied lipid oxidation in 

three types of emulsions: Pickering emulsions stabilized by sodium caseinate-coated CLPs; 

and, for comparison purposes, two types of conventional sodium caseinate-stabilized O/W 

emulsions, of which one contained only liquid oil, and the other liquid oil mixed with HMP 

fat, to have the same overall composition as that of the Pickering emulsion (Figure 5.1.). 

This research allowed us to link the physical structure of emulsions, i.e., the spatial 
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distribution of the different components within the droplet and at its interface, to the 

extent of lipid oxidation. 

5.2. Materials & methods 

5.2.1. Materials 

Tripalmitin (#T8127, purity >99 %), sodium phosphate monobasic (#S9638), sodium 

phosphate dibasic (#S9763), sodium chloride (#S7653), iron(II) sulfate heptahydrate 

(#F8633), ethylenediaminetetraacetic acid disodium salt dihydrate (#E6635), para-anisidine 

(#A88255), and acetic acid (#45726) were purchased from Sigma-Aldrich. n-Hexane 

(#808023502) was obtained from Actu-All Chemicals (Oss, the Netherlands). 2-Propanol 

was purchased from Merck (Darmstadt, Germany). Sodium caseinate was supplied by DMV 

International (#41610, spray dried, protein content 91.0%). Sunflower oil was obtained from 

a local supermarket, and was stripped with alumina powder (MP EcoChrome™ ALUMINA N, 

Activity: Super I, Biomedicals) to remove impurities and tocopherols (Berton, Genot, & 

Ropers, 2011). Palm stearin (palmitic acid, 82%; oleic acid, 9%; stearic acid, 5%) was supplied 

by ADM (Saint Laurent Bangy, France) (composition can be found in Supplementary material 

(Table S1). Ultrapure water (18.2 MΩ) was used for all experiments, and prepared using a 

Milli-Q system (Millipore Corporation, Billerica, MA, USA). All other chemicals or solvents 

were of analytical grade.  

5.2.2. Purification of tripalmitin 

Tripalmitin was purified by three recrystallization steps using ethanol. Briefly, tripalmitin 

was dissolved in ethanol at 60-70 °C while stirring for 15 min, and left to cool down to room 

temperature to allow recrystallization, after which ethanol was removed in a vacuum oven, 

which was repeated two more times. 

5.2.3. Preparation of CLP dispersions 

An aqueous phase (95% w/w) containing 1% w/w sodium caseinate in phosphate buffer (10 

mM, pH 7.0) was heated at 80 °C in a water bath and added to melted tripalmitin or palm 

stearin (5% w/w). Then, a coarse emulsion was prepared by high speed stirring at 11,000 

rpm for one min using a preheated rotor-stator homogenizer (Ultra-turrax IKA T18 basic, 

Germany). The obtained coarse emulsion was then homogenized (Microfluidizer® Processor 

MF 110Y with Y-shaped interaction chamber (F12Y; minimum internal dimension: 75 μm), 
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Microfluidics, Newton, Massachusetts, USA) at 800 bar and 80 °C (5 cycles) to obtain 

submicron-sized melted fat droplets, which were left to cool down to 20 °C over the course 

of ~ 6 h, allowing for the lipid phase to crystallize. The resulting dispersion of CLPs was 

stored at 4 °C (Schröder et al., 2018).  

5.2.4. Preparation of O/W emulsions 

We prepared three types of emulsions: Pickering emulsions, stabilized by CLPs; and two 

types of conventional sodium caseinate-stabilized O/W emulsions, of which one contained 

only liquid oil, and the other liquid oil mixed with HMP fat. All emulsions contained the same 

amount of sodium caseinate, and two of them contained HMP fat in the same amounts, but 

they differ in their structural organization (Figure 5.1., Table 5.2.). To prepare a conventional 

sodium caseinate-stabilized liquid core emulsion, stripped sunflower oil (10% w/w) was 

mixed with phosphate buffer (10 mM, pH 7.0, 47.75% w/w) and 1% w/w sodium caseinate 

in phosphate buffer (10 mM, pH 7.0, 45% w/w). For the conventional sodium caseinate-

stabilized emulsion containing HMP fat (i.e., solid core emulsion), stripped sunflower oil 

(10% w/w) was mixed with melted tripalmitin (2.25% w/w), phosphate buffer (10 mM, pH 

7.0, 45% w/w) and 1% w/w sodium caseinate in phosphate buffer (10 mM, pH 7.0, 45% 

w/w) at 80 °C. For the CLP-stabilized Pickering emulsion, stripped sunflower oil (10% w/w) 

was mixed with phosphate buffer (10 mM, pH 7.0, 45% w/w) and a 5% w/w CLP dispersion 

(45% w/w) (Table 5.2.).  

We first prepared coarse emulsions by high speed stirring at 7,000 rpm for one min using a 

rotor-stator homogenizer (Ultra-turrax IKA T18 basic, Germany). The obtained coarse 

emulsions were then either homogenized at 400 bar (5 cycles) using the previously 

described high pressure homogenizer, or processed through a lab scale colloid mill with gap 

width of 0.32 mm (IKA Magic Lab, Staufen, Germany) operating for one min at 15,000 rpm. 

For the conventional emulsion containing HMP fat a temperature of 80 °C was used, 

whereas for the conventional liquid oil and Pickering emulsions this was 0 °C. Preliminary 

trials showed that the homogenization temperature did not affect the oxidative fate of the 

emulsions (Supporting information, Figure S5.2.). The resulting emulsions were stored at 

4 °C until incubation (for a period which was always less than 24 h). 
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Figure 5.1. Graphical representation of a sodium caseinate-coated CLP-stabilized Pickering 
emulsion (A), a conventional sodium caseinate-stabilized emulsion with liquid oil droplets 
(B) and a conventional sodium caseinate-stabilized emulsion containing liquid oil mixed with 
crystallized high melting point fat (C).  

5.2.5. Physical characterization of CLPs and O/W emulsions 

The CLP and emulsion droplet size was measured by static light scattering (Malvern 

Mastersizer 3000, Malvern Instruments Ltd., Malvern, Worcestershire, UK). The following 

optical properties were used: refractive indices of 1.540 (solid tripalmitin), 1.465 (sunflower 

oil) and 1.330 (water) with an absorption index of 0.01.  

The droplet surface charge was evaluated by the measurement of ζ-potential with a 

dynamic light scattering instrument (Zetasizer Nano ZS, Malvern Instruments, UK) at 25 °C. 

Prior to the measurement, particles and emulsions were diluted ~1000 fold in phosphate 

buffer (10 mM, pH 7.0) to prevent multiple scattering.  

Melting and crystallization were investigated for bulk fat, CLPs and O/W emulsions using a 

differential scanning calorimeter (Discovery Series DSC 250, TA Instruments, Zellik, 

Belgium). Fat, CLP dispersions or emulsions were placed in an aluminum pan closed with a 

hermetic lid, and heated from -10 °C to 80 °C at 1 °C min-1, then cooled down to -10 °C at 

the same rate followed by two identical heating/cooling cycles. An empty pan was used as 

a reference. The thermograms were evaluated using TRIOS software (v4.1.1.33073, TA 

instruments, Zellik, Belgium). 
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The protein surface coverage of CLPs was determined by calculating the difference between 

the total amount of proteins used to prepare the CLPs, and the residual protein 

concentration in the aqueous phase of the CLP dispersion, and was based on the mean 

diameter of the CLPs (d3,2). The concentration of non-adsorbed protein in CLP dispersions 

and in emulsions was quantified by determining the protein content in the aqueous phase 

with the bicinchoninic acid (BCA) assay. We separated the aqueous phase of the dispersions 

or of the emulsions by centrifuging a 2-mL aliquot for 3 h at 20,000×g. The aqueous phase 

was collected by cautiously boring a hole in the tube, and centrifuging again for 3 h at 

20,000×g to remove any remaining CLPs or oil droplets.  

Transmission electron microscopy (TEM) was performed on CLP dispersions and on 

emulsions containing HMP fat (i.e., CLP-stabilized Pickering emulsions, or conventional 

emulsions with HMP fat in the droplet core; both were diluted 10-fold using 10 mM 

phosphate buffer pH 7.0). The samples were deposited onto a freshly glown discharged 

carbonized copper grid (400 mesh). The excess solvent was blotted using standard filter 

paper. The CLPs and emulsion droplets were stained with an aqueous 1% w/w 

phosphotungstic acid solution. Images were recorded on a JEOL JEM 1400 plus transmission 

electron microscope (Peabody, USA) operating at 120 kV in combination with JEOL CCD 

camera Ruby (8 M pixel). 

The microstructure of the emulsions was also evaluated by light microscopy using a Carl 

Zeiss Axioscope A1 microscope equipped with a camera (AxioCam Mrc5) and polarization 

filters.  

5.2.6. Incubation of O/W emulsions 

An oxidation initiator system consisting of an equimolar mixture of FeSO4 and EDTA was 

prepared by separately dissolving FeSO4 and EDTA (8.4 or 84 mM) in ultrapure water. 

Equivalent volumes of each solution were then mixed, and the iron-EDTA complex was 

allowed to form under moderate stirring for 1 h in the dark (Berton, Ropers, et al., 2011). 

Aliquots of emulsion (2 g) were distributed in 15-mL polypropylene centrifuge tubes. The 

oxidation initiator solution (100 µL) was added to the emulsions to obtain a final 

concentration of 200 μM or 2 mM of both iron and EDTA. The tubes were rotated in the 

dark at 2 rpm at 25 °C for 72 h (SB3 rotator, Stuart, Staffordshire, UK).  
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5.2.7. Measurements for lipid oxidation 

5.2.7.1. Conjugated diene (CD) hydroperoxides 

The procedure for quantification of CD hydroperoxides, which are primary oxidation 

products, was adapted from Corongiu & Banni (1994). In short, the incubated emulsions 

were diluted 4000 fold in 2-propanol, in sequential dilution steps. The final solutions were 

centrifuged at 20,000×g for one min, and the absorbance of the supernatant was measured 

at 233 nm with a UV-visible spectrophotometer. The reference cell contained 2-propanol 

and phosphate buffer (10 mM, pH 7.0) in the same proportions as in the final dilution of the 

samples. Results were expressed in mmol of equivalent hydroperoxides per kg of oil (mmol 

eq HP kg-1 oil) with 27,000 M-1 cm-1 as the molar extinction coefficient of CD hydroperoxides 

at 233 nm. 

5.2.7.2. Aldehydes 

The para-anisidine value (pAV), a measure of total aldehydes, was used as a marker of 

secondary lipid oxidation products (AOCS, 1998). In short, one mL of saturated sodium 

chloride solution and 5 mL of hexane/isopropanol (1/1, v/v) were added per aliquot of 

incubated emulsion (2.1 mL). The obtained mixtures were vortexed followed by 

centrifugation at 2,000×g for 8 min at 4 °C. The upper hexane layer (> 2 mL) was collected 

and placed on ice for 3 min, followed by centrifugation at 20,000×g for 1 min. The 

absorbance of the supernatant was measured at 350 nm with pure hexane as a blank (Ab). 

In an centrifugation vial, 1 mL of the supernatant was mixed with 0.2 mL of 2.5 g L-1 para-

anisidine in acetic acid solution. After exactly 10 min the absorbance was measured at 350 

nm, using 1 mL pure hexane mixed with 0.2 mL of 2.5 g L-1 para-anisidine in acetic acid 

solution, also incubated for 10 min, as a blank (As). The para-anisidine value (arbitrary units) 

was determined as follows (Equation 5.1.):  

𝑝𝐴𝑉 =
(1.2𝐴𝑠−𝐴𝑏)

𝑚
                                 (Eq. 5.1.) 

Where m is the concentration of oil in the supernatant (g mL-1). 

5.2.7.3. Physical stability of emulsions 

The size distribution of emulsion droplets incubated under oxidative conditions was 

monitored with static light scattering, as explained in the physical characterization section; 

it was checked immediately after homogenization and after 72 h of incubation.  
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5.2.8. Experimental design 

For each measurement, whether related to size, ζ-potential, DSC, surface coverage, or 

oxidation (CD hydroperoxides and pAV)), at least two emulsions were prepared 

independently and samples were analyzed in duplicate. Additionally, two independent 

samples were incubated per time point, and analyzed in duplicate for CD hydroperoxide, 

and in single for pAV. 

Statistical analysis of variance (F-test and T-test) was carried out on the experimental lipid 

oxidation values at the end of the incubation period. Differences at p < 0.05 were considered 

to be significant. 

5.3. Results & discussion 

5.3.1. Physical characterization of colloidal lipid particles (CLPs)  

We produced CLPs by hot high pressure homogenization of tripalmitin or palm stearin in an 

aqueous phase containing 1% w/w sodium caseinate, and subsequent cooling to allow for 

lipid crystallization. The particle size distribution of both tripalmitin and palm stearin CLPs 

was fairly unimodal with a mean particle diameter (d3,2) around 150 nm (Figure 5.3.A). TEM 

images show a nearly spherical morphology for tripalmitin CLPs and an irregular shape for 

palm stearin CLPs, with particle sizes ranging from ~100-350 nm (Figure 5.3.B and C), which 

is in good agreement with the particle size distributions.  

Tripalmitin and palm stearin CLPs had similar ζ-potentials of -36 ± 2 mV, due to the presence 

of ionizable groups in sodium caseinate at the surface of the particle. The calculated protein 

surface coverage was 3.7 mg m-² and 3.5 mg m-² for tripalmitin and palm stearin CLPs, 

respectively, which, according to Graham & Phillips (1979a,b), slightly exceeds monolayer 

coverage and corresponds to a film thickness of about 6-10 nm. It should be pointed out 

that the protein layer gives a hydrophilic character to the particles (Graham & Phillips, 

1979b, 1979a; Schröder et al., 2018).  

The DSC melting thermogram of tripalmitin CLPs shows an exothermic melting peak at 

~42 °C, which is indicative of crystals reorganizing and recrystallizing in a more stable form 

(Figure 5.3.D). The endothermic melting peak at ~62 °C is very broad, and consists of a 

sequence of peaks corresponding to multiple melting events. The thermogram of palm 

stearin CLPs shows a broad melting peak with a maximum at ~58 °C (Figure 5.3.E). The 
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crystallization temperatures of 30 °C and 19 °C for tripalmitin and palm stearin CLPs (Figure 

5.2.D&E, respectively) are much lower than those of bulk tripalmitin and palm stearin, 

which are 41 °C and 39 °C, respectively (Supporting information, Figure S5.3.A and S5.3.C). 

This shows that there is a strong supercooling effect when the HMP fats are emulsified as 

CLPs, which was expected due to the small particle size (Schröder et al., 2017).  

 

Figure 5.3. Characterization of tripalmitin (A, B & D) and palm stearin (A, C & E) CLPs. Particle 
size distribution (A); TEM images (B & C); and DSC thermograms (D & E).  

5.3.2. Physical characterization of emulsions 

We prepared five different emulsions: two sunflower O/W Pickering emulsions stabilized by 

either tripalmitin or palm stearin CLPs; and, for comparison purposes, three conventional 

O/W emulsions stabilized by sodium caseinate, of which one contained only liquid 

sunflower oil, and the other two liquid sunflower oil mixed with HMP fat (either tripalmitin 

or palm stearin) to obtain droplets with a partially crystallized core. Thus, all emulsions 

contained the same amount of sodium caseinate, and four of them the same amount of 

HMP fat (Pickering and partially crystallized core emulsions), but they differed in their 
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structural organization (Table 5.2., Figure 5.1.), whereas the emulsion with fully liquid oil 

droplets was used as a standard reference.  

All conventional emulsions showed a comparable mean droplet size (d3,2) of 0.3-0.4 µm, 

although the solid core tripalmitin emulsions showed a broader size distribution compared 

to the other two conventional emulsions. The droplet size distributions of the Pickering 

emulsions showed two distinct peaks, corresponding to non-adsorbed CLPs (~0.2 µm) and 

to emulsion droplets ranging from ~0.3-3 µm, with a maximum at ~1 µm (Figure 5.4.A).  

All emulsions exhibited a comparable ζ-potential of around -40 to -42 mV (Figure 5.4.B), due 

to the presence of ionizable groups in the proteins. For the conventional emulsions, the 

surface coverage of sodium caseinate was between 1.3 and 1.5 mg m-², which is similar to 

reported values for monolayers (Graham & Phillips, 1979b).  

We visualized the morphology of the Pickering emulsions and of the conventional solid core 

emulsions by TEM (Figure 5.4.C – F). This analysis first confirmed that CLPs adsorb at the oil-

water interface in Pickering emulsions (Figure 5.4.E & F). Solid core emulsions with palm 

stearin showed deformed droplets with clear facets between them, whereas the ones with 

tripalmitin were less deformed (Figure 5.4.C & D), which is probably because these droplets 

have a more solid structure.  

While TEM gave us information about the emulsions’ structure and morphology, it did not 

give insight into the physical state of the fat inside the emulsions; for that we used DSC. We 

found that tripalmitin and palm stearin in the solid core emulsions crystallized at 5-18 °C 

and 5-15 °C, and melted at 35-54 °C and 35-51 °C, respectively (Figure 5.5.A & B), which are 

much lower values compared to bulk fats (Supporting information, Figure S5.3.A & S5.3.C) 

due to melting point depression (i.e., due to mixing with lower melting point triglycerides) 

(Gunstone, Harwood & Dijkstra, 2007; Lovegren, Gray, & Fuege, 1976). For the Pickering 

emulsions prepared with tripalmitin or palm stearin CLPs, the thermograms showed two 

distinct crystallization peaks (Figure 5.5.C & D). The first peak (highest temperature) 

probably corresponds to non-adsorbed CLPs, which show a similar crystallization 

temperature in dispersion, as discussed earlier. The second peak (lowest temperature) 

occurs at the crystallization temperature of solid core emulsions, which we interpret as 

being related to CLPs in contact or blended with the sunflower oil at the interface of the 

droplet.  
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Figure 5.4. Characterization of conventional and Pickering O/W emulsions by droplet size 
distribution (A); ζ-potential (B); TEM imaging (C-F) of solid core emulsions with tripalmitin 
(C) and palm stearin (D); and Pickering emulsions with particles prepared with tripalmitin 
(E) and palm stearin (F). The emulsions coded with C are the conventional emulsions, the 
ones with P the Pickering emulsions, and SO, TP and PS indicate sunflower oil, tripalmitin 
and palm stearin, respectively.  
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We also produced emulsions by colloid mill homogenization, to obtain larger droplet sizes 

(Figure 5.6.A) that allow for visualization of the physical structure of emulsions by light 

microscopy. We observed spherical and non-aggregated droplets for conventional 

sunflower oil emulsions (Figure 5.6.B) and for those containing tripalmitin (Figure 5.6.C) 

when using regular light. When using polarization filters, clear differences were noticed: 

tripalmitin was not homogeneously distributed within the emulsion droplets, but formed 

crystallized islands of various dimensions inside and at the interface of the oil droplets 

(Figure 5.6.D and E). For the Pickering emulsions, we clearly saw a thick birefringent 

polarization ring at the droplet surface, indicating that the CLPs were adsorbed at the 

interface (Figure 5.6.F). 

Figure 5.5. DSC thermograms of the solid core emulsions with tripalmitin (A), and palm 
stearin (B); and of the Pickering emulsions with particles prepared with tripalmitin (C) and 
palm stearin (D). 
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Figure 5.6. Characterization of coarse emulsions prepared with a lab scale colloid mill: 
droplet size distribution (A); light microscopy images of conventional sunflower oil (B), and 
solid core tripalmitin emulsions (C), and polarized light images of the conventional 
tripalmitin emulsion (D&E), and the Pickering emulsion prepared with tripalmitin particles 
(F).  
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5.3.3. Oxidative stability of O/W emulsions: Formation of primary and secondary 

lipid oxidation products 

Measurements of conjugated diene (CD) hydroperoxides and total aldehydes (pAV) were 

performed to characterize the oxidative stability of emulsions, whereas physical stability 

was monitored through the droplet size at the beginning and the end of the incubation 

period. 

