
 

  



PROPOSITIONS 

 

1. Co-production of electricity and food is possible by a tubular Plant-MFC in a paddy field. (This 

thesis) 

 

2. The battery function of the Plant-MFC should be exploited since the electricity price cannot 

keep-up with developments on other renewable electricity sources.                   (This Thesis) 

 

3. Demanding a sustainable lifestyle without providing assistance to people who do not know 

whether they can eat or not on the next day is killing them. 

 

4. Comparing economic feasibility of things is futile as long as we keep creating new grand 

challenges over and over again.  

 

5. Honesty rather than economic growth is the prime capital for human development. 

 

6. Pursuing a PhD journey is like finding a route to hike a mountaintop.  

 

7. Useless things do not exists as value comes with time, place and consciousness.  
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1.1 Electricity in rural area is not equally distributed 

Electricity is one of most efficient energy carriers[1,2] and has become an important driver for modern 

human lifestyle [3]. Electricity can be used directly with very high efficiency[2]. According to 

International Energy Agency (IEA), modern economies depend on reliable and affordable delivery 

of electricity[4]. Access to modern energy such as electricity is an important aspect of human 

development; there is a positive correlation between electricity consumption per capita (in kWh) and 

human development index (HDI) and also gross domestic product(GDP) from 120 countries [5].  

Electricity can be generated both from fossil fuels (coal, oil, and gas) and renewable energy sources 

[6]. Renewable energy includes all energy sources that are continually replenished by nature and 

derived directly from the sun (e.g. thermal, photo-chemical, and photo-electric), indirectly from the 

sun (e.g. wind, hydropower, and photosynthetic energy stored in biomass), or from other natural 

phenomena (e.g. geothermal nuclear heat from earth core and tidal energy (moon)) [7]. Current world 

electricity generation is still dominated by fossil fuel sources (~70% of total generation)[6]. These 

conventional energy sources (based on oil, coal, and natural gas) have successfully driven modern 

economic progress [7]. However, the excessive fossil fuel consumption causes negative impact on 

the environment, increased health risk and global climate change [6–8]. A life cycle assessment on 

emissions has shown that CO2 emission per generated power (kWh) is higher in the conventional 

systems of electricity generation (i.e. 975.3 g-CO2/kWh for coal, 742.1 g-CO2/kWh for Oil, and 607.6 

g-CO2/kWh for gas) compared to the one of renewable systems (i.e. 9.7-123.7 g-CO2/kWh for Wind, 

53.4-250 for solar PV, 35-178 g-CO2/kWh for biomass, 13.6-202 for solar thermal, and 3.7-237 g-

CO2/kWh for hydro) [9]. Therefore, it is important to shift from conventional energy sources to low-

carbon renewable electricity sources [10].   

Global policies have shown a promising political will toward energy by the adoption of United 

Nations (UN) Sustainable Development Goals (SDGs) as part of 2030 Agenda to ensure access to 

affordable, sustainable and modern energy for all humans [11]. As an UN’ member, Indonesia also 

takes action in such policy to reduce its dependency on fossil fuel energy sources. In its national 

energy plan, Indonesia aims to increase new and renewable energy in its energy mix from 5% in 2015 

to >23% in 2025 and >31% in 2050 [12].  In the third quartile 2018, 12.32% electricity in Indonesia 

was generated from renewable energy sources [13].  

It is almost impossible to imagine that nowadays people are living without electricity, especially in a 

city. For instance the effect to a city of a one day electricity cut off shows a high dependence on 

electricity; computer and lifts stop function; hospital sink to a care and maintenance level; and the 
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lights go out [3].  The world electrification is not equally distributed[11]. While people in developed 

countries are enjoying electricity for their modern life style, hundreds of millions of people in rural 

areas in developing countries do not have access to electricity. According to International Energy 

Agency, an estimated 1.1 billion people (14% of the global population) do not have access to 

electricity [11]. About 84% of those without electricity access live in rural areas and more than 95% 

of those living without electricity are in developing countries in sub-Saharan Africa and Asia (Figure 

1. 1 ).  

 

 

Figure 1. 1 : Population without access to electricity, 2016.  Logarithmic legend shows number of 

population (in millions); white colour means either all population have access to electricity or data were not 

reported (non-IEA member countries) 

 

1.1.1 Electrification in Indonesia 

As an archipelagic country of 17,508 islands (6,000 inhabited), electrification is a big challenge for 

Indonesia. In addition, according to a 2017 count, Indonesia population is 260,580,739 people, 

making it the world’s fourth most populous nation after China, India and United States [14]. By 2018, 

medium voltage power distribution network (15-30 kV) and low voltage power distribution network 

(<6 kV) in Indonesia is 389,054.94 km and 953,560.46 km, respectively [15]. However, half of this 

distribution grid is located in Java Island.  Despite national electrification ratio significantly increased 

(Table 1. 1) from 80.51% in 2013 to 98.3% in 2018, its distribution (in provincial levels) is unequally 
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distributed ranging from 61.9 to 99.9%. From 66,921,705 electrified households in 2018, 2.43% of 

them have off-grid supplied electricity[15].  

Table 1. 1:  Indonesia electrification ratio from 2013 until 2018 

 

Source: Indonesia Electricity Statistics 2018 [15] 

 

1.1.2 Typical electricity usage in rural areas of Indonesia 

It is  well-known that the lack of opportunity to access modern energy such as electricity is one of 

poverty aspects that needs to be tackled [5]. Access to electricity enable people to have economic 

opportunities for income generation, to save their time from time-consuming drudgery activities , and 

to have more enjoyable or educational activities [5].  In an area without electricity, people’s activities 

are limited by the availability of day light, for instance  a school cannot be started at early morning 

or late at night [16]. A study has shown that the first gained electricity for people in rural area is for 

lighting, communication (e.g. mobile phone) and a variety of educational delivery opportunities [17]. 

One of most obvious examples for electricity use is lighting. The need for light has been started long 

time ago in human history. The first record which shows humans were able to burn oil in lamps 

emerged more than 4500 years ago in Ur, an ancient city in southern Mesopotamia (modern day Iraq) 

[18]. Until today, many villagers in rural areas that do not have access to the electricity still burn 

oil/candles to get light [19]. It is also the case for people in Indonesia [20], even though the Indonesian 

government has stopped subsidy on kerosene since 2007 [21]. Based on my personal working 

experience since 2013 (as a civil servant at Mining and Energy Agency, Landak Regency, West 

Kalimantan Province, Indonesia), many people who live in rural area without access to the national 

electricity grid use the kerosene lamp for their light source. Some families who have a better financial 

condition use gasoline/diesel generator set to generate their own electricity. Such generator needs 

about 0.5-1.2 litre gasoline per hour for 0.85-2.2 KVA maximum power output [22,23]. 
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Kerosene lamp only provides a poor quality of light between 1 and 6 lumens per square meter (lux), 

compared to typical western standard of 300 lux for tasks such reading [24,25]. One simple 

homemade kerosene lamp with a wick diameter of 4mm burns 5-8ml kerosene per hour and a non-

pressurized kerosene lamp type (wick thickness/width of 2/22mm) burns 35-42 ml kerosene per hour 

[25]. About 7-9% of kerosene burned by this kind of wick lamps is converted into carbonaceous 

particulate matter that is nearly pure black carbon(BC)[19]. The largest amount of that particulates is 

PM2.5 which is well-known to have a negative impact on human health[26]. In addition, the use of 

kerosene lamps also has a risk of fire. Considering these negative effects, a replacement of kerosene 

lamps is desired, for instance with a small solar lighting kit [27,28]. 

1.1.3 Specific case on off-grid power in a remote area 

An example case for electricity usage is given by a family who lives next to their paddy field in West 

Kalimantan, Indonesia (Sudirjo, 2019; unpublished). For their light source, this family utilizes a small 

solar lighting kit (Table 1. 2), which costs around Rp 500.000 (about 31 euro). In addition to this 

small solar lighting kit, a 50 Wp solar panel system, which consists of 12V50Ah NP-50-12 MF 

Battery; Intelligent PWM-20 Solar Charge Controller (Figure 1. 2) is used to supply electricity for 

portable LCD television and mobile phone charger (Table 1. 2).  

Table 1. 2: Several home appliances in rural area and their energy demand 

Home Appliances Power Specifications  Reference 

Lighting 

5mm white LED 

Cree Xlamp XM-L2 High Power LEDs 

Small solar Lighting Kit 

 

3.6 V; 20mA 

2.85V; 700mA 

4 Wp solar panel, 7.5V;  

3000mAh Li-ion battery;  

3 LED Light @5V, 200mA 

 

[29] 

[30] 

[31] 

Mobile phone: 

Nokia 110 

 

Battery capacity:3.7V; 800 

mAh 

 

[32] 

 

Smart Phone: 

Asus Zenfone Selfie ZD551KL 

 

3000 mAh Li-Polimer  

3.7 V 

 

[33] 

 

Television: 

Portable LCD TV 9.5”TFT 

15.6 ELED TV 16 E1 

 

12V; 2A 

Max 36W at 12V DC 

 

[34] 

[35] 

 

Digital satellite decoder: 

Lombok Digital Satellite Receiver DV3 MMP-789 

 

12V, 1A 

 

[36,37] 
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A). A farmer, Mr. Sipon, watched news on his portable LCD TV 

 

 

B). On the roof there are several solar-PVs (circled in red): in small circle is a 4W solar DC lighting 

kit; in big circle is a-50 Wp solar panel for TV and Mobile phone charger and a-80Wp solar panel 

for LoRa system used in this research (see chapter 4). In front of the house: on the ground, there is 

newly harvested rice (still with its husk) is sun-dried before it goes to the rice mill; on the right 

corner, there is a satellite parabolic for television 

 

 

 

Figure 1. 2: (A) A farmer and (B) his small house next to paddy field used for research in Chapter 4  

 

50 Wp  

80 Wp  
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1.2 (Plant) microbial fuel cell 

1.2.1 Theory-performance-design-ideas on application 

The first publication on phenomenon that the decompositions of organic compounds by micro-

organism is accompanied by electrical energy generation was reported more than century ago [38]. 

Later on, this phenomenon was known as microbial fuel cell (MFC) [39]. Plant microbial fuel cell 

(Plant-MFC) is a further development from an MFC in which plants are integrated in the anode to 

provide continuous supply of organic compounds [40]. In this concept, carbon dioxide is fixed (via 

photosynthesis) and released as rhizodeposits (e.g root exudates) by the plants and are utilized by the 

microorganism that return the carbon dioxide into the atmosphere[40]. Plant-MFC is considered as a 

clean and renewable source of electricity ([40]. In principle, the Plant-MFC and the MFC operate on 

the same mechanism. A Plant-MFC consists of three major parts: anode, cathode and membrane or 

separator (Figure 1. 3).   

 

Figure 1. 3: An illustration of Plant-MFC in a rice paddy field, modified from Sudirjo et.al 2018 [41]  



General Introduction   Chapter 1 

 

16 

 

In the anode, electrochemically active bacteria (EAB) oxidize biodegradable substrates (ranging from 

pure compounds such as acetate and glucose to complex mixture of organic matters such as domestic 

waste, animal manure and wastewater) for their metabolism [42,43]. In Plant-MFC, a conductive 

anode material is installed as an electron acceptor for the released electrons [43]. These electrons then 

flow through an external load (such as an electronic device) to the cathode at which the final electron 

acceptor is reduced [43]. Simultaneously, to keep electro neutrality of the system ions move via the 

liquid medium (electrolyte) between the anode and the cathode [42], and electricity is generated from 

a Plant-MFC system.  

Plant-MFC can be operated with or without a membrane. In the first development, especially in lab 

scale, Plant-MFC used membrane to separate between the anode and the cathode chamber [40,44,45]. 

However, a membrane is less preferred in a field application because of its cost [46]. As an alternative, 

membranes can be replaced with a non-conductive spacer as used in Chapter 3 [47] or not used at all 

by placing the anode and the cathode at a proper distance [48–50].  

 

1.2.2 Energy potential from Plant-MFC 

In the Plant-MFC system, the electricity production depends on the anode and the cathode potential 

differences as explained in the Equation (1.1) [51–53].  

𝐸𝑂𝐶𝑃 = 𝐸𝑂𝐶𝑃,𝑐𝑎𝑡 − 𝐸𝑂𝐶𝑃,𝑎𝑛 (1.1) 

EOCP is the open cell potential in V, also known as theoretical potential. The EOCP,cat is the cathode 

potential at open cell potential in V and the EOCP,an is the anode potential at open cell potential in V.  

In a Plant-MFC anode, oxidation may occur from different sources. Plant rhizodeposits include 

exudates (sugars, organic acids), secretions(polymeric carbohydrates and enzymes), lysates(dead 

plant cell materials) that are potentially available are oxidised by the EAB and other root-associated 

microbes to yield electrons [54]. In addition, also other soil redox processes also occur, like sulphide 

can be anaerobically oxidized to elemental sulphur (S0) and SO4
2- by phototrophic sulphur bacteria 

(Chlorobium spp.)[55]. In comparison, many type reductions also occurs in the cathode. In addition 

to the most common electron acceptor (oxygen), other electron acceptors are also present in the soil 

such as NO3
- is reduced to N2, Mn4+ to Mn2+, Fe3+ to Fe2+, SO4

2- to H2S, S2+ or HS- (depending upon 

pH)[56]. Some researchers used ferric cyanide (K3(FeCN)6) to increase their cathode potential [57–

59]. However, for a sustainable Plant-MFC operation, an open-air cathode is preferred [43,47,60]. 
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Due to complex processes that may occur in both the anode and the cathode, it is very difficult, or 

almost impossible, to determine the real theoretical cell potential (the anode or the cathode potential) 

from a Plant-MFC system. The most common approach to estimate the theoretical cell potential is 

using thermodynamics of the anode (e.g acetate) and the cathode (e.g oxygen) reaction[51]. In this 

approach, the anode and the cathode potential are calculated based on Gibbs free energy for a specific 

condition as extensively described by Logan [52]. The anodic oxidation reaction for acetate and the 

cathodic reduction reaction from oxygen to water are given as an example in Table 1. 3 [51]. 

 

Table 1. 3 : Standard and actual potential of acetate oxidation and oxygen reduction 

Reactions 
E0 

(V vs Ag/AgCl 

E 

(Vvs Ag/AgCl) 

Acetate oxidation          

C2H3O2¯ + 4 H2O →  2 HCO3¯ + 9 H+ + 8 e¯     

 

Oxygen to water   

O2 + 4 H+ + 4 e¯  → 2 H2O 

 

-0.018 

 

 

1.024 

 

-0.494 

 

 

0.600 

 

E0 is standard potential under standard condition and the E is the actual potential (Acetate 

concentration 0.05M, [H2O] = 1M; pH = 7; pO = 0.2 bar; T = 298K). Applying the same calculation 

concept as Equation 1.1, the theoretically cell potential for a Plant-MFC using acetate model substrate 

and oxygen as the final electron acceptor is 1.094 V.  

In reality, internal resistance (Rint) causes the cell potential (Equation 1.2) from a Plant-MFC to be 

far below its theoretical value [51,53]. For instance during two week power generation Plant-MFC in 

a peat soil, the cell potential is ranging from 313 mV to 520 mV [60].  

𝐸𝑐𝑒𝑙𝑙 = 𝐸𝑂𝐶𝑃 − 𝑖. 𝑅𝑖𝑛𝑡, (1.2) 

Ecell is the measured cell potential in V, i is the current density in A/m2 Plant Growth Area (PGA), 

and Rint is the internal resistance in Ω.m2. There are several factors that cause internal resistance such 

as cathode over potential, anode over potential and potential losses due to ionic and transport losses, 

known as membrane potential [53]. Hence, the Equation (1.2) can be rewritten as Equation (1.3). 

𝐸𝑐𝑒𝑙𝑙 = 𝐸𝑂𝐶𝑃 − ŋ𝑐𝑎𝑡ℎ − ŋ𝑎𝑛 − 𝐸𝑀, (1.3) 
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Ŋcath is the cathode over potential in V, Ŋan is the anode over potential in V and the EM is the membrane 

potential in V.  Furthermore, the internal resistance can be differentiated into cathode resistance 

(Rcath), anode resistance (Ran) and membrane resistance (RM) as described by Equation (1.4, 1.5, and 

1.6). 

𝑅𝑐𝑎𝑡ℎ =
ŋ𝑐𝑎𝑡ℎ

𝑖
=

𝐸𝑂𝐶𝑃,𝑐𝑎𝑡ℎ− 𝐸𝑐𝑎𝑡ℎ

𝑖
, (1.4) 

𝑅𝑎𝑛 =
ŋ𝑎𝑛

𝑖
=

𝐸𝑎𝑛 −  𝐸𝑂𝐶𝑃,𝑎𝑛

𝑖
, (1.5) 

𝑅𝑀 =
E𝑀

𝑖
 (1.6) 

Ecath is the measured cathode potential (V) and Ean is the measured anode potential (V). Figure 1. 4 

shows an illustration how the anode over potential, the cathode over potential and the membrane 

potential influence Plant-MFC cell potential. 

 

Figure 1. 4: An illustration of theoretical and actual cell potential of a Plant-MFC, modified from [61].  Ecell 

is measured cell potential in V, Ŋcath is the cathode over potential in V, Ŋan is the anode over potential in V 

and the EM is the membrane potential in V 
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1.2.3 Improvement on Plant-MFC performances 

Apart from substrate availability, several strategies have been done to improve Plant-MFC 

performance. For example, modifying plant growth medium[58], characterizing internal resistance 

[53], studying plant and microbe cooperation[48], developing and investigating electrode materials 

[53,62–64], and designing a new type reactor  [44,60,64]. There are two common designs of Plant-

MFC for a field application. The first one is a conventional design placing the anode in a lower 

anaerobic part (below the surface of the soil) and the cathode above the soil surface to obtain oxygen 

[48]. For a large scale application, this design is probably less practical because one needs to excavate 

the top layer of soil before anode installation. To avoid this excavation, Timmers proposed a second 

design, a tubular design of plant-MFC which could be installed with a horizontal drilling technique 

[64]. 

Plant-MFC is characterized as a low power system as they are currently relative small sized while 

power output are in order of 6 to 240 mW/m2 plant growth area [48,65]. Therefore, we foresee that 

implementation of Plant-MFC should be based on this characteristic. Other prospective applications 

of Plant-MFC are described in an overview paper like: application can be combined with wastewater 

treatment, remediation of polluted sediments and surface water, greenhouse gas mitigation and bio 

sensing [54]. There are also devices available in the market that are powered by Plant-MFC 

technology such as Sprout ‘n Spark, Plant-e clock, and Living Light [66]. However, a large scale 

application of Plant-MFC is still not available yet. 

In principle, Plant-MFC needs anaerobic (more reduce) conditions  for their anode to generate 

electricity, and therefore wetlands are considered a suitable place to integrate this technology in a real 

life application [60]. It is not only because the enormous size of wetlands (around 10 million km2 

worldwide) but also the presence of alternative electron donor (e.g. sulphide, fossilized organic 

matters, biodegradable dissolved organic matters and dead biomass) is beneficial for Plant-MFC [60]. 

One of the largest types of wetland is paddy field  [67]. With its current size in the world, paddy fields 

have a great potential to be integrated with plant-MFC technology.  
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1.3 Rice paddy production 

For many people, rice is their staple food.  In 2017, the average harvested area of rice paddy and rice 

paddy production in the world are about 167 million ha and 770 million tonnes, respectively [67]. As 

human population is growing, the need for rice paddy field and production to support basic human 

need for food is also growing (Figure 1. 5). Currently, more than 90% of world rice paddy had been 

produced in Asia, including Indonesia (Figure 1. 6). 

 

Figure 1. 5:  Average production/yield quantities of rice paddy from 1994 until 2017 in World (above) and 

Indonesia (below) 
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Figure 1. 6: Average production share of rice paddy by region from 1994 until 2017 

 

Rice paddy is usually grown in a field that is flooded with water. The common practice for rice 

cultivation includes several activities such as: (a): preparation of land by ploughing; (b) seedling and 

transplanting of the rice paddy; (c) water management; (d) fertilization; (e) weeding, and (f) pest 

control. More detailed explanations about rice cultivation techniques are explained in Chapter 4.  