First, we incubated three emulsions with 2 mM FeSO4/EDTA at 25 °C: the conventional 

sunflower oil emulsion, the solid core tripalmitin emulsion, and the tripalmitin CLP-

stabilized Pickering emulsion. The emulsions containing tripalmitin showed some 

aggregation, but no irreversible physical destabilization, whereas the conventional 

sunflower oil emulsion showed coalescence and visible oiling off (Supporting information, 

Figure S5.4.) when incubated in oxidative conditions.  

We observed an immediate and rapid increase in CD hydroperoxide formation in all 

emulsions within the first 30-40 h (Figure 5.7.A). After 72 hours, the CD hydroperoxide 

concentration was the highest in the solid core tripalmitin emulsion (300 mmol kg-1 oil), 

followed by the Pickering emulsion (225 mmol kg-1 oil), and the lowest in the conventional 

sunflower oil emulsion (125 mmol kg-1 oil), with significant differences between the values 

(p < 0.05). We also found a rapid formation of aldehydes in all emulsions within the first few 

hours of incubation (Figure 5.7.B); after 72 h of incubation, the corresponding pAV were 18, 

14 and 8, with significant differences between the values (p < 0.05). It is important to 

mention that the low values found for the conventional sunflower oil emulsion may be a 

result of the physical instability in this emulsion. The observed increase in droplet size, due 

to coalescence over the time-scale of the incubation period, implies that the amount of oil-

water interfacial area decreased, which can slow down lipid oxidation (Berton, Ropers, et 

al., 2011). 

To limit the physical instability of emulsions during the incubation period, we incubated the 

same emulsions with a lower oxidation initiator concentration (200 μM) at 25 °C. These 

conditions were also applied for the incubation of the emulsions containing palm stearin. 

The Pickering emulsions and the conventional emulsions containing HMP fat remained 

physically stable, and the conventional emulsions with only sunflower oil showed a slight 

increase in droplet size (Figure 5.8.A - C), albeit much less than found with the higher 
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concentration of oxidation initiator. The formation of lipid oxidation products is shown in 

Figure 5.7.C & D for the emulsions containing tripalmitin, and in Figure 5.7.E & F for the 

emulsions containing palm stearin. For both conventional solid core emulsions, a rapid 

increase in the CD hydroperoxide concentration was observed immediately after the start 

of incubation, followed by a levelling off towards the end of the incubation period, during 

which aldehydes started to form, as shown by the increase in pAV. Final CD hydroperoxide 

concentrations, and pAV for both solid core emulsions were about 250 mmol kg-1 oil and 6-

7, respectively. Lipid oxidation in the Pickering emulsions and in the conventional sunflower 

oil emulsion proceeded slower and to a significantly lower extent than in the solid core 

emulsions; the sunflower oil emulsion, and palm stearin Pickering emulsion even showed a 

lag phase in aldehyde formation in the first ~20 h of incubation. At the end of the incubation 

period, CD hydroperoxide concentrations and pAV of about 125 mmol kg-1 oil and 2-4 were 

measured in both emulsions that behaved rather similarly.  

Conventional solid core emulsions with palm stearin oxidized slightly faster than their 

tripalmitin counterparts (not significant). Two factors may explain this: the difference in 

physical state of the HMP fat, or the chemical composition. Palm stearin emulsions showed 

a lower onset crystallization temperature and lower crystallization enthalpy, hence the solid 

fat content in these emulsions was expected to be lower. Based on literature, a higher solid 

fat content could favor oxidation, as it increases the local concentration of unsaturated 

triglycerides at the interface where they are expected to interact with pro-oxidants 

(Calligaris, Sovrano, Manzocco, & Nicoli, 2006; Calligaris, Manzocco, & Nicoli, 2006; Okuda, 

McClements, & Decker, 2005; Waraho, McClements, & Decker, 2011). If this would also be 

the case for our solid core tripalmitin emulsion, they should theoretically oxidize faster than 

solid core palm stearin emulsions, which is not what we found. From a chemical 

composition point of view, palm stearin contains some unsaturated fatty acids 

(approximately 9.0% 18:1 and 1.8% 18:2), which could have favored lipid oxidation; this 

seems to us the most likely explanation for the present findings.  



Chapter 5     

  

141 
 

 

Figure 5.7. CD hydroperoxide concentration and pAV of conventional sunflower oil (green), 
solid core tripalmitin emulsion (red), and tripalmitin CLP-stabilized Pickering emulsion (blue) 
when incubated with 2 mM FeSO4/EDTA (A and B) or 200 μM FeSO4/EDTA (C & D), and of 
conventional sunflower oil (green), solid core palm stearin emulsion (dark red), and palm 
stearin CLP-stabilized Pickering emulsion (dark blue) when incubated with 200 μM 
FeSO4/EDTA (E & F) at 25 °C. 
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Figure 5.8. Particle size distribution of fresh emulsions and after 72 h of incubation with 200 
μM FeSO4/EDTA at 25 °C: Conventional sunflower oil (A), and tripalmitin (B) emulsion; and 
Pickering emulsion with tripalmitin particles (C).  

To exclude that the fast oxidation of solid core emulsions was caused by pro-oxidant 

impurities in the HMP fat, we purified tripalmitin (particle size distribution and DSC 

thermogram in Supporting information, Figure S5.5.A & B), and measured the lipid oxidation 

markers during incubation with FeSO4/EDTA 2 mM or 200 μM (Supporting information, 

Figure S5.5C-F). Although purification resulted in sharper size distribution of the particles, 

and slight differences in CLP crystalline structure, this did not significantly influence the 

extent of oxidation, which suggests that the involved oxidation pathways cannot be 

ascribed to the presence of minor components or impurities in the HMP fat itself. 
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5.3.4. Comparison with interpretations from literature  

5.3.4.1. Solid core emulsions 

The results obtained with conventional sodium caseinate-stabilized emulsions, either with 

liquid or partially solid core, show the importance of the structural organization of 

emulsions on lipid oxidation. The HMP fat in our conventional solid core emulsion droplets 

crystallized as inhomogeneously distributed intra-droplet clusters (Figure 5.6.). This 

probably increased the amount of oxidizable lipids close to the interface, where they are 

more prone to interact with aqueous pro-oxidants (and in particular, iron ions), resulting in 

fast oxidation.  

Okuda et al. (2005) studied SDS-stabilized octadecane/methyl linolenate-based emulsions 

and found higher metal-catalyzed oxidation when methyl linolenate phase-separated from 

solid octadecane, compared to a system with liquid octadecane. Electron paramagnetic 

resonance has also been used to illustrate that lipid crystallization in sub-micron oil droplets 

could push lipophilic spin probes towards the droplet surface, making them more prone to 

reaction with hydrophilic components (Berton-Carabin, Coupland, & Elias, 2013). It seems 

therefore that partial or full intra-droplet lipid crystallization generally hampers the 

chemical stability of labile lipophilic molecules.  

Alternatively, when lipid crystallization is templated at the interface, a solid lipid shell can 

be formed at the droplet surface, leading to opposite effects with regard to the location and 

reactivity of lipophilic molecules. For instance, Salminen et al. (2017) showed that HMP 

lecithin-induced crystallization of tristearin at the interface formed a solid interfacial shell 

that inhibited oxidation of fish oil, compared to emulsions containing low melting point 

lecithin, in which tristearin crystallization was random.  

All these results show that the location of oxidizable fat in O/W emulsions influences their 

chemical stability. In some cases this is a positive effect as found for SLNs or nanostructured 

lipid carriers that have been reported to provide protection to encapsulated materials 

(Mehrad, Ravanfar, Licker, Regenstein, & Abbaspourrad, 2018; Wen, J. , Chen, G. and Chen, 

2018), but it is clear that this is not necessarily the case. Especially for triglycerides with a 

narrow melting range, expulsion of oxidizable compounds is likely to occur, therewith 

promoting oxidation (Qian, Decker, Xiao, & McClements, 2013).  
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5.3.4.2. Pickering emulsions 

A few previous studies have proposed that an interfacial particle layer could act as a physical 

barrier separating aqueous pro-oxidant species from oxidizable lipids (Kargar et al., 2012, 

2011b, 2011a; Zhao et al., 2015). For example, Zhao et al. (2015) showed that the use of 

silica particle aggregates led to enhanced chemical stability of curcumin compared to a 

single layer of particles, but this may be alternatively explained as enhanced ability to 

quench oxidative species.  

Our CLP-stabilized Pickering emulsions showed similar lipid oxidation rates to those 

measured in conventional sodium caseinate-stabilized sunflower oil emulsions (Figure 

5.7.C-F), which suggests that the physical barrier effect is, at most, limited. It could be 

argued that the surface of the oil droplet is not fully covered and that, at the scale of very 

small molecules such as metal ions or reactive oxygen species, it cannot be expected that a 

particle layer can keep them from reaching the interface; therefore a physical barrier effect 

seems highly unlikely given the currently available particles and fabrication processes. It 

may be worth mentioning that protein-stabilized emulsions have often been reported to 

have a good oxidative stability because of the intrinsic antioxidant activity of proteins 

(Berton-Carabin et al., 2014), which could also have contributed to the stability of the 

conventional emulsions studied here. However, this effect, if present at all, was certainly 

limited due to the low protein concentration used. Besides, all the emulsions studied in the 

present work had the same total protein concentration. 

It should be pointed out that Pickering particles can be modified to achieve a certain 

functionality. For example, Timgren et al. (2011) showed that gelatinization of starch 

Pickering particles adsorbed onto lipid emulsion droplets effectively reduced lipolysis 

compared to emulsions stabilized by intact starch granules. Their work shows that making 

the oil-water interfacial layer structurally more homogeneous made it less permeable at the 

level of enzymes such as lipase (i.e., the nanometer range; Timgren et al., 2011). At an even 

smaller scale, relevant to lipid oxidation, Zeng et al. (2017) showed that modification of 

Pickering particles with inclusion of an antioxidant (proanthocyanidin) did reduce oxidation. 

It seems thus that many options can still be considered to improve the ability of Pickering 

particles to promote the chemical stability of emulsions. 
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5.4. Conclusions 

We have investigated the ability of HMP fat-based Pickering particles to protect emulsions 

against lipid oxidation. To unambiguously assess their potential in that respect, we have 

compared lipid oxidation in emulsions with the same overall composition but with different 

structural organization (i.e., HMP fat present either at the oil droplet surface as Pickering 

particles, or mixed within the oil droplet core), and found that partial fat crystallization 

within the emulsion droplets promotes lipid oxidation. This is probably because the HMP 

fat crystallized as inhomogeneously distributed intra-droplet clusters, that pushed 

oxidizable lipids to the oil-water interface, where they were more accessible to aqueous 

phase pro-oxidants, and thus more prone to oxidation. Pickering emulsions showed similar 

lipid oxidation rates compared to sodium caseinate-stabilized emulsions, which suggests 

that CLPs were not able to enhance the chemical stability of emulsions compared to 

conventional emulsifiers through a physical barrier effect. Presumably, pro-oxidant 

molecules in the aqueous phase of the emulsions can still come into direct contact with 

oxidizable lipids at the interface. Yet, for a fixed lipid composition with a fraction of HMP 

fat, a CLP-based Pickering emulsion structure has advantages in terms of physico-chemical 

stability. This work illustrates that the location of solid fat is of great influence on the 

chemical stability of O/W emulsions, and thus needs to be carefully considered and 

controlled for emulsion design. 

5.5. Supporting information 

Table S5.1. Fatty acid composition of palm stearin (n=2) 

Component name Percentage average 

C14:0 1.16±0.03 

C16:0 82.18±0.13 

C18:0 5.12±0.05 

C18:1 9.03±0.07 

C18:2 1.83±0.01 

C18:3 0.02±0.00 

C20:0 0.32±0.01 

C22:0 0.25±0.01 

C22:1 0.04±0.01 

C24:0 0.05±0.00 
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Figure S5.2. CD hydroperoxide concentration in sunflower oil emulsions made with high or 
low homogenization temperature, incubated with 200 μM FeSO4/EDTA. 

 

Figure S5.3. DSC thermograms of bulk tripalmitin (A); purified bulk tripalmitin (B); and bulk 
palm stearin (C).  
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Figure S5.4. Emulsion stability after 72 h of incubation with FeSO4/EDTA, 1/1, M/M, 2 mM: 
Light microscopy image (A) and particle size distribution of conventional sunflower oil 
emulsion (B), conventional emulsion containing tripalmitin (C) and Pickering emulsion 
stabilized by tripalmitin CLPs (D). 
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Figure S5.5. Characterization of conventional emulsions containing tripalmitin (CTP. red), 
purified tripalmitin (CTP purified, purple) or palm stearin (dark red) in the core of the oil 
droplets: Particle size distribution (A) and DSC thermogram of CTP purified emulsion (B). CD 
hydroperoxide concentration (C and E) and pAV (D and F) incubated with 2 mM 
FeSO4/EDTA(C and D) or 200 μM FeSO4/EDTA (E and F) at 25 °C.  
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Abstract 

Colloidal lipid particles (CLPs) are promising encapsulation systems for lipophilic bioactives, 

such as oil-soluble antioxidants that are applied in food and pharmaceutical formulations. 

Currently, there is no clear consensus regarding the relation between particle structure and 

the chemical stability of such bioactives. Using α-tocopherol as a model antioxidant, we 

showed that emulsifier type (Tween 20 or 40, or sodium caseinate) and lipid composition 

(tripalmitin, tricaprylin, or combinations thereof) modulated particle morphology and 

antioxidant stability.  

The emulsifier affected particle shape, with the polysorbates facilitating tripalmitin 

crystallization into highly ordered lath-like particles, and sodium caseinate resulting in less 

ordered spherical particles. The fastest degradation of α-tocopherol was observed in 

tripalmitin-based CLPs, which may be attributed to its expulsion to the particle surface 

induced by lipid crystallization. This effect was stronger in CLPs stabilized by Tween 40, 

which may act as a template for crystallization.  

This work not only shows how the architecture of CLPs can be controlled through the type 

of lipid and emulsifier used, but also gives evidence that lipid crystallization does not 

necessarily protect entrapped lipophilic bioactives, which is an important clue for 

encapsulation system design. 
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6.1. Introduction 

The interest in enriching food and pharmaceutical products with lipophilic bioactives (for 

example, vitamins, flavors, pigments, antioxidants) is growing rapidly, and often involves 

encapsulation to protect these bioactives against chemical degradation, to enhance their 

solubility, activity or absorption, and to control their delivery (Qian, Decker, Xiao, & 

McClements, 2013; Salminen, Helgason, Kristinsson, Kristbergsson, & Weiss, 2013a). 

Submicron and partly solid lipid droplets, that may be referred to as colloidal lipid particles 

(CLPs) have emerged as potential encapsulation systems for lipophilic bioactive compounds, 

and have been extensively studied lately (Jenning & Gohla, 2001; Oehlke, Behsnilian, Mayer-

miebach, Weidler, & Greiner, 2017; Salminen, Helgason, et al., 2014; Trombino et al., 2009; 

Yadav, Khatak, Vir, & Sara, 2013; zur Mühlen, Schwarz, & Mehnert, 1998).  

It may be useful to clarify the related terminology: the term “solid lipid nanoparticle” (SLN) 

has been extensively used, but is not always appropriate, because (i) the lipid phase may 

not be fully solid, and (ii) the prefix “nano” applies to “natural, incidental or manufactured 

material containing particles, in an unbound state or as an aggregate or as an agglomerate 

of which, for 50% or more of the particles in the number size distribution, one or more 

external dimensions is between 1 nm-100 nm” (Bleeker et al., 2012). This classification does 

not hold for all particles termed SLNs (Bleeker et al., 2012; Mcclements, 2012). This is why 

“solid lipid particle” (SLP) should be preferred (McClements & Li, 2010); or, if the lipid phase 

is not fully crystallized, “(nano)structured lipid carrier” may be more accurate (Dan, 2016), 

or “colloidal lipid particle”, which is more generic, and will be used in the present work. 

CLP dispersions can be manufactured easily at large scale using high pressure 

homogenization, which also allows elevated temperatures when using high melting point 

(HMP) fats (Aditya & Ko, 2015). Biocompatible lipids can be used to make a lipid matrix with 

minimal toxicity, and relatively high encapsulation efficiency for lipophilic components 

compared to e.g., liposomes (Mukherjee, Ray, & Thakur, 2009; Salminen et al., 2013a; 

Suresh, Manjunath, Venkateswarlu, & Satyanarayana, 2007; Thrandur et al., 2009). Lipid 

materials that are partly or fully crystallized have been suggested to protect labile lipophilic 

molecules against chemical degradation (often, oxidation) by preventing accumulation at 

the interface (Helgason, Awad, Kristbergsson, McClements, & Weiss, 2009a; Salminen, 

Gömmel, Leuenberger, & Weiss, 2016), and by limiting diffusion of molecules involved in 

the oxidative reaction throughout the lipid phase (McClements & Li, 2010). A solid lipid 
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matrix has also been suggested to increase control over bioactive release e.g., under 

digestive conditions (Dan, 2014, 2016; McClements & Li, 2010), to improve absorption into 

the lymph and blood (Bargoni et al., 1998; Miglietta, Cavalli, Bocca, Gabriel, & Rosa Gasco, 

2000), and to delay lipid digestion (McClements & Li, 2010).  

The design of CLPs entrapping a lipophilic bioactive brings along challenges since the 

functionality depends on the lipid matrix structure (Bunjes, Westesen, & Koch, 1996). Lipids 

with a sufficiently high melting point may crystallize directly after CLP preparation in a 

polymorphic form that will depend on the lipid purity, presence of other ingredients (in 

particular, emulsifiers), and cooling rate. CLPs may also recrystallize during storage into 

more stable polymorphic forms. Lipids with a high purity can form highly ordered crystalline 

structures, which can result in the expulsion of the encapsulated lipophilic compound from 

the crystalline matrix (Salminen et al., 2016). This is especially the case when CLPs are 

manufactured with HMP alkanes or triacylglycerols with a narrow melting range (Qian et 

al., 2013; Tikekar & Nitin, 2011; Yucel, Elias, & Coupland, 2012). This may lead to enhanced 

chemical degradation of the encapsulated compound by aqueous phase reactants (Berton-

Carabin, Coupland, & Elias, 2013; Yucel et al., 2012), although in some applications slow 

release (i.e., a certain degree of expulsion) may be desirable, e.g., when the activity of an 

antioxidant should be maintained for prolonged periods (Oehlke et al., 2017).  