 

 

1.4 Thesis objective 

The objective of this thesis is to pre-assess the applicability of the Plant-MFC as a low power off-grid 

power source in a rural area for a theoretical Indonesian case. For this first, a technical design was 

made for a household in rural area of Indonesia based on the latest research developments. Next the 

applicability was assessed on technical, social, and environmental criteria as well as economics and 

some scenarios were suggested which could improve the real application. Values for a plant-MFC 

system to fulfil basic electricity needs were calculated. 
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1.5. Thesis outline 

In this thesis, lab and field experimental results are presented. Chapter 2 and 3 of this thesis present 

the results from lab experiments. Chapter 5 combines results from lab and field experiment. And 

chapter 4 presents result from field experiment. 

Chapter 2 of this thesis assesses the usage of sediment mixed with activated carbon (AC) for their 

applicability to generate and store electricity in a bio-electrochemical system (BES) or Microbial Fuel 

Cell (MFC) system. Here, charge and discharge properties of this mixture were studied. 

In chapter 3, the previous studied electrodes in chapter 2 were tested in flat-plate Plant-MFCs with 

Spartina anglica for their performances in generating electricity and sustaining plant growth.  

In chapter 4, a potential of rice paddy field to generate electricity was assessed by installing 3 tubular 

plant-MFCs and operating them for 4 crop seasons (from 28 October 2017 until 8 August 2019). This 

experiment was carried out in a rice paddy field in West Kalimantan, Indonesia. 

In chapter 5, an alternative electrode was developed by a simple dipping method of AC powder onto 

polyurethane (PU) cubes. The PU/AC composites were tested both in lab and in paddy field. 

Finally, in chapter 6, the applicability of Plant-MFC for off-grid power source in rural area is 

discussed. For this, technical, economic, social, and, environmental/safety/health criteria are briefly 

assessed. Finally, an outlook for plant-MFC development was given. 
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Chapter 2 
 

Marine sediment mixed with activated 

carbon allows electricity production and 

storage from internal and external energy 

sources: a new rechargeable bio-battery 

with bi-directional electron transfer 

properties  
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Abstract 

Marine sediment has a great potential to generate electricity with a bio electrochemical system (BES) 

like the microbial fuel cell (MFC). In this study, we investigated the potential of marine sediment and 

activated carbon to generate and store electricity. Both internal and external energy supply was 

validated for storage behaviour. Four types of anode electrode compositions were investigated. Two 

types were mixtures of different volumes of activated carbon (AC) and Dutch Eastern Scheldt marine 

sediment (67% AC, 33% AC) and the others two were 100% AC or 100% marine sediment based. 

Each composition was duplicated. Operating these BES’s under MFC mode with solely marine 

sediment as the anode electron donor resulted in the creation of a bio-battery. The recharge time of 

such bio-battery does depend on the fuel content and its usage. The results show that by usage of 

marine sediment and activated carbon (AC) electricity was generated and stored.  The 100% AC and 

the 67% AC mixed with marine sediment electrode were over long term potentiostatic controlled at -

100mV vs Ag/AgCl which resulted in a cathodic current and an applied voltage. After switching back 

to the MFC operation mode at1000 ohm external load, the electrode turned into an anode and 

electricity was generated. This supports the hypothesis that external supply electrical energy was 

recovered via bi-directional electron transfer. With open cell voltage experiments these AC marine 

bioanodes showed internal supplied electric charge storage up to 100 mC at short self-charging times 

(10 and 60 seconds) and up to 2.4 C (3,666 C/m3 anode) at long charging time (1 hour). Using a 

hypothetical cell voltage of 0.2V, this value represents an internal electrical storage density of 0.3 

mWh/kg AC marine anode. Furthermore, it was remarkable that the BES with 100% marine sediment 

based electrode also acted like a capacitor similar to the charge storage behaviors of the AC based 

bioanodes with a maximum volumetric storage of 1,373 C/m3 anode. These insights give 

opportunities to apply such BES systems as e.g. ex-situ bio-battery to store and use electricity for off-

grid purpose in remote areas. 

 

 

Keywords: Activated Carbon, Capacitance, Bio-Battery, Bio Anode, Marine Sediment, Charging, 

Discharging, Energy Storage 
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2.1 Introduction 

Sediment microbial fuel cells (SMFC) are among the most studied bio electrochemical systems 

(BESs) which attracts attention from many researchers because of its ability to generate power and 

provide bioremediation [68]. In a SMFC the anode is for example placed into the anaerobic sediment 

and the cathode is placed on the upper position of the aerobic water layer [42,69,70]. In this paper, 

we will demonstrate the use of the SMFC for energy storage purposes.  

Sediment contains not only organic matters [71] but also abundant electrochemically active bacteria 

(EAB) communities to generate electricity in the SMFC [42]. With these properties, the SMFC  can 

be implemented as in-situ renewable electricity source [72]. The SMFC was tested for applications 

as an in-situ renewable power source for long term monitoring instruments like the oceanographic 

instrument, meteorological buoy, acoustic modem, telecommunication system, remote sensor, 

submersible ultrasonic receiver, turbidity meter, acoustic receiver or wireless temperature probe 

[70,73].  

In theory, the microbial fuel cell (MFC) can continuously generate electricity as long as there is 

enough substrate to be utilised by EAB [52]. Apparently for the in-situ  SMFC system, the substrate 

availability will not be a direct limiting factor to generate electricity at long terms because enormous 

amount of organic matter is present and supplied to the sediment [74–76].  

The sediment organic matter is a primary energy source of the SMFC to produce power [70]. Marine 

or sea sediment is well known to be rich with organic carbon as a result of photosynthetic fixation of 

inorganic carbon by terrestrial and marine phytoplankton [76]. In coastal areas, these marine 

sediments can be inhabited by higher plants like Spartina anglica. The organic carbon in sediments 

can be measured as total organic carbon (TOC). In a low salt marsh estuarine intertidal sediment, 

which is dominated by Spartina anglica vegetation, the TOC at depth 0-0.2 m is about 2% [77]. This 

TOC gives a kind of maximum available fuel content of a SMFC. 

There are two common methods to utilize MFC power for relatively high voltage applications, either 

using a DC-DC converter or using a capacitor [78]. A DC-DC converter allows us to continuously 

power low power consuming devices [79]. For example an SMFC was successfully powering a 

wireless telecommunication system by integrating a SMFC system and DC-DC converter [80]. A 

capacitor makes it also possible to intermittently powering high power consuming devices since 

electric charge is stored over time and released once needed [79].   
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In addition to substrate availability, also the electrode materials play an important factor for an MFC. 

The anode electrode is a structure which serves as an electron acceptor for the EAB. It is important 

to find an inexpensive and suitable material combining conductivity and high surface area with three 

dimensional structure[52,81,82]. Moreover, for integrating MFC technology with biomass production 

by planting plants, the anode material should be able to support plant’s roots and be able to restore 

the electrical connectivity in the anode after disturbance [83].  

Among possible anode materials, activated carbon (AC) granules seems to be a promising. Despite 

that (some) AC is apparent less conductive compare to graphite granule [84] , its large surface area 

and porous structure [85] is suited for EAB growth. Several researches have shown that bacteria are 

able to grow on the AC and are forming biofilms [86–88]. This bio film has also shown a capability 

to store charge in the form of electrons in multi-heme c-type cytochromes[89,90]. In addition to its 

prospective to be a bioanode, AC has also a capacitive electron storage capability. Recent research 

on a single AC granule has shown that the AC can store electric charge [88]. This capacitive property 

is opening possibilities to store in-situ generated electricity within the MFC [91]. In addition, the 

system can be considered as a bio-battery. 

A bio-battery is an energy storing system based on the redox reaction of organic compounds with the 

help of enzymes or bacteria. A bio-battery also has an anode, cathode, separator and electrolyte. In 

the anode, electrons and hydrogen ions are generated from oxidation reaction of sugar type organic 

compound, i.e. glucose. The hydrogen ions migrate to the cathode through a separator, and, together 

with electrons that pass through the outer circuit, they reduce oxygen into water [92]. 

Considering the AC’s properties mentioned above and the benefit of sediment it seems possible to 

integrate both of them in a MFC based bio-battery. Therefore, the objective of this study was to 

investigate the abilities of marine sediment and activated carbon to store and generate electricity in a 

bio-battery. This work allowed the development of a new kind of bio-battery with bi-directional 

electron transfer properties. Both external and internal supplied energy i.e. generated electricity could 

be stored at different time domains. To understand the behaviour of the bio-battery, several 

experiments were conducted to clarify: (i) the role of the sediment in providing fuel; (ii) the role of 

activated carbon in supporting bi-directional electron transport behaviour; and (iii) the role of 

sediment and activated carbon on in-situ charge storage behaviour. 
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2.2  Materials and Methods 

2.2.1 Experimental setup 

Eight identical flat plate bio electrochemical system (BES) reactors made of acrylic glass were 

utilized for this experiment similar to Wetser, et al.2015 [65]. The vertically placed reactors had two 

compartments that either functioned as an anode or a cathode. Both compartments were separated 

with a cation exchange membrane (CEM) fumasep FKD-PK-75 PEEK-reinforces, 75µm. The anode 

compartment had a total volume of 722 ml (19cmx19cmx2cm) but only 650ml were filled with anode 

material. The anode compartment had an open space on the top (19cm x 2 cm). Two graphite rods 

(18cmx1cmx0.2cm) were used as current collectors. The current collectors were connected with 

titanium wire (1mm diameter) and glued in both sides of the anode chamber (Figure 2. 1 ). Stages of 

the BESs reactor preparation were presented in Supplementary Figure S2. 4. 

In the cathode i.e. counter electrode compartment (22cmx22cmx1cm; with a winding channel for 

catholyte flow), graphite felt 22cmx22cm (3mm thickness, Grade WDF, National specialty product 

carbon and Graphite Felt, Taiwan) was used as an electrode. This electrode was woven with a titanium 

wire as a current collector. Nitrate-less, sulphate-less, ammonium bicarbonate-rich plant growth 

medium was utilized as catholyte [58]. The catholyte was aerated with ambient air using an aquarium 

pump and recirculated into the cathode chamber in a close cycle via a 1 liter bottle with a pump 

(Watson-Marlow 505S, Rotterdam, The Netherlands at 30 rpm). Total catholyte volume in the close 

cycle was maintained at 1 L. Both anode and cathode potential were measured and reported against 

3M KCl Ag/AgCl reference electrode. 
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Figure 2. 1: BES reactor schemes and pictures from different positions 

 

 

                

 

Top view of the reactor 

 

Cathode side view with flow direction 
 

Anode side view 
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This study utilized four different anode compositions which served as the electrode. The four anode 

compositions were two of mixing different volumes of AC (PK 1-3 Cabot Norit Nederlands BV, with 

apparent density of 290 g/L) and mixed with marine sediment (67% AC and 33% AC), 100% AC and 

100% marine sediment (Table 2.1). The anode was further mixed with Nitrate-less, sulphate-less,  

ammonium-bicarbonate-rich plant growth medium [58] that was utilized as the anolyte (the exact 

composition is also given in the Supplementary Table S2. 1). Each composition was duplicated. The 

marine sediment (with density of 1.58 g/mL) was collected from tidal area of the Eastern Scheldt of 

the North Sea at Krabbendijke, Zeeland Province, The Netherlands (51.446710N, 4.093149E). 

Table 2.1 : Anode compositions 

BES 

Volume Percentage Composition (mL) Composition (gr)  

AC 
Marine 

sediment 
AC 

Marine 

sediment 
AC 

Marine 

Sediment 

1 & 2 100% 0% 650 0 188.5 0 

3 & 4 0% 100% 0 650 0 1027 

5 & 6 67% 33% 435.5 214.5 126.3 338.9 

7 & 8 33% 67% 214.5 435.5 62.2 688.1 

 

2.2.2 Operational of the reactors 

All BES reactors were operated for 156 days. Within these 156 days two different experiments were 

conducted, which were the power generation experiment (day 1 - day72 and day 96 - day118) and the 

electricity storage experiment (day 72 – day 96 and day 118 – day 156). During the power generation 

experiment (MFC mode) two types of controls were alternately applied. First, an external load control 

in which the anode and the cathode were connected with 1000 ohm external load (day 1-day 5; day 

14 – day 44; day 56-day 72; day 96-day 118). Secondly, a potensiostat control (day 5-day 14; day 44 

– day 56) in which the anode potential was maintained at -100mV vs Ag/AgCl (Transients, Chrono 

Amperometry) with a potentiostat (Ivium Technologies, Eindhoven, The Netherlands). The anodes 

were controlled with a three electrode setup in which the anode was the working electrode, the 

cathode as the counter electrode and a reference electrode (Ag/AgCl type No: QM710X from QIS 

Oosterhout, The Netherlands) in the anode as the reference electrode. On day 105, 2 g/L of acetate in 

form of sodium acetate (NaAc) was added into each anode of the BESs and another 2 g/L NaAc was 

added to the anode of BES 1 and BES 2 on day 117 after sampling. The system was operated in the 

light and dark ratio of 14:10 hours within a climate chamber (Microclima 1750, Snijders Scientific, 

Tilburg, The Netherlands) at 200 C and humidity of 70% similar to Wetser, et al 2015 [65]. 
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During the electricity storage experiments, the reactors were only controlled with a potentiostat 

(Transients, mixed Mode). The experiment was executed by self-charging at open circuit and 

followed by discharging the BESs at 65mV anode potential. I.e. mode 1 (charging period) was set in 

open cell and mode 2 (discharge period) was set to a fixed potential (65mV). Each set of electricity 

storage experiments was performed for 40 times. Stored charge of the final 10 cycles was calculated 

as explained by [91], which is summarized as following Equation (2.1): 

𝑄𝑠 = 𝑄𝑚 − 𝑄𝑐𝑜𝑛𝑡,𝑑                                                                               (2.1) 

Where Qs is the stored charge (C); Qm is the measured charge (C) during discharge period which was 

logged with IviumSoft; and Qcont,d is the expected charge (C) at a steady-state current (A). The 

expected charge is a product of steady-state current (A) and time (t) during the discharge period. The 

steady-state current in this calculation was the average current of the last minute of each cycle. 

Charge recovery and energy recovery was calculated within the first power generation experiment 

period from day 44 until 72. The charge recovery was calculated based on the Coulombs supplied 

current during the potentiostatic control (day 44 until day 55) versus Coulombs extracted during the 

external load control (day 56 until day 72) as given by Equation (2.2; 2.3 and 2.4). 

𝐶ℎ𝑎𝑟𝑔𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =  
∑𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

∑𝑄𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
                                                                                                                  (2.2) 

𝑄𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = 𝐼𝑎𝑣𝑔.𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 × 𝑡𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔                                             (2.3) 

  

Where Qcharging is charge supplied during a potentiostatic control; Iavg.charging is average current during 

potentiostatic control; and tcharging is duration of the charging time. Qcharging was calculated on a daily 

basis for day 44 until day 55 and the result was summarized as ∑Qcharging.   

𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = 𝐼𝑎𝑣𝑔.𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 × 𝑡𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔                                     (2.4) 

Where Qdischarging is charge extracted during the external control; Iavg.dischrging is average current during 

the external load control; and tdischarging is duration of the discharging time. Qdischarging was also 

calculated on a daily basis for day 56 until day 72 and the result was summarized as ∑Qdischarging.   

The energy recovery (Equation 2.5) was a ratio between total output energy during the external load 

control (day 56 until day 72) and total input energy during the potentiostatic control (day 44 until day 

55).  

𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =  
𝐸𝑜𝑢𝑡

𝐸𝑖𝑛
                                              (2.5) 
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Both output energy and input energy were calculated on a daily basis according to following 

Equations (2.6 and 2.7): 

𝐸𝑖𝑛𝑝𝑢𝑡 =  𝐸𝑎𝑝𝑝𝑙𝑖𝑒𝑑 × 𝑄𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔                                                            (2.6) 

  

𝐸𝑜𝑢𝑡 =  𝐸𝑐𝑒𝑙𝑙 × 𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔                                                               (2.7) 

 

Where Einput is input energy (J); Eoutput is output energy (J); Eapplied is applied cell potential during 

charging (-100mV) and Ecell is average obtained cell voltage during discharging at 1000 ohm. 

 
 

2.2.3 Measurement and analysis 

From day 21 until day 156, anode potentials, cathode potentials, membrane potentials and cell 

potentials were logged with a field point (National Instruments FP-2000; FP-AI-112) similar to 

Helder et al.2012 and Wetser et al.2015  [58,65]. Prior to mentioned period, the anode potentials, the 

cathode potentials and the cell potential were manually measured with a multimeter. Apart from data 

logger, during potentiostat control generated current was logged with IviumSoft of Ivium 

Technologies connected to a lab PC. 

Every 1 or 2 weeks, liquid samples were taken from the anode and the cathode. Anolyte samples were 

taken using filtered syringe and catholyte samples were taken from cathode outlet before entering 

recirculating bottle. Samples were stored in -200C for further analysis. Conductivity and pH were 

measured right after sample collections. Conductivity was measured using HQ440d multi 

pH/LDO/conductivity meter HACH and pH was measured using a PHM210 standard pH meter, 

MeterLab Radiometer analytical. 

Acetate concentrations were determined by gas chromatography (Agilent 7890B, USA) as described 

earlier [93]. An HP-FFAP Column was used (25m x 0.32 mm x 0.50 μm). The detector (FID) and 

injection temperatures were 240 and 2500C, respectively. The oven temperature was 600C for 3 min, 

210C min-1 up to 1400C, 80C min-1 up to 1500C and constant for 1.5 min, 1200C min-1 up to 2000C 

and constant for 1.25 min, and finally 1200C min-1 up to 2400C and constant for 3.5 min. Helium was 

used as carrier gas at a flow of 1.25 mL min-1 for the first 3.5 min and 2 mL min-1 until the end of the 

run. 1 μL of sample was injected in the column. Acetate concentration result can be found in the 

Supplementary Figure S2.3. 
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2.3 Result and Discussion 

2.3.1 Dutch Eastern Scheldt marine sediment is a suitable fuel to generate electricity 

with a bio-battery 

The Eastern Scheldt marine was a suitable fuel to generate electricity with the BES. The designed 

system acted as a bio-battery. During the first 72 days operation of the two marine sediment BESs 

(BESs 3&4; i.e. without activated carbon), electricity was continuously generated during MFC 

operation mode (Figure 2. 2A). In this period, no additional substrate (acetate) was added. On average 

both BESs generated 0.1± 0.09 mA, which correlates with current density 26.3 mA/m2 land use area 

(154 mA/m3 anode volume) and a consequent power density of 2.63mW/m2 land (15.4 mW/m3 anode 

volume). This result is lower than generated power with a graphite rod anode and intertidal sediment, 

which was 19.6 mW/m2 projected land use [94]. A 50 mA/m2 projected land use (20 mW/m2) was 

reached with a 3D carbon cloth marine sediment anode while up to 100 mA/m2 projected land use 

(55 mW/m2) was reached with a carbon sponge marine sediment anode [95]. This result is also lower 

than a planted (Spartina anglica) marine sediment MFC which reached a 18 mW/m2 (83 mA/m2) 

plant growth area [96]. However, later on in the experiment the performance of these BESs were 

improved with a current density in range of 41 to 71 mA/m2 possibly due to a more mature bioanode 

development (see Supplementary Table S2. 2 for a complete performance set of all operated BESs). 
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Figure 2. 2: Average daily current generation on different control modes for (A) 100% sediments BES 3&4, 

(B) 100% AC BES 1&2, (C) mixing 67% AC BES 5&6, (D) mixing 33% AC BES 7&8 

In the studied 100% marine sediment BESs, just 2 small solid graphite sticks were used as both current 

collector and as anode electrode. These current collectors (0.00252 m2 each) were vertically placed 

at both sides of the anode compartment with 18 cm distance (Figure 2. 1). The open space between 

the current collectors was filled with marine sediment. The electricity was generated within the 

bioanode while electrons were collected via the current collector. It is known that marine sediment 

can have apparent conductive properties which can also support transfer of generated electrons and/or 

ions from the bacteria in the sediment to the current collector [97,98]. Possibly that this phenomena 

was also apparent within this studied BES; however this was not further validated.  