To counteract such an often undesirable expulsion and to increase the lipophilic compound-

loading capacity, the use of blended lipids has been proposed (Dan, 2014, 2016). This leads 

to a lipid phase with a broader melting range compared to a pure lipid, resulting in a more 

disordered crystalline structure that is less prone to polymorphic transitions (Qian et al., 

2013). Alternatively, fat crystallization can be influenced by the molecular structure of 

emulsifier used to stabilize the CLPs (Arima, Ueji, Ueno, Ogawa, & Sato, 2007; Helgason, 

Awad, Kristbergsson, McClements, & Weiss, 2009b; Salminen, Helgason, et al., 2014). For 

instance, surfactants with a high melting point alkyl chain can induce surface-templated 

crystallization of the lipid phase, promoting crystal growth from the interface therewith 

initiating particle structure and morphology (Rousseau, 2013; Salminen, Aulbach, 

Leuenberger, Tedeschi, & Weiss, 2014; Schröder, Sprakel, Schroën, & Berton-Carabin, 

2017), which promoted the stability of labile lipophilic molecules (Salminen et al., 2013a, 

2014).  
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We selected α-tocopherol (vitamin E), as model lipophilic bioactive to be encapsulated in 

CLPs. Being a naturally occurring chain-breaking antioxidant, it is relevant to a broad range 

of food and biobased applications, and poses challenges due to its chemical instability and 

poor solubility in water (Dima, Dima, & Iordachescu, 2015; Oehlke et al., 2017; Saez, Souza, 

& Mansur, 2018; Trombino et al., 2009). A few studies have attempted at encapsulating α-

tocopherol in related systems; Dingler et al. (1999) showed that SLNs protected it better 

against chemical degradation than an oil-in-water emulsion (Dingler, Blum, Niehus, Müller, 

& Gohla, 1999). Oehlke et al. (2017) found that tocopherol-containing SLNs had good 

physical stability and showed a gradual release of tocopherol, which is important for 

systems in which long term radical scavenging activity is desired (Oehlke et al., 2017). For 

oil-in-water emulsions, it was found that up to 95% of tocopherol was located in the 

emulsifier layer rather than the core of the droplets (Sánchez-Paz et al., 2008). Although 

these findings are very relevant, general guidelines that link the choice of lipids and 

emulsifiers to CLP structure, and to bioactive stability, are not available yet. 

In the present work, we therefore systematically investigated the effect of lipid (tripalmitin, 

tricaprylin, or combinations thereof) and emulsifier (Tween 20 or Tween 40, i.e., surfactants 

with alkyl chains of low or high melting point, respectively; or sodium caseinate, i.e., a 

disordered protein) on CLP morphology, crystalline structure, and the stability of α-

tocopherol. Understanding these aspects, and how they are linked, can be used as the 

starting point for the rational design of CLPs as delivery systems for lipophilic bioactives 

such as oil-soluble antioxidants. 

6.2. Materials & methods 

6.2.1. Materials 

Tripalmitin (#T8127, purity 99%), tricaprylin (#91040, purity 90%), Tween 20 (#P1379), 

Tween 40 (#P1504), sodium phosphate monobasic (#S9638), sodium phosphate dibasic 

(#S9763), sodium chloride (#S9888, purity 99%), iron(II) sulfate heptahydrate (#F8633), 

ethylenediaminetetraacetic acid disodium salt dihydrate (#E6635), and α-tocopherol 

(#T3251) were purchased from Sigma-Aldrich (Saint Louis, USA). Methanol (#813012802), 

chloroform (#803010802) and hexane (#808023502) were obtained from Actu-All 

Chemicals (Oss, the Netherlands). Sodium caseinate (#41610, spray dried, protein content 

91.0%) was supplied by DMV International (Veghel, the Netherlands). Ultrapure water (18 
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MΩ) was prepared using a Milli-Q system (Millipore Corporation, Billerica, MA, USA) and 

was used for all the experiments. All other chemicals used were of analytical grade. The 

chemicals were used without further purification. 

6.2.2. Methods 

6.2.2.1. Preparation of colloidal lipid particles (CLPs) 

We heated an aqueous phase (95% w/w) containing 1% w/w sodium caseinate or 2% w/w 

Tween 20 or 40 in phosphate buffer (10 mM, pH 7.0) to 80 °C in a water bath and added it 

to a melted fat phase (5% w/w) (tripalmitin, tricaprylin, or tripalmitin mixed with tricaprylin 

in a mass ratio 4:1) preheated at the same temperature, which had previously been spiked 

with 100 µL methanolic solution of α-tocopherol (200 mg mL-1). Final α-tocopherol 

concentration was 4 mg g-1 of fat. A coarse emulsion was prepared by high speed stirring 

the mixture at 11,000 rpm for one min using a preheated rotor-stator homogenizer (Ultra-

turrax IKA T18 basic, Germany). We then homogenized this coarse emulsion using a high 

pressure homogenizer (Microfluidizer® Processor MF 110Y equipped with a Y-shaped 

interaction chamber (F12Y; minimum internal dimension: 75 μm); Microfluidics, Newton, 

Massachusetts, USA) at 800 bar (5 cycles) and 80 °C to obtain submicron-sized droplets, 

which were left to cool at refrigerated temperature (4 °C) over ~2 h, inducing crystallization, 

except for the CLPs made with pure tricaprylin as the oil phase, which were fully liquid at 

the temperatures used in this work. 

6.2.2.2. Characterization of CLPs 

The particle size distribution and average diameters (d3,2) were determined by static light 

scattering (Malvern Mastersizer 3000, Malvern Instruments Ltd., Malvern, Worcestershire, 

UK). The following optical properties were used: refractive indices of 1.540 (lipid phase) and 

1.330 (water) with an absorption index of 0.01. Particle size distributions of CLPs after 14 

days incubation under oxidative conditions are reported in Supporting information, Figure 

S6.1. 

Particle surface charge was evaluated by ζ-potential measured with a dynamic light 

scattering instrument (Zetasizer Nano ZS, Malvern Instruments, UK) at 25 °C. Emulsions 

were diluted ~500 times in phosphate buffer (10 mM, pH 7.0) to prevent multiple scattering. 
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Transmission electron microscopy (TEM) was performed on CLPs (dispersions were diluted 

~100 fold) deposited onto a freshly glow discharged carbonized copper grid (200 mesh). The 

excess solvent was blotted using standard filter paper. The particles were stained with a 1% 

w/w phosphotungstic acid solution (PTA). Images were recorded on a JEOL JEM 1400 plus 

transmission electron microscope (Peabody, USA) operating at 120 kV in combination with 

a JEOL CCD camera Ruby (8 M pixel). 

The melting and crystallization behavior of CLPs was investigated using a differential 

scanning calorimeter (Discovery Series DSC 250, TA Instruments, Zellik, Belgium). CLP 

dispersion (~25 mg) was placed in a T zero pan closed with a hermetic lid, and was heated 

from -10 °C to 80 °C at 1 °C min-1, then cooled down to -10 °C at 1 °C min-1 followed by two 

identical heating/cooling cycles. An empty pan was used as a reference. The thermograms 

were evaluated using the TRIOS software; melting and crystallization enthalpies are 

reported in Supporting information, Table S6.2. 

6.2.2.3. Incubation of CLP dispersions 

An oxidation initiator system consisting of an equimolar mixture of FeSO4 and EDTA was 

prepared by mixing equivalent volumes of separately dissolved FeSO4 and EDTA (8.4 mM) 

in phosphate buffer under moderate stirring in the dark for one hour (Berton, Ropers, Viau, 

& Genot, 2011). Aliquots of CLP dispersion (2 g) were distributed in 15-mL polypropylene 

centrifuge tubes, and the oxidation initiator solution (100 µL) was added to obtain a final 

concentration of 200 μM of both iron and EDTA. The tubes were rotated in the dark at 2 

rpm at 25 °C for 72 h (SB3 rotator, Stuart, Staffordshire, UK). 

6.2.2.4. Extraction of α-tocopherol 

α-Tocopherol was extracted from our CLPs by adding 4 mL of chloroform, 3 mL of methanol 

and 1 mL of saturated sodium chloride solution to 2 mL CLP dispersion in a 15-mL 

polypropylene centrifuge tube, which was vortexed followed by centrifugation at 2000×g 

for 8 min. The clear chloroform phase was then collected by cautiously boring a hole in the 

bottom of the centrifugation tube. 

6.2.2.5. Quantification of α-tocopherol by HPLC analysis 

The obtained extracts were analyzed on a UltiMate 3000 liquid chromatography system 

(Thermo Scientific, Sunnyvale, CA, USA) using a carotenoid C30 reversed phase column, 3 

µm, 150 x 4.6 mm (YMC, Dinslaken, Germany). Extracts were eluted at 1 mL min-1 at 30 °C 
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using a mobile phase with a linear gradient going from 81% methanol, 14% methyl t-butyl 

ether (MTBE) and 4% ultrapure water to 74% methanol, 22% methyl t-butyl ether and 4% 

ultrapure water within 8 min, and going back to its initial composition in 2 min. α-

Tocopherol was detected with a UV-VIS detector at 292 nm (Dionex™ UltiMate™ 3000 

Variable Wavelength Detector), and contents were calculated using a calibration curve that 

was linear in the range from 5 µg mL-1 to 5000 µg mL-1. When studying the chemical 

degradation of α-tocopherol during incubation of CLP dispersions, the results were 

expressed as normalized α-tocopherol amount (%), taking as a reference the α-tocopherol 

concentration in the respective CLP suspension just after production. 

6.2.2.6. Experimental design 

All CLPs were prepared and characterized as at least independent duplicates. Size and ζ-

potential measurements were performed in triplicate, and extractions and HPLC analyses 

were performed in duplicate. All results are reported as the mean and standard deviation 

of all measurements. 

6.3. Results & discussion 

6.3.1. Physical characterization of CLPs 

CLPs were produced by high pressure homogenization of an aqueous phase containing 

Tween 20, Tween 40, or sodium caseinate with either melted tripalmitin, or tripalmitin 

mixed with tricaprylin in a mass ratio 4:1, or tricaprylin, followed by cooling. The particle 

size distribution of all CLPs just after preparation was unimodal, with a mean diameter (d3,2) 

of 90-110 nm for surfactant-stabilized CLPs, or 120-150 nm for sodium caseinate-stabilized 

CLPs (Figure 6.1.A-C). The particle size was thus slightly dependent on the type of emulsifier, 

which can be explained by the fact that surfactants lower the interfacial tension more 

compared to proteins, which facilitates droplet break-up during homogenization (Bos & van 

Vliet, 2001). For a given emulsifier, increasing the liquid fat content slightly decreased the 

droplet size, which can be attributed to the lower viscosity of these oil phases, which, again, 

facilitates droplet break-up (Walstra, 1993). Fat composition also affected the surface 

charge of CLPs, with more negative ζ-potential for tripalmitin particles (Figure 6.1.D). This 

could be caused by the crystallinity of the fat in the CLPs, promoting ion binding at the 

particle surface (Freitas & Müller, 1998). CLPs stabilized by Tween 20 and Tween 40 showed 

a lower net ζ-potential (-5 to -15 mV) compared to sodium caseinate-stabilized CLPs (-30 to 
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-35 mV): polysorbate surfactants are non-ionic, whereas sodium caseinate contains 

ionizable groups and has an isoelectric point around 4.6 (Braga, Menossi, & Cunha, 2006), 

making it strongly negatively charged at neutral pH. 

Figure 6.1. Particle size distributions of Tween 20- (A), Tween 40- (B) and sodium caseinate- 
(C) stabilized CLPs containing tripalmitin (red), tripalmitin:tricaprylin 4:1 (blue), or tricaprylin 
(green), and their ζ-potential (D). On panel D, T20, T40 and NaCas stand for Tween 20, Tween 
40 and sodium caseinate, respectively. 

We visualized the CLPs with transmission electron microscopy, and found clear 

morphological differences (Figure 6.2.). Pure tripalmitin-based CLPs stabilized with Tween 

20 or Tween 40 had a lath-like morphology with a high aspect ratio. When they contained 

a fraction of tricaprylin, more platelet-like particles with a much lower aspect ratio were 
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obtained. Conversely, pure tripalmitin-based CLPs stabilized with sodium caseinate were 

nearly spherical. When these sodium caseinate-stabilized CLPs contained a fraction of 

tricaprylin, their morphology also showed a low aspect ratio, but were more irregular, 

compared to tripalmitin-based ones. The morphological differences of the particles may be 

related to their crystalline microstructure, which was further investigated by differential 

scanning calorimetry (Figure 6.3.).  

DSC melting thermograms of all pure tripalmitin-based CLPs showed a sequence of melting 

peaks that point to a complex layered structure, which would melt in multiple identifiable 

events from the interface (Bunjes, Koch, & Westesen, 2000; Coupland, 2002; Schröder et 

al., 2017). The melting thermograms of sodium caseinate-stabilized CLPs also showed a 

small exothermic peak that indicates crystal reorganization and recrystallization into a more 

stable polymorphic form (Awad, Helgason, Weiss, Decker, & Mcclements, 2009; Schröder, 

Sprakel, Schroën, Spaen, & Berton-Carabin, 2018). The cooling thermograms of pure 

tripalmitin-based CLPs showed a crystallization onset at about 23, 29 and 32 °C for Tween 

20-, Tween 40- and sodium caseinate-stabilized CLPs, respectively (Figure 6.3. A, C & E), 

which was much lower than for bulk tripalmitin (about 43 °C), indicative of a strong 

supercooling effect in all CLPs (Abramov, Ruppik, & Schuchmann, 2016; Schröder et al., 

2018; Westesen & Bunjes, 1995).  

The cooling thermograms of Tween 20-stabilized tripalmitin CLPs showed a main 

crystallization peak with a small shoulder, which probably corresponds to a dominant β-

subcell fraction and a small fraction of β’-subcell crystals (Helgason et al., 2009b; Salminen, 

Helgason, Kristinsson, Kristbergsson, & Weiss, 2013b; Schröder et al., 2017). Tween 40-

stabilized tripalmitin CLPs showed two distinct crystallization peaks, of which the main one 

corresponds to β-subcell crystals that were formed in the core of the CLP, and the other one 

most probably to α-subcell crystals that were formed by Tween 40-induced surfactant-

templated crystallization (Salminen, Helgason, Kristinsson, Kristbergsson, & Weiss, 2017; 

Thrandur et al., 2009; Yadav et al., 2013), as reported for high melting lecithin-induced 

crystallization (Salminen et al., 2013b). Tween 40 primarily contains palmitic acid (C16:0) as 

alkyl chain, which can align with alike alkyl chains of tripalmitin at the interface, promoting 

crystallization at the interface. Conversely, sodium caseinate-stabilized tripalmitin CLPs 

showed a single crystallization peak, indicating that the tripalmitin crystallized into one 

polymorphic form, most likely corresponding to α-subcell crystals (Awad et al., 2009).  
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The melting thermograms of CLPs made with tripalmitin-tricaprylin blends showed a 

sequence of melting peaks indicative of multiple melting events, although these events 

were less distinct (Figure 6.3.B, D and E), and showed lower enthalpies than in pure 

tripalmitin particles (Supporting information, Table S6.2.). Tween 20-stabilized CLPs showed 

one crystallization peak most likely corresponding to β-subcell crystals, whereas for Tween 

40-stabilized CLPs α-subcell crystallization was found corresponding to surfactant-

templated interfacial crystallization, followed by two overlapping β’and β-subcell 

crystallization peaks. Lastly, sodium caseinate-stabilized CLPs showed one main α-subcell 

crystallization peak followed by a small β’or β-subcell crystallization peak (Helgason et al., 

2009b; Salminen et al., 2013b). In general, the CLPs made with tripalmitin-tricaprylin blends 

showed lower crystallization enthalpy and melting temperatures compared to tripalmitin 

CLPs, which can be attributed to less ordered crystals (Gunstone, Harwood, & Dijkstra, 2007; 

Salminen, Aulbach, et al., 2014). 

6.3.2. Chemical stability of α-tocopherol 

The amounts of α-tocopherol recovered in the CLPs immediately after production were 

between 77.0 and 90.1%, with no significant differences between the particles (Supporting 

information, Table S6.3.). These initial losses can be caused by the high temperature, 

pressure and presence of oxygen during homogenization. To further study the chemical 

stability of α-tocopherol upon storage of the CLP suspensions in accelerated ageing 

conditions, we incubated the samples with 200 µM FeSO4/EDTA at 25 °C, and measured the 

concentration of α-tocopherol in time.  

The chemical stability of α-tocopherol was considerably lower in tripalmitin-based CLPs 

than in pure tricaprylin-based ones (Figure 6.4.). After 14 days storage, pure tripalmitin CLPs 

showed remaining amounts of ~85, 60 and 80 % when stabilized by Tween 20, Tween 40 or 

sodium caseinate, respectively, compared to ~95 % in tricaprylin CLPs. Increasing the 

fraction of liquid tricaprylin in the CLPs increased the chemical stability of α-tocopherol 

when using Tween 40 and sodium caseinate as emulsifiers, but not when using Tween 20. 

With regard to the effect of the emulsifier type, the chemical stability of α-tocopherol was 

the lowest for Tween 40-stabilized CLPs, compared to Tween 20- or sodium caseinate-

stabilized CLPs. 
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Figure 6.2. TEM images of CLPs made of tripalmitin (left), or tripalmitin/tricaprylin 4:1 w/w 
blend (right), stabilized by Tween 20 (A & B), Tween 40 (C & D) or sodium caseinate (E & F).  
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Figure 6.3. DSC crystallization and melting thermograms of CLPs made of tripalmitin (left) or 
tripalmitin/tricaprylin 4:1 w/w blend (right), and stabilized by Tween 20 (A & B), Tween 40 
(C & D) or sodium caseinate (E & F).  

We found a high α-tocopherol stability in tricaprylin CLPs irrespective of the emulsifier used. 

Tripalmitin or tricaprylin-tripalmitin blends resulted in crystallized CLPs with various 

morphologies, in which the chemical stability of α-tocopherol was lower compared to that 

in tricaprylin-based CLPs. Although immobilization of lipophilic bioactives within a solid lipid 

matrix has sometimes been suggested as protective (Jenning, Schäfer-Korting, & Gohla, 

2000; Relkin, Yung, Kalnin, & Ollivon, 2008; Yadav et al., 2013), the location of the bioactive 
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and the structure of the solid lipid matrix also need to be taken into account (Salminen et 

al., 2013b; Tikekar & Nitin, 2011). For example Berton-Carabin et al. (2013) demonstrated 

that the location and mobility of small lipophilic molecules were largely dependent on their 

structure and on the physical state of lipids in emulsion systems, which could substantially 

affect their chemical stability. For molecules structurally close to α-tocopherol, fat 

crystallization promoted their localization and immobilization at the interface, but did not 

change their chemical reactivity with aqueous phase reactants (Berton-Carabin et al., 2013). 

 

Figure 6.4. Chemical stability of α-tocopherol, expressed as normalized α-tocopherol amount 
(%), in CLPs stabilized by Tween 20 (A), Tween 40 (B) or sodium caseinate (NaCas) (C), and 
prepared with tripalmitin (TP100, red), tripalmitin:tricaprylin 4:1 blend (TP80, blue), or 
tricaprylin (TP0, green), during storage under oxidative conditions.  
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Physical exclusion of the bioactive compound can take place during crystallization, resulting 

in closed compartments loaded with the compound, which leads to an enhanced chemical 

stability when in the core of the droplet (Dan, 2016; Relkin et al., 2008; Salminen et al., 

2016; Thrandur et al., 2009). If these compartments are close to the particle surface, 

degradation may be promoted, since they may come into contact with aqueous pro-oxidant 

species (Dan, 2016; Qian et al., 2013), and leach out due to partitioning. Jenning & Gohla 

(2001) hypothesized that bioactives with a melting point lower than that of the lipids used 

for encapsulation may be pushed toward the particle surface due to lipid crystallization in 

the lipid core prior to the bioactive. This could have been the case in our research, resulting 

in lower chemical stability of α-tocopherol in solid or semi-solid CLPs, compared to liquid 

ones.  

In literature, it was suggested that high melting point surfactants form a shell by surface 

templating that limits diffusion of pro-oxidants or oxygen to the oxidizable components 

(Salminen et al., 2016; Thrandur et al., 2009). Such a shell let tripalmitin crystallize in a 

loosely packed crystal form (α or β’-subcell), in which lipophilic compounds can be 

encapsulated better than in tightly packed β-subcell crystals (Salminen et al., 2017; 

Thrandur et al., 2009; Yadav et al., 2013). Therefore, it was expected that Tween 40 would 

limit α-tocopherol degradation more compared to Tween 20 or sodium caseinate, but the 

opposite was observed. We expect that highly ordered β-subcell crystals were formed in 

the core of Tween 40-stabilized tripalmitin CLPs, as revealed by DSC, which resulted in 

needle-shaped CLPs with a high surface area. α-Tocopherol molecules could have been 

pushed out from the particle core by the growing crystals, and thus present close to the 

particle surface, where they would be prone to chemical degradation by aqueous phase 

pro-oxidants (Yucel et al., 2012).  

Tween 40-stabilized CLPs with mixed tripalmitin-tricaprylin contained less β-subcell crystals 

compared to pure tripalmitin-based CLPs, had less surface area, and could contain some 

liquid lipid patches in the core of the CLP (Saez et al., 2018). All these effects may have kept 

α-tocopherol more buried within the particles, leading to higher chemical stability.  

Tween 20-stabilized CLPs contained mostly β-subcell crystals, which are expected to induce 

migration of α-tocopherol from the core to the surface of the CLPs, where it would 

eventually have been degraded. Compared to Tween 40, less α-tocopherol could have been 

initially present at the interface, leading to slower degradation. Sodium caseinate-stabilized 
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CLPs were able to inhibit degradation of α-tocopherol to a larger extent compared to both 

surfactant-stabilized CLPs; for the tripalmitin-tricaprylin blend, the stability was even as 

good as for tricaprylin. Although sodium caseinate is known to be a metal chelator that 

effectively prevent lipids from oxidation when present in large excess in the aqueous phase 

(Berton et al., 2011; Faraji, McClements, & Decker, 2004), this seems an unlikely explanation 

for our results, as only low concentrations of excess proteins were present (< 1 g L-1). More 

likely, the less ordered crystalline structure compared to Tween 20 and Tween 40 CLPs 

allows for α-tocopherol immobilization, or its inclusion in liquid patches within the core of 

the CLPs. This would lead to slow release of α-tocopherol, which is important for products 

in which antioxidant activity needs to be maintained for an extended period. 

6.4 Conclusions 

We investigated colloidal lipid particles (CLPs) made with tripalmitin, tricaprylin, or a blend 

thereof, as encapsulation systems for α-tocopherol. We showed that emulsifier type and 

lipid composition modulate the morphology and crystalline structure of the particles, which 

consequently affected the chemical stability of α-tocopherol. Tween 20 and Tween 40 

allowed tripalmitin to crystallize in highly ordered structures with lath-like morphology, 

from which α-tocopherol was probably expulsed. In Tween 40-stabilized CLPs, α-tocopherol 

probably accumulated at the surface of the particles, where it was prone to chemical 

degradation by aqueous pro-oxidants. Sodium caseinate tripalmitin CLPs crystallized in a 

nearly spherical shape with less ordered crystalline structure in which the α-tocopherol 

stability was high. When a lipid blend was used, the chemical stability of α-tocopherol 

increased in most cases, possibly due to the formation of liquid patches that would keep 

the bioactive buried within the particle core. Tricaprylin CLPs had highest chemical stability 

of α-tocopherol irrespective of the emulsifier used, showing that lipid crystallization does 

not necessarily protect lipophilic bioactives. From these results it is clear that for efficient 

encapsulation of lipophilic bioactives, the particle architecture plays an important role; to 

tailor this, both the lipid, and the emulsifier need to be considered. 
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6.5. Supporting information 

 

Figure S6.1. Particle size distributions of Tween 20 (A), Tween 40 (B) and sodium caseinate 
(C) – stabilized CLPs prepared with tripalmitin (TP100, red), tripalmitin:tricaprylin 4:1 blend 
(TP80, blue), or tricaprylin (TP0, green) after 14 days in oxidative conditions.  
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Table S6.2. Crystallization and melting enthalpy (J g-1 fat) of CLPs stabilized by Tween 20, 
Tween 40 or sodium caseinate, containing tripalmitin (TP100), or tripalmitin:tricaprylin 4:1 
blend (TP80).  

 TP100 

Crystallization 

TP100 

Melting 

TP80 

Crystallization 

TP80 

Melting 

Tween20 156.45±4.74 164.77±9.57 156.38±6.51 165.80±5.98 

Tween40 159.33±3.98 162.896±9.03 145.72±9.52 141.21±11.41 

NaCas 118.80±14.15 159.15±13.25 150.30±10.13 176.88±1.98 

 

Table S6.3. Normalized α-tocopherol amount (%) in freshly prepared CLPs stabilized by 
Tween 20, Tween 40, or sodium caseinate (NaCas), containing tripalmitin (TP100), 
tripalmitin:tricaprylin 4:1 blend (TP80), or tricaprylin (TP0). 
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Abstract: 

Emulsions are common structures for the encapsulation of delicate bioactive molecules, 

both in biological systems and in manufactured products. Protecting functional molecules 

from chemical oxidation is crucial in these systems. Nature excels at doing so by placing 

antioxidants at the oil-water interface, where oxidative reactions primarily occur and 

delicate building blocks need to be protected. Inspired by Nature’s protective strategies, we 

propose a novel approach to boost antioxidant activity in designer emulsions by employing 

surface-anchored particles that act both as physical emulsion stabilizers as well as interfacial 

reservoirs of antioxidants. We show how these interfacial reservoirs largely enhance the 

oxidative stability of emulsions, confirming how interfacial localization is crucial to their 

efficiency. This approach offers new possibilities for the formulation of protective 

encapsulation strategies in a wide variety of applications.   
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7.1. Introduction 

Lipid droplets are omnipresent in living organisms, such as bacteria, yeasts, plants, animals, 

and in many man-made materials such as pharmaceuticals, cosmetic, food, or agrochemical 

products. They have been referred to as oil bodies, fat bodies, oil droplets, adiposomes, 

lipoproteins, or oil-in-water (O/W) emulsions (Murphy, 2001). All these systems share a 

common fate when they contain unsaturated lipids or other chemically labile molecules: 

they are susceptible to oxidation. The degradation of the substrate molecules, as well as the 

formation of lipid oxidation products, are harmful to the quality of the products, their 

functionality and even their safety (Frankel, 1980; Gilbert & Colton, 1999; McClements & 

Decker, 2000).  

Lipid oxidation in multiphase systems occurs primarily at the oil-water interface, where the 

oxidation-sensitive molecules come into contact with pro-oxidants, such as metal ions or 

reactive-oxygen species. Thus, to protect delicate biomolecules, Nature has engineered its 

emulsions to localize antioxidants at the oil-water interface (Sagalowicz, Michel, Blank, 

Schafer, & Leser, 2017). In oil bodies, storage containers for oils in plants, antioxidants, such 

as -tocopherol, accumulate at the interface. This results in remarkable oxidative stability 

(Fisk, White, Lad, & Gray, 2008). Also in the animal kingdom, similar strategies are found. 

The protective effect of ascorbate in preventing the oxidation of low density lipoproteins 

relies on its capability to reactivate -tocopherol radicals at the droplet surface, where the 

chromanol ring of -tocopherol faces the aqueous ascorbate-containing medium 

(Esterbauer, Gebicki, Puhl, & Jürgens, 1992). Accumulating antioxidants at the interface 

thus appears to be an excellent approach to inhibit lipid oxidation (Berton-Carabin, Ropers, 

& Genot, 2014). At this locus, antioxidants can counteract the initiating radicals — those 

formed during the initiation step — before they begin propagating oxidation to other lipid 

molecules (Burton & Ingold, 2002). 

Surprisingly, this natural protective strategy, has to date not been translated to the domain 

of man-made emulsions, despite their ubiquitous use in a variety of industries (Sagalowicz 

et al., 2017). Also here, the effective prevention of oxidation reactions is crucial to ensure 

product safety, functionality and shelf-life. For example, the vast majority of newly 

discovered pharmaceutical compounds are hydrophobic and prone to oxidation; when 

oxidized, they lose their therapeutic activity or can even form potentially toxic by-products. 

It is thus essential to design effective strategies for the formulation of these bioactives into 



Pickering particles as interfacial reservoirs of antioxidants.  
 

178 
 

useful drugs. Similarly, oxidation of lipophilic molecules in food or cosmetic emulsions is an 

issue, as it damages the products’ quality and leads to product waste. The most common 

approach to prevent lipid oxidation in manufactured emulsions involves the use of large 

amounts of synthetic antioxidants, such as butylated hydroxytoluene (BHA) dissolved in the 

core of the oil droplets, or ethylenediaminetetraacetic acid (EDTA) in the bulk aqueous 

phase (Laguerre, Lecomte, & Villeneuve, 2007; McClements & Decker, 2000). These 

compounds are under scrutiny for their potential toxicity. By contrast, natural antioxidants, 

such as tocopherols and rosemary extracts meet the demand of consumers towards 

naturalness and clean-labels, and may be equally efficient when their activity is optimized. 

This raises the question if the activity of natural antioxidants can be boosted by taking 

inspiration from Nature and ensuring their localization at the oil-water interface. This 

hypothesis has been confirmed by Laguerre et al., who chemically modified hydrophilic 

phenolic antioxidants through lipophilization, and found that antioxidant efficiency 

increased with the length of the alkyl chain grafted, until an optimum beyond which further 

lengthening led to a collapse in antioxidant efficiency (Laguerre et al., 2013). This non-

monotonic dependency, referred to as the cut-off effect, is associated to the interfacial 

positioning of antioxidants grafted with an alkyl chain of intermediate length (Laguerre et 

al., 2009, 2011). Large-scale implementation of these so-called phenolipids is, however, 

hampered by their cost, and the fact that they are no longer natural molecules. Alternative 

strategies are therefore needed to boost the activity of natural antioxidants in emulsion 

systems.  

We design a novel strategy to prevent lipid oxidation in emulsions using colloidal lipid 

particles (CLPs), a new type of Pickering stabilizers (Schröder, Sprakel, Schroën, & Berton-

Carabin, 2017) as interfacial reservoirs of natural antioxidants. CLPs are promising stabilizers 

that are simple to prepare from biosourced building blocks, provide superior physical 

stability to the emulsions as compared to conventional emulsifiers, and are compatible with 

a range of emulsification methods (Schröder, Sprakel, Schroën, & Berton-Carabin, 2017; 

Schröder, Sprakel, Schroën, Spaen, & Berton-Carabin, 2018). CLPs are prepared with 

biobased high melting point lipids, and thus possess a solid or semi-solid lipid interior which 

can be loaded with lipophilic antioxidants, such as -tocopherol. In this way, antioxidants 

are forced to reside at the interface, where their efficiency to prevent lipid oxidation is 

maximized. Hence, through the controlled hierarchical structuration of emulsions, we 
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expect to achieve a dual functionality, where the Pickering particles act not only as physical 

stabilizers, but also as interface-anchored reservoirs of antioxidants. To test our hypothesis, 

we evaluated lipid oxidation in two CLP-stabilized Pickering emulsions, which both had the 

exact same composition, but different physical location of the lipophilic antioxidant -

tocopherol: either in the CLPs (concept emulsion) or in the core of the oil droplets (control 

emulsion) (Figure 7.1.A & B). This bio-inspired approach to the protection and encapsulation 

of labile lipid molecules offers an order-of-magnitude improvement over current protective 

strategies and will enable the use of even the most delicate molecules, for which 

formulations have to date remained elusive due to their weak oxidative stability’.  

 
Figure 7.1. Schematic illustration of CLP-stabilized Pickering O/W emulsions with -
tocopherol incorporated (A) in the particles (concept emulsion) or (B) in the liquid PUFA oil 
droplets (control emulsion).  

7.2. Results & discussion 

First, we prepare CLPs, both with and without the natural antioxidant -tocopherol, by high-

pressure homogenization of molten tripalmitin, a model biocompatible high melting point 

fat, in an aqueous sodium caseinate solution, and subsequent cooling. Please note that all 

ingredients used here can be derived from natural sources and are inherently biocompatible 

and food-grade. The resulting CLPs have a unimodal size distribution with average diameter 

of 145 nm and a negative surface charge, characterized by a ζ-potential of -36 mV. The 

inclusion of the antioxidant does not affect the particle properties. They exhibit an almost 

spherical morphology, containing a complex internal structure of layered crystals with 
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crystallization and melting temperatures around 30 and 60 °C, respectively (Supporting 

information, Figure S7.1.).  

We then produce CLP-stabilized Pickering emulsions by high pressure homogenization of an 

aqueous CLP suspension and sunflower oil, a food-grade oil rich in polyunsaturated fatty 

acids (PUFAs), which is stripped from endogenous antioxidants prior to use. The antioxidant 

-tocopherol is either added in the CLPs or in the sunflower oil. We find that the CLPs are 

excellent stabilizers of the O/W emulsion against coalescence. A fraction of the particles 

adsorb at the oil-water interface, and the rest remains suspended in the continuous phase. 

This results in emulsion droplets ranging from 0.3 to 3 µm, with an average diameter around 

1 µm (Supporting information, Figure S7.2.). The ζ- potential of the emulsion is identical to 

that of the CLP suspension. 

We compare two CLP-stabilized Pickering emulsions of the exact same chemical 

composition, but with a different physical location of the lipophilic antioxidant -

tocopherol: either in the CLPs (concept emulsion) or in the core of the oil droplets (control 

emulsion). To study lipid oxidation, we accelerate the chemical reaction using a 

conventional iron-catalyzed oxidation system at 25 °C, and monitor the formation of 

oxidation products using spectrophotometry. Over 14 days of incubation, the accumulation 

of both primary (conjugated diene (CD) hydroperoxides (LOOH)) and secondary (aldehydes, 

measured by the para-anisidine value (pAV)) oxidation products is largely higher in the 

control emulsion containing -tocopherol in the oil droplets, than in the concept emulsion 

containing the antioxidant in the CLPs (Figure 7.1.C & D). Indeed, our Nature-inspired 

strategy to trap antioxidants at the locus of oxidation, largely boosts the oxidative stability 

of the emulsion.  

Moreover, the fact that lipid oxidation products hardly form in our concept Pickering 

emulsion indicates that the autocatalytic pattern of the formation of lipid radicals 

(propagation) does not take place within the time-scale of the experiment. The specific 

emulsion architecture we propose therefore confers the natural antioxidant with an 

initiation-breaking role.  

To dig deeper into the chemical role of -tocopherol, we monitor its loss during incubation 

of the emulsions. Emulsions containing -tocopherol in CLPs show a higher -tocopherol 

amount at t0 compared to emulsions containing -tocopherol in the oil droplets (157 vs. 
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127 µmol kg-1). This implies that in addition to providing boosted antioxidant activity in the 

emulsion, CLP encapsulation also protects the antioxidant itself against degradation during 

emulsion processing (Figure 7.1.E). Tocopherol can theoretically be consumed in many 

different ways: through exposure to high temperature such as in our homogenization 

procedure; or in the presence of iron, reactive oxygen species, or lipid radicals. To 

distinguish between these potential causes, we prepare the exact same Pickering emulsions 

(concept and control) with medium chain triglycerides, a model saturated liquid oil that 

cannot oxidize, instead of stripped sunflower oil. When monitoring the -tocopherol level 

during incubation, we find that it is perfectly stable in both emulsions (Supporting 

information, Figure S7.3.). Thus, the pro-oxidant ferrous iron itself is not able to degrade -

tocopherol in O/W emulsions that do not contain an oxidizable lipid phase. From this follows 

that in the control PUFA-rich oil emulsions, -tocopherol is degraded during 

homogenization when present in the core of the droplets because it is in direct contact with 

lipid oxidation products. The CLPs protect the antioxidant from this contact, thereby 

offering additional stability. 

During incubation, -tocopherol is also degraded faster and to a larger extent in the control 

emulsion (Figure 7.1.E), showing that its chemical stability aligns with that of the PUFAs. 

This is remarkable because chain-breaking antioxidants are traditionally considered 

sacrificial molecules that oxidize instead of unsaturated lipids; then, once most of the 

antioxidant has been consumed, the autocatalytic propagation of lipid oxidation may start 

(Kamal-Eldin, 2003; Labuza & Dugan, 1971).  

We hypothesize that the use of Pickering particles as interfacial reservoirs of antioxidants 

confers -tocopherol with the ability to scavenge the first radicals generated during 

initiation, whereas when present in the core of the droplets, -tocopherol acts during the 

propagation of the radical chain reaction. Accordingly, a small amount of interface-

anchored -tocopherol should be more efficient than many of the same molecules located 

within the oil droplets. This logically raises the question of how much the -tocopherol 

concentration can be reduced in the concept emulsion to obtain a protection equivalent to 

that attained in the control emulsion with 200 µmol kg-1 of -tocopherol. Therefore, we 

reduced the initial -tocopherol concentration from 200 µmol kg-1 to 100 then 50 µmol kg-

1 (2 to 4 times lower) in the concept emulsion. Interestingly, at least four to two times less 

antioxidants were required to inhibit the production of CD-LOOH and aldehyde 



Pickering particles as interfacial reservoirs of antioxidants.  
 

182 
 

(respectively) as effectively as 200 µmol kg-1 of -tocopherol in the control emulsion 

(Supporting information, Figure S7.4.), which further substantiates the added value of the 

interfacial localization of antioxidants to boost their activity. 

Thus, we establish for the first time the proof-of-concept that loading Pickering particles 

with natural antioxidants is an efficient strategy to boost the activity of the latter. This 

demonstrates that the hierarchical construction of the emulsion is key, as both the concept 

and control emulsions have the exact same composition. This raises two crucial questions 

on the mechanisms by which this enhancement works. First, as our emulsions are not at a 

thermodynamic equilibrium, the localization of the lipophilic bioactive may change within 

time-scales relevant to the incubation period. Second, since only a fraction of CLPs is 

actually located at the surface of the oil droplets, whereas the rest remains in excess in the 

continuous phase, one may wonder what the role of the particles in suspension is and if 

they play a role in the boosting effect. To investigate the dynamic aspects relative to the 

encapsulation of a lipophilic antioxidant in the CLPs, we select a fluorescently labelled probe 

with comparable lipophilicity, 25-NBD cholesterol, and use it to prepare concept and control 

Pickering emulsions as described previously, except that we apply lower shear 

homogenization to obtain large oil droplets that allow for visualization by light microscopy 

and confocal laser scanning microscopy (CLSM).  

In the concept Pickering emulsions immediately after homogenization, the fluorescent 

probe is present both in CLPs at the interface and the continuous phase, and not within the 

liquid oil droplets (Figure 7.1.F). However, in time, we observe progressive diffusion of the 

probe towards the core of the oil droplets. This reveals that the location of the fluorescent 

probe, and thus, by analogy, that of -tocopherol in the concept Pickering emulsions, 

evolves within time scales relevant to the incubation period. Interestingly, polarized light 

microscopy (Figure 7.1.G & H) and differential scanning calorimetry (DSC) (Supporting 

information, Figure S7.5.) show that the CLPs, even when adsorbed at the oil-water 

interface, remain intact and crystalline over the entire experiment. This rules out that 

diffusion of the probe would be caused by solubilization of the CLPs in the liquid oil droplets 

in time, which is in agreement with the long-term physical stability of those emulsions 

demonstrated in earlier work (Schröder, Sprakel, Boerkamp, Schroën, & Berton-Carabin, 

2019). This dynamic transfer of lipophilic compounds implies that -tocopherol is not 

retained permanently at the interface and is slowly released to the oil droplet environment. 
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The CLPs may behave as transient antioxidant reservoirs, which boost the activity of 

antioxidants by imparting them with a certain residence time at the interface.  