A. 100% marine sediment BESs 

 

B. 100% AC BESs 

 
 

C. Mixture of 67%AC and 33% marine sediment 

BESs 

 

 

D. Mixture of 33%AC and 67% marine sediment 

BESs 

 
 

Shaded area : potenstiostatic control mode 

Non-shaded area : 1 kohm external resistance control mode 
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The recharging time of the bio-battery does depend on the fuel content and its usage. Assuming, a 

typical 2% TOC value as glucose as maximum available “fuel” to run an MFC filled with marine 

sediment, one can estimate the time after which the sediment has to be renewed. According to the 

TOC content and the extracted current of 0.1 mA in these studied BESs (26.3 mA/m2 land use area 

or 154 mA/m3 anode volume), the MFC would run for 21 years assuming a low 10% Columbic 

efficiency. Of course also all used-material should hold this durability (Supplementary Table S2. 3). 

Long term experiments should be done to further clarify the durability of the bio-battery and clarify 

if all fuel is used over time. In case the current would be enhanced, the refill-time of the bio-battery 

would decrease significantly as show in (Figure 2. 3).  By direct instalment of the MFC within the 

marine sediment, the MFC can warrant a prolonged electricity generation. Evenly plants like Spartina 

anglica can be integrated which will provide additional fuel via rhizodeposition and other loss of 

organic parts (e.g. via littering). Under natural conditions such planted marine sediment MFC located 

within a climate chamber  has an estimated theoretical output between 0.14 and 0.34 W/m2 depending 

on the plant growth [96].  

 

Figure 2. 3: Estimation of bio-battery lifetime based on current generation 
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2.3.2 Activated carbon granules have capacitive behaviour that allows external 

electricity storage in microbial medium electrolytes 

Activated carbon based packed granular electrodes are suited as electrode material in both bioanodes 

as well as biocathodes [86,99,100]. Activated carbon is also used in super capacitors to store 

electricity [101]. However, to our best knowledge the role of these electrodes materials in saline 

microbial medium electrolytes is not investigated. The experimental result shows that the BESs with 

a 100% AC based anode (BES 1 & 2) is not able to generate electricity with just inoculum and no 

electron donor supply. This result can be clearly seen during long term operation with an external 

load (day 35 to 44) of BES 1 & 2(Figure 2. 2B). Even after adding 2 g/L acetate on day 105, these 

BESs did not producing any current (Figure 2. 4B); possibly due to decay of the earlier supplied 

inoculum or absorption of nutrients on the AC may have limited the current generation. As such, 

these BESs acted as control experiments to validate the role of AC as electric charge storage material. 

During potentiostatic control (day 5 to 14 and day 44 to 55) the envisioned anode was actually acting 

as a cathode and electrical energy was added to the system at a controlled electrode potential of -100 

mV (vs. Ag/AgCl). When the control mode was switched from potentiostatic control to external load 

(day 15 to 44 and day 56 to 72), BES 1 and 2 did generate a spontaneous anodic current starting at an 

electrode potential of 480 mV. In the later period, the current dropped harmonically towards zero 

until the electrode potential reached 14 mV. This phenomenon was evaluated as a kind of long-time 

charging (up to 11 days) and discharging (up to 29 days) behavior. The result shows that AC granules 

within anolyte medium are chargeable using externally supplied energy (i.e. electrical power) of 

which electricity was recovered later on. We assume that the inoculated electrochemically active 

bacteria did not play a crucial role during the charging and discharging while no electron donor was 

supplied. Still, microorganisms can do have capacitive properties which may affect the 

charge/discharge behavior [102]. The AC acted seemingly as a double layer chargeable capacitive 

electrode within a microbial growth medium electrolyte. This showed that bidirectional electron 

transfer was occurring within these systems. The nature of this electron transfer is in both directions 

(possible both bio- and electrochemically. The further mechanisms responsible for this need further 

clarification.  

For BES 1 and 2 respectively, the charge recovery was 2.6% and 2.5% while the energy recovery was 

0.29% and 0.26% resulting in an energy storage density of 22 kJ/m3 anode volume (0.02 Wh/kg used 

AC). This energy storage density is several order of magnitude lower than microbial rechargeable 

battery using acetate as the main energy carrier [103] or already optimized AC based super capacitors  

[101]. During discharge, an oxygen reducing cathode was used consisting of graphite felt. The same 
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electrode was used for a likely water oxidation reaction during the charging period. This graphite 

electrode was not specifically designed for both processes. The overall efficiencies are still low and 

need further investigation and optimisation, for instance on counter electrode and redox couple, to 

maximise the storage capacity.  

 

Figure 2. 4: Effect of adding acetate on two weeks average daily performance at 1 kOhm 

 

2.3.3 Combining marine sediment with activated carbon (AC) granules generates in-

situ electricity and provides external supplied electricity storage in a bio 

electrochemical system (BES) 

Bio electrochemical systems (BES 5, 6, 7 and 8) were also operated while combining marine sediment 

with activated carbon. After 156 days of operation, the marine sediment with AC BESs proved the 

 

A. 100% sediment BES 

 
 

 

B. 100 % AC BES 

 

 
C. Mixing 67% AC BES 

 
 

 
D. Mixing 33% AC BES 

 

 Shaded area: before adding acetate;  Non-shaded area: after adding acetate 
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capability to generate electricity and storage of externally supplied electricity (Figure 2. 2C & D & 

Figure 2. 4 C & D). On the long term performance (until day 105) without adding additional 

substrates (acetate), the BESs current generation dependent on the sediment fraction. Supplementary 

Table S2. 2 provides the average performance after long term MFC operation of the various BESs.  

Adding sufficient AC was beneficial to increase electricity generation. The highest current and power 

density were obtained with BES 5 & 6, which contained 67%AC and 33% sediment. The BES 7 & 8 

with a lower AC content of 33% resulted in a reduced electricity generation with 50% at a range 

comparable with BES 1&2 which contained only sediment. Apparent sufficient AC must be added to 

create a benefit of the material; this finding is in line with earlier work that also showed that 67% of 

granular electrode material applied is soil MFCs was most beneficial [83]. The BESs were also 

temporarily poised at -100mV (similar to the BES with 100% activated carbon) to store external 

supplied electricity. A similar long charging/discharging phenomenon as compared to the 100% 

activated carbon (Figure 2. 2 B) was observed with 67%AC based BESs (Figure 2. 2 C) and 33%AC 

based BESs (Figure 2. 2 D) but was not shown with the 100% sediment anode BESs (Figure 2. 2 A). 

This result supports that activated carbon still had its capacitive chargeable behavior once mixed with 

marine sediment. The electricity could be stored for a long term period (10-20 days) while discharging 

took the same period. The observed phenomenon could possibly be exploited in-situ, within marine 

sediments mixed with activated carbon based BES, allowing e.g. (intermittently produced) electricity 

storage. Once the observed charge/discharge effect is combined with an electrotrophic and 

electrogenic biofilm (operating at a sufficient low voltage range)[104]; additional current could be 

also stored in microbial metabolites like CO or even acetate [103]. 

For a better understanding, the explanation of storage capacity phenomena will be further discussed 

for the period between day 44 and day 72. During the potentiostatic control (day 44 - 55), anode 

voltage was kept at -100mV because theoretically a more positive anode potential will help bacteria 

to gain more energy per electron transfer than a lower one [105]. As can be seen, during potentiostatic 

control only the 100% sediment BESs were able to generate electricity (see Figure 2. 2 A). While for 

the other BESs which did not generate current, their anode was receiving and storing electrons driven 

by the potentiostat (Supplementary Figure S2. 1 & Supplementary Figure S2. 2). From Figure 2. 

2, one can see the more AC carbon fraction in the anode, the more negative i.e. cathodic current 

generation was observed. On day 56 when the control mode was switched to external load (MFC 

mode), stored electrons were released.  
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Current generation for 100% AC based BESs (1&2) increased from about -1.7 mA to 0.28 mA and 

for 67% AC based BESs(5 & 6) increased from about -1 mA to 0.29 mA while for 33% AC based 

BESs(7 &8) increased from -0.05mA to 0.1 mA and from 0.01mA to 0.05mA, respectively. This is 

supports that the storing capacity has a positive correlation with the amount of AC in the anode. After 

16 days operation with external load (1000 ohm), on day 72 the current of all AC BESs decreased 

towards 0 mA, reaching a complete discharge. Similar phenomena were also observed during day 15 

to day 45.  

Furthermore, acetate addition to the all sediment containing BESs enhanced current generation except 

for 100% AC based BESs (Figure 2. 4, day 105). The sole AC BESs was producing zero current 

before and after acetate addition. For the sediment containing BESs, this enhancement indicates a 

substrate limitation (concentration or availability) in which the electrochemically active bacteria in 

the anode cannot utilise more complex remaining substrates from the sea sediment because of 

different microbial metabolism [106]. Added acetate is possibly utilized by the EAB which enhances 

their growth resulted in increasing current generation. Result of this research also indicated that 

67%AC based BESs perform better compared to other BESs in this research. However, it remains 

unclear why the duplicate of only sea-sediment BES behaved differently upon the acetate addition.  

2.3.4 Internal generated electricity storage is feasible in AC granules mixed with 

marine sediment BES 

Capacitive bioanode electrodes can store internally generated electrons (obtained from the supplied 

fuel) within the double layer and/or capacitive biofilm of the bioelectrode [91]. The experiments, as 

explained before in a long term operation, showed that externally supplied electrical energy can 

apparently be stored in AC granules mixed with sea-sediment BESs. Considering this capability, 

further experiments were conducted to understand effect of AC granules marine sediment mixture on 

electricity storage from the internal source (i.e. the sediment itself). Experiments were conducted 

within two periods. The first period was before adding acetate (between day 72 and day 96) and the 

second one was after adding acetate (between day 118 and day 156).  In these sets of experiments, 

internal charging was executed by setting the BESs at open cell voltage condition. Discharging was 

performed at constant controlled anode potential (65mV vs Ag/AgCl). Various charging times (CT) 

and discharging times (DT) were applied to identify feasible conditions for internal electricity supply 

and storage. The overall results did show that internal charging is feasible; although the phenomenon 

was depending on the type of electrode and composition of sediment and AC as further discussed. 
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Figure 2. 5 shows a typical response of storage behavior. Here the first cycle had an OCV of 4 hours 

before the experiment was started and a DT of 120 sec, which was followed by 39 charge & discharge 

cycles of respectively 60 and 60 seconds. During discharge the average maximum current of the 40 

cycle was 9 mA while the average stable current was 6mA. During OCV the anode potential dropped 

repetitively with 10 mV. Based on 40 cycles experiment, the average stored charge on last 10 cycle 

was determined at 19.3 mC. In some experiments (as shown in Figure 2. 5), the first cycle had a 

higher current than the consequent repetitive cycles; this was in-line with a longer OCV time used for 

the first cycles. An observation linked to this was the apparently higher drop of anode potential. The 

anode potential during OCV drops over time. Theoretically, the EAB will generate electrons which 

polarise the electrode to more reduced conditions by reducing redox compounds and/or by direct 

electrode reduction and consequent accumulation of electric charge in the double layer of the 

bioelectrode. Also possible pH/salt gradients which negatively affect the anode potential may start to 

disappear [53]. After connecting the electrical circuit, the electrons will be released during 

discharging process. During the first cycle phenomena, the OCV is providing more time to create 

reducing conditions and allow a higher current. After repetitive applied OCV, more stable conditions 

arise which allow a stable discharge phenomenon.  

Various experiments show successful and unsuccessful charging behaviors. Table 2. 2 provides the 

overview of all conducted experiments with all key properties (Table 2. 2 : A. Highest current; B. 

Stable current; C. Anode potential drop; & D. Stored charge). In the first phase experiment, BES 8 

(e.g. exp. 1c; 33% AC - 67%sediment) was the first marine AC based bioanode which showed a self-

charging and storage capability. The stored charge from the applied CT of 180 seconds was 2.3 mC 

(exp.1c). All other BESs with AC within the bioanodes (BES 1, 2, 5, 6, & 7) were not able to discharge 

current (see all red in Table 2. 2 A & B). Instead, the BESs were externally charged by the potentiostat 

at 65mV. This was shown by the negative (or zero) current both at the beginning of discharge period 

(average highest current on the last 10 cycles) and at the last period of discharge (average stable 

current on last 10 cycles). Thus unsuccessful self-charging in the first experiment could be caused by 

the low current generation as can be seen from day 72 when the first period was started, which was 

only 0.02mA, from the anode of 67% and 33% AC BESs (Figure 2. 2 C &D). Such possible relatively 

short self-charging period (10-180 second), could be insufficient to (fully) charge a high capacitive 

AC anode [101]. 
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Figure 2. 5: First cycle phenomena at CT 60 sec and DT 60 sec on day 142. The first two cycles and the last 

two cycles of experimental results were shown 

 

 



Chapter 2  A new rechargeable bio-battery 

41 

 

Table 2. 2: Internal generated electricity storage experiment 
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     A. Highest current as average from the final 10 

cycles (mA)* 

B. Stable current as average from the final 10 

cycles(mA)* 

1a 60 3780 40 75 -0.4 -0.5 0.1 0.1 -0.2 -0.3 0 0 -0.4 -0.5 0.1 0.1 -0.2 -0.3 0 0.03 

1b 60 3780 40 78 -1.0 -1.1 0.9 1.1 -0.7 0.6 0 0.1 -0.7 -0.6 0.1 0.1 -0.2 0.2 0 0.02 

1c 180 3780 40 83 -2.3 -1.1 1.8 2.2 -1.2 -1.4 0 0.1 -1.8 -0.6 0.1 0.1 -0.4 -0.6 0 0.03 

1d 10 3780 40 90 -3.1 -1.2 0.3 0.3 -0.6 -1.3 0 0 -2.5 -0.7 0.1 0.1 -0.2 -0.6 0 0.02 

2a 10 3780 40 127 n.a n.a 2.3 1.3 8.0 7.5 1.5 0.9 n.a n.a 0.7 0.4 5.8 5.8 0.9 0.6 

2b 60 3780 40 133 n.a n.a 5.9 3.4 4.2 3.9 1.7 1.4 n.a n.a 0.7 0.4 2.6 2.4 0.0 0.6 

2c 10 180 40 138 -6.3 -8.4 3.5 1.8 39 27 9.2 1.9 -6.3 -7.2 1.0 0.5 28 23 6.3 1.2 

2d 60 180 40 138 -3.3 -9.5 9.0 4.4 39 42 6 2.4 -7.3 -5.4 1.0 0.5 22 38 3.1 1.0 

2e  60 180 40 141 -0.6 -3.3 7.7 3.4 7.3 4.5 2.0 1.7 -0.4 -2.5 0.9 0.4 4.6 3.4 1.0 0.7 

2f 3600 3600 10 141 2.3 0.0 18.0 22.1 9.2 3.9 6.2 11 1.8 0.2 1.0 0.4 3.7 2.6 1.0 0.6 

2g 60 60 40 142 1.7 0.6 9.6 4.3 8.4 3.7 4.5 2.9 1.6 0.4 1.2 0.5 5.4 2.8 2.3 1.3 

2h 10 10 40 142 1.1 0.7 4.2 1.8 7.7 3.5 4.0 2.6 1.8 0.5 1.4 0.6 5.8 2.9 2.7 1.7 

2i 3600 1080

0 

15 142 1.3 0.3 17.2 n.a n.a 0.9 n.a 8.0 1.3 0.1 0.8 n.a n.a 0.5 n.a 0.4 

2j 3600 3600 15 142 n.a n.a n.a 22.7 4.9 n.a 5.8 n.a n.a n.a n.a 0.4 2.0 n.a 1.0 n.a 

 C. Anode potential drop at open circuit from 

the discharge voltage from the final 10 cycles  

(mV)** 

D. Average stored charge from the finals 10 

cycle (mC)*** 

1a 60 3780 40 75 -1 -1 221 125 -1 -2 -1 2 n.c n.c 1 0.9 n.c n.c n.c 0.8 

1b 60 3780 40 78 -1 -2 126 68 1 17 0 1 n.c n.c 5 4.7 n.c n.c n.c 0.5 

1c 180 3780 40 83 -2 -1 188 99 -2 -7 0 1 n.c n.c 13 14 n.c n.c n.c 2.3 

1d 10 3780 40 90 -3 -1 131 88 -4 -16 -1 1 n.c n.c 0.6 0.9 n.c n.c n.c -0.1 

2a 10 3780 40 127 n.a n.a 251 156 39 73 18 27 n.a n.a 8.2 3.9 151 348 7.3 13 

2b 60 3780 40 133 n.a n.a 273 186 13 62 21 42 n.a n.a 34 21 112 68 45 35 

2c 10 180 40 138 -18 -38 576 531 171 177 486 509 19.0 -97 7.1 4.2 117 36 33 6.8 

2d 60 180 40 138 -8 -21 539 488 130 152 229 396 -26 -152 34 19 275 129 39 23 

2e  60 180 40 141 -1 -4 315 206 9 8 18 44 -1.3 -6.7 30 14 23 14 13 15 

2f 3600 3600 10 141 0 -3 483 443 16 11 59 240 483 -119 893 545 238

3 

657 1531 1600 

2g 60 60 40 142 1 0 502 470 12 7 75 303 57 0.05 35 15 19 7.7 16 15 

2h 10 10 40 142 1 0 446 357 11 7 43 89 5.2 0.3 5.4 2.4 3.8 1.1 2.5 1.8 

2i 3600 1080

0 

15 142 2 0 492 n.a n.a 7 n.a 191 4085 4.7 785 n.a n.a 616 n.a 1406 

2j 3600 3600 15 142 n.a n.a n.a 442 12 n.a 64 n.a n.a n.a n.a 539 119

0 

n.a 1389 n.a 

                     
DT = Discharging Time; CT = Self Charging Time ; n.a =  not available  ; n.c = not calculated 

First phase (non shaded): Before adding acetate;  Second phase (shaded): After adding acetate; * a positive current means that charge 

was recovered; a negative current shows that charge was supplied and not recovered; ** a negative value means that anode potential 
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increased, while the positive values means that the anode potential decreased; *** a positive value means that self-charging from the 

anode worked while a negative value means that no charge was recovered due to negative or zero current. 

BES 1 & 2= 100 % Activated Carbon (AC) 

BES 3 & 4 = 100 % Marine Sediment (MS) 

BES 5 & 6 = 67 % AC & 33% MS 

BES 7 & 8 = 33% AC & 67% MS 

 

Internal charging with AC marine bioanode was feasible with well performing bioanodes. With the 

insight of the first internal charging experiment, we executed second round of experiments after 

acetate addition; allowing further bioanode development and availability of more electrons for self-

charging. These experiments were started after the BESs showed current. The AC mixed with sea-

sediment BESs (0.17 – 0.35 mA) and also non-mixed sea-sediment BESs (0.16-0.27 mA) were 

generating the highest current (Figure 2. 4).  

After the addition of acetate and start-up of the bioanodes, the second period of self-charging 

experiments was conducted. Self-charging and storage was evidently shown with 33% and 67% AC 

bioanodes as well as the 100% marine BESs. The charge storage capacities were all positive for these 

electrodes as shown by the available data of the average stored charge in shaded area from Table 2. 

2 D (experiments 2a until 2j). For the 100% AC bioanode (BES 1&2), self-charge and storage was 

most evidently observed at the end of the experiments on day 142 (e.g. exp. 2i) which was probably 

related due to the later start-up. During the OCV period of self-charging, the anode potential will 

typically drop because of EABs activity and charging of the double layer. The speed of anode 

potential drop is influenced by the capacitive properties of the anode material [91]. The more 

capacitive the anode, the slower the anode potential drop will be as more charge can be stored at a 

specific energy level (i.e. potential). Therefore, for a non-capacitive electrode, the anode potential 

drop will faster approach the average i.e. stable open cell anode potential. This theory was in line 

with the presented experimental results in Table 2. 2C for e.g. day 142. The anode potential drop was 

for the same CT time, the highest with 100% sediment BESs (3&4) and dropped with increasing AC 

content from 33% AC BESs (7&8), 67% AC BESs (5&6) to 100% AC BESs (1&2).  