 

Figure 7.1 continued. CD hydroperoxide concentration (mmol kg-1 oil) (C), pAV (D) and -
tocopherol concentration (µmol kg-1 emulsion) (E) during incubation of the concept and 

control emulsions (red and blue lines, respectively) containing 200 µmol kg-1 -tocopherol. 
CLSM images of the concept Pickering emulsion with the fluorescent analogue initially added 
in CLPs, taken at different time points (F). Polarized light microscopy images of the same 
concept Pickering emulsion, taken at t0 and after 72 h incubation (G and H, respectively). 
The scale bar on all images is 10 µm. 

To evaluate the possible contribution of continuous phase CLPs to the high oxidative 

stability in the concept Pickering emulsions, we then prepare a simple sodium caseinate-

stabilized emulsion, and add antioxidant containing CLPs to this emulsion, post 
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homogenization (Figure 7.2.A) to design a system in which the CLPs are exclusively located 

in the aqueous phase. When incubating this emulsion, and in its counterpart emulsion with 

-tocopherol initially present in the oil droplet core (Figure 7.2.B), we find similar lipid 

oxidation and -tocopherol degradation rates (Figure 7.2.C-E). Thus, the encapsulation of 

-tocopherol in CLPs added to the continuous phase of a protein-stabilized emulsion does 

not improve the antioxidant activity, which contrasts the antioxidant boosting effect found 

in our concept Pickering emulsion. This is in line with the explanation that this latter effect 

is unequivocally due to the interfacial accumulation of antioxidants conveyed by the 

Pickering particles.  

We then replace -tocopherol by the fluorescent probe in similar emulsions. In the freshly 

prepared emulsions, a continuous green background surrounding black droplets shows that 

25-NBD cholesterol is present only in the CLPs in the aqueous phase (Figure 7.2.F). Over 

incubation, the probe is rapidly transferred to the liquid oil droplets, which was not 

necessarily expected. Both CLPs and oil droplets are negatively charged, which should thus 

prevent prolonged contacts between both structures. In addition, no alteration of the DSC 

profile of the CLPs is detected, further indicating that no physical interactions between the 

high melting fat of the CLPs and the liquid oil of the droplets take place (Supporting 

information, Figure S7.6.). It thus seems that in such a simple protein-stabilized emulsion, 

the diffusion of a lipophilic molecule initially loaded in the CLPs towards the liquid oil 

droplets does not require a prolonged contact and occurs very fast. Using the analogy of 

the probe’s behavior, the antioxidant performance of -tocopherol regardless of its initial 

location in these emulsions (Figure 7.2.D & E) is probably explained by the fact that it rapidly 

diffuses in the oil droplets, thus erasing the initial construction difference between the two 

emulsions.  

To decipher the respective contribution of the adsorbed and non-adsorbed CLPs to the 

overall antioxidant activity, while sticking to the original interface structure, we finally 

design a Pickering emulsion stabilized by -tocopherol-free CLPs, to which -tocopherol-

loaded CLPs are added post homogenization, hence located in the continuous phase (Figure 

7.3.A). Interestingly, lipid oxidation proceeds significantly faster in Pickering emulsions 

containing -tocopherol exclusively in the continuous phase CLPs, compared to the control 

emulsion with the antioxidant in the oil droplets (Figure 7.3.C & D).  
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Figure 7.2. Schematic illustration of conventional sodium caseinate-stabilized emulsions 

containing CLPs added post-homogenization with -tocopherol incorporated (A) in the 
particles or (B) in the liquid PUFA oil droplets. CD hydroperoxide concentration (mmol kg -1 

oil) (C), pAV (D) and -tocopherol concentration (µmol kg-1 emulsion) (E) during incubation 

of both emulsions (red and blue lines, respectively) initially containing 200 µmol kg-1 -
tocopherol. CLSM images of the conventional emulsion with added CLPs with the fluorescent 
analogue initially added in CLPs, taken at different time points (F). The scale bar on all 
images is 10 µm. 
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This can be explained by the physical segregation of the PUFAs in the oil droplets and the 

-tocopherol in the water phase, precluding this latter component to reduce PUFA-derived 

free radicals in situ. Along with the fast PUFA oxidation, the degradation of -tocopherol 

also proceeds very fast when it is located in the continuous phase CLPs (Figure 7.3.E). This 

implies that it was reached by lipid oxidation products able to rapidly escape from oxidizing 

droplets —presumably LOOH micelles—, which constitutes one of the first experimental 

evidences for such a scenario (Laguerre, Bily, Roller, & Birtic, 2017).  

As previous, emulsions with similar construction principle are also prepared with 25-NBD 

cholesterol. The diffusion of the fluorescent probe from the aqueous phase CLPs to the 

emulsion droplet core during incubation does occur, yet much slower compared to what we 

observed in the protein-stabilized emulsion (Figure 7.3.F). The CLP-based interfacial layer 

can act as a physical barrier that slows down the diffusion of the aqueous CLPs’ components 

to the oil droplets. This suggests that the CLP-based layer may have a unilateral, or at least 

variable, permeability to different colloids depending on their size: CLPs and the 

components that they carry cannot rapidly be transferred, while LOOH micelles can. 

Importantly, this last data set confirms that the interfacial localization of our model 

antioxidant is essential to yield the boosting effect for antioxidant activity evidenced in our 

concept Pickering emulsions.  

Inspired by Nature’s approach to protect oxidation-sensitive lipophilic bioactives, we have 

proposed a hierarchical structure for designer emulsions in which the activity of natural 

antioxidants is boosted substantially. The use of antioxidant-loaded Pickering particles 

results in a dual functionality, providing both excellent physical and chemical stability to 

biocompatible and food-grade emulsions. These interfacial reservoirs increase the 

residence time of antioxidants at the interface during crucial stages in the chemical 

oxidation reaction cascade, scavenging the very first lipid radicals generated during the 

initiation step before the irreversible autoxidation chain reaction propagates. Accordingly, 

our proposed interfacial design can turn an archetypal chain-breaking antioxidant into a 

new type of initiation-breaking antioxidant. Such a shift in the antioxidant mode of action 

may augment the potential of oxidation inhibitors to an unprecedented level, and 

consequently lead to a drastic reduction of the antioxidant content needed to achieve 

protection of emulsions toward oxidative degradation. Beyond the potential of this concept 

for a broad range of applications, from biocompatible emulsion design to synthetic biology, 
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this work yields findings that could be pivotal in the field of lipid oxidation in discontinuous 

systems, such as the ability of lipid oxidation products to be transferred via the aqueous 

phase in the absence of any added surfactant. 

Figure 7.3. Schematic illustration of Pickering emulsions with extra CLPs added post-

homogenization, with -tocopherol incorporated (A) in the added CLPs or (B) in the liquid 

PUFA oil droplets. CD hydroperoxide concentration (mmol kg-1 oil) (C), pAV (D) and -
tocopherol concentration (µmol kg-1 emulsion) (E) during incubation of both emulsions (red 

and blue lines, respectively) containing 200 µmol kg-1 -tocopherol. CLSM images of the 
Pickering emulsion with added CLPs with the fluorescent analogue initially added in CLPs, 
taken at different time points (F). The scale bar on all images is 10 µm. 
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7.3. Experimental procedures 

CLPs were prepared according to Schröder et al., (2019). When CLPs were loaded with -

tocopherol, the molten lipid phase was added through a methanolic solution of -

tocopherol prior to mixing with the aqueous phase, such that the final concentration in the 

CLP suspension was 446 µmol kg-1.  

Pickering emulsions were prepared by mixing sunflower oil (10 % w/w), preliminary stripped 

from surface-active impurities and endogenous antioxidants, with phosphate buffer (10 

mM, pH 7.0, 45 % w/w) and a 5 % w/w CLP dispersion (with -tocopherol in the particles) 

(45 % w/w). The mixture was processed by high-speed stirring at 7,000 rpm for one min, 

and the obtained coarse emulsion was then homogenized (Microfluidizer® Processor MF 

110Y with Y-shaped interaction chamber (F12Y; minimum internal dimension: 75 μm), 

Microfluidics, Newton, Massachusetts, USA) at 400 bar (5 cycles) at 0 °C. The resulting 

Pickering emulsions were stored at 4 °C. In control Pickering emulsions (i.e., with -

tocopherol in the liquid oil droplet core), -tocopherol was incorporated in the sunflower 

oil prior to homogenization via a methanolic solution as mentioned previously, such that 

the final concentration in the Pickering emulsion was 200 µmol kg-1, i.e., similar to that in 

the concept emulsion. 

Conventional emulsions were prepared by homogenizing stripped sunflower oil (20% w/w) 

with a 2% w/w sodium caseinate solution (80% w/w) with the same procedure. After this, 

50% w/w of this emulsion was mixed with 45% w/w CLP dispersion, and 5% w/w buffer.  

Pickering emulsions with added CLPs were produced by mixing 66.7% w/w of a Pickering 

emulsion (containing 15% w/w sunflower oil, 45% w/w CLP dispersion, and 40% w/w buffer) 

with or without -tocopherol in the core of the oil droplets, with 33.3% w/w of CLP 

dispersion containing no or 300 µmol kg-1 -tocopherol. 

Characterization of particle dispersions and emulsions (particle size distribution, ζ-potential, 

transmission electron microscopy, light microscopy and differential scanning calorimetry) 

was done as described in Schröder et al., (2019). 

To obtain larger droplet sizes that allow for visualization by confocal laser scanning 

microscopy (CLSM), the coarse (premixed) emulsions were processed through a lab scale 

colloid mill homogenizer with gap width of 0.32 mm (IKA Magic Lab, Staufen, Germany) 
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operating for one min at 15,000 rpm at 0 °C. CSLM images of O/W emulsions stabilized by 

CLPs were obtained with a Nikon C-2 CLSM with a 60x oil immersion objective. For 

visualization, the CLPs or emulsion droplets were dyed by incorporation of 0.001% w/w of 

25-NBD cholesterol in the emulsions. The fluorescent dye was excited with the 488-nm line 

of an argon laser and the fluorescence light was collected with a bandpass filter between 

490–505 nm. 

A metal-catalyzed oxidation system consisting of an equimolar mixture of FeSO4 and EDTA 

was prepared by separately dissolving FeSO4 and EDTA (12 mM) in ultrapure water. 

Equivalent volumes of each solution were mixed, and the iron-EDTA complex was allowed 

to form under moderate stirring for 1 h in the dark (Berton, Ropers, Viau, & Genot, 2011). 

Aliquots of emulsion (2 g) were distributed in 15-mL polypropylene centrifugation tubes. 

The catalyst (100 µL) was added to the emulsions to obtain a final concentration of 200 μM 

of both iron and EDTA. The tubes were rotated in the dark at 2 rpm at 25 °C for 0 to 336 h. 

Quantification of conjugated diene hydroperoxides and total aldehydes (para-anisidine 

value (pAV)) was performed according to Schröder et al., (2019).  

-Tocopherol was extracted from CLPs dispersions or emulsions. First, 4 mL chloroform, 3 

mL methanol and 1 mL saturated sodium chloride solution were added to 2 mL of CLP 

dispersion or emulsion in a 15-mL polypropylene centrifuge tube, which were vortexed 

followed by centrifugation at 2000×g for 8 min. The clear chloroform phase was then 

collected by cautiously boring a hole in the bottom of the centrifuge tube. 

Extracts were analyzed on a UltiMate 3000 liquid chromatography system (Thermo 

Scientific, Sunnyvale, CA, USA) using a C30 reversed phase column, 3 µm, 150 x 4.6 mm 

(YMC, Dinslaken, Germany). Extracts were eluted at 1 mL min-1 at 30 °C using a mobile phase 

with a linear gradient going from 81% methanol, 14% methyl t-butyl ether (MTBE) and 4% 

water to 74% methanol, 22% methyl t-butyl ether and 4% water in 8 min, and going back to 

its initial composition in 2 min. -Tocopherol was detected with a UV-VIS detector at 292 

nm (Dionex™ UltiMate™ 3000 Variable Wavelength Detector), and contents were 

calculated using a calibration curve that was linear in the range from 5 µg mL-1 to 5000 µg 

mL-1. 
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7.4. Supporting information 

We produce two types of colloidal lipid particles (CLPs) by hot high pressure 

homogenization of the high melting point fat tripalmitin in an aqueous phase containing 1% 

w/w sodium caseinate, and subsequent cooling; one containing -tocopherol and one not. 

Their size is determined by static light scattering (A), their melting and crystallization 

behavior by differential scanning calorimetry (DSC) (B), and their morphology by 

transmission electron microscopy (TEM) (C).  

Figure S7.1. Characterization of tripalmitin CLPs with or without -tocopherol. Particle size 
distribution (A), DSC melting and crystallization thermograms (B), and TEM image of CLP 

with -tocopherol (C).  

We produce two CLP-stabilized Pickering emulsions, which both have the exact same 

composition, but a different physical location of the lipophilic antioxidant -tocopherol: 

either in the CLPs (concept emulsion) or in the core of the oil droplets (control emulsion), 

and determine their droplet size by static light scattering (A), their melting and 

crystallization behavior by DSC (B), and their morphology by TEM (C).  

Figure S7.2. Characterization of Pickering emulsions with -tocopherol either in the CLPs 
(concept emulsion) or in the core of the oil droplets (control emulsion). Droplet size 
distribution (A), DSC melting and crystallization thermogram (B) and TEM image of concept 
emulsion (C).  
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We prepare our concept and control Pickering emulsions with medium chain triglycerides, 

a model saturated oil that cannot oxidize, and monitor the -tocopherol concentration 

during incubation. We find that the -tocopherol is perfectly stable in both emulsions, 

although an iron-catalyzed oxidation system is used, similar as for the PUFA oil-based 

emulsions.  

 

Figure S7.3. Stability of -tocopherol during incubation of Pickering emulsions containing 

MCT oil with -tocopherol either in the CLPs (concept emulsion; red) or in the core of the oil 

droplets (control emulsion; blue). Both emulsions contain 200 µmol kg-1 -tocopherol and 
are incubated with 200 µM FeSO4/EDTA as an oxidation catalyst. 

We prepare our concept and control Pickering emulsions with 200 µmol kg-1 -tocopherol, 

and compare their oxidative stability and -tocopherol degradation to concept emulsions 

containing a reduced amount of -tocopherol (100 and 50 µmol kg-1). 

Figure S7.4. CD hydroperoxide concentration (mmol kg-1 oil) (A), pAV (B) and -tocopherol 
concentration (µmol kg-1 emulsion) (C) during incubation of the concept and control 

emulsions (red and blue lines, respectively) containing 200 µmol kg-1 -tocopherol, and 

similar measurements for concept emulsions with reduced -tocopherol amounts (100 and 
50 µmol kg-1, orange and green, respectively).  
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We compare the melting and crystallization thermograms of concept emulsions at t0 and 

t336 h, to ensure their physical stability.  

 

Figure S7.5. DSC melting and crystallization thermograms of concept Pickering emulsion at 
t0 and t336 h. 

We compare the melting and crystallization thermograms of CLP dispersions to 

conventional sodium caseinate-stabilized emulsion containing added CLPs in the aqueous 

phase to assess physical interactions between CLPs and liquid oil in conventional emulsions.  

 

Figure S7.6. DSC melting and crystallization thermograms of a conventional sodium 
caseinate-stabilized emulsion containing added CLPs in the aqueous phase (solid line), and 
a CLP dispersion (dashed line). 
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Abstract 

Developing clean-label, plant-based, and sustainable food emulsions has gained large 

interest lately. This takes traditional emulsion design away from key functional ingredients, 

such as conventional emulsifiers (surfactants, animal-derived proteins), and synthetic 

antioxidants. Previously, we showed that tailor-made antioxidant-loaded particles can yield 

both physically and oxidatively stable emulsions, and we expected that natural particles 

with related properties could also show these beneficial effects. Here, we investigated 

Pickering emulsions prepared with natural particulate materials. Particles that showed 

weak aggregation in acidic aqueous media, indicating a relatively hydrophobic surface, were 

able to physically stabilize oil-in-water emulsions, through either Pickering stabilization 

(powders of matcha tea, spinach leaf, and spirulina cakes), or increasing the viscosity of the 

aqueous phase (pineapple fibers). Matcha tea and spinach leaf particle-stabilized emulsions 

were highly stable to lipid oxidation, as compared to reference emulsions stabilized by 

conventional emulsifiers. Such bi-functional Pickering particles thus seem promising for 

clean-label food emulsion formulation.  
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8.1. Introduction 

Many food products are dispersions of oil droplets in water, i.e., are O/W emulsions 

(McClements, 2005). Trends in the food sector area, such as the consumers demand for 

clean-label, plant-based, sustainable and healthy products, have led to changes in 

formulation requirements (Berton-Carabin & Schroën, 2019). For example, the key 

functional ingredients, such as conventional emulsifiers (surfactants (Kralova & Sjöblom, 

2017) and animal-derived proteins (Day, 2013)) that provide physical stability to the 

emulsions (Dickinson, 1993), and synthetic antioxidants such as ethylenediaminetetraacetic 

acid (EDTA) and butylated hydroxyanisole (BHA) (Shahidi & Zhong, 2010) that ensure their 

oxidative stability, need to be reconsidered, which is a big challenge (McClements & Decker, 

2018).  

Pickering particles have become popular for biocompatible applications over the last 

decade, and could potentially mitigate both issues (Berton-Carabin & Schroën, 2015). When 

wetted by both oil and water, such particles can anchor at the interface and form an 

excellent physical barrier to droplet coalescence. Particles that are preferentially wetted by 

water will tend to stabilize oil-in-water (O/W) emulsions whereas those preferentially 

wetted by oil form water-in-oil (W/O) emulsions (Binks & Lumsdon, 2000; Finkle, Draper, & 

Hildebrand, 1923). For large enough particles (typically, above 10 nanometers), the 

adsorption energy, defined as: Δ𝐺𝑎  =  𝜋𝑟2𝛾𝑜𝑤(1 − cos 𝜃)2, exceeds thermal energy by 

orders of magnitude, resulting in irreversible adsorption (Chevalier & Bolzinger, 2013; 

Schröder, Sprakel, Schroën, & Berton-Carabin, 2017; Zembyla, Murray, Radford, & Sarkar, 

2019).  

Substantial work has already been done on Pickering emulsions, and most of it on inorganic 

particles, such as silicon dioxide and other silica-based (i.e., thermally processed or 

chemically modified silica) particles (Binks & Kirkland, 2002; Eskandar, Simovic, & Prestidge, 

2007; Midmore, 1998). Such particles are commercially available with various sizes 

(nanometers to microns) and hydrophobicity, and are allowed as food ingredients (EFSA, 

2009). Yet, their size makes them suspect with respect to digestive fate, and their synthetic 

origin makes them less attractive in terms of sustainability and clean-label potential. Hence 

biobased particles, that can be minimally processed, are an interesting option for future 

food applications.  
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Several biobased Pickering particles have been developed over the past years such as 

modified starch (Rayner, Timgren, Sjöö, & Dejmek, 2012), cellulose fibers (Ougiya, 

Watanabe, Morinaga, & Yoshinaga, 1997), fat particles (Schröder et al., 2017), chitin 

nanocrystals (Perrin, Bizot, Cathala, & Capron, 2014), flavonoid particles (Luo et al., 2011), 

and protein-based particles (de Folter, van Ruijven, & Velikov, 2012). Still, most of these 

particles require chemical modifications and/or additional processing steps such as heating, 

hydrophobic chain grafting, or antisolvent precipitation, or are produced via a bottom-up 

approach, i.e., are assembled from individual molecules into the desired particle, which may 

require complex processing (Schröder et al., 2017). It is thus important to find biobased 

particles that can be made through mild processing and have appropriate properties to 

allow irreversible nesting in the interface. In fact, many traditional and home-made food 

products are empirically stabilized by particles that are naturally present, such as mustard 

particles in mayonnaise and dressings (Rayner et al., 2014), fat crystals in margarine and 

spreads, or casein micelles in dairy products (Dickinson, 2010), but generalizing this 

purposely into the industrial food era is still a challenge. 