The successful self-charging and storage experiments support that chemical energy from the marine 

sediment and/or acetate was utilized with the EAB and used for self-charging of capacitive activated 

carbon bioanode during open circuit. This result is in line with single granule AC bioanode 

performance which showed electricity storage [88]. In this experiment we also found out that the 
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sediment BESs were also able to store electricity (see e.g.Table 2. 2. Exp.2h). Evidently, this kind of 

self-charge and storage capability behaviour could not be due to activated carbon since this material 

was absent. This could indicate other storage mechanisms in the sediment. One possible mechanism 

is that in the marine sediment easily accessible redox compounds exist which can take-up released 

electrons during self-charging time and release them during discharging time. For instance during the 

self-charging, the released electrons from EAB can reduce NAD+ into NADH [107]. When 

discharged at high anodic potential (65mV), NADH can be oxidised back to NAD+ and release 

electrons. Another possible mechanism is the existence of sulphate reducing bacteria (SRB) and 

sulphide oxidising bacteria (SOB). SRB are able to reduce sulphate into sulphide or elemental sulphur 

and later on the SOB can oxidise sulphide and elemental sulphur back to sulphate [108,109]. Both 

species are naturally present in marine sediment and known to be able to have syntrophic growth 

during oxygen limitation [110].  Sulphide oxidation was also proven to generate electricity in both a 

mixed culture [111] and a pure culture [112] MFC system with the electrode as an electron acceptor. 

Therefore, the metabolism of the SRB and SOB could play a role in delivering and taking up electrons 

while storing them via intracellular storage compounds. Naturally present humic substances in the 

marine sediment, such as humic acid and fluvic acid, could also involve in the charge storage [113]. 

The humic substances could serve as electron shuttles in the marine sediment BES. Microorganism 

could transfer the electrons to the humic substances, then the reduces humic substances can rapidly 

reduce iron (III) oxides [98]. The self-charge and storage capability could also be quinone based 

compounds [114]. The anode potential drop was much higher with pure marine sediment bioanodes 

(more than 300mV) than the AC based electrode. This phenomenon shows the absence of activated 

carbon double layer capacitance as can be seen from experiment 2h on Table 2. 2C. We can expect 

that during the applied OCV the anode condition change. Earlier work on the electrochemical 

characterisation of comparable BESs (Plant-MFCs) explained that anode and membrane resistance 

decrease during current interruption [53]. As such, a lower internal resistance due to an OCV would 

lead to a temporarily higher current as observed with the self-charging experiment. To what extend 

the enhanced current was due to internal resistance changes and/or a potential sediment capacitive or 

other biological storage mechanisms was not assessed.  

During the second phase of self-charging experiments, the effect of self-charging time was 

investigated by conducting electricity storage experiment on three different self-charging times (10 

sec; 60 sec and 1 hour). The experiment was conducted on day 138, day 141 and day 142. On day 

138, 10 sec and 60 sec self-charging times with same discharging time (180 sec) were performed.  On 

day 141, 60 sec and 1 hour self-charging time with 180 sec and 1 hour discharging times, respectively, 
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were carried out. Finally, on day 142, 10 sec, 60 sec and 1 hour self-charging times were executed 

with 10 sec, 60 sec and 3 hours discharging time, respectively. In the self-charging experiments, 

stored electric charges must be generated by the bio anode of BES. We noticed that storage properties 

were not constant over time although the same CT and DT were applied (e.g.Table 2. 2D exp 2d & 

2e). Here the comparison of the results of the self-charging effect on stored charge was presented on 

the basis of each day of the experiment (Figure 2. 6). BES 1 and 2 were excluded from discussion 

because they were not fully started up yet. The BES 1 and BES 2 started to generate current on day 

141 right after the long charging-discharging period (Table 2. 2B, experiment 2f). This current 

generation was considered due to a long charging effect from external sources as described earlier is 

the section 3.2. 
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Figure 2. 6: The effect of charging time on stored charge (mC) 

 

A long self-charging time up to 1 hour enhances charge storage. Based on results on Figure 2. 6 one 

can see that for each BES the self-charging time has a positive correlation with stored charge. Stored 

charge increased when self-charging time was prolonged. Changing self-charging time from 10 sec 

to 60 sec (Figure 2. 6 A & C) did increase stored charge between 1.2 and 9 times. Increasing the self-

charging time with 60 times (from 60 sec to 1 hour; Figure 2. 6 B & C) increased stored charge 

between 22 and 40 times for the marine BESs 3 and  4, and 45 to 120 times for the AC marine 

bioanodes of BESs 5, 6, 7, and 8. The increase of stored charge for the AC bioanode did increase with 

several orders of magnitude which illustrates that even more charge could be stored. The self-charging 

bioanode had a maximum measured storage capacity of 2,383 mC (Table 2. 2, exp 2f. BES 5) which 

corresponds to a volumetric storage of 3,666 C/m3 anode which enables electrons release at an anode 

energy level of 65 mV vs Ag/AgCl. If we take a hypothetical cell voltage of 0.2V, this would represent 

an electrical energy density of 0.3 mWh per kg mixed anode which is about 33,000 times lower than 

a super capacitor which can store up to 10 Wh per kg [115]. Furthermore, it is remarkable that the 

marine sediment BES acts like a capacitor similar to the charge storage behaviors as AC based 

bioanodes with a maximum volumetric storage of 1,373 C/m3 anode at a charge recovery of 57%. 

Taking the same hypothetical cell voltage of 0.2 V, this charge storage represents a potential 

capacitive battery energy property of 0.05 mWh per kg marine sediment.  

At a short self-charging time, a higher percentage of AC enhanced stored charge. Based on an 

overview graph of all results (can be downloaded from provided link at the supplementary data ) on 

the final 10 cycles on all electricity storage experiment, it can be seen that the number of measured 

charge was from the highest to the lowest as follows: 67% AC anode, 33% AC anode and 100% 
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sediment (0% AC) anode. On the other hand, the effect of anode composition on stored charge is 

influenced by self-charging time. At short self-charging time (10 sec & 60 sec) the effect of anode 

composition on stored charge is following the pattern of measured charge (Figure 2. 7A). However 

at longer self-charging time (1 hour) stored charge on different anode compositions are relatively the 

same (Figure 2. 7B).  

Figure 2. 7 explains the influence of the anode composition on the stored charge. It shows the average 

stored charge from the duplicated BESs, namely 67% AC (BES 5 & BES 6), 33% AC (BES 7 & BES 

8), and 100% Sediment (BES 3 & BES 4). The storage properties of different anode compositions in 

Figure 2. 7 should be compared according to the experimental day because the current output of each 

BES varied from one day to another day. . Therefore, a comparison between self-charging time at 10s 

and 60 should not be evaluated from day 127 and day 133 but from day 138. Remarkable is that at 

shorter time more AC presences (67%) is enhancing the storage capability. On the other hand, at 

longer self-charging time the 100% marine sediment anode is seemingly able to store a similar amount 

of electric charge as much as in 67% and 33% AC anodes.  

 

 

 

 

Figure 2. 7: Effect of anode composition on stored charge at different charging and discharging 
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2.4 Conclusion & Outlook 

The study showed that marine sediment and activated carbon were able to store and generate 

electricity which is of possible use in rechargeable bio-batteries. The Dutch marine sediment was a 

suitable fuel to generate electricity. Installing this system within real outdoor sediments could warrant 

a long life-time due to the continuous supply of fuel. The used activated carbon granules showed 

within a microbial medium electrolyte a capacitive behavior which allowed external electricity 

storage. Combining marine sediment with activated carbon granules allowed both electricity 

generation from the supplied sediment and provided external supplied energy storage. The energy 

recovery of the bio-battery was rather low but can be optimised by an improved counter electrode. It 

was also shown that internal charging (during OCV) of bioanodes is feasible with mixed activated 

carbon and marine sediment. Evenly the marine sediment itself showed a similar storage behavior 

although the mechanisms responsible for this are to be further revealed. Charging time up to 1 hours 

enhanced charge storage up 1,373 C/m3 with a charge recovery of 57% and an apparent capacitive 

battery energy property of 0.05 mWh per kg marine sediment. 
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2.6 Supplementary Materials Chapter 2 

2.6.1 Supplementary Data 

Raw iviumstat data from charging and discharging experiment and its overview graph can be 

downloaded from https://easy.dans.knaw.nl/ui/home via this DOI link: 

https://doi.org/10.17026/dans-xed-8qkv  

2.6.2 Supplementary Figures 

 

Supplementary Figure S2. 1: Average daily performance of all bio electrochemical systems (BESs) for the 

entire research period. Figure 2 and Figure 4 in the article are scale-modified from this original figure 

 

https://easy.dans.knaw.nl/ui/home
https://doi.org/10.17026/dans-xed-8qkv
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Supplementary Figure S2. 2: Average daily performance of all bio electrochemical systems (BESs) for the 

entire research period. In this figure to show a clear result on positive current from all BESs, the y-axis is cut 

between -1 mA and 0.6 mA 
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Supplementary Figure S2. 3: Acetate concentration in the anolyte of the BESs. At day 150, all BESs were 

injected with 2 g/L NaAc. After sampling on day 117, additional 2 g/L NaAc was added into BES 1 and BES 

2 
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a. Solid end plate with bolts was 

prepared 

 
b. Black gasket was placed 

 
c. Anode plate was placed 

 
d. Black gasket was placed again 

 
e. A support plate was placed 

 

 
f. Another gasket was placed again 

 
g. CEM was placed 

 

 
h. Gasket was placed again 

 
i. Finally, cathode plate was placed 

and reactor was tighten up with the 

nuts 

 

 
j. Cathode plate with winding channel 

 
k. Graphite felt was woven with a current collector (Ti 

wire) 

 

Supplementary Figure S2. 4: Stages of the BESs reactor preparation 
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2.6.3 Supplementary Tables 

Supplementary Table S2. 1: Modified Hoagland Medium (Nitrate-less, sulphate-less, ammonium-

bicarbonate-rich plant growth medium) composition used in this study 

Compounds Concentration (mg/L) 

Macronutriens  

NH4HCO3 553.43 

CaCl2 222 

NH4H2PO4 115.08 

MgSO4.7H2O 123.24 

KCl 223.68 

NaCl 5000 

C14H18N3O10Fe 10 

Na2SiO3.9H2O 142.10 

Micronutrients (Arno-E)  

KCl 0.466 

H3BO3 0.193 

MnSO4.H2O 0.042 

ZnSO4.7H2O 0.072 

CuSO4.5H2O 0.016 

H2MoO4 (85% MoO3) 0.01 

NaFeDTPA (10% Fe) 1.498 

 

Supplementary Table S2. 2: Average performance of the BESs reactors at the MFC mode from day 117 to 

118 before the second charging and discharging experiment was performed 

Properties BES 1 BES 2 BES 3 BES 4 BES 5 BES 6 BES 7 BES 8 

Anode Potential (mV) 95.91 104.93 -403.28 -303.29 -426.38 -438.56 -11.45 -269.42 

Cell Potential (mV) -4.40 -20.01 273.08 156.06 381.02 389.17 213.59 159.22 

Current (mA) 0.00 -0.02 0.27 0.16 0.38 0.39 0.21 0.16 

Current densities (mA/m2) -1.16 -5.27 71.86 41.07 100.27 102.41 56.21 41.90 

Current densities (mA/m3) -6.76 -30.79 420.12 240.09 586.18 598.72 328.60 244.96 

Power (mW) n.a. n.a. 0.07 0.02 0.15 0.15 0.05 0.03 

Power densities (mW/m2) n.a. n.a. 19.62 6.41 38.20 39.86 12.01 6.67 

Power densities (mW/m3) 0.03 0.62 114.73 37.47 223.35 233.00 70.19 39.00 
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Supplementary Table S2. 3: Calculation for bio-battery life time using TOC value of marine sediment. Figure 

2.3 in the article was made based on this calculation 

TOC sea sediment is between 0.5-2%   

Sediment weight in 100% sediment BES ( 3&4) system 1027 g 

TOC weight in our BES 3& 4 (use 2% TOC for calculation) 20.54 g 

TOC available based on 10% Coulombic efficiency 2.054 g 

molar mass C 12 g/mol 

mol C  1.71167 mol 

number of C 1.03E+24 atom 

number of electron* 4.12E+24 atom 
*Based on acetate or glucose anodic oxidation reaction, 1 C generates 4 electrons [61] 

measured electron flow (current) 0.1 mA 

Q (C)=I(A).t(s) at 1 second 0.0001 C 

Charge on 1 electron = 1.6 x 10^-19 Coulomb   

actual electron flow 6.24E+14 e/s 

Time to finish the sediment fuel 6.60E+08 s (20.9 years) 

Based on the above calculation, a simulation with other currents (up to 38mA which is the highest 

stable current as average from the final 10 cycles in this research) was made as following: 

Current (mA) Year   

0.2 10.5   

0.3 7   

0.4 5.2   

0.5 4.2   

1 2.1   

5 0.4   

10 0.2   

15 0.14   

20 0.1   

25 0.08   

30 0.07   

38 0.06   

TOC= Total Organic Carbon; C=Carbon 
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Chapter 3 
 

Activated Carbon Mixed with Marine 
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Abstract 

Wetlands cover a significant part of the world’s land surface area. Wetlands are permanently or 

temporarily inundated with water and rich in nutrients. Therefore, wetlands equipped with Plant-

Microbial Fuel Cells (Plant-MFC) can provide a new source of electricity by converting organic 

matter with the help of electrochemically active bacteria. In addition, sediments provide a source of 

electron donors to generate electricity from available (organic) matters. Eight lab-wetlands systems 

in the shape of flat-plate Plant-MFC were constructed. Here, four wetland compositions with 

activated carbon and/or marine sediment functioning as anodes were investigated for their suitability 

as a bioanode in a Plant-MFC system. Results show that Spartina anglica grew in all of the plant-

MFCs, although the growth was less fertile in the 100% activated carbon (AC100) Plant-MFC. Based 

on long-term performance (2 weeks) under 1000 ohm external load, the 33% activated carbon (AC33) 

Plant-MFC outperformed the other Plant-MFCs in terms of current density (16.1 mA/m2 plant growth 

area) and power density (1.04 mW/m2 plant growth area). Results also show a high diversity of 

microbial communities dominated by Proteobacteria with 42.5%–69.7% relative abundance. 

Principal Coordinates Analysis shows clear different bacterial communities between 100% marine 

sediment (MS100) Plant-MFC and AC33 Plant-MFC. This result indicates that the bacterial 

communities were affected by the anode composition. In addition, small worms (Annelida phylum) 

were found to live around the plant roots within the anode of the wetland with MS100. These findings 

show that the mixture of activated carbon and marine sediment are suitable material for bioanodes 

and could be useful for the application of Plant-MFC in a real wetland. Moreover, the usage of 

activated carbon could provide an additional function like wetland remediation or restoration, and 

even coastal protection. 
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3.1 Introduction 

Wetlands has been known as one of the world’s most important type of ecosystems, which play a 

critical role in climate change, biodiversity, hydrology, and human health [116]. For instance, 

wetlands provide a range of ecosystem services including fresh water; nutrient cycling; food and fiber 

production; carbon fixation and storage; flood mitigation and water storage; water treatment and 

purification; and habitats for biodiversity. About 5-10% of the world’s land surface is covered by 

wetlands [117]. A recent study reported that the global wetland area is between 15 and 16 million 

km2, in which about 8.9-9.5% is coastal wetlands [118]. Unfortunately, despite of their critical role 

wetlands are facing a serious problem of losses caused by human activities [116]. This loss was 

comparable to previous study reporting that between 1970 and 2008, natural wetland declined 

globally by about 30% [119].   

Sediment pollution by human activities is a major problem for wetland ecosystems [120]. By nature, 

wetland sediments are able to remedy themself from pollutants,  such as petroleum hydrocarbon 

pollutants,  due to presence of diverse microbial communities [121]. However, in some cases such as 

to control hydrophobic organic compounds (HOCs), an in-situ amendment by human interference is 

applied for sediment remediation by e.g. addition of activated carbon (AC), which is most widely 

used for in-situ sediment sequestration and immobilization [122]. The capability of AC adsorbs 

organic compounds is controlled either by physical interaction or by chemical interaction between 

AC surface area and absorbents. The adsorption rate is influenced by molecular size of the organic 

compounds and distribution of the AC pores [123,124]. The activated carbon materials have three 

types of pores: micropores (<2nm), mesopores (2-50nm), and macropores (>50nm). The surface area 

of AC is determined by the presence and distribution of these pores [125]. In-situ sediment treatment 

using activated carbon (AC) has been demonstrated in full-scale projects, up to 100 ha of application 

area. In-situ treatment of sediment HOCs using sorptive AC-bearing materials has progressed from 

an innovative sediment remediation approach to a proven reliable technology [122].  

Sediments are also new sources to generate electricity with a so called sediment microbial fuel cell 

[72]. Hereby the anode of the fuel cell is driven by oxidation of sediment sulfide (a side-product of 

microbial oxidation of sedimentary organic matters) and oxidation of sedimentary organic carbon 

converted by electrochemically active microorganisms. The in-situ AC amendment in sediment could 

be coupled with sediment microbial fuel cell installation for concurrent production of renewable 

energy and bioremediation of pollutants such as heavy metals and HOC’s. Various sediments both in 

marine and fresh water environments are suited to generating electricity [68]. Even living plants could 
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be included in such systems, providing additional services as known for the so-called Plant-Microbial 

Fuel Cells (Plant-MFC).  

Actually wetlands inhabited with the Plant-MFC can provide a new (additional) source of 

bioelectricity and have a potential to reduce eutrophication and promote plant growth [126,127]. The 

Plant-MFC is envisioned as a sustainable in-situ bioelectricity source which can avoid competition 

between food and energy production [40], e.g. Plant-MFC could be combined with rice paddy 

production [48,50,63,128]. Plant-MFC converts solar energy into bioelectricity via plant 

rhizodeposits and electrochemically active bacteria (EAB) [40,57]. Several studies have been 

conducted to increase Plant-MFC performance such as investigating optimum anode position under 

soil [63],  modifying plant growth medium [58], characterizing internal resistance [53], comparing 

power output from different sediment types [96], designing new reactors [44,60,64], studying plant 

and microbe cooperation [48] and developing and investigating various electrode materials [57,62–

64]. The highest 2 weeks average power density of 240 mW/m2 plant growth area was achieved in a 

plant-MFC when integrated with oxygen reducing biocathode [65]. For a large scale application, 

plant-MFC is potentially integrated in wetland by which various functions could be combined 

including electricity generation, sediment remediation, plant growth support and as protection of 

coastal areas [46,96]. 

Plant-MFCs were embedded with vascular plants, macrophytes and bryophytes as well as their 

combination with sediments, natural and constructed wetlands. From a recent review paper, at least 

40 plant species have been utilized in the Plant-MFC system [54]. Among those species, Spartina 

anglica  is one of the most model species [57,58,60,65,129,130]. S. anglica is known as an invasive 

species that has sustained more than a century of evolution. It can tolerate a wide range of 

environmental conditions and grows on a variety of substrates, including clays, fine silts, organic 

mud, sands and shingle. As a result, S.anglica can occupy the seaward edge of salt marshes [131,132]. 

There are several economic and societal effects of S. anglica. It has a potential for coastal protection 

because it can absorb wave energy. It has also been planted for estuary reclamation [131].  In an upper 

tidal zone wetland, S. anglica grows as a pioneer plant [133]. S. anglica is also used as a green manure 

in China in which 50 kg of S. anglica biomass are approximately equivalent to 0.5 kg of urea [133]. 

In a long term real application, one of the challenges for Plant-MFC technology is simultaneously  

harvesting maximum power, remaining plant vitality, and preventing electrode material from 

deteriorating over time [134]. Research has shown that the long term power output of a S. anglica 

plant-MFC was fluctuating while the plant was growing [130]. Several anode materials have been 
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used in the Plant-MFCs to produce electricity. Among them were graphite granule and tezontle (a 

volcanic slag) [135], graphite felt/mat [40,44,48,60,62,65], graphite granules/grains [57,136,137], 

carbon fiber [138], nano-catalyzed graphite disc, rolled steel mesh with graphite fiber [139], and 

stainless steel mesh with biochar [140]. 