Apart from the physical stability of food emulsions, lipid oxidation in such systems has 

become a renewed concern due to the recommendations for high amounts of healthy 

polyunsaturated fatty acids (PUFAs) in combination with fewer additives, such as synthetic 

antioxidants. This means that the strategies to prevent lipid oxidation have to be based on 

increasing the effectiveness of natural antioxidants. A way to do so is by positioning them 

at the oil-water interface, where lipid oxidation is initiated (Berton-Carabin, Ropers, & 

Genot, 2014; Laguerre, Bily, Roller, & Birtic, 2017). In previous work, we prepared Pickering 

emulsions stabilized by colloidal lipid particles that contained the lipophilic antioxidant -

tocopherol, and showed for the first time that both the physical and oxidative stability of 

emulsions could be dramatically improved (Schröder, Laguerre, Sprakel, Schroën, & Berton-

Carabin, submitted).  

Given the composition of natural particles, we could presume that some of them have 

intrinsic antioxidant properties, such as cocoa particles that typically contain polyphenols 

(Gould, Vieira, & Wolf, 2013). Besides, several authors have speculated that the formation 

of a thick interfacial layer by Pickering particles would have a protective effect against lipid 

oxidation, by decreasing the permeability of free radicals and oxygen to the oil phase 

(Kargar, Fayazmanesh, Alavi, Spyropoulos, & Norton, 2012; Kargar, Spyropoulos, & Norton, 



   Chapter 8 
 

199 
 

2011), although others reported contradictory effects (Schröder, Sprakel, Boerkamp, 

Schroën, & Berton-Carabin., 2019).  

In the present work, we studied the physical and oxidative stability of emulsions prepared 

with natural particles from different sources (raw powders of matcha tea, spinach leaf, 

spirulina cakes, pineapple fibers, and rosemary cakes and extracts of turmeric and red 

radish), in comparison with conventional emulsions. We first report on the physical 

characteristics of the particle dispersions, after which we discuss their emulsification 

behavior and potential ability to counteract lipid oxidation. 

8.2. Materials & methods 

8.2.1. Materials 

Sodium acetate trihydrate, sodium chloride and potassium sorbate were purchased from 

Sigma-Aldrich (Zwijndrecht, The Netherlands). Acetic acid glacial (C2H4O2) was purchased 

from VWR Chemicals (Leicestershire, England). Methanol and chloroform were obtained 

from Actu-All Chemicals (Oss, the Netherlands). Deuterated chloroform and 

dimethylsulfoxide (CDCl3 and DMSO-d6) were purchased from Euriso-top (Saint-Aubin, 

France). Sunflower oil was purchased in a local supermarket and stripped using alumina 

powder (MP EcoChromet ALUMINA N, Activity: Super I, Biomedicals) to remove polar 

impurities and tocopherols. Extracts of turmeric and red radish, and raw powders of matcha 

tea, pineapple fibers, rosemary cakes, spirulina cakes, and spinach leaf were supplied by 

NATUREX (Avignon, France). A chemical characterization is presented in Supporting 

information, Tables S8.1., S8.2. & S8.3. Ultrapure water (18.2 MΩ) was prepared using a 

Milli-Q system (Millipore Corporation, Billerica, MA, USA) and was used for all the 

experiments. 

8.2.2. Methods 

8.2.2.1. Preparation of particle dispersions 

A particle dispersion was prepared by mixing the powders or extracts (1 or 5% w/w) in acetic 

acid buffer (50 mM, pH 4.5). This dispersion was magnetically stirred overnight at 4 °C and 

used as such, or centrifuged at 10,000xg for 20 min at 20 °C. The supernatant, which 

contained most of the soluble components, was collected and filtered using a glass-fiber (1 

µm) syringe filter (Acrodisc glass fiber, Sigma Aldrich, Steinheim, Germany) and the pellet 
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was resuspended in the same amount of acetic acid buffer. The centrifugation/resuspension 

procedure was repeated four times to finally yield a washed particle fraction. 

8.2.2.2. Preparation of emulsions 

Stripped sunflower oil (10% w/w) was added to an aqueous phase containing 5% w/w 

particles, or the supernatant, or washed particles obtained from a 5% w/w particle 

dispersion in acetic acid buffer (50 mM, pH 4.5). A coarse emulsion was prepared using a 

rotor-stator homogenizer (Ultra-turrax IKA T18 basic, Germany) at 11,000 rpm for 1 min, 

and was then processed through a lab-scale colloid mill with gap width of 0.32 mm (IKA 

Magic Lab, Staufen, Germany) operating for 1 min at 15,000 rpm. The emulsions were 

stored at either 4 °C or 25 °C. 

8.2.2.3. Characterization of particle dispersions and emulsions 

To visualize the morphology of the powders or extracts, a scanning electron microscope 

(Phenom G2 Pure, Eindhoven, the Netherlands) operating at 5 kV was used. The samples 

were fixed with double-sided adhesive conductive carbon tabs (JEOL Europe BV, the 

Netherlands) on 12.7 mm aluminum pin-type stub mounts (JEOL Europe BV, the 

Netherlands).  

The aggregation behavior of particles in aqueous media and the microstructure of 

emulsions were evaluated by light microscopy using a Carl Zeiss Axioscope A1 microscopy 

equipped with a camera (AxioCam Mrc5).  

The particle size in dispersion, and the emulsion droplet sizes, were measured by static light 

scattering using a Mastersizer 3000 (Malvern Instruments Ltd.; Worcestheshire, UK). The 

following optical properties were used: refractive indices of 1.45 (particles), 1.465 (stripped 

sunflower oil) and 1.330 (ultrapure water), with an absorption index of 0.01. 

The interfacial tension between stripped sunflower oil and the supernatant of 1% w/w 

particle dispersions was measured with a drop tensiometer (Tracker, Teclis, Longessaigne, 

France) used in rising drop configuration (i.e., a drop of stripped sunflower oil was formed 

on the tip of a needle (curved G18, internal diameter 0.84 mm, length 10 cm) immersed in 

a cuvette filled with the supernatant). Interfacial tension measurements were conducted 

for 3.5 h at room temperature, keeping the area of the droplet constant (30 mm2) 

throughout the experiment. The interfacial tension was determined by analyzing the profile 

of the oil droplet using the Laplace equation. 
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8.2.2.4. Quantification of lipid oxidation products 

Aliquots of emulsion (2 g) were put in 15-mL polypropylene tubes and incubated in a climate 

chamber at 25 °C, in the dark, without agitation. At selected time points, the oil was 

extracted by mixing 2 g emulsion with 4 mL chloroform, 3 mL methanol and 1 mL saturated 

sodium chloride solution, followed by centrifugation at 2,000xg for 8 min at 4 °C. The 

chloroform layer containing the extracted oil was collected by cautiously punching a hole at 

the bottom of the centrifugation tube, and chloroform was then evaporated under nitrogen 

flow at 25 °C. A total of 150 μL oil was collected, to which 450 μL 5:1 CDCl3/DMSO-d6 were 

added. Lipid oxidation products (hydroperoxides, conjugated dienes, and aldehydes) were 

quantified using nuclear magnetic resonance (NMR) on a Bruker Avance HD 700 MHz NMR 

spectrometer (Bruker BioSpin, Switerland) equipped with a 5 mm BBI-probe at 295 K. For 

each sample, both a single pulse and band selective experiment were recorded, following 

Merkx et al. (2018). The data were processed with the Bruker TopSpin 4.0 software. From 

the single pulse experiment, the peaks from the conjugated E,Z-Ln-OOH at δ 6.5 ppm and 

the glycerol backbone at δ 4.4 pm were used for the quantification. In the band selective 

pulse, the region between δ 13.0 and 8.0 ppm was selectively excited. Here, the 

hydroperoxide signals resonated between δ 11.2 and 10.7 ppm and the aldehydes between 

δ 9.8 and 9.4 ppm. The calculations, including a factor that accounts for intensity loss during 

the selective pulse, are described in Merkx et al. (2018). In some cases, it was necessary to 

subtract a background signal that originated from the particles from the overall signal. 

8.3. Results & discussion 

8.3.1. Physical characterization of particles 

We first investigated the morphology of the biobased particles in dry state by scanning 

electron microscopy (SEM), which revealed that matcha tea, spinach leaf, and rosemary 

cake particles have an irregular structure with high porosity (Figure 8.1.). Pineapple fibers 

contained elongated and more irregular structures, with low porosity. Red radish and 

spirulina cake powders contained roughly spherical elements, with the latter showing small 

pores. Lastly, turmeric extract particles appeared as polygonal, compact structures. The 

aspect ratio of particles is known to influence interfacial behavior; anisotropic particles can 

cover a higher fraction of the interface, and may induce jamming through lateral particle-

particle interactions, resulting in strong mechanical properties of the interface (de Folter et 
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al., 2014; Günther, Frijters, & Harting, 2014; Madivala, Vandebril, Fransaer, & Vermant, 

2009).  

The dispersibility and aggregation behavior of the different powdered particulate materials 

was investigated in acetate buffer. Powders of matcha tea, spirulina cakes, spinach leaf and 

pineapple fibers seemed to disperse well in acetate buffer, but when observed by light 

microscopy, they showed moderate aggregation (Figure 8.1.). Additionally, pineapple fibers 

exhibited fast sedimentation, and increased the viscosity of the continuous phase 

considerably. Rosemary cake powder was dispersible in acetate buffer, but light microscopy 

revealed strong aggregation, whereas turmeric extract was not dispersible; both powders 

could be dispersed well in sunflower oil (Figure 8.1.). Red radish extract fully dissolved in 

buffer; no particles were detected by light microscopy, nor by static light scattering (Figure 

8.1.).  

Binks et al. (2007) observed that emulsions were most stable when prepared with slightly 

aggregated particles (Binks, Rodrigues, & Frith, 2007). When comparing that with the 

behavior of our particles, it could be expected that powders of matcha tea, spirulina cakes, 

spinach leaf and pineapple fibers have the highest potential to act as Pickering stabilizers 

for O/W emulsions. On the contrary, due to their hampered solubility in buffer, rosemary 

cakes and turmeric extracts powders are expected to be more suitable to stabilize W/O 

emulsions, whereas red radish extract cannot be considered a Pickering stabilizer.  

We investigated the particle size distribution of the buffer-dispersible particles, and found 

that spirulina cake and matcha tea particles were the smallest, with d32 of 9 and 11 µm, 

respectively (Figure 8.1.). The average size of pineapple fibers and spinach leaf particles was 

much larger (d32 of 107 and 40 µm, respectively), with the latter showing a wide size 

distribution. Given the poor dispersibility of rosemary cake particles in acetate buffer, it was 

not surprising that this particle dispersion showed a highly polydisperse size distribution 

with peaks at ~ 0.5, 5 and 200 µm, and d32 of 9 µm.  

Pickering particles are ideally substantially smaller than the targeted emulsion droplet size 

(Schulman & Leja, 1954); when at least one order of magnitude smaller, they generally 

provide better surface coverage, and are able to achieve effective Pickering stabilization 

(Binks & Lumsdon, 2001; Dickinson, 2012; Garti, Aserin, Tiunova, & Binyamin, 1999). Still, 

for several food-grade particles, it has been reported that they could stabilize oil droplets 



   Chapter 8 
 

203 
 

of similar size, that is compared to the particle size in dispersion prior to emulsion 

preparation (Gould et al., 2013; Kurukji, Pichot, Spyropoulos, & Norton, 2013). This may be 

explained by two reasons: first, only the finest particle fraction may have stabilized the 

emulsion, as found for cocoa particles (Gould et al., 2013); or second, the homogenization 

process to make the emulsion may have disrupted or de-aggregated the particles (Kurukji 

et al., 2013). To assess the latter potential effect, we measured the particle size distribution 

after homogenization of the particle dispersion in the same conditions as used to produce 

emulsions. For rosemary cake particles, the size decreased considerably leading to a large 

fraction of particles between 0.5 and 5 µm (Supporting information, Figure S8.4.). The 

particle size of the other materials was not largely affected. 
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Figure 8.1. Characterization of raw powders of matcha tea, spinach leaf, spirulina cakes, 
pineapple fibers, and rosemary cakes, and extracts of turmeric and red radish: Left: SEM 
images. Right: first 4 entries, particle size distribution (PSD) of 1% w/w dispersions in acetate 
buffer (50 mM, pH 4.5) measured by static light scattering, with on the x-axis the size in µm 
and on the y-axis the volume-based frequency (%), superimposed over light microscopy 
images (dispersions). Last two entries are photos of (i) turmeric extract in acetate buffer 
(left) and stripped sunflower oil (dispersible, right); and (ii) red radish extract in acetate 
buffer. 

From the equation defining the desorption energy of a Pickering particle, as given earlier, 

the interfacial tension of the oil-water interface, and the particle three-phase contact angle 

determine the energy involved in removing particles from an interface, that is in conjunction 

with their size. Since our dispersions may contain surface-active components that would 
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directly lower the interfacial tension, or affect the contact angle by adsorbing to the 

particles (Binks et al., 2007; Cui, Cui, Zhu, & Binks, 2012), we first measured the dynamic 

interfacial tension of the supernatant obtained after centrifugation of 1% w/w dispersions 

of powders or extracts in acetate buffer.  

The interfacial tension between stripped sunflower oil and acetic acid buffer was around 30 

mN m-1 and was stable over the time-scale of the experiment (Figure 8.2.). The soluble 

components in the spirulina cake supernatant were able to decrease the interfacial tension 

the fastest, and reached the lowest value (~10 mN m-1), most probably due the presence of 

proteins (composition in Supporting information Table S8.2.), particularly phycocyanins 

(Benedetti et al., 2004). The matcha tea supernatant was also able to decrease the 

interfacial tension to 10 mN m-1, most probably because of the proteins present, and that 

also holds for spinach leaf soluble components that were able to decrease the interfacial 

tension to 13.5 mN m-1, most likely through thylakoid fragments that are rich in proteins 

(Tenorio, De Jong, Nikiforidis, Boom, & Van Der Goot, 2017). Red radish was completely 

soluble and decreased the interfacial tension rapidly, to reach a final value of 14.5 mN m-1, 

compared to which pineapple fiber and rosemary cake supernatants had lower surface 

activity (17 mN m-1), and turmeric extract was not able to decrease the interfacial tension.  

Figure 8.2. Dynamic interfacial tension at the stripped sunflower oil-acetic acid buffer 
interface, with the aqueous phase containing the soluble components of a 1% w/w 
dispersion of turmeric and red radish extracts, and powders of matcha tea, pineapple fibers, 
rosemary cakes, spirulina cakes, or spinach leaf.  
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As mentioned, soluble components originating from our biobased materials may adsorb at 

the surface of the particles, therewith changing their wettability (Binks et al., 2007; Cui et 

al., 2012). The involved interactions are generally of electrostatic or hydrophobic origin 

(Berton-Carabin & Schroën, 2015; Santini, Guzmán, Ferrari, & Liggieri, 2014), and for silica 

particles and cationic surfactants this interaction has been reported to lead to more 

hydrophobic particles, and a synergistic stabilization (Binks et al., 2007). Surface-active 

components may also compete with particles and have even been suggested to desorb 

particles from the interface (Vashisth, Whitby, Fornasiero, & Ralston, 2010), although we 

expect this to only be possible if the resulting contact angle is close to 0 or 180° (Dickinson, 

2012). 

8.3.2. Emulsion physical stability 

We prepared 10% w/w O/W emulsions with 5% w/w particles dispersed in the aqueous 

phase, and measured droplet size in time to evaluate physical stability. Powders of matcha 

tea, spinach leaf, spirulina cake and pineapple fibers were able to physically stabilize O/W 

emulsions for at least 3 months (Figure 8.3.). In the measured droplet size distribution, also 

non-adsorbed particles play a role; therefore, light microscopy images were analyzed to 

estimate the actual droplet size. Matcha tea powder- and spirulina cake powder-stabilized 

droplets were around 10 µm, and showed network formation in the continuous phase, most 

likely due to particle bridging. Spinach leaf powder formed larger oil droplets of around 25-

50 µm, and showed less bridging. Emulsions stabilized by pineapple fibers were highly 

viscous due to swelling and fiber network formation in the continuous phase. The high 

viscosity was probably very instrumental in reducing the droplet size to ~10 µm (Walstra, 

2004). The red radish dispersion was not able to form stable emulsions (Supporting 

information, Figure S8.5.).  

Emulsions prepared with rosemary cake powder phase inverted upon homogenization, 

most probably due to the hydrophobicity of these particles. To investigate the 

emulsification potential of these, and turmeric particles, we homogenized a sunflower oil 

phase containing the dispersed particles with an aqueous phase using the same 

homogenizer, and visually stable W/O emulsions were obtained (Figure 8.4.), with turmeric 

extract particles visible at the droplet surface (Figure 8.4.B). 
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Figure 8.3. Physical characterization of 10% w/w O/W emulsions stabilized by 5% w/w 
powders of matcha tea, spinach leaf, spirulina cakes, or pineapple fibers: Droplet size 
distribution (freshly prepared (colored line), or after 3 months storage at 4 °C (white line)) 
superimposed over light microscopy images of fresh samples.  

Figure 8.4. Light microscopy images of 10% w/w W/O emulsions stabilized by 5% w/w 
rosemary cake powder (A) or turmeric extract (B).  
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To further investigate the stabilization mechanism of the most promising materials 

(powders of matcha tea, spinach leaf, spirulina cakes and pineapple fibers), we prepared 

emulsions with only the supernatant (soluble fraction), or the re-suspended pellet (washed 

particles) obtained after centrifugation of the particle suspension. The supernatants of the 

spirulina cake powder suspension, which was the most surface-active (Figure 8.2.), and of 

the pineapple fiber suspension, led to emulsion droplets of around 5 µm (d32) that 

destabilized due to flocculation and coalescence within 1 week (Figure 8.5.). This may have 

occurred due to a lack of steric and/or electrostatic repulsion, i.e., the droplets were not 

covered or charged enough (McClements, 2005). In emulsions formed with the soluble 

components of matcha tea and spinach leaf powders, immediate coalescence took place, 

as illustrated by their large droplets and polydisperse size distribution (Figure 8.5.), showing 

that these components are not suitable as emulsifiers.  

Washed particles form matcha tea, spinach leaf and spirulina cakes were able to form 

physically stable droplets for at least 4 weeks. Matcha tea and spinach leaf particles are thus 

able to do so through a true Pickering stabilization mechanism. For spirulina cake particles, 

soluble components such as proteins (see Supporting information, Table S8.2.) may have 

contributed to the overall emulsion stability, for example through co-adsorption, or 

facilitation of droplet breakup. In emulsions stabilized by washed pineapple fibers, visible 

oiling-off took place within one week. Pineapple fibers were not able to stabilize emulsions 

through a Pickering stabilization mechanism, but probably the soluble components in this 

material adsorbed at the interface, and the fibers increased the viscosity of the continuous 

phase, therewith enhancing stability, which may have been further increased by network 

formation. 