Although many studies about the anode materials for a Plant-MFC have been conducted, to our best 

knowledge, there is no study yet using activated carbon (AC) in the Plant-MFCs while studying the 

effect of marine sediment. It is well known that the activated carbon is a suitable bioanode material 

for microbial fuel cells fed with acetate [88,141]. Recent work (Chapter 2) also showed that a mixture 

of AC and marine sediment is able to store and generate electricity [142]. Activated carbon was 

chosen in our study because it has a potential to be integrated with soil/wetland amendments; it is a 

suitable bioanode material that can be mixed with sea-sediment;  and it has the ability to support plant 

growth [41]. Such AC can be produced from an agricultural byproduct like rice husks, rice bran, 

sugarcane bagasse, walnut shells, and olive stones [143,144] and can also be utilized for soil 

amendment to increase agricultural production without negatively affect the soil bacteria community 

[145,146]. Therefore, the main objective of this study was to investigate the suitability of a mixture 

of activated carbon and marine sediment as a bioanode in a plant-MFC system with Spartina anglica. 

Here it was studied how different mixtures of the activated carbon (AC) and the marine sediment 

(MS) as an anode material affected the plant vitality, electricity generation and spatial microbial 

community. Overall, the results provide insights that the Plant-MFC anode, consisting of activated 

carbon and marine sediments, has a potential to be tested in a demo-scale wetlands to generate 

electricity and providing additional functions like wetland remediation or restoration, and eventually 

coastal protection [147–149]. 

 

3.2  Materials and Methods 

3.2.1 Experimental setup 

Lab constructed wetlands were prepared by planting Spartina anglica in the anode chamber of eight 

successfully operated flat-plate reactors from the bioelectrochemical system (BES) experiment in 

Chapter 2 [142]. Since the plants were transplanted, in this study the reactors were re-named as Plant-

MFC instead of BES using the same numbering as the earlier study. The reactors consisted of two 

compartments in which one functioned as an anode and another as a cathode. A cation exchange 

membrane (fumasep FKD-PK-75 PEEK-reinforces, 75μm, Fumatech, Bietiheim-Bissingen, 

Germany) separated the anode and the cathode compartment. In the anode, two graphite rods (18 x 1 
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x 0.2 cm) connected with titanium wire were glued in both side of the anode, functioning as current 

collector. A complete description and preparation steps how to build the reactors were presented in 

Chapter 2 [142].  

Four different anode compositions were used to fill the anode compartments (650ml). Plant-MFC 1 

and Plant-MFC 2, this duplicate was named as AC100, were filled with 100% activated carbon (AC); 

Plant-MFC 3 and Plant-MFC 4, this duplicate was named as MS100, were only filled with marine 

sediment; Plant-MFC 5 and Plant-MFC 6, this duplicate was named as AC67, were filled with a 

mixture of 67 % AC and 33% marine sediment; and Plant-MFC 7 and Plant-MFC 8, this duplicate 

was named as AC33, were filled with a mixture of 33% AC and 67% marine sediment. The utilized 

AC is granular activated carbon PK 1-3(Cabot Norit Netherlands BV, with apparent density of 290 

g/L, Amersfoort, The Netherlands). 

In the cathode compartment (22cmx22cmx1cm; with a winding channel for catholyte flow), graphite 

felt was used as an electrode. This graphite felt (22cmx22cm; 3mm thickness, Grade WDF, National 

specialty product carbon and Graphite Felt, Morgan Advance Materials(Taiwan)Co., LTD., 

Kaohsiung, Taiwan) was woven with a titanium wire as a current collector. From day 1-105, a nitrate-

less, sulfate-less, ammonium-rich plant growth medium was utilized as catholyte. Then from day 105 

until the end of the experiment, the plant growth medium catholyte was replaced with demi water. In 

both cases, the catholyte was aerated with ambient air using an aquarium pump and recirculated into 

the cathode chamber in a close cycle via a 1 liter bottle with a pump (Watson-Marlow 505S, 

Rotterdam, The Netherlands at 30 rpm). Total catholyte volume in the close cycle was maintained at 

1L[142].  

Common cordgrass (Spartina anglica), together with the marine sediment, was collected from a tidal 

area wetland at Krabbendijke, The Netherlands (51.446710N, 4.093149E). Prior to being integrated 

into the reactors, the grasses were kept outside at ambient temperature for one month in a container 

with marine sediment from their original habitat. The grasses were kept in a waterlogged condition 

by adding tap water to the container. Young stems with a length of 10 - 15 cm were selected from the 

container for the experiment. These stems were carefully pulled out from their clumps to avoid root 

damage. All remaining soil/marine sediment was gently cleaned with flowing tap water.     

The plant stems were transplanted in the anode chamber of the reactor by burying their root from an 

open space on the top side of the anode known as plant growth area or PGA (19 x 2 cm). The roots 

were buried in a depth between 2 and 3 cm. The number of planted stems varied between 6 and 12 

stems per reactor (Supplementary Table S3. 1).  
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The plant growth was maintained with a nitrate-less, sulfate-less, ammonium-rich plant growth 

medium [58,142] which was continuously pumped into the anode chamber by using a MINIPULS 3 

GILSON pump at 4 μl/s flowrate. This plant growth medium also kept the anode of plant-MFCs in a 

waterlogged condition. On day 150 until 160, the pump was stopped to dry the anodes. 

3.2.2 Operations 

All Plant-MFCs were operated in the dark and light ratio of 10:14 h within a climate chamber 

(Microclima 1750, Snijders Scientific, Tilburg, Netherlands) at 250C and humidity of 70%. All 

potentials were measured and reported against 3M KCl Ag/AgCl reference electrode (QIS, 

Oosterhout, Netherlands). The photosynthetically active radiation (PAR) light intensity was measured 

with a light meter (LI-250A; Li-Cor Quantum Q44722 sensor, Li-Cor ®Biosciences, Lincoln, NE, 

USA) at 12 different positions in the middle height of the climate chamber. The average PAR was 

470.4±12.14 µmol s-1 m-2. Two control modes were alternately applied; a potentiostat control mode 

(day 1-101 and day 176-190) was used to control the anode potential at -100mV vs Ag/AgCl 

(Transients, Chronoamperometry; Ivium Technologies BV, Eindhoven, The Netherlands); an 

external load control mode (day 102 -175) was applied by connecting a 1000 Ohm external load 

between the anode and the cathode. During the potentiostat control mode, the anode potential was 

controlled with a three electrode setup in which the anode was the working electrode, the cathode as 

the counter electrode and a reference electrode (Ag/AgCl type No: QM710X QIS, ProSense BV, 

Oosterhout, The Netherlands) in the anode as the reference electrode. A picture of a full-grown Plant-

MFC 3 (MS100) is shown in Figure 3. 1. 

On day 28, a polarization test was conducted to evaluate the power output from all Plant-MFCs. The 

polarization was performed with a potentiostat by changing the anode potential of the plant-MFC 

every 10 minutes using the three electrodes setup in which the anode was a working electrode. Prior 

to the polarization, the plant-MFCs were operated at an open cell condition for 1 hour to determine 

the minimum anode potential for each plant-MFC. Based on the anode potential at the open cell 

condition, the anode potentials sequences for polarizations were decided as following: -100mV, -

80mV, -60mV, -40mV, -20mV, 0mV, +20mV, 0mV, -20mV, -40mV, -60mV, -80mV, -100mV (for  

AC100, AC67, and AC33) and -320mV, -270mV, -220mV, -170mV, -120mV, -70mV, -20mV, 

30mV, -20mV, -70mV, -120mV, -170mV, -220mV, -270mV, -320mV (for MS100). Current 

generation was logged every second with the Iviumsoft. The average current generation from every 

last minute of the anode potential was used to calculate the power output. For the calculation of the 

power output , 200 mV hypothetical oxygen reduction cathode potential was used since this value 
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was easily reached by an oxygen reducing biocathodes applied in a Plant-MFC[65]. The current 

density and power density were normalized to plant growth area (PGA) and to the anode volume. 

A 

 

B 

 
 

Figure 3. 1: Full-grown Spartina anglica in plant-MFC 3 (MS100); (A) inside the climate chamber and (B) at 

the end of the experiment 

 

3.2.3 Measurement and Analysis 

Data were logged every minute according to the control mode. During the potentiostat control mode, 

generated current was logged with the IviumSoft of Ivium Technologies connected to a lab personal 

computer and during the external load control mode,  the anode potentials, the cathode potentials, the 

membrane potentials and the cell potentials were logged with a field point (National Instruments FP-

2000; FP-AI-112, National Instrument Netherlands BV, Woerden, The Netherlands) similar to 

previous study[142].  
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3.2.3.1 pH, Conductivity and Acetate analysis 

Catholyte and anolyte samples were taken continually from the reactor. Catholyte samples were taken 

from the cathode outlet prior entering the catholyte circulation bottle. The anolyte samples were taken 

using a syringe via a soil moisture sampler (10 RHIZON MOM 5 cm female luer; article no. 

19.21.22F from Rhizosphere Research Product, Wageningen, The Netherlands) whose end tip was 

placed in the middle of the anode chamber. The pH and conductivity were directly measured after 

sampling by using a HACH HQ440d multi pH/LDO/conductivity meter (Hach Company, Loveland 

Colorado, CO, USA). Samples for acetate analysis were kept in a fridge at -200C to be measured later 

using gas chromatography as describe earlier in Chapter 2 [93,142]. 

3.2.3.2 Plant growth monitoring 

Plant growth was monitored by counting the number of the living stems and summarizing the height 

of living stems. The stems’ height was measured from the top-end-plate of the anode to the leaf tip 

of each stem. The accumulative stem height for every Plant-MFC was calculated by summing up all 

living stem height in the reactor. These data were continually sampled until the end of the experiment.  

At the end of the experiment (day 190), all biomass (both above and belowground biomass) were 

harvested from all reactors. The roots were rinsed in a flowing tab water to remove soil and activated 

carbon. Dried biomass was determined after drying at room temperature for 3 months until constant 

weight was reached. Biomass yield (kg/m2) was calculated and normalized per plant growth area 

(PGA) which was 0.0038 m2 per Plant-MFC. 

3.2.3.3 DNA analysis 

At the end of the experiment (day 190), about 3 ml biomass samples from anode components (mixture 

of marine sediment, AC and plant roots) were taken for DNA analysis. Samples were taken from the 

MS100 (Plant-MFC 3 and Plant-MFC 4) and the AC33 (Plant-MFC 7 and Plant-MFC 8). For every 

reactor, five biomass samples were collected. Biomass samples were taken from five different 

locations in the anode as marked on Figure 3. 2. These five sample locations were clustered in two 

zones: upper zone (until 5cm below the anode surface) and lower zone (from 5 tol 20 cm below the 

anode surface). The upper zone (UZ) sample points were (A) UZ-AN (anode) and (C) UZ-CC (current 

collector). The lower zone sample points were (B) LZ-RO (roots), (D) LZ-AN (anode), and (E) LZ-

CC (current collector). In the MS100 plant-MFC, the anode biomass samples (UZ-AN and LZ-AN) 

contained marine sediment; the current collector biomass samples (UZ-CC and LZ-CC) contained 

marine sediment that were attached on the current collector. While, in the AC33 plant-MFC, the 

anode biomass samples (UZ-AN and LZ-AN) contained AC and marine sediment; the current 

collector biomass samples (UZ-CC and LZ-CC) contained AC and marine sediment that were 
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attached on the current collector. In total, 20 samples were collected. The samples were stored 

immediately in -800C freezer after collection before the DNA sequencing was performed. 

 

A C B D E 

UZ-AN UZ-CC LZ-RO LZ-AN LZ-CC 

Upper Zone (UZ) Lower Zone(LZ) 

 

Figure 3. 2: DNA analysis sampling points 
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Steps of sequencing was performed similar to de Smit et al work [150]. DNA was extracted from the 

samples using the PowerSoil® DNA isolation kit according to their manual instruction manual with 

some modifications [SI Method S1]. The extracted DNA was quantified using Qubit® and diluted to 

5 ng/μl as the final template DNA concentration for PCRs. The V3-V4 regions of 16s rDNA from the 

isolated DNA (template DNA) was amplified using the primer sets provided by Takahashi et al which 

allowing simultaneous amplification of bacterial and archaean 16s rDNA. The illumina library 

generation methods were subsequently used to generate DNA sequence data [151].   

After acquiring rDNA sequence data a statistical analysis allowed operational taxanomic unit (OTU) 

picking, using the SILVA version 128 16S reference database and uclust [152,153]. The Ribosomal 

Database Project (RDP) classifier (version 2.2) [154] was trained with the same SILVA reference 

database and subsequently used to classify the OTUs. Taxonomic analysis was performed using 

QIIME software version 1.9.1[155]. This bioinformatics process was performed on 21 August 2018. 

From the acquired data, a heat map such as shown in the supplementary (Supplementary Table S3. 

2; Supplementary Table S3. 3; Supplementary Table S3. 4) was made using Microsoft Excel 2016. 

Beta diversity analysis was performed to measure the extent of similarity/dissimilarity between 

microbial populations comprising samples and sample groups by calculating different distance 

matrices. Based on the unweighted UniFrac beta diversity, a Principal Coordinates Analysis (PCoA) 

with a 3D ordination was plotted through QIIME using Emperor Software from the beta diversity 

data to compare group of samples based on the phylogenetic or count-based distance metrics [156]. 

From the PCoA, one can see the similarity and dissimilarity among the group of samples. Objects 

that are ordinated closer together have smaller dissimilarity values than those ordinated further apart. 

 

3.2.4 Calculations 

The plant-MFC current density was plotted as a daily average as shown in Supplementary Figure 

S3. 1. During potensiostat control mode, the daily average current was directly calculated from the 

generated current that was logged every minute with the Iviumsoft. During the external load control 

mode, prior to calculate the daily average current, the generated current (Igen), in ampere (A), was 

calculated with Equation (3.1). 

Igen = Vcell / R    (3.1) 

  

Vcell is cell potential (V) and R is the applied external load (ohm) 
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Power output (P), in Watt (W), was calculated depending on the control mode. Equation (3.2) was 

used to calculate the power output during the potentiostat control mode and Equation (3.3) was used 

to calculate the power output during the external load control mode.  

P = Vhyp. Ipot   (3.2) 

  

Vhyp is 0.2 volt hypothetical cell potential and Ipot is current output measured and logged with the 

potentiostat. 

P = Igen
2. R    (3.3) 

  

Igen is generated current (A) as calculated from Equation (3.1) and R is applied external load (ohm). 

Both current density and power density were normalized to the plant growth area (PGA) and to the 

anode volume. 

 

3.3  Results and Discussion 

3.3.1 Mixture of Activated Carbon (AC) and Marine Sediment Effect on Plant Growth 

Plants were growing in all reactors for 190 days after transplantation regardless of their control mode, 

even at negative current. This growth was proven by the increase in the number of living stems 

(Figure 3. 3) and in the accumulative stems height (Figure 3. 4). The number of living stems 

increased to between two and eight times from their initial size (Figure 3. 3). The accumulative stems 

height varied between 2 and 10 m at the end of experiment (Figure 3. 4). The plant ability to grow in 

such anode environment proves that the mixture of activated carbon and marine sediment are suitable 

materials for a Plant-MFC. For a visual comparison, Supplementary Figure S3. 2 and Supplementary 

Figure S3. 3 show plants condition at the moment they were planted and at the end of the experiment. 

The similar plant species was able to grow up to 703 days in the graphite felt anode of a flat-plate 

plant-MFC [44]. In other studies with the same plants species and a similar type of reactor, the plant 

vitality was reported to increase from nine stems in the beginning to 25 stems (2.8 times) after 56 

days and further increases to more than 30 stems (3.3 times) after 140 days [65]. 
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Figure 3. 3: Average number of living stems on different Plant- MFC reactors 

 

 

 

 
 

Figure 3. 4: Accumulative total stems height on different Plant-MFC reactors 
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Duplicate analysis shows that the AC100 Plant-MFC has less plant growth in term of the number of 

living stems (Figure 3. 3) and the total stem height (Figure 3. 4) compared to the other anode 

compositions. Evidently, more replicates are needed to provide statistical supported evidence that can 

lead to strong conclusions. Nevertheless, the actual measured reduced plant growth could be due to 

nutrient limitation for plants and/or bacteria in the reactor because of adsorption capability from 

activated carbon [144]. Other studies have proven that activated carbon is able to adsorb various 

compounds such as acetate, ammonium, phosphate, nitrate, sulphate, and metal ions [157–164]. In 

this study, the nutrient supply was mainly from plant growth medium and leftover acetate 

(Supplementary Table S3. 5) from a previous experiment. Conductivity and pH remained in the same 

order of magnitude in both the anolyte and catholyte (Supplementary Table S3. 5). This suggests that 

still some salts/nutrients are available; though whether specific nutrients were becoming limiting 

could not be revealed. We can speculate there may be mechanisms that Spartina plants in the long 

term can desorb nutrients by changing rhizosphere conditions as known for e.g. phosphate leaching 

plants [165,166]. The number of stems in the other anode compositions (MS100, AC 33 and AC67) 

were growing well. It is difficult to elaborate on which anode composition is possibly performing 

better based on these two parameters because the error bars from those three anode compositions 

were overlapping (Figure 3. 3 and Figure 3. 4). Further research with more compositions and 

replicates is recommended to determine the best composition of mixing between marine sediment 

and activated carbon. However, the measured data shows that mixing marine sediment with activated 

carbon had a higher plant vitality than sole use of activated carbon. The use of marine sediment may 

have been beneficial because it has plenty of organic matters including nutrients [76] that can be 

utilized by plants for their growth and by the electrochemically active bacteria to generate electricity 

as shown in Chapter 2 [142]. 

Plant growth can also be assessed through biomass production. In this research, it is remarkably that 

the less growth AC100 Plant-MFCs dry biomass yields (Supplementary Table S3. 6) are still 

comparable to literature reporting a yield of S. anglica under natural condition between 0.48-1.85 

kg/m2 for above ground dry biomass and 0.78-3.11 kg/m2 for below ground dry biomass [57]. The 

other Plant-MFCs are, as expected, producing more biomass compared to AC100 Plant-MFC. Both 

the above and the lower ground dry biomass from AC33 and AC67 Plant-MFCs were also within the 

range of natural yield of S. anglica and slightly higher than natural condition (Supplementary Table 

S3. 6). The dry biomass yield for MS100 Plant-MFC was higher than that in the natural condition. 

The biomass production from Plant-MFC could still be increased because the earlier research with S. 

anglica using graphite grain as anode media was able to harvest 6 kg/m2 above ground dry biomass 
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and 15 kg/m2 below ground dry biomass [57]. These biomass yield differences might be explained as 

growth conditions (e.g. temperature and light intensity) are different in the natural and laboratory-

experimental conditions. In addition to the plant growth, we also observed that small-red segmented 

worms, with diameter between 1 and 3 mm and length between 5 and 8 cm, were able to live/survive 

in the anode part of the MS100 plant-MFC (Figure 3. 5). These worms, based on their physical 

appearances possibly from Annelida phylum [167], are natural decomposers which maintain soil 

fertility by altering soil compositions through decomposing and transforming organic matter [168]. 

The latter provides support that the bioanode does support (some) biodiversity. 

 

 

 

 

 

 

 

 

 

 

Figure 3. 5: Worms in the anode plant-MFC 3 (MS100) surviving during 190 day operation 
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3.3.2 Mixture of Marine Sediment and Activated Carbon Generating Electricity in 

Plant-MFCs 

Results show that all plant-MFCs generated power when operated at 1000 ohm external load as shown 

in Figure 3. 6. The AC33 plant-MFC seems to be best suited for generating electricity. The average 

duplicate AC33 plant-MFC generated higher current density in a long-term operation compared to 

the other plant-MFCs. On average, the MS100 Plant-MFC delivered less current in comparison with 

the other Plant-MFCs. This Plant-MFC continuously generated positive current regardless of their 

applied control mode. When all anode chambers were dry, in a period between day 150 and 160, the 

current output was zero for all of plant-MFCs. Unlike the MS100 plant-MFCs, the current output of 

the AC100 plant-MFC reached up to 42.6 mA/m2 at the first time the external load was operated. 

Then, the current output decreased gradually reaching zero. A similar phenomenon was also showed 

by the AC67 plant-MFC. The high current phenomenon at the beginning of the external load 

operation, as shown by AC100 and AC67 Plant-MFC, was caused by the capacitive behaviour of the 

activated carbon anode as described earlier in Chapter 2 [142]. At that time, the envisioned anode 

was actually acting as a cathode and electrical charges were added to the system. Later on, when the 

control mode was switched to the external load, the stored electrical charges were released as an 

anodic current which harmonically went towards zero [142]. 

 

Figure 3. 6: Average current output (mA/m2 plant growth area (PGA)) of Plant-MFC with variation bars. The 

current output reached zero when anodes were dried 
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During the potentiostatic controls, only MS100 and AC33 Plant-MFCs generated electricity 

(Supplementary Figure S3. 1). Instead of generating power, the other Plant-MFCs (AC67 and 

AC100) had a negative current production, indicating a capacitive behavior effect. At this moment, 

electric charges were stored in the anode. This capacitive behavior had been studied earlier in 

activated carbon-based bioanodes in a bioelectrochemical system [88,91,142]. The capacitive 

behaviour was not observed in the MS100 plant-MFCs and less obvious in the AC33 plant-MFC. It 

was not clear why the AC100 duplicate behaved differently during the first potentiostatic control. 

However, both AC100 duplicates showed a similar trend, generating a negative current, on the second 

potentiostatic control.  

After the plant growth medium pump had been stopped, all plant-MFCs anode became dry (day 150-

160) because of the evaporation process and uptake by plant roots. As a result, all plant-MFCs 

delivered no current. There are some possible explanations on this situaton. First, dry anodes become 

more aerobic because oxygen would easily penetrate through pores of the activated carbon particles 

and the marine sediment. As a result the anaerobic EAB activity will more likely be outcompeted by 

aerobic bacteria in substrate utilization and thus hinder the yield of EAB in the anode [169]. Second, 

even though the anaerobic oxidation was still occurring in some parts of the anode, the generated 

electrons will soon utilize the available oxygen in the anode side as their acceptor. This fact gives a 

useful insight that when a wetland becomes dry, it may loss its function as a “home” for important 

anaerobic processes. However, in a temporary dry wetland, e.g. in an intertidal wetland, the oxygen 

diffusion into sediment can accelerate the aerobic degradation of some high molecular weight 

compounds into a low molecular weight compounds which later on can be utilized by the EAB under 

anaerobic condition to generate electricity [169]. Therefore, a plant-MFC installed in a salt marsh, 

which influenced by tidal advection, generated more than 10 times more power than the same plant-

MFC in a peat soil[96]. The fact that all plant-MFCs delivered zero current at a dry condition might 

also be useful for wetland mitigation. For instance, one could design and install a less required power 

sensor powered by a plant-MFC. This bio sensor could be coupled with an internet of things (IoT) 

application [170] to monitor a wetland condition, i.e. water level. 

On day 160, the plant growth medium was pumped back. The current generation of all plant-MFCs 

were recovered except for the AC100 plant-MFC. The AC100 plant-MFC was hardly recovered and 

generated almost zero current until end of the external load control mode. Therefore, the average and 

maximum current and power densities of this last 2 weeks (day 160-175) operation under the external 

load mode after recovering from the dry period was prefarable to compare the result of this study with 

other studies (Table 3. 1).  
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Table 3. 1: Average and maximum current and power densities of several Plant-MFC systems 

Reactor type/Plant species Anode / Current collector Cathode 
Current density (mA/m2  PGA) Power density (mW/m2 PGA) 

Method Ref 
Av. Max Av. Max 

Flat plate 
Spartina anglica 

Marine sediment/ small graphite rod 
(MS100) 

Graphite felt, air cathode 9.01 
(2 weeks) 

- 

15.49 
45* 

(0.3A/m3)* 

0.37 
(2 weeks) 

- 

0.91 
8* 

(46 mW/m3)* 

A 
 

D 

This study 

Flat plate 
Spartina anglica 

33%AC+67% marine sediment/ small 
graphite rod (AC33) 

Graphite felt, air cathode 16.01 
(2 weeks) 

- 

22.53 
819* 

(4.8A/m3)* 

1.04 
(2 weeks) 

- 

1.93 
148* 

(863 mW/m3)* 

A 
 

D 

This study 

Flat plate 

Spartina anglica 

67%AC+33% marine sediment/ small 

graphite rod (AC67) 

Graphite felt, air cathode 5.46 

(2 weeks) 
- 

8.42 

12,496* 
(73 A/m3)* 

0.12 

(2 weeks) 
- 

0.27 

2,249* 
(13150mW/m3)* 

A 

 
D 

This study 

Flat plate 

Spartina anglica 

AC/ small graphite rod (AC100) Graphite felt, air cathode 0.2 

(2 weeks) 
- 

1.58 

19,752* 
11.5 A/m3* 

0.00 

(2 weeks) 
- 

0.00 

3,555* 
(20786 

mW/m3)* 

A 

 
D 

This study 

Flat-plate 
Spartina anglica 

Graphite felt/ gold wire Graphite felt, Ferric cyanide cathode 74-384 
(4 weeks) 

469 47-155 
(4 weeks) 

211 A 
 

[58] 
 

Cylindrical 

Spartina anglica 

 

Graphite grain/Graphite rod Graphite felt/gold wire, Potassium 

ferric cyanide 

 

- 

 

- 

- 

 

- 

21 

(8weeks) 

- 

- 

 

222 

A 

 

C 

[57] 

Flat plate with two cathode 

compartment 

Spartina anglica 

Graphite felt/golden wire Graphite felt/golden wire, oxygen 

reducing biocathode 

- 

- 

- 

- 

- 

240 

(2 weeks) 

679 

- 

 

C 

B 

[65] 

Polyacrylic plastic cylinder 
Ipomoea aquatica 

Granular activated carbon/ stainless steel 
mesh 

Granular activated carbon/ stainless 
steel mesh, air cathode 

- 0.66 A/m3 
 

- 274 mW/m3 C [171] 

Organic glass pipe 

Phragmites australis 

Activated granular carbon/ stainless steel 

mesh 

Activated granular carbon, air cathode - 0.49A/m3 - 4.5(200 

mW/m3) 

C [172] 

Polycarbonate plastic cylinder 

Ipomoea aquatica 

Thick granular activated carbon/ 

titanium wire 

Stainless steel mesh, air cathode - - - 12.42 C [173] 

Glass cylinder 
Spartina anglica 

Graphite granules/golden wire Graphite felt, air cathode - - - 79 C [130] 

Modular 

Sedum species 

Carbon felt AC/graphite rood, air cathode - 5 - 114.6 (μW/m2) C [174] 

Perspex tubes 
Rice(Oryza sativa ) 

Graphite granule/vermiculite /carbon 
rod 

Graphite felt interwoven carbon rod, 
air cathode 

- 580 - 72 D [136] 

Circular graphite felt 

electrode in a rice paddy field 
Rice (Oryza sativa ) 

Graphite felt connected via epoxy 

encapsulated wires 

Graphite felt with platinum catalyst 

connected via epoxy encapsulated 
wires, air cathode 

- - - 140 D [50] 

Method of operation: A: Continuous operation at 1000 ohm; B: 2 week continuous operation at 600mV cell voltage controlled with potentiostaat; C: Polarization curve with 

external resistance; D: Potentiostat polarization; PGA = Plant growth area. Hyphens mean data are not calculated/not available. *These maximum power outputs were done at 

day 28 during the potentiostatic control mode (Supplementary Figure S3.7). The high current and power density could be influenced by capacitive properties of the anode 

material that was charged and discharged using external power. This power could be utilize with care to e.g. harvest a peak power to charge external capacitors or provide a 

power peak to start-up small electronic devices. These high current and power outputs are not to be considered as actual performance of the sediment/plant microbial fuel cell 

since they do not represent a long-term performance and are the results of the potentiostatic operation.   
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In this study, insights on the possible link between plant roots and current/power generation were also 

observed. Based on the below ground biomass yield and pictures of the roots at the end of the 

experiment (Supplementary Table S3. 6 and Supplementary Figure S3. 4), the root densities from 

the highest to the lowest were in the MS100, AC67, AC33, and AC100 Plant-MFC. There was a small 

difference between root density in the MS100 and the AC67 Plant-MFCs. Results show a correlation 

(R2=0.6) between the current density and the root density of the Plant-MFC (Supplementary Figure 

S3. 5). The average current density of AC33 Plant-MFC was 1.04, higher than those of AC67 (0.12 

mA/m2) and MS100 (0.37 mA/m2). The plant roots are able to transport oxygen into the anode 

[169,175,176]. The oxygen concentration at the S. anglica root surface could reach up to 85 μmol L-

1 and the radial oxygen loss across the root surface ranged from 250 to 300 nmol m-2s-1[175]. The 

increase of oxygen concentration in the anode will promote the oxidation reaction, which theoretically 

increase the anode potential. Thus it will negatively affect the current and power generation [53,176]. 

Therefore, the anode should be placed in a proper distance to avoid or reduce the negative effect of 

oxygen loss from the roots [169]. 

It is challenging to compare the result of one study with other studies because of the variation in the 

system (i.e electrode materials, plant growth, sediment use, reactor size, operation condition, control 

method, etc). Comparing the maximal power output is less prefered because it does not really show 

the capability of such system to deliver continuous power for a long period. Here, we compare our 

result with the average power generation for a minimum period of 2 week performance. In Table 3. 

1, we provide a comparison with other studies which have some similarities with our study. These 

studies show lower than average current density of 74-384 mA/m2 (power density of 47-155 mW/m2) 

using similar type of flat-plate reactor and plant species on a graphite felt anode [58]. Another plant-

MFC with graphite grains anode was able to generate average power output of 22 mW/m2 for eight 

weeks [57]. However, both studies utilized ferric cyanide as catholyte instead of water. 

Based on this comparison, it seems that mixing marine sediment with activated carbon influences the 

power output of a plant-MFC system; however, another explanation for this could be plant difference 

in biomass growth (Figure 3. 3 and Figure 3. 4). More plants may produce more rhizodeposits. It is 

also not evident that the highest amount of used marine sediment was leading to the highest current 

density since the AC33 plant-MFC performed better compared than the others plant-MFCs. Based on 

two weeks performance, the AC33 plant-MFC generated current on average 16.01 mA/m2 PGA 

(22.53 mA/m2 PGA max). This result was comparable with sediment-MFC from previous study, 

which used mixture of 50% granular carbon (1-5mm) with sand as an anode material fed with 20mM 

sodium acetate as electron donor. After 3 week of incubation, the sediment-MFC reached an average 
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current density of 25±7.74 mA/m2 with a maximum of 37.9 mA/m2 [83]. It should be noted that 

without the presence of plants and solely fed with sodium acetate, the mixture of 33% granular carbon 

with sand sediment-MFC only generated maximum of 5mA/m2 of current density after 2 week 

operation [83]. The cathode performance of the studied systems may have affected the MS100 but 

did not likely limit the bioanode of the other Plant-MFCs. The recorded anode and cathode potentials 

from day 160 onwards shows that the cathode potential was not likely to limit the current generation 

(Supplementary Figure S3.6). Some Plant-MFCs (MS100 and AC33) fluctuated on current and 

anode/cathode potential. Since this did not happen in both duplicates, it could not be attributed to the 

type of electrode materials used. Other parameters that may cause this phenomenon need to be further 

investigated while several Plant-MFC reports show dynamic behaviour [130]. The cathode potentials 

of the AC33 and the AC67 were in between +100 and +300 mV except in the end of one of the AC33. 

The cathodes of AC100 varied between +60 and +100 mV. All these cathode potentials are higher or 

comparable to the cathode potentials reported for an abiotic oxygen reduction process within a similar 

flat-plate Plant-MFC reported by Wetser [65]. The measured anode potential in all systems (except 

the MS100) were mostly rather high (> 0.070 V) compared to other Plant-MFC studies with Glyceria 

maxima plants showing a significant anode resistance[53]. This supports that the cathodes of our 

studies were not limited for the oxygen reduction using the produced electrons at the anode. For the 

MS100, the anode and cathode potentials were fluctuating providing possible limitations on the 

cathode as well as on the anode during the experiment. Further studies with more replicates and more 

variations on AC, different electrode materials and marine sediment percentages are needed to draw 

conclusions on using such electrode materials long term. Even so, the electric conductivity of the 

marine sediments itself and the activated carbon bed and their mixtures should be investigated while 

both materials have shown to have an electric conductivity which is relevant in microbial fuel cells 

[97,177] 

3.3.3 Diverse Microbial Communities 

Spatially diverse microbial communities were observed in this study. Based on alpha rarefaction 

plots, the observed_otus (70000 sequences per sample) for MS100 Plant-MFC 3, MS100 Plant-MFC 

4, AC33 Plant-MFC 7 and AC33 Plant-MFC 8 were 6308, 7077, 8173 and 9177, respectively. The 

Principal Coordinates Analysis (PCoA) shows that the MS100 Plant-MFC and the AC33 plant-MFC 

communities are distinctly separated between each other even though they come from the same 

marine sediment inocula (Figure 3. 7). In addition, there is a clear difference between upper zone and 

lower zone microbial communities, especially in the MS100 plant-MFC. This result indicates that the 

bacterial communities are influenced by the anode composition/material.  
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UZ-AN  ;               UZ-CC ;               LZ-AN ;               LZ-CC ;               LZ-RO 

 

Figure 3. 7 : Unweighted UniFrac Principal Coordinates Analysis (PCoA) of plant-MFC microbial 

communities 

Technical duplicate Plant-MFC microbial analysis results from all the MS100 and AC33 plant-MFCs 

shows that the archaea do not play an important role in the plant-MFC electricity generation process 

since they were not abundantly available (0.39% - 1.93%). Bacteria were found with a high relative 

abundance in the Plant-MFCs system of 85.2 to 97.7%. A total of 63 phyla were observed in this 

study with a relative abundance of minimum 1%. Figure 3. 8 shows four most dominant phyla that 

accounted for 64-81% of the total population. They were, from the most to the least dominant, 

Proteobacteria, Bacteroidetes, Chloroflexi and Verrucomicrobia. Looking deep into the 

Proteobacteria phylum diversity, it was dominated by Gamma proteobacteria (20.2-50.2%), Delta 

proteobacteria (26.2-44.5%), Beta proteobacteria (3.4-27.8%), Alpha proteobacteria (11.7-21.6%), 
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and Epsilon proteobacteria (2.2-11.6%). More detailed relative abundance of classes within a phylum 

from the four most abundance phyla is presented in Supplementary Figure S3. 8, Supplementary 

Table S3. 2, Supplementary Table S3. 3, and Supplementary Table S3. 4. This result is similar with 

previous study in Glyceria maxima Plant-MFC anode rhizosphere bacterial community which found 

that Proteobacteria were the most abundant phylum [137]. The dominance of Proteobacteria is also 

consistent with root-associated microbial communities in other rhizosphere sediment of salt marshes 

[178–180].  

 

Figure 3. 8: Bacterial and Archaea phyla 

The dominance of Proteobacteria in such lab-wetland system are well known and most of them are 

responsible for sulphur cycle in the sediment. Sulphate reduction is the dominant respiration of the 

anaerobic marine sediment in the salt marshes vegetation [178]. Sulphate-reducing bacteria (SRB) 

play an important role in the marine carbon and sulphur cycle [181]. For instance, one family from 

Deltaproteobacteria, Desulfobulbaceae is known as “cable bacteria”.  These bacteria are globally 

found in the marine sediment and able to transport electrons over a long distance by coupling sulphide 

oxidation and oxygen reduction [182,183]. At least more than 220 species of 60 genera of SRB have 

been described. They spread within the bacteria (Firmicutes, Proteobacteria, Nitrospira, and 

Thermodesulfobacteria) and the archea (Euryarchaeota  and Crenarchaeota)[184]. In the near-
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surface sediment (20cm),  Desulfobacteraceae (Desulfosarcina, Desulfobacterium and 

Desulfococcus) were reported as the dominant sulfate reducing bacteria followed by 

Desulfobulbaceae family [181]. Meanwhile, in the salt marshes sediment colonized by Spartina 

alterniflora plant species, Chromatiales and Thiotrichales are dominant sulfur oxidizing bacteria in 

the upper 5 cm sediment. Epsilonproteobacteria-related sulfur-oxidizer tended to increase on 

Spartina roots compared to surrounding sediment. Desulfobacteraceae and Desulfobulbaceae were 

also the dominant sulfate-reducing bacteria [185].   

3.4  Conclusions and Outlook 

The study shows that mixed of marine sediment and activated carbon in a wetland plant-MFC 

bioanode can generate electricity and is suitable for plants growth. The Spartina anglica growth rate 

was different which may be caused by the mixing extent of the materials. On average, the 33AC 

plant-MFC generated higher current and power density compared to other plant-MFCs. A spatial 

diverse microbial community was observed in both MS100 and AC33 Plant-MFC with 

Proteobacteria as the most abundant phyla. It looks that the microbial communities were affected by 

the anode composition and also by the spatial position. Overall, the results provide new insights that 

show the potential to test Spartina anglica demo-scale wetlands to generate electricity. The advantage 

of AC over other electrode materials is the provision of additional functions like electricity storage 

or sediment remediation.  

 

3.5  Associated Content 

All data generated or analyzed during this study are included in this published article (and its 

Supporting Information files). Microbiota data (raw 16s rDNA amplicon sequences) is submitted to 

the EBI database (https://www.ebi.ac.uk/ena) under accession number PRJEB33916. Raw 

experimental data is available in the DANS-EASY database (https://doi.org/10.17026/dans-253-tk8w). 
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3.7  Supplementary Materials Chapter 3 

The following supplementary materials are available online at http://www.mdpi.com/2073-4441/11/9/1810/s1  

3.7.1 Supplementary Figures 

 

 

 
 

Supplementary Figure S3. 1: Plant-MFC performance on two different control modes 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.mdpi.com/2073-4441/11/9/1810/s1


Chapter 3: Supplementary Materials     Bioanode Material for Spartina anglica Sediment/Plant-MFC 

79 

 

 

 

MS100 (Plant-MFC 3) 

 

MS100 (Plant-MFC 4) 

 

AC33 (Plant-MFC 7) 

 

AC33 (Plant-MFC 8) 

 

AC67 (Plant-MFC 5) 

 

AC67 (Plant-MFC 6) 

 

AC100 (Plant-MFC1) 

 

AC100 (Plant-MFC2) 

 

Supplementary Figure S3. 2: Plant condition at the beginning of the experiment (during transplantation) 
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MS100 (Plant-MFC 3) 

 
MS100 (Plant-MFC 4) 

 
AC33 (Plant-MFC 7) 

 
AC33 (Plant-MFC 8) 

Supplementary Figure S3.3, cont’ 
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AC67 (Plant-MFC 5) 

 
AC67 (Plant-MFC 6) 

 
AC100 (Plant-MFC1) 

 
AC100 (Plant-MFC2) 

 

Supplementary Figure S3. 3: Plant conditions at the end of the experiment. Showing roots penetration; stem 

and leaf conditions 
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MS100 (Plant-MFC 3) 

 
MS100 (Plant-MFC 4) 

 

 
AC33 (Plant-MFC 7) 

 

 
AC33 (Plant-MFC 8) 

  Supplementary Figure S3.4, cont’ 
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AC67 (Plant-MFC 5) 

 
AC67 (Plant-MFC 6) 

 

 
AC100 (Plant-MFC1) 

 

 
AC100 (Plant-MFC2) 

 

Supplementary Figure S3. 4: Root conditions at the end of the experiment 
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Supplementary Figure S3. 5: Correlation between root density and current density. Below ground dried 

biomass was calculated from harvested roots in the end of the experiments (day 190) 

 

  

  

  

Supplementary Figure S3.6, cont’ 
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Supplementary Figure S3. 6: Anode potential (black), Cathode Potential (red) and Cell potential (Green) of 

plant-MFCs between day 161 and 175. The vertical axes are the potential (mV) and the horizontal axes are the 

day 
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(a) 

 

 
(b) 

Supplementary Figure S3. 7: Polarization curve on day 28. (a) All Plant-MFCs, excluding MS100 Plant-

MFCs. (b) Zoom in for MS100 and AC33 Plant-MFCs 
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Supplementary Figure S3. 8: Relative abundance of classes within a phylum from 4 most abundance phyla 
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3.7.2 Supplementary Tables 