8.3.3. Oxidative stability of emulsions 

We incubated matcha tea powder-, spinach leaf powder-, spirulina cake powder- and 

pineapple fiber-stabilized emulsions (non-washed dispersions) at 25 °C, and measured the 

formation of primary lipid oxidation products (conjugated E,Z-Ln-OOH, Figure 8.6.A, and 

total hydroperoxides (Supporting information, Figure S8.6.)) and secondary oxidation 

products (aldehydes, Figure 8.6.B) and compared their oxidative stability to that of 

reference emulsions stabilized by egg yolk or Tween 60 (droplet size distributions and 

microscopy images of these reference emulsions are given in Supporting information, Figure 

S8.7.). 
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Figure 8.5. Droplet size distributions of emulsions stabilized by the supernatant (A, C, E, G) 
of particle dispersions, or by washed particle dispersions (B, D, F, H) of matcha tea powder 
(A, B), spinach leaf powder (C, D), spirulina cake powder (E, F) and pineapple fibers (G, H), at 
t0 (blue), and after 1 week (grey) or 4 weeks (green) storage.  
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All emulsions remained physically stable over the time-scale of the incubation period. 

Interestingly, matcha tea powder- and spinach leaf powder-stabilized emulsions remained 

oxidatively stable for 6 weeks with hardly any primary and secondary oxidation products 

detected. Egg yolk-stabilized emulsions were oxidatively stable for 2 weeks, but after that 

showed quick formation of conjugated E,Z-Ln-OOH, and moderate formation of aldehydes. 

The oxidative stability of the other three emulsions was less good and ranked as follows: 

spirulina cake powder > Tween 60 > pineapple fibers, with the latter showing formation of 

both primary and secondary oxidation products as soon as incubation started. 

Different factors may contribute to the susceptibility or resistance of emulsions to lipid 

oxidation, and for this the composition of the particles, and the properties of the 

components present in the continuous phase, and at the interface need to be considered. 

We start by discussing on the particle-stabilized emulsions, and in the following section, the 

reference emulsions are addressed, after which all effects are putatively brought together.  

Matcha tea is known to contain exceptionally high concentrations of antioxidants (as also 

reported in Supporting information, Table S8.1.), particularly catechins of which 

epigallocatechin gallate is the most abundant, and the flavonoid quercetin (Ozgen, Kilinc, & 

Selamoğlu, 2016). Both components are free radical-scavenging antioxidants and able to 

interrupt the lipid oxidation chain reaction, which could explain the high oxidative stability 

of this emulsion, especially when located at the interface (Berton-Carabin et al., 2014; 

Schröder et al., submitted.). Spinach leaf powder contains 40-fold lower amounts of 

polyphenols compared to matcha tea powder (Supplementary information, Table S8.1.). 

Yet, it contains oxalic acid (Supporting information, Table S8.3.) (Zheng, Yang, Pu, & Zhang, 

2009), which has been reported to chelate metal ions such as iron (Suter, Siffert, Sulzberger, 

& Stumm, 1988), thereby inactivating this transition metal with regard to its pro-oxidant 

effect. Understanding what causes the effect of spirulina powder on oxidation is more 

elusive. Although spirulina cake powder is an extraction residue, and thus supposedly 

exhausted from phycocyanin, it may still contain residual amounts of this protein that is 

able to scavenge free radicals (Belay, Kato, & Ota, 1996; Patel, Mishra, & Ghosh, 2006). In 

this emulsion, fast formation of conjugated diene hydroperoxides took place, but 

hydroperoxide decomposition was rather slow, which could indicate that the iron generally 

present in spirulina is chelated (Ghorbani Gorji, Smyth, Sharma, & Fitzgerald, 2016). In fact, 

iron has a strong catalytic effect for the decomposition of hydroperoxides, leading to alkoxyl 
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radicals and later on secondary lipid oxidation products (Schaich, Shahidi, Zhongy, & Eskin, 

2013). Pineapple generally contains considerable amounts of vitamin C that can scavenge 

free radicals (Uluata, McClements, & Decker, 2015) and regenerate hydrogen-donating 

antioxidants (Shahidi & Zhong, 2010), while it is also able to reduce ferric iron to ferrous 

iron, which is a more active oxidation catalyst (Ghorbani Gorji et al., 2016), and could thus 

explain the fast oxidation in the corresponding emulsion. On the other hand, it is 

questionable if the pineapple fibers used (again, an extraction residue) still contained 

significant amounts of vitamin C.  

Egg yolk is especially rich in the protein phosvitin that has strong metal binding ability 

(Nimalaratne & Wu, 2015) at pH 6.5 (Castellani, Guérin-Dubiard, David-Briand, & Anton, 

2004). However, at pH 4.5 - the typical pH of dressing-like food emulsions, including 

mayonnaise, which notably prevents the growth of pathogens - the binding constant is 

lower, which may allow iron to be available for lipid oxidation (McClements, 2005; Merkx, 

Delić, Wierenga, Hennebelle, & van Duynhoven, 2018). Phosvitin is also surface-active, and 

will therefore locate at the oil-water interface where it may release iron, leading to fast lipid 

oxidation, which may be prevented in food emulsions such as mayonnaise by the use of 

EDTA, a strong chelator (Ghorbani Gorji et al., 2016). To the best of our knowledge, Tween 

60 is not known for any specific antioxidant activity. Therefore, no inhibition of oxidation of 

the corresponding emulsion could be expected (Pérez-Rosés, Risco, Vila, Peñalver, & 

Cañigueral, 2015). In order to deconvolute these various effects, one would need to 

measure free radical scavenging properties as well as chelation of ferrous iron of the 

different emulsifiers, which would be a study by itself.  

To summarize, as lipid oxidation is probably initiated at the oil-water interface (Berton-

Carabin et al., 2014; Laguerre et al., 2009), localizing antioxidants at this specific locus using 

natural Pickering particles appears as an efficient strategy to promote oxidative stability. 

Most natural antioxidants are highly lipophilic or hydrophobic, and therefore locate in the 

oil droplet, or in the aqueous phase, where their efficiency is far from optimal. The 

hierarchical emulsion design that stems from the use of Pickering particles can be an 

interesting way to boost the efficiency of natural antioxidants (Schröder et al., 2019; 

Schröder et al., submitted), as we previously also demonstrated for purposely built 

particles. Some of the biobased Pickering particles used in the present study contain 

endogenous antioxidants or chelators embedded in their natural matrix. These antioxidants 
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are probably still available for hydrogen atom-donating or metal-chelating activities, which 

can be boosted by an interfacial localization. Here, we provide a proof-of-principle that it is 

possible to create a dual stabilizing functionality that leads to naturally armored emulsions 

against oxidation and physical damage, while complying with clean-label requirements. This 

new approach, which holds great potential for a wide range of applications, is inspired by 

the way in which emulsions were traditionally prepared before the advent of the food 

industry and the massive use of synthetic emulsifiers. Perhaps ironically, this retrospective 

can provide the key to formulating tomorrow's food emulsions. 

 

Figure 8.6. Formation of conjugated E.Z-Ln-OOH (left) and aldehydes (right) in O/W 
emulsions (10% w/w stripped sunflower oil) stabilized with matcha tea powder (green), 
spinach leaf powder (purple), spirulina cake powder (blue), pineapple fibers (orange), egg 

yolk (black) or Tween 60 (grey), stored at 25 C.  

8.4. Conclusions 

We have investigated the physical and oxidative stability of Pickering emulsions stabilized 

by natural particulate materials, i.e., powders of matcha tea, spinach leaf, spirulina cakes, 

pineapple fibers, and rosemary cakes, and extracts of red radish and turmeric. Particles that 

showed weak aggregation in aqueous media (powders of matcha tea, spinach leaf, spirulina 

cakes and pineapple fibers) were able to physically stabilize oil-in-water (O/W) emulsions, 

through either a Pickering stabilization mechanism (for the former three), or an increase of 

the viscosity of the aqueous phase. Additionally, matcha tea powder- and spinach leaf 

powder-stabilized emulsions were also highly stable to lipid oxidation. This is probably due 

to an accumulation at the droplet surface of antioxidants and/or chelators embedded in the 

particles matrix but still available for reacting or interacting with pro-oxidative catalysts. 
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This suggests that natural Pickering particles have a great potential to mitigate usual 

instability issues related to emulsions, while fully complying with clean-label strategies. 

8.5. Supporting information 
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Figure S8.4. Particle size distribution of 1% w/w rosemary cake powder, spirulina cake 
powder, spinach leaf powder, and matcha tea powder dispersions in acetate buffer (50 mM, 
pH 4.5) measured by static light scattering, before (blue) and after homogenization (red). 
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Figure S8.5. Photo of emulsions stabilized by red radish extract (A), turmeric extract (B) and 
rosemary cake powder (C & D).  

 

Figure S8.6. Formation of hydroperoxides (LOOHs) in O/W emulsions (10% w/w stripped 
sunflower oil) stabilized with matcha tea powder (green), spinach leaf powder (purple), 
spirulina cake powder (blue), pineapple fibers (orange), egg yolk (black) or Tween 60 (grey), 

stored at 25 C.  
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Figure S8.7. Physical characterization of O/W emulsions stabilized by 1% w/w Tween 60 and 
5% w/w egg yolk: Droplet size distribution (freshly prepared (colored line), or after 3 months 
storage at 4 °C (white line)) superimposed over light microscopy images of the fresh samples.  
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9.1. Introduction 

The objective of this project was to develop food emulsions with a new and controlled 

architecture directed at achieving a specific functionality. In these emulsions, food-grade 

Pickering particles exerted a double role: they acted as physical stabilizers through their 

position at the oil-water interface, and they were used as a reservoir for antioxidant 

molecules. This allowed antioxidants locating close to the oil-water interface, hence 

affecting lipid oxidation at the position where it is initiated, which in turn drastically 

enhanced antioxidant activity. The major emphasis of the project was to understand the 

link between the physicochemical properties of such Pickering particles (e.g., their behavior 

at the oil-water interface, and their potential to act as antioxidant reservoirs), and the 

performance of the final emulsions. The results may be translated into formulation 

guidelines for the rational design of food products containing high levels of unsaturated 

lipids and minimal amounts of antioxidants.  

9.2. Main findings and conclusions 

In this thesis, we first summarized the information available in literature on Pickering 

emulsions (Chapter 2). Based on this, we decided that both building particles from scratch, 

and making use of particles present in nature would be viable routes to investigate the dual 

functionality that we want to create. First, we explored the use of lipid-based Pickering 

particles for the stabilization of O/W emulsions. These particles were built via a so-called 

bottom-up approach; i.e., assembled from individual lipid, emulsifier and antioxidant 

molecules into the desired colloidal structure (Figure 9.1.), to obtain control over 

composition and properties. We generated a proof of concept of the ability of these 

particles to both physically stabilize, and mitigate lipid oxidation, in emulsions (more details 

are given in section 9.2.1. and 9.3.3.). Next, we considered biobased particles obtained via 

a so-called top-down approach; i.e., natural materials broken into building blocks of interest 

(Figure 9.1.), as Pickering stabilizers in O/W emulsions. More details are given in section 

9.2.2., and also for these particles, in some cases dual functionality could be proven.  

9.2.1. Lipid-based particles 

In Chapter 3, we successfully developed a new type of lipid-based particles, referred to as 

colloidal lipid particles (CLPs). The choice of the lipid material altered the particles’ 

microstructure, such as their internal crystallinity, and their morphology. For surfactant-

based CLPs, a higher solid fat content led to an increased aspect ratio of the particles.  
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Figure 9.1. Schematic illustration of a bottom-up, and top-down production of Pickering 
particles.  

This increased their hydrophobicity and thus affected their performance as emulsion 

stabilizers, e.g., it resulted in a jammed, cohesive interfacial network. Protein-covered CLPs 

were particularly resilient to subsequent emulsification processes, we thus used them 

further in Chapter 4 in which we studied the formation of CLP-stabilized oil droplets in a 

microfluidic device and their stability to short-term coalescence. From this, is became clear 

that there is a non-monotonic effect of the particle concentration on emulsion stability. At 

low surface coverage, CLPs had a destabilizing effect due to droplet-droplet bridging and 

subsequent coalescence, whereas at higher surface coverage, particles formed an effective 

barrier against droplet coalescence, resulting in physically stable emulsions.  

As a next step, lipid oxidation was investigated in Pickering emulsions stabilized by protein-

based CLPs in Chapter 5. As such, these Pickering emulsions do not have a higher oxidative 
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stability compared to conventional sodium caseinate-stabilized emulsions, for similar 

composition of the oil droplets, but they do have a better physical stability. Besides, when 

HMP fat is an integral part of emulsion formulation, it is advantageous to add this as 

Pickering particles, instead of applying it in the core of the droplet. In Chapter 6, we added 

antioxidants to CLPs that serve as a reservoir (for -tocopherol). The chemical stability of 

-tocopherol depended on the fat used; crystallization probably led to preferential 

presence of -tocopherol at the particle surface, which was further promoted by emulsifiers 

that actively induce lipid crystallization. This negatively influenced the chemical stability of 

-tocopherol. In Chapter 7, these -tocopherol-containing CLPs were used as Pickering 

stabilizers for O/W emulsions, leading to substantially better oxidative stability compared 

to that of a control emulsion with the exact same structure and composition, but wherein 

the antioxidant was present in the core of the oil droplet. Most importantly, this confirmed 

that the interfacial localization of antioxidants is crucial to prevent lipid oxidation in 

emulsions. Through this, a proof of concept was reached: the two main instability issues 

(i.e., physical and chemical instability) of emulsions can be mitigated through one approach. 

9.2.2. Natural materials  

After establishing the proof of concept with the CLPs in Chapter 7, we considered various 

natural particles prepared via a top-down approach as Pickering stabilizers for O/W 

emulsions in Chapter 8. We found that matcha tea powder and spinach leaf powder were 

promising emulsion stabilizers that induced both physical and oxidative stability. This 

showed that the double functionality that we achieved using purposely built particles (CLPs) 

can also be achieved using certain naturally occurring particles.  

9.3. Advantages and limitations of Pickering emulsions for real applications 

9.3.1. Technological challenges 

Interest in Pickering emulsions for the food, pharmaceutical or cosmetic industry has grown 

tremendously in recent years (Berton-Carabin & Schroën, 2015a). Next we discuss the 

potential advantages and limitations such emulsions systems could have for real 

applications.  

The main selling point for Pickering emulsions is their high stability against coalescence due 

the formation of a steric and mechanically strong interfacial barrier formed by irreversibly 

adsorbed particles (Pawar et al., 2011). Even Pickering emulsions with large droplets sizes, 
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i.e., 100 µm or larger stay physically stable for several months (Timgren et al., 2013). One 

of the main criticisms of using Pickering particles is the fact that generally much more 

materials is needed to cover the interface as compared to conventional emulsifiers. In 

theory, starting from 150-nm CLPs a typical surface coverage would be 56 mg m-2 (assuming 

60% surface coverage), whereas for proteins typically 1-3 mg m-2 would be needed. Still, we 

found that a 2.5% w/w CLP-stabilized emulsion was much more resistant against 

coalescence than a 1% w/w sodium caseinate-stabilized emulsion (Schröder, Sprakel, 

Boerkamp, Schroën, & Berton-Carabin., 2019) of the same droplet size; the difference is 

clearly not that great as theoretically expected. In fact, most particles do not adsorb, which 

may increase the viscosity of the continuous phase, or even lead to formation of a particle 

network (Bijsterbosch, Bos, Dickinson, Van Opheusden, & Walstra, 1995; Binks, 2002). This 

reduces the need for thickening agents to prevent droplet creaming, and if a particle 

network is formed, this will also reduce creaming completely.  

Other reasons to consider Pickering particles are the replacement of low molecular weight 

surfactants that may cause undesired physiological responses, such as a damaged enzyme 

activity, may accumulate in the human body (Yuan et al., 2014) and do not meet the clean-

label trend (Chevalier & Bolzinger, 2013b; Frelichowska et al., 2009), or dairy proteins that 

are not sustainable (Tang, 2017), and the possibility to make products that are otherwise 

difficult to produce, such as liquid marbles (Aussillous & Quéré, 2001; McHale & Newton, 

2011), or ultra-stable foams (Arriaga et al., 2012).  

Despite the fact that Pickering particles have many advantages, also some challenges need 

to be met before Pickering particles can be applied in the food market. Given the complexity 

of foods that vary in pH, electrolyte concentration, and in which components interact 

(Dickinson, 1993; Berton-Carabin & Schroën, 2015a), it is difficult to predict how particles 

behave (Anjali & Basavaraj, 2018; Binks, Rodrigues, & Frith, 2007). The interaction energy 

of a particle in the interface is a function of the interfacial tension, the contact angle, and 

size of the particle, and these three factors can be influenced by the food composition. For 

example, pH-dependent surface groups have a large effect on particle wettability (and 

possibly on particle size if they can swell), and thus on emulsion stability. This effect is co-

determined by the presence of electrolytes that may screen charges on the particles’ 

surface, thus making them less hydrophilic. Other compounds, such as surfactants, may 

adsorb at the particle surface and change their wettability (Binks, Rodrigues, et al., 2007), 



General discussion 

228 
 

or adsorb at the oil-water interface, lowering the interfacial tension; both effects may lead 

to desorption of particles (Vashisth, Whitby, Fornasiero, & Ralston, 2010).  

It would be ideal to have commercially available particles that are resistant to such 

variations, leading to a broad operational window with regard to system composition. 

However, this ideal has not been reached yet; production of most particles is complex, 

energy-intensive, unsustainable, and expensive, because of the need for e.g. complexation 

or heating (Firoozmand & Rousseau, 2016). We feel that true Pickering stabilizers for food 

products will rely on renewable resources that can be mildly processed.  

Next to that, for these novel stabilizers, scaling relations that link particle properties and 

processing conditions to product properties are not available. This includes, for example, 

the homogenization conditions that can be detrimental to the particles, or lead to 

aggregation or partially coalesced droplets (Whitby & Krebsz, 2014; Whitby et al., 2011). 

Still, sufficient energy input needs to be applied to allow particle adsorption, as it is not 

spontaneous (as elaborated on in Chapter 2 and 4). This was a challenge for the CLP-

stabilized emulsions; the Tween 40-coated CLPs tended to aggregate upon emulsification, 

probably due to their hydrophobic character.  

Particles need to be selected based on their contact angle (as indicated earlier); however, it 

is difficult to determine contact angles, especially for small particles, composite particles 

(Al-Shehri, Horozov, & Paunov, 2014; Binks & Rodrigues, 2007), and extreme contact angles, 

either high or low. The gel trapping technique has been used to measure contact angles, 

but is rather laborious (Paunov, 2003); alternatively the Washburn method, which is based 

on capillary rise of liquids can be applied (Galet, Patry, & Dodds, 2010) although for this 

method the preparation of the packed powder is of imminent importance. In Chapter 9, we 

approached the hydrophobicity of natural particles from their aggregation behavior in 

aqueous suspensions, which we expect to be linked to their potential to stabilize emulsions. 

Water-dispersible particles that have a tendency to aggregate are expected to have 

hydrophobic surface properties next to hydrophilic properties, and are therefore 

anticipated to be suitable as Pickering stabilizers for O/W emulsions. 

Besides the production as such, also shelf-life considerations are important. Many Pickering 

particles, including our CLPs, are sensitive to high temperatures, i.e., they melt or get 

degraded upon heating. This means that regular thermal pasteurization cannot be applied, 
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and alternative pasteurization methods such as high pressure processing or pulsed electric 

fields would need to be tested. In line with this, drying of such emulsions by conventional 

methods may pose problems due to the temperatures involved, which may be mitigated by 

using reduced pressure, or freeze drying. It is expected that the natural particles that we 

describe are less sensitive to thermal changes.  

9.3.2. Acceptability of Pickering particles in foods 

The main concern about using small particles is their biological fate after ingestion (Borel & 

Sabliov, 2014). Nanomaterials, i.e., materials where more than 50% of particles in unbound 

or aggregated state are within the range of 1 – 100 nm in their number size distribution, are 

currently subject to debate (Bleeker et al., 2012). They also need to be indicated in the list 

of ingredients as such, which does not make them clean-label ingredients (Bleeker et al., 

2012). The CLPs that we used, and actually many other Pickering particles, do not fall in the 

nano-materials category, although often referred to as such in literature. 

Clean-labeling, which is an expanding business, also relates to particle composition, origin, 

processing, and health aspects. It is thus important that Pickering particles are made from 

biobased, i.e., natural, renewable, and food-grade sources, that can be treated mildly to 

obtain the particles without using complex, energy intensive methods, that may bring 

ingredients perceived as unhealthy into the product. As mentioned earlier, these ideal 

particles are not readily available yet, but it is clear that there is a lot of room to develop 

this emerging market. Our CLPs contain saturated, palm-based fats, which are associated to 

strong environmental impact, and health issues such as cardiovascular diseases. In this 

sense, it would be good to replace palm oil with more sustainable waxes, or even oleogels. 

The natural materials used in Chapter 8 are a great step toward more ideal Pickering 

stabilizers regarding sustainability, health and clean-label aspects.  

9.3.3. Lipid oxidation in Pickering emulsions 

In Chapter 7, we showed that emulsions containing -tocopherol in Pickering particles, 

resisted oxidation better than a control emulsion with the same composition and structure, 

but with antioxidant in the core of the oil droplets. We found that -tocopherol breaks 

down, and concomitant formation of lipid oxidation products takes place, which may hint 

at a different mechanism than mostly assumed (Labuza & Dugan, 1971). Traditionally, 

antioxidants are thought as sacrificial molecules that oxidize instead of the unsaturated 
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lipids, and therewith prevent lipid oxidation. From our work it is clear that the interfacial 

localization of the antioxidant is crucial; the CLPs behaved as an antioxidant reservoir at the 

interface, where probably the very first lipid radicals were scavenged during the initiation 

step, therewith preventing rapid propagation of the radical chain reaction.  

By applying the antioxidant loaded particles, the total antioxidant concentration could be 

reduced with a factor 2-4 compared to emulsions with antioxidant dissolved in the oil 

droplets, while not compromising the oxidative stability. We further investigated our 

concept by varying the CLP composition. We prepared CLPs consisting of 

tripalmitin:tricaprylin 4:1 (w/w), instead of only tripalmitin, and measured lipid oxidation, 

breakdown of -tocopherol, and dynamic aspects of the antioxidant using a fluorescent 

analog. The addition of tricaprylin (liquid oil) to the CLPs, resulted in faster diffusion of the 

fluorescent analog into the core of the droplet as compared to tripalmitin CLPs (ratio of 

black to green droplets; Figure 9.2.D & E). We also found slightly faster oxidation (Figure 

9.2. A – C), which is most probably related to the shorter residence time of -tocopherol at 

the interface. From this, we learned that the efficiency of antioxidants can be boosted, by 

choosing higher melting point components for the particles, for which natural waxes such 

as candelilla wax (Hwang, Fhaner, Winkler-Moser, & Liu, 2018) could be an option. Further, 

in oleogels that contain a 3D-network (Zulim Botega, Marangoni, Smith, & Goff, 2013; 

Dassanayake, Kodali, & Ueno, 2011) lipophilic antioxidants could be physically or chemically 

trapped, therewith increasing residence time at the interface. Besides, whey protein 

microgels (Destribats, Rouvet, Gehin-Delval, Schmitt, & Binks, 2014; Schmitt, Bovay, 

Vuilliomenet, Rouvet, & Bovetto, 2011) or hydrophobized alginate microgels (Paques, Van 

der Linden, Van Rijn, & Sagis, 2013; Nan et al., 2014; Zhang, Sun, Fan, Li, & He, 2018) may 

serve as reservoirs for hydrophilic antioxidants.  

It is good to point out that the results in Figure 9.2. are a result of two kinetic phenomena, 

that of oxidation that occurs immediately due to the presence of the ferrous iron catalyst, 

and that of antioxidant diffusion. In an emulsion without catalyst, the diffusion of 

tocopherol will not be affected, but the oxidation rate will be lower, and to translate our 

findings to practical oxidative stability, these time scales would need to be linked.  

To show the versatility of our approach, we encapsulated carnosic acid (found in rosemary), 

a highly reactive oxygen species (ROS) scavenging lipophilic antioxidant in sodium caseinate-

coated tripalmitin CLPs, and measured lipid oxidation in Pickering emulsions, and the 
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control emulsion with carnosic acid incorporated in the oil droplets. In both emulsions, lipid 

oxidation was largely prevented at comparable amounts as used for -tocopherol (0.27 

mmol kg-1), showing that the antioxidant activity of carnosic acid is higher than of -

tocopherol (Figure 9.3.A & B) (Huang, Frankel, Schwarz, Aeschbach, & German, 1996), due 

to its’ hyper-stoichiometry and the presence of two phenolic hydroxyl groups (Zhang et al., 

2010; McPhail, Hartley, Gardner, & Duthie, 2003). In emulsions containing lower amounts 

of carnosic acid (0.07 mmol kg-1), lipid oxidation was prevented more efficiently when the 

antioxidant was present in the CLPs (Figure 9.3.C & D); the emulsion architecture clearly 

contributes to oxidative stability as found for -tocopherol, which indicates that this 

concept is generic, and applicable to a broad range of chemically active compounds.  

To conclude, we have demonstrated a proof of concept to boost the efficiency of natural 

antioxidants in O/W emulsions by using antioxidant-loaded colloidal lipid particles as 

emulsions stabilizers. This system is versatile in design, and we expect that it could be 

further tailored to the product in which it is going to be applied, i.e., by increasing the 

residence time of antioxidants at the interface. Ultimately, this concept can be used to 

rationally identify sustainable Pickering particles produced via a top-down approach, that 

naturally contain antioxidants.  
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Figure 9.2. (A) CD hydroperoxide concentration (mmol kg-1 oil), (B) pAV and (C) -tocopherol 
degradation (µmol kg-1 emulsion) during incubation of Pickering emulsions prepared with 

stripped sunflower oil and tripalmitin:tricapylin 4:1 (w/w) CLPs, with -tocopherol 
incorporated in the particles or in the liquid PUFA oil droplets (red and blue lines, 
respectively); (D) CLSM images of Pickering emulsions with the fluorescent analogue initially 
in CLPs, taken at different time points, and (E) ratio of green to black droplets in tripalmitin 
and tripalmitin:tricaprylin 4:1 (w/w) CLP-stabilized emulsions containing the fluorescent 
analogue at different time points.  
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Figure 9.3. (A, C) CD hydroperoxide concentration and (B, D) pAV during incubation of 
Pickering O/W emulsions prepared with stripped sunflower oil, containing (A, B) 0.27 mmol 
kg-1 or (C, D) 0.07 mmol kg-1 carnosic acid, incorporated either in the CLPs (concept emulsion) 
or in oil droplets (control emulsion; red and blue lines, respectively). 
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Many food products contain lipid droplets dispersed in an aqueous phase (e.g., milk, 

mayonnaise), thus are oil-in-water (O/W) emulsions. Food emulsions may be subjected to 

destabilization, both from a physical and a chemical perspective. Physical destabilization is 

generally prevented by the use of conventional emulsifiers such as surfactants and proteins. 

Chemical destabilization, in particular lipid oxidation, is a major concern in food products, 

especially when healthy polyunsaturated fatty acids are present, and this degradation is 

usually mitigated by the use of synthetic antioxidants, often in large amounts.  

The use of alternative ingredients for the formulation of food emulsions has been emerging, 

for example solid particles (so-called Pickering particles, that are very popular nowadays) 

that irreversibly adsorb to the interface and therewith provide high physical stability; or 

natural antioxidants such as tocopherols and rosemary extracts, which are attractive in the 

current clean-label trend to prevent lipid oxidation. The efficiency of these natural 

antioxidants is unfortunately often not optimal, which can be explained by their tendency 

to locate into the oil or water phase, whereas lipid oxidation is initiated at the oil-water 

interface, and thus is the place where antioxidants should be located to optimally exert their 

protective effect. 

The objective of this project was to develop food emulsions with a new and controlled 

architecture directed at yielding both excellent physical and oxidative stability. In these 

emulsions the oil droplets were covered by food-grade Pickering particles that exert a 

double role: they act as physical stabilizers, and as a reservoir for antioxidant molecules 

located close to the oil-water interface, therewith preventing the first lipid oxidation events, 

which is expected to drastically enhance antioxidant activity. 

The first part of this thesis focused on the preparation and characterization of a new food-

grade lipid-based Pickering particles, referred to as colloidal lipid particles (CLPs). We 

prepared both surfactant-covered and protein-covered CLPs, and found that the type of 

emulsifier largely determined their morphology: protein-covered CLPs were roughly 

spherical, whereas surfactant-covered CLPs looked more lath-like (Chapters 3 and 6). We 

also showed that the lipid material alters the crystal polymorphism and subsequent CLP 

structure, which consequently influenced their performance as emulsion stabilizers 

(Chapter 3). For instance, surfactant-covered CLPs containing only high melting point lipids 

showed highly ordered crystalline structures, and formed jammed, cohesive interfacial 

layers once adsorbed onto oil droplets, whereas the ones containing a fraction of low 
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melting point lipids showed less ordered crystalline structures and formed thin and bridged 

layers. 

Since protein-covered CLPs were particularly resilient to subsequent emulsification 

processes, these particles were used to study the formation of emulsion droplets in a 

microfluidic device and their stability to short-term coalescence (Chapter 4). We found a 

non-monotonic dependency of the droplet stability on the particle concentration: at low 

surface coverage, CLPs had a destabilizing effect as incompletely covered surfaces led to 

droplet-droplet bridging and subsequent coalescence, whereas at higher surface coverage, 

particles formed an effective barrier against droplet coalescence, resulting in physically 

stable emulsions over the time scales probed. 

As a next step, we investigated lipid oxidation in Pickering emulsions stabilized by protein-

based CLPs that did not contain antioxidants (Chapter 5). We showed that these Pickering 

emulsions had a similar oxidative stability as conventional protein-stabilized emulsions for 

a similar composition of the oil droplets. Yet, when in both emulsions the same amount of 

solid lipids was present (either as stabilizing CLPs, or within the oil droplet core), a Pickering 

emulsion had a higher physicochemical stability. This shows that the location of 

crystallizable lipids influences lipid oxidation in O/W emulsions, and thus needs to be 

carefully considered in emulsion design.  

CLPs that did contain the lipophilic antioxidant α-tocopherol are presented in Chapter 6. 

The chemical stability of α-tocopherol was negatively influenced by lipid crystallization that 

probably promoted the localization of α-tocopherol close to the particle surface, which was 

further enhanced by emulsifiers that actively induce lipid crystallization. When applied as 

Pickering stabilizers in O/W emulsions (Chapter 7), lipid oxidation was reduced compared 

to control emulsions with the same composition and structure, but where the antioxidant 

was present in the core of the oil droplets. This confirmed that the interfacial localization of 

the antioxidant is crucial to prevent lipid oxidation in emulsions, and that the two main 

instability issues (i.e., physical and chemical instability) of emulsions can be mitigated 

through one single approach. 

After establishing the proof of concept with the CLPs, we used biobased particles (that may 

contain antioxidants) from various natural sources to stabilize O/W emulsions (Chapter 8). 

Emulsions stabilized by matcha tea powder or spinach leaf powder were both highly 
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physically and oxidatively stable, which shows that the double functionality that we 

achieved using purposely built particles (CLPs) can also be achieved with naturally occurring 

particles. 

In the general discussion of the thesis (Chapter 9) we describe that the dual functionality of 

CLPs can also be reached using other food components, which makes this approach a 

generic one. We expect that the system could be further improved, for example, by 

increasing the residence time of antioxidants at the interface. To do so, we probably need 

to link the time scale at which the relevant oxidation events occur with those during which 

the antioxidant actually resides at the interface. Follow-up research on entrapment of 

antioxidants within particles is needed to reach long residence times at the interface while 

not compromising the ability of antioxidants to exert their chemical activity. To conclude: 

through our approach the highly-stable food emulsions of the future may come within 

reach.
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Veel levensmiddelen bevatten oliedruppels gedispergeerd in een water fase (bijvoorbeeld 

melk en mayonaise), en zijn dus olie-in-water emulsies. Levensmiddelenemulsies kunnen 

onderhevig zijn aan destabilisatie, zowel fysisch en chemisch gezien. Fysische instabiliteit 

wordt over het algemeen voorkomen door gebruik te maken van emulgatoren, zoals 

oppervlakte-actieve stoffen of eiwitten. Chemische instabiliteit, in het bijzonder 

vetoxidatie, is een zorg voor levensmiddelen met gezonde meervoudig onverzadigde 

vetzuren. Dit wordt meestal tegengegaan door het gebruik van (grote hoeveelheden) 

synthetische antioxidanten.  

Er is tegenwoordig een groeiende vraag naar levensmiddelenemulsies waarin alternatieve 

ingrediënten worden gebruikt. Vaste deeltjes (Pickering-deeltjes) zijn populair omdat ze in 

tegenstelling tot de conventionele emulgatoren zich irreversibel in een grensvlak kunnen 

nestelen, en daardoor een hoge fysische stabiliteit verschaffen. Verder zijn natuurlijke 

antioxidanten zoals tocoferolen en rozemarijn-extracten aantrekkelijk om vetoxidatie te 

voorkomen vanuit een clean-label perspectief. De efficiëntie van deze natuurlijke 

antioxidanten is helaas vaak niet optimaal, omdat ze de neiging hebben om zich in de bulk 

olie of water fase te positioneren, terwijl vetoxidatie geïnitieerd wordt op het olie-water-

grensvlak wat dus de aangewezen plek zou moeten zijn om antioxidanten zo goed mogelijk 

hun werk te laten doen.  

Het doel van dit project was om levensmiddelenemulsies met een nieuwe en 

gecontroleerde architectuur te ontwikkelen, gericht op het verschaffen van zowel de 

fysische en oxidatieve stabiliteit. In deze emulsies werden de oliedruppels bedekt met 

eetbare Pickering-deeltjes die een dubbele rol vervullen: ze dienen als fysische 

stabilisatoren en worden gebruikt als antioxidant reservoirs. Antioxidanten worden 

daardoor dicht bij het olie-water-grensvlak geplaatst, waardoor de eerste 

vetoxidatiereacties kunnen worden voorkomen wat naar verwachting hun effectiviteit 

drastisch zal verbeteren.  

Het eerste deel van dit proefschrift richtte zich op het produceren en karakteriseren van 

een nieuw soort eetbare Pickering-deeltjes (Hoofdstuk 3 en 6) die we colloïdale vetdeeltjes 

(CVDs) noemen. We hebben zowel CVDs bedekt met oppervlakte-actieve stoffen als met 

eiwitten gemaakt en vonden dat de stof op het grensvlak grotendeels de morfologie van de 

CVDs bepaalt: deeltjes bedekt met oppervlakte-actieve stoffen waren langgerekt, en 

deeltjes bedekt met eiwit waren bolvormig. We hebben ook aangetoond dat het soort vet 
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de interne kristalliniteit van CVDs kan veranderen en hierdoor hun gedrag als emulgatoren 

(Hoofdstuk 3). Zo vormden CVDs die bedekt zijn met oppervlakte-actieve stoffen en bestaan 

uit vetten met een hoog smeltpunt geordende kristallijne structuren en dikke lagen in het 

grensvlak. CVDs die voor een deel vet bevatten met een laag smeltpunt vormden een 

minder geordende kristallijne structuur en dunnere lagen.  

Omdat het makkelijker was om emulsies te maken met eiwitbedekte CVDs, zijn deze 

deeltjes gebruikt om de vorming van emulsiedruppels te bestuderen in een microfluidisch 

kanaal, en hun korte termijn coalescentiestabiliteit te onderzoeken (Hoofdstuk 4). We 

vonden een niet-monotone verband tussen druppelstabiliteit en oppervlaktebedekking: bij 

lage bedekking hadden CVDs een destabiliserend effect door brugvorming wat leidde tot 

coalescentie, terwijl bij hoge bezetting de deeltjes een effectieve barrière vormden die 

coalescentie kon voorkomen, resulterend in een fysisch stabiele emulsie gedurende de tijd 

van het experiment.  

Als volgende stap onderzochten we vetoxidatie in emulsies gestabiliseerd met eiwitbedekte 

CVDs die geen antioxidanten bevatten (Hoofdstuk 5). We hebben aangetoond dat deze 

Pickering-emulsies een vergelijkbare oxidatieve stabiliteit vertoonden als 

eiwitgestabiliseerde emulsies bij gelijke samenstelling van de oliedruppels. Echter, wanneer 

in beide emulsies dezelfde hoeveelheid vast vet aanwezig was (hetzij als stabiliserende CVDs 

of in de kern van de oliedruppel) dan had de Pickering-emulsie een hogere fysische en 

chemische stabiliteit. Dit toont aan dat de positie van kristalliseerbaar vet een groot effect 

heeft op de chemische emulsiestabiliteit. Dit effect moet zorgvuldig worden overwogen in 

het ontwerp van nieuwe emulsies.  

CVDs die de lipofiele antioxidant α-tocoferol bevatten worden gepresenteerd in Hoofdstuk 

6. De chemische stabiliteit van α-tocoferol werd negatief beïnvloed door vetkristallisatie, 

wat leidde tot ophoping van α-tocoferol dicht bij het oppervlak van het deeltje en wat 

verder werd bevorderd door emulgatoren die vetkristallisatie kunnen induceren. Wanneer 

deze -tocoferol bevattende CVDs werden toegepast als Pickering-stabilisatoren in olie-in-

water emulsies (Hoofdstuk 7), werd de vetoxidatie verlaagd ten opzichte van emulsies met 

dezelfde samenstelling en structuur, maar waarin α-tocoferol in de kern van de oliedruppels 

aanwezig was. Dit bevestigt dat de positionering van α-tocoferol in het grensvlak cruciaal is 

om vetoxidatie in emulsies te voorkomen, en dat de twee voornaamste instabiliteiten in 
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emulsies (fysisch en chemisch) onder controle kunnen worden gehouden middels één 

aanpak.  

Na het leveren van dit bewijs met CVDs, gebruikten we biobased deeltjes (die antioxidanten 

kunnen bevatten) uit verschillend natuurlijke bronnen om olie-in-water emulsies te 

stabiliseren (Hoofdstuk 8). Emulsies die gestabiliseerd werden door matcha-thee of 

spinaziebladdeeltjes waren zowel fysisch als oxidatief zeer stabiel. Dit toon aan dat de 

dubbele functionaliteit die we hadden bereikt met de door ons ontworpen CVDs ook kan 

worden bereikt met deeltjes die voorkomen in de natuur.  

In de discussie van dit proefschrift (Hoofdstuk 9) bespreken we dat de dubbele 

functionaliteit van CVDs ook kan worden bereikt wanneer andere ingrediënten worden 

gebruikt, wat onze aanpak tot een generieke maakt. We verwachten dan ook dat dit 

systeem verder kan worden verbeterd door, bijvoorbeeld, het verhogen van de verblijftijd 

van de antioxidanten aan het grensvlak. Om dit mogelijk te maken moeten we waarschijnlijk 

de tijdschalen waarop relevante oxidatiereacties plaatsvinden koppelen aan de verblijftijd 

van de antioxidant in het grensvlak. Vervolgonderzoek aan encapsulatie van antioxidanten 

in deeltjes is nodig om langere verblijftijden aan het grensvlak te bereiken zonder een 

compromis te moeten sluiten betreffende de chemische activiteit van de antioxidant. Om 

af te sluiten: middels onze aanpak kunnen de zeer stabiele levensmiddelenemulsies van de 

toekomst binnen bereik komen. 
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