Supplementary Table S3. 1: Initial planted plants compositions 

Systems Wet mass of the stems (gr) Number of planted stems 

Plant-MFC 1 (AC100) 37.8 7 

Plant-MFC 2 (AC100) 35.7 8 

Plant-MFC 3 (MS100) 35.1 6 

Plant-MFC 4 (MS100) 33.4 7 

Plant-MFC 5 (AC67) 31.7 7 

Plant-MFC 6 (AC67) 37.2 6 

Plant-MFC 7 (AC33) 36.8 7 

Plant-MFC 8 (AC33) 32.4 12 

 

Supplementary Table S3. 2: Most abundant bacteria at order level with at least 5% relative abundance. Heat 

map abundance colors: red >5%; orange 2 to 5%; white <2% 

CLASS 

ORDER 

Average relative abundant (± standard error) 

MS100 Duplicate AC33 Duplicate 

Upper Zone Lower Zone Upper Zone Lower Zone 
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Deltaproteobacteria 

Desulfobacterales 
6.95 

±2.66 

8.85 

±0.75 

10.76 

±2.29 

16.26 

±0.63 

15.1 

±1.1 

13.15 

±0.58 

14.4 

±1.16 

15.06 

±1.47 

16.85 

±8.25 

10.86 

±6.29 

Gammaproteobacteria 

Chromatiales 
1.8 

±0.46 

2.41 

±0.08 

4.59 

±1.25 

6.04 

±1.17 

7.77 

±2.54 

6.5 

±0.15 

6.98 

±1.78 

7.29 

±0.89 

5.26 

±0.12 

8.46 

±2.61 

Flavobacteriia 

Flavobacteriales 
8.15 

±4.79 

7.59 

±3.43 

6.95 

±0.34 

2.52 

±0.47 

2.95 

±0.29 

2.42 

±0.53 

1.78 

±0.12 

1.87 

±0.2 

1.35 

±0.22 

2.56 

±1.02 

Betaproteobacteria 

Hydrogenophilales 
9.47 

±0.15 

4.99 

±0.19 

3.87 

±0.17 

1.12 

±0.96 

1.52 

±1.38 

1.87 

±0.72 

1.15 

±0.52 

0.66 

±0.42 

0.26 

±0.04 

0.66 

±0.6 

Verrucomicrobiae 

Verrucomicrobiales 
3.35 

±0.38 

3.98 

±3.1 

1.27 

±0.77 

3 

±0.56 

7.42 

±0.83 

1.72 

±0.7 

0.31 

±0.02 

0.99 

±0.66 

0.77 

±0.63 

0.82 

±0.24 

Epsilonproteobacteria 

Campylobacterales 
1.03 

±0.19 

1.47 

±0.18 

2.9 

±0.67 

6.13 

±1.64 

3.06 

±1.32 

2.24 

±0.19 

2.98 

±0.04 

2.96 

±0.72 

2.25 

±0.75 

2.22 

±0.65 

Deltaproteobacteria 

Desulfuromonadales 
2.85 

±1.09 

1.44 

±0.24 

1.6 

±0.38 

2.58 

±1.32 

1.49 

±0.41 

7.52 

±5.46 

10.29 

±4.38 

5.91 

±0.75 

0.4 

±0 

0.58 

±0.1 

Gammaproteobacteria 

Gammaproteobacteria 

Incertae Sedis 

0.99 

±0.15 

1.27 

±0.34 

1.14 

±0.4 

1.64 

±1 

1.39 

±0.06 

3.07 

±1.17 

5.24 

±1.5 

6.45 

±0.31 

6.76 

±1.59 

6.51 

±1.47 

Anaerolineae 

Anaerolineales 
2.76 

±0.08 

4.18 

±0.22 

3.76 

±0.56 

2.07 

±0.97 

3.72 

±0.21 

4.34 

±0.72 

5.56 

±0.29 

4.95 

±0.3 

3.51 

±1.59 

3.29 

±0.04 
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Supplementary Table S3. 3: Most abundant bacteria at family level with at least 5% relative abundance. Heat 

map abundance colors: red >5%; orange 2 to 5%; white <2% 

Order 

Family 

 

Average relative abundant (± standard error) 

MS100 Duplicate AC33 Duplicate 

Upper Zone Lower Zone Upper Zone Lower Zone 

B
io

a
n

o
d

e 

(S
ed

im
en

t)
 

C
u

rr
e
n

t 

co
ll

ec
to

r 

R
o

o
t 

+
 

B
io

a
n

o
d

e
 

B
io

a
n

o
d

e
 

C
u

rr
e
n

t 

co
ll

ec
to

r 

B
io

a
n

o
d

e
 

(S
ed

im
en

t)
 

C
u

rr
e
n

t 

co
ll

ec
to

r 

R
o

o
t 

+
 

B
io

a
n

o
d

e
 

B
io

a
n

o
d

e
 

C
u

rr
e
n

t 

co
ll

ec
to

r 

Desulfobacterales;  

Desulfobacteraceae 

4.56 

±1.67 

6.22 

±0.16 

13.41 

±2.24 

13.79 

±0.94 

12.24 

±0.26 

7.64 

±0.78 

10.11 

±1.01 

9.11 

±0.14 

8.25 

±1.39 

6.31 

±2.65 

Chromatiales; 

Ectothiorhodospiraceae 

1.37 

±0.23 

1.7 

±0.1 

4.84 

±1.48 

5.05 

±1.08 

6.39 

±2.15 

6.11 

±0.35 

6.2 

±1.65 

6.67 

±0.85 

4.25 

±0.09 

7.79 

±3.06 

Anaerolineales; 

Anaerolineaceae 

2.76 

±0.08 

4.18 

±0.22 

3.69 

±0.56 

2.07 

±0.97 

3.72 

±0.21 

4.34 

±0.72 

5.56 

±0.29 

4.95 

±0.3 

3.51 

±1.59 

3.29 

±0.04 

Hydrogenophilales; 

Hydrogenophilaceae 

9.47 

±0.15 

4.99 

±0.19 

2.38 

±0.17 

1.12 

±0.96 

1.52 

±1.38 

1.87 

±0.72 

1.15 

±0.52 

0.66 

±0.42 

0.26 

±0.04 

0.66 

±0.6 

Flavobacteriales; 

Flavobacteriaceae 

7.66 

±4.64 

7.3 

±3.36 

2.9 

±0.34 

2.41 

±0.5 

2.69 

±0.26 

1.55 

±0.4 

1.25 

±0.03 

1.02 

±0.28 

1.27 

±0.23 

1.59 

±0.29 

Campylobacterales; 

Helicobacteraceae 

1 

±0.19 

1.43 

±0.2 

3.33 

±0.6 

5.86 

±1.68 

2.93 

±1.2 

2.16 

±0.15 

2.87 

±0.04 

2.95 

±0.72 

2.24 

±0.75 

2.19 

±0.68 

Verrucomicrobiales; 

Verrucomicrobiaceae 

3.27 

±0.39 

3.96 

±3.1 

2.37 

±0.74 

2.93 

±0.57 

7.34 

±0.82 

1.69 

±0.7 

0.27 

±0.01 

0.94 

±0.65 

0.72 

±0.65 

0.77 

±0.24 

Desulfobacterales; 

Desulfobulbaceae 

2.39 

±0.99 

2.63 

±0.58 

2.31 

±0.06 

2.46 

±0.31 

2.83 

±0.83 

5.5 

±0.2 

4.28 

±0.14 

5.94 

±1.33 

8.59 

±6.86 

4.54 

±3.64 

Gammaproteobacteria 

Incertae Sedis;  

Unknown Family 

0.99 

±0.15 

1.27 

±0.34 

1.08 

±0.4 

1.64 

±1 

1.39 

±0.06 

3.07 

±1.17 

5.24 

±1.5 

6.45 

±0.31 

6.76 

±1.59 

6.51 

±1.47 

Desulfuromonadales; 

Desulfuromonadaceae 

0.62 

±0.1 

0.4 

±0.18 

0.37 

±0.06 

0.52 

±0.03 

0.55 

±0.18 

6.57 

±4.92 

9.78 

±4.4 

5.5 

±0.84 

0.07 

±0.01 

0.31 

±0.21 
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Supplementary Table S3. 4: Most abundant bacteria at genera level with at least 3% relative abundance. Heat 

map abundance colors: red >3%; orange 1-3%; white <1% 

Order 

Family 

Genus 

Average relative abundant  (± standard error) 

MS100 Duplicate AC33 Duplicate 

Upper Zone 
Lower  

Zone 

Upper 
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Lower  
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Burkholderiales; 

Alcaligenaceae; 

Castellaniella 

1.47 

±0.8 

2.17 

±0.25 

5.62 

±0.04 

6.48 

±0.74 

4.95 

±0.05 

3.28 

±0.51 

2.88 

±0.18 

3.75 

±0.19 

2.99 

±0.53 

3.97 

±0.77 

Hydrogenophilales; 

Hydrogenophilaceae; 

uncultured 

2.25 

±0.17 

3.25 

±0.25 

2.98 

±0.53 

1.55 

±0.74 

2.88 

±0.27 

3.63 

±0.52 

4.17 

±0.2 

4.11 

±0.25 

2.89 

±1.23 

2.95 

±0.05 

Propionibacteriales; 

Propionibacteriaceae; 

Brooklawnia 

0.77 

±0 

0.66 

±0.1 

3.67 

±1.7 

2.56 

±1.02 

2.12 

±0.11 

5.06 

±0.74 

3.62 

±1.61 

4.55 

±0.16 

1.97 

±0.34 

2.53 

±3.67 

Xanthomonadales; 

Xanthomonadaceae; 

Thermomonas 

3.23 

±0.49 

2.82 

±0.05 

2.91 

±0.23 

8.64 

±5.78 

2.74 

±0.25 

1.92 

±0.06 

2.66 

±0.39 

2.37 

±0.56 

2.16 

±0.24 

2.41 

±0.06 

SAR324 clade; 

Uncultured δ 

proteobacterium; 

uncultured delta 

proteobacterium 

0.12 

±0.02 

0.15 

±0.08 

1.31 

±0.85 

3.1 

±2.64 

0.72 

±0.66 

0.71 

±0.28 

0.08 

±0.04 

0.03 

±0 

0.05 

±0.02 

0.04 

±0.11 

uncultured bacterium 

(ML635J-21); 

uncultured bacterium; 

uncultured bacterium 

3.02 

±2.49 

0.47 

±0.36 

0.12 

±0.08 

0.05 

±0.05 

0.06 

±0.04 

0.11 

±0.01 

0.42 

±0.1 

0.82 

±0.46 

0.41 

±0.19 

0.1 

±0.21 

Phycisphaerales; 

Phycisphaeraceae; 

Z195MB87 

0.42 

±0.1 

1.44 

±0.3 

0.66 

±0.11 

0.74 

±0.36 

1.15 

±0.47 

2.92 

±0.59 

1.56 

±0.44 

3.8 

±1.75 

6.81 

±6.03 

3.3 

±2.42 

Rickettsiales; 

Rickettsiaceae; 

uncultured 

0.37 

±0.12 

0.59 

±0.07 

0.29 

±0.19 

0.45 

±0.3 

0.65 

±0.15 

1.98 

±0.82 

2.68 

±1.21 

4.04 

±0.13 

4.14 

±0.13 

3.61 

±1.64 

Cytophagales; 

Cyclobacteriaceae; 

Indibacter 

0.39 

±0.08 

0.28 

±0.18 

0.24 

±0.05 

0.33 

±0.07 

0.44 

±0.16 

6.36 

±4.95 

2.64 

±4.32 

5.34 

±0.85 

0.02 

±0.01 

0.15 

±0.06 

SubsectionICyanobacteria; 

FamilyI; 

Synechococcus 

0.75 

±0.09 

0.78 

±0.24 

0.37 

±0.15 

0.3 

±0.18 

0.53 

±0.32 

1.42 

±0.68 

1.16 

±0.33 

1.16 

±0.4 

3.18 

±1.42 

1.95 

±0.47 
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Supplementary Table S3. 5:  Acetate concentration, pH and ionic conductivity from anolyte and catholyte of 

Plant- MFCs 

Days 
AC100-

PMFC 1 

AC100-

PMFC 2 

MS100-

PMFC 3 

MS100-

PMFC 4 

AC67-

PMFC 5 

AC67-

PMFC 6 

AC33-

PMFC 7 

AC33-

PMFC 8 

Acetate concentration in the anolyte (mg/l) 

1 195 1752 31 13 41 7 89 7 

22 6 9 17 5 5 6 8 7 

31 0 0 0 0 0 0 0 0 

37 0 0 0 0 0 0 0 0 

45 0 0 0 0 0 0 0 0 

77 n.a n.a n.a n.a n.a n.a n.a n.a 

105 n.a n.a n.a n.a n.a n.a n.a n.a 

190 n.a n.a n.a n.a n.a n.a n.a n.a 

Anolyte pH 

1 8.94 9.38 9.14 9.17 9.15 8.77 8.98 9.12 

22 6.72 6.76 7.72 7.95 7.56 7.06 7.29 7.95 

31 6.22 6.72 7.22 7.73 7.15 6.77 7.4 7.51 

37 6.45 7.23 7.38 7.73 7.18 6.99 7.27 7.46 

45 7.19 6.99 7.32 7.37 7.08 7.02 7.04 7.46 

77 7.2 7.23 6.79 6.69 6.6 6.85 6.77 6.92 

105 n.a n.a n.a n.a n.a n.a n.a n.a 

190 7.28 7.41 6.71 6.24 7.07 6.63 6.75 7.05 

Anolyte ionic conductivity (S/m) 

1 0.783 0.77 0.966 1.084 0.676 0.941 0.905 0.764 

22 0.829 0.767 0.927 0.932 0.841 0.938 0.932 0.824 

31 0.929 0.758 0.964 0.953 0.933 0.879 0.9 0.851 

37 0.862 0.751 0.984 0.931 0.926 0.899 0.903 0.892 

45 0.903 0.769 1.017 0.941 0.98 0.904 0.987 0.926 

77 1.044 0.722 1.248 0.945 1.004 0.954 0.978 0.997 

105 n.a n.a n.a n.a n.a n.a n.a n.a 

190 0.441 0.447 0.379 0.298 0.342 0.591 0.404 0.341 

Catholyte pH 

1 9.19 8.55 8.78 8.81 8.98 9.22 9.02 9.09 

22 8.16 8.36 6.12 5.4 7.98 8.2 5.68 5.71 

31 7.72 8.26 6.54 6.83 7.65 8.28 6.21 6.6 

37 n.a n.a n.a n.a n.a n.a n.a n.a 

45 7.99 8.25 5.37 7.55 7.7 8.41 6.63 7.14 

77 7.59 7.79 7.05 7.47 7.69 8.36 7.1 7.55 

105 6.5 6.22 6.23 6.68 7.03 7.72 6.46 6.85 

190 n.a n.a n.a n.a n.a n.a n.a n.a 

Catholyte ionic conductivity (S/m) 

1 0.764 0.388 0.558 0.616 0.284 0.532 0.55 0.476 

22 0.703 0.413 0.558 0.589 0.745 0.574 0.649 0.499 

31 0.744 0.433 0.591 0.519 0.638 0.569 0.665 0.541 

37 n.a n.a n.a n.a n.a n.a n.a n.a 

45 0.803 0.45 0.845 0.576 0.686 0.659 0.75 0.57 

77 0.745 0.376 0.722 0.508 0.678 0.569 0.689 0.663 

105 0.887 0.571 0.926 0.655 0.774 0.689 0.86 0.718 

190 n.a n.a n.a n.a n.a n.a n.a n.a 

n.a = not analysed 
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Supplementary Table S3. 6: Dried biomass yield after 190 days 

Reactors Above ground biomass Yield 

(Kg/m2 PGA) 

Below ground biomass yield 

(Kg/m2 PGA) 

MS100 (Plant-MFC 3) 2.74 2.97 

MS100 (Plant-MFC4) 2.29 3.32 

AC33 (Plant-MFC7) 0.45 0.76 

AC33 (Plant-MFC8) 0.82 1.45 

AC67 (Plant-MFC 5) 1.71 2.29 

AC67 (Plant-MFC 6) 1.47 1.89 

AC 100 (Plant-MFC 1) 0.63 0.79 

AC100 (Plant- MFC 2) 0.47 0.87 
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3.7.3 Supplementary Methods 

 

Supplementary Methods S3. 1: DNA extraction protocol modification 

A. DNA extraction: Power soil® DNA Isolation Kit 

Original procedure Instruction manual version 07272016 PowerSoil® DNA Isolation Kit can 

be downloaded from https://mobio.com/media/wysiwyg/pdfs/protocols/12888.pdf 

The procedure is the same mentioned in the manual on pages 10-11.  

Some modifications have been done and they are described by steps. 

3 – After this step put samples in heat block at 55 degrees Celsius for 15 min.  

6 – Tubes were centrifuged per 1 minutes instead of 30 seconds  

14 – Solution C4 was added twice (600 uL first time and 500 ul second time) and vortexed 

twice as well.  

15 – Spin filter was loaded with 650 uL instead of 675 uL to leave space on the tube for 

centrifugation.  

20 – 30 uL of solution C6 were added instead of 100 uL. This was done because we didn’t 

know what could be the DNA concentration and we didn’t want to dilute the DNA.  

23 – Put in heatblock for 15 min 55degrees Celsius just before spinning C6 down.  

 

B. DNA quantification – Qubit   

No modifications to the protocol were made. Qubit® dsDNA HS Assay Kits protocol can be 

downloaded from: 

 https://assets.thermofisher.com/TFS-Assets/LSG/manuals/Qubit_dsDNA_HS_Assay_UG.pdf 

C. DNA concentration - Speed Vac  

Original protocol on Concentrator 5301 Eppendorf can be downloaded from 

https://sydney.edu.au/medicine/bosch/facilities/molecular-biology/5301_900_017_11_0906_en.pdf 

Evaporation with heating was used (page 21 – section 3)  

The temperature used was 45C and the time was between 5-10 minutes.  

 

 

 

https://mobio.com/media/wysiwyg/pdfs/protocols/12888.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/Qubit_dsDNA_HS_Assay_UG.pdf
https://sydney.edu.au/medicine/bosch/facilities/molecular-biology/5301_900_017_11_0906_en.pdf
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Chapter 4 
 

Performance and Long Distance Data 

Acquisition via LoRa Technology of a 

Tubular Plant Microbial Fuel Cell Located 

in a Paddy Field in West Kalimantan, 

Indonesia  
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Distance Data Acquisition via LoRa Technology of a Tubular Plant Microbial Fuel Cell Located in a 

Paddy Field in West Kalimantan, Indonesia. Sensors 2019, 19, 4647. 



Performance Tubular Plant-MFC in a Paddy Field Chapter 4 

 

96 

 

Abstract 

Plant Microbial Fuel Cell (Plant-MFC) has been studied both in the lab and in a field. So far, the field 

studies were limited to a more conventional Plant-MFC design, which submerges the anode in the 

soil and places the cathode above the soil surface. However, for a large scale application tubular 

Plant-MFC is considered more practical since it needs no top soil excavation. In this study, 1 meter 

length tubular design Plant-MFC was installed in triplicates in a paddy field in West Kalimantan, 

Indonesia. The Plant-MFC reactors were operated for 4 growing seasons. The rice paddy was grown 

in a standard cultivation process without any additional treatment due to the reactor instalation. An 

online data acquisition using LoRa technology was developed to investigate the performance of the 

tubular Plant-MFC over the final whole rice paddy growing season. Overall, the four crop seasons, 

the Plant-MFC installation did not show a complete detrimental negative effect on rice paddy growth. 

Based on continuous data analysis during the fourth crop season, a continuous electricity generation 

was achieved during a wet period in the crop season. Electricity generation dynamics were observed 

before, during and after the wet periods that were explained by paddy field management. A maximum 

daily average density from the triplicate Plant-MFCs reached 9.6 mW/m2 plant growth area. In one 

crop season, 9.5 – 15 Wh/m2 electricity can be continuously generated at an average of 0.4±0.1 mW 

per meter tube. The Plant-MFC also shows a potential to be used as a bio sensor, e.g. rain event 

indicator, during a dry period between the crop seasons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Tubular, Plant, Microbial Fuel Cell, Electricity, Rice, Paddy Fields, LoRa, 

Bioelectrochemical system 
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4.1 Introduction 

Plant microbial fuel cells (Plant-MFC) has drawn the attention of many researchers since its first 

proof of principle performance using Reed mannagrass (Glyceria maxima)[40]. In principle the Plant-

MFC is based on the microbial fuel cell (MFC) in which electrochemically active bacteria (EAB) 

generate electrons from substrates (i.e. glucose or acetate) in the anode; the generated electrons are 

transferred to the anode electrode and flow via an external load to the cathode side. In the cathode, 

these electron react with final electron acceptor (i.e. oxygen) and protons [52]. The electricity 

production depends on the anode and the cathode potential differences, in which the cell potential is 

the cathode potential minus the anode potential[51–53]. The common approach to estimate the 

theoretical cell potential is using thermodynamics of the anode (e.g acetate) and the cathode (e.g 

oxygen) reaction calculated based on Gibbs free energy at a specific condition [51,52]. For instance, 

the acetate oxidation (C2H3O2
- + 4 H2O → 2 HCO3

- + 9 H+ + 8 e- ) and oxygen reduction (O2 + 4 H+ 

+ 4 e-  → 2 H2O ) potential at a specific condition (acetate concentration 0.05M, [H2O] = 1M; pH = 

7; pO = 0.2 bar; T = 298K) against Ag/AgCl reference electrode are -0.494 V and 0.6 V, 

respectively[51]. Therefore, a theoretical MFC cell potential using acetate model substrate and 

oxygen as the final electron acceptor is 1.094V. In addition, the Plant-MFC has growing plants which 

provide substrates in form of rhizodeposits that warrant electron donor availability for 

electrochemically active bacteria (EAB) to generate electricity[40].  

The Plant-MFC has been studied both in the lab [40,45,57,60,62,65,96,130,136,138,186–189] as well 

in field studies [48–50,63,128,190].  So far, the field studies were using a conventional design of 

plant-MFC which put the anode in a lower anaerobic part (below the surface of the soil) and the 

cathode above the soil surface to obtain oxygen[48]. For a large scale application, this design is less 

practical because one needs to excavate the top layer of soil before anode installation. To avoid this 

excavation, Timmers proposed a new tubular design of Plant-MFC which could be installed using a 

horizontal drilling technique[64]. Plant-MFC’s can potentially be applied in wet agricultural lands 

because it does not tend to disturb the surface that can in this case still be used for food production. 

Once implemented in for example a rice paddy, a challenge is the (re-)use of the Plant-MFC over 

consequent rice cultivation cycles. Rice paddies are typically manually and/or mechanically managed 

via various activities: (a): preparation of land by ploughing; (b) seedling and transplanting of the rice 

paddy; (c) water management; (d) fertilization; (e) weeding, and (f) pest control. This rice paddy 

management should not destruct the Plant-MFC so it can be used many years. Also the rice plant 

growth can potentially negatively affect the Plant-MFC performance by e.g. root growth into the 

cathode electrode which would provide rhizodeposits at the wrong electrode. Another potential 
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negative effect is the excretion of oxygen f at the anode, causing inhibition due to cathodic reduction 

reactions at the anode[187]. Earlier tubular plant-MFC’s were evaluated during long-term lab-based 

peat soil wetlands tests reaching a two week average power generation of 21mWm-2 plant growth 

area(PGA)[60].  

Wetlands are considered the suitable place to integrate Plant-MFC’s technology in a real life 

application because a Plant-MFC requires anaerobic conditions for their anode (to minimise 

competing oxygen reduction processes) and allow plants growth to supply rhizodeposits and other 

potential organic substrates to generate electricity (like organic plant matter remains after plants 

harvesting or leaf littering) [46]. The total amount of paddy fields represent one of largest types of 

wetlands.  In 2017, the average harvested area of paddy fields and the rice paddy production in world 

are about 167million ha and 770 million tonnes of rice, respectively [67]. As human population is 

growing, the need for paddy field and production to support basic human need for food is also 

growing. More than 90% of world rice paddy has been produced in Asia[67]. With its current size in 

the world, paddy fields have a great potential to be integrated with plant-MFC technology. Plant-

MFC also has potential to reduce methane emission from paddy field; a well-known potent green-

house-gas[136,140]. 

Even though there were several studies about Plant-MFC’s in a field, to our best knowledge there is 

no study performed yet on the performance of tubular Plant-MFC’s in a paddy field. The objective of 

this study was to investigate the performance of tubular plant-MFC in a tropical paddy field, 

providing data analysis over a whole rice paddy growing cycle. Electricity generation, rice growth 

and microbial community were studied. An online data acquisition method using a long range (LoRa) 

technology was developed since local manual measurements on electricity generation could not be 

done at sufficient intervals [191–193]. The paddy field area had no connection to the electricity grid 

and there were no long-range transmissions network available. Therefore, a local LoRa network was 

set-up. The end devices using 2 Volt input (2xAA alkaline battery) were connected to the Plant-MFC 

to measure voltages and temperature. A LoRa gateway was installed and locally powered by a solar 

power system. This gateway provided the communication with the data acquisition devices via LoRa 

connection and sent the collected data to a LoRa network server through an IP connection (3G 

internet)[191]. The set-up and performance of this long distance data acquisition and transfer from 

West Kalimantan, Indonesia to Wageningen, The Netherlands, is also discussed.  
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4.2  Materials and Methods 

4.2.1 Paddy field 

An existing paddy field in West Kalimantan, Indonesia (0.919215N, 109.468182E; elevation 100m 

above sea level) was used for the experiment. This paddy field was cultivated using a common 

agricultural practice in that area. The rice paddy (Oriza sativa L. var Inpari 30 Ciherang Sub 1) was 

transplanted twice per year which are in May and November (Table 4. 1). The rice paddy growth 

phase are shown in Figure 4. 1. Prior to transplantation, the rice paddy seeds were grown in a nursery 

site for 20-30 days. Afterward, the rice paddy were manually transplanted by farmers in the soil in 

lines with a distance between 15cm and 25 cm. During the seedling period, soil was prepared by 

ploughing it with a hand tractor. The ploughing was preceded by flowing water into the paddy field 

(about 7 days) to make the soil softer. The ploughing was done per plot and in line with water flow 

direction from both up- and downstream. The water was kept flowing between 5-10cm above the 

ground in the paddy field until ripening period. The soil was dried in the last 2-3 weeks before harvest.  

 

Table 4. 1: Research phase on four different crop seasons 

Crop 

season 

Transplantation 

(date) 
Harvesting (date) 

Applied load 

Plant-MFC 

(ohm) 

Electricity 

Measurement 

I 6 November 2017 10 February 2018 470 Multimeter 

II 16 May 2018 6 August 2018 470 Multimeter 

II 8 November 2018 13 February 2019 470 Multimeter 

IV 13 May 2019 7 August 2019 1000 LORA 

 

Rice paddy maintenance includes of several activities such as fertilization, pest control, weeding, and 

water management. The fertilization was applied twice for one crop season. The first fertilization was 

about 7 days before transplantation day (TD) after the ploughing and the second fertilization was 7 

days after TD. In the first fertilization, three kinds of fertilizer were applied together, which are Urea 

(PT.Pupuk Sriwidjaja, Palembang, Indonesia), NPK Phonska (PT.Petrokimia Gresik, Gresik, 

Indonesia) and Petroganik (PT. Pupuk Indonesia (PERSERO) Group, Cikampek, Indonesia). In the 

second fertilization, only urea and NPK Phonska were applied in the paddy field.  The application of 

fertilizer followed the dosage stated on the package. During the fertilization, water inlet and outlet 
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was closed for 2-3 days so that the fertilizers dissolved and seeped into the soil. After that the water 

was slowly put back into the paddy field with a small flow. 

 

Figure 4. 1: Growth phase of rice paddy with water, fertilizer and pesticide management. Adapted from [31] 

under CC BY NC SA3.0 license. F = Fertilization; P= Pest control with insecticides. 

 

The pest control was done by using molluscicides and insecticides. The molluscicides (Keong Tox, 

PT.Santani Sejahtera, Indonesia) was applied 1 day before the first fertilization to control snail, 

Pomacea spp, (known as keong mas in Indonesian). The insecticides were distributed by spraying 

mixture of Mipcindo 50WP (PT. Inti Everspring Indonesia, Mangunreja-Serang, Indonesia) and 

Imidacloprid 96TC (PT.Catur Agro Dinamika, Pamulang Tanggerang Selatan, Indonesia). The 

mixing ratio between Mipcindo and Imidacloprid was 3:1 (tablespoon) for 25 liter water. The 

insecticides spraying was done three times during the crop season which were 12-14 days after TD, 

21-25 days after TD and 40 days after TD. In addition, if walang sangit (Leptocorisa oratorius) and 

wereng (a general term to call the plant-liquid sucking insect from Hemiptera order) were still seen a 

lot, another insecticides spraying was done (at 60 days after TD) with a mixing ratio 3:2. 

Water management plays an important role in rice paddy cultivation. Before applying the 

molluscicides water was reduced to about 0.5-1cm above the ground. This water level was kept until 

the first fertilization and the transplantation day. Three day after the TD water level was slowly 
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increased to the normal level.  The same mechanism was done during the second fertilization. Apart 

from these period, the water level was kept on the normal level (5-10 cm above the soil) following 

the rice paddy growth phase. The continuous flooding also functions to reduce weeds. In the studied 

paddy field, weeds growth was hampered because the fields were well ploughed. Therefore, weeding 

was only manually extracted if they were spotted. The water flow was stopped 2-3 weeks before 

harvest day. 

The Inpari 30 Ciherang Sub 1 paddy is well-known as a flood-tolerant variety. It can tolerate 

submergence of up to 14 days [194]. According to Indonesian Center for Rice Research, Indonesian 

Agency for Agricultural Research and Development, Ministry of Agriculture Republic of Indonesia 

(Balai Besar Penelitian Tanaman Padi, Badan Penelitian dan Pengembangan Pertanian, 

Kementerian Pertanian Republik Indonesia), this variety has an average productivity of 7.2 ton/ha 

and the harvest time is 111 day after seedling[195].  

 

4.2.2 Electricity Generation 

On October 28th, 2017, three tubular plant microbial fuel cells (tubular plant-MFCs) were installed in 

the paddy field (Figure 4. 2). The plant-MFC reactors were installed in lines next to each other from 

west to east (Supplementary Figure S4.1). Distance between reactors was 30cm. The tubular plant-

MFC was manufactured by Plant-e (Wageningen, The Netherlands) according to similar design used 

by Wetser, et al [60]. As base transparent silicon tube (VMQ silicone, 12/16 mm inner/outer diameter; 

rubbermagazijn.nl, Zoetermeer, The Netherlands) was used to supply oxygen. Consequently the 

cathode felt, the spacer and finally the anode felt was wrapped around this tube. Both the anode and 

the cathode were made of carbon felt (KFA-5mm thickness, SGL Carbon GmbH, Bonn, Germany). 

The electrode length of each tubular plant-MFC was 1 meter and the width for the anode and the 

cathode was 19cm and 10 cm, respectively. Spacer was made from non-conductive materials to 

prevent short circuiting, but is otherwise completely permeable (air filter cloth DA/290, DACT Filter- 

& Milieutechniek, Kerkrade, The Netherlands). Titanium wire (grade 2, 0.5mm; Titaniumshop BV, 

Kampen, The Netherlands) was used as current collector both in the anode and the cathode side. The 

current collector was tied and wrapped around the cathode and the anode as shown in the Figure 4. 

2. 
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Figure 4. 2: Plant-MFC tubular reactor before installation (above) and its schematic cross-section view 

(below). Two grey dots on the outer side of the anode and the cathode represent titanium wire current collector.  

The tubular plant-MFCs were installed manually by hoeing the top soil of the paddy field prior to the 

transplantation. The tubular plant-MFCs were place about 10-15 cm below the soil (Figure 4. 3). 

Both end of the silicon tubes were bended down with the open hole facing ground to avoid rain water 

going into the tube that can affect air i.e. oxygen supply to the cathode.   
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Figure 4. 3: Installed tubular Plant-MFC installation (see shaded area) just before covering the tube with paddy 

field soil  

 

4.2.3 Measurements and Analysis 

Plant-MFC reactor performances were evaluated based on anode potential, cathode potential and cell 

potential, in combination with different applied external loads. In the first three crop seasons, data 

were irregularly measured with a digital multimeter (Fluke, Fluke Europe B.V., Eindhoven, The 

Netherlands). All potentials were measured and reported against a 3M KCl Ag/AgCl reference 

electrode (QIS, Oosterhout, Netherlands). The anode reference electrode was fixed on the anode 

surface with a cable tie and the cathode reference electrode was inserted in the tube between the 

cathode and spacer. In the fourth crop season, data (the anode potential, the cathode potential, the cell 

potential and temperature) were automatically logged using LoRa technology (AE Sensors B.V, 

Dordrecht, The Netherlands).  The temperatures were measure 50cm above the ground using the 

temperature sensor integrated in the same LoRa data acquisition technology. 

Rainfall data were obtain from the two nearest weather station, which are Mempawah Climatology 

Station (0.07500N, 109.19000E ; 2m above sea level) about 100km at South- South West of research 
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area and Paloh Climatology Station (1.74000N, 109.30000E ;15m above sea level) about 100 KM at 

North-North West of the research area.  

Soil samples were collected (on 30 June 2018) from 6 different locations for microbial community 

analysis (Figure 4. 4). Samples were grouped into 3: Group I (Samples A and C) was soil that attached 

on the anode from mid plant-MFC; Group II (samples B and D) was soil that attached on the anode 

from end of the plant-MFC; and Group III (samples E and F) was from soil with 2 m distance  from 

plant-MFC 1 and 2. After collection, samples were kept in a 30ml-tube container and keep in 40C 

fridge. The next day samples were transported for 48hours with a cool-ice box for DNA extraction to 

Genetika Lab, Jakarta (PT. Genetika Science Indonesia), a partner company from 1st BASE Axil 

Scientific Pte Ltd, Singapore.  

Sequencing steps were performed by 1st BASE[196] as following: the universal primers that targeted 

the V3V4 regions were used for amplification. The quantity and quality of the PCR product that 

targeted the V3V4 regions were measured using Tapestation 4200, picogreen and nanodrop.  All the 

samples passed the QC measurement and proceed straight for a library preparation. The libraries were 

prepared using Illumina 16s metagenomics library prep kit and their quality and quantity were 

determine using Agilent Tapestation 4200, Picogreen and qPCR. These libraries were then pooled 

according to the protocol recommended by the Illumina and proceed straight to sequencing using 

MiSeq platform at 2x301PE format by 1st BASE Axil Scientific Pte Ltd, Singapore.  

 

Figure 4. 4: Soil samples collection points (A, B, C, D, E, and F).  
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During the harvest time from the third and the fourth crop season, aboveground biomass was collected 

from 12 different locations. Three locations (above plant-MFC) were a 1-square-meter area above 

each plant-MFC reactors and another six location (1 metre from plant-MFC) were a-1-square-metre 

area both to the north and to the south from each reactor (Supplementary Figure S4.2). In the fourth 

crop season, the biomass was only collected from the north part of the plant-MFC reactors. Biomass 

was cut about 5 cm from the ground. After collection, wet biomass was weighted using a manual 10-

kg counterweights scale with a precision of 100gr.  

 

4.2.4 Long Distance data acquisition 

Eight wireless voltage meters (AE sensors, Dordrecht, the Netherlands) were installed as data 

acquisition on 14 February 2019 between crop season 3 and 4. Each sensor has three inputs; one 

common ground and two completely differential inputs. For each installed tube, a reference sensor 

(3M KCl Ag/AgCl reference electrode, QIS, Oosterhout, Netherlands) was installed which was 

connected to the common ground. Both the anode and cathode were measured completely differential 

against the reference input. Each voltage meter is built into a watertight junction box and is powered 

by two AA batteries, the projected operating time at Borneo conditions with four measurements per 

hour is at least one year. The voltage meters have a Laird RM186-SM module (LoRa/BLE 868MHz 

LoRa EU) implemented and can be approached by Bluetooth through the Laird Toolkit app to check 

it’s status and connectivity (Figure 4. 5). Through the same module, data can be sent through the 

LoRaWAN network (Long Range Wide Area Network). Since the voltage sensors, including the 

Laird module, were manufactured in the Netherlands, they used the EU LoRaWAN protocol which 

cannot be used out of the EU. Moreover, there was no LoRaWAN network enrolled yet at the research 

site. We therefore also installed a Gateway (Laird RG186 LoRa Gateway, Laird Connectivity) on site 

that was connected through the locally installed WiFi network dongle (ZTE MIFI Router, 

InternationalSIM, Terborg, The Netherlands) (Figure 4. 5). This Wifi network was finally made 

possible through the available 3G mobile phone network (IM3 Ooredoo, PT. Indosat Tbk, Jakarta, 

Indonesia). Due to the lack of available electricity on site, the whole system is powered by a locally 

installed battery system (100Wp solar panel, 100 AH 12 V Rechargeable Sealed Lead Acid Battery; 

PWM20 Solar Charge Controller) on solar panels. Data is temporary stored by the sensors and sent 

in CSV-format on a daily basis to pre-defined email addresses of the involved researchers in the 

Netherlands. This data logging equipment was co-designed and/or manufactured with support by 

Plant-e B.V (Wageningen, The Netherlands) & AE Sensors B.V (Dordrecht, The Netherlands). 
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Figure 4. 5: Online data acquisition system 

 

4.2.5 Calculation 

Current generation was calculated according to Equation 4.1. 

𝐼 =
𝑉

𝑅
, (4.1) 

I is current production in Ampere (A), V is cell potential in Volt (V) and R is applied load in Ohm 

(Ω).  

Power generation was calculated according to Equation 4.2 or Equation 4.3. 

𝑃 = 𝑉 × 𝐼, (4.2) 

𝑃 = 𝐼2  × 𝑅, (4.3) 

P is power output in Watt (W), V is cell potential in Volt (V), I is current production in Ampere (A) 

and R is applied load in Ohm (Ω). 

Current density (A/m2) and Power density (W/m2) were obtained by dividing the current production 

and the power output with plant growth area (PGA). The PGA was 0.0585 m2. Energy density 

(Wh/m2) was obtained by multiplying the power density with the time (h) it was generated.  
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Internal resistance (Rint) is calculated according to equation 4.4 [53]. 

𝑅𝑖𝑛𝑡 =
𝐸𝑂𝐶𝑃−𝐸𝑐𝑒𝑙𝑙

𝑖
, (4.4) 

EOCP is the open cell potential in V, Ecell is the measured cell potential in V, i is the current density 

in A/m2 and Rint is the internal resistance in Ω.m2.  

Internal resistance is the accumulation of resistances in the Plant-MFC system due to anode 

overpotential (ŋan), cathode over potential (ŋcath) and membrane potential (Em)[53].  Cathode 

internal resistance (Rcath) and anode internal resistance (Ran) are calculated according to equation 

4.5 and equation 4.6, respectively. 

𝑅𝑐𝑎𝑡ℎ =
ŋ𝑐𝑎𝑡ℎ

𝑖
=

𝐸𝑂𝐶𝑃,𝑐𝑎𝑡ℎ− 𝐸𝑐𝑎𝑡ℎ

𝑖
, (4.5) 

𝑅𝑎𝑛 =
ŋ𝑎𝑛

𝑖
=

𝐸𝑎𝑛 −  𝐸𝑂𝐶𝑃,𝑎𝑛

𝑖
, (4.6) 

EOCP,cath is the cathode potential at open cell potential (V), EOCP, an is the anode potential at open 

cell potential(V), Ecath is the measured cathode potential (V) and Ean is the measured anode potential 

(V). The internal resistance is reported normalized to the PGA. 

In this study, the theoretical cathodic reduction reaction potential of oxygen to water (-0.494V vs 

Ag/AgCl) is considered as the cathode potential at open cell condition (EOCP,cath). The theoretical 

anodic oxidation reaction of acetate (0.6V vs Ag/AgCl) is used as the anode potential at open 

condition (EOCP, an). Thus, the open cell potential is 1.094V vs Ag/AgCl [51,52]. 

The maximum power generation was evaluated by a polarization technique. Polarization was 

conducted on 29 November 2017. First, plant-MFC was operated at an open cell condition (external 

load was disconnected) for 10 minutes. After that the external load was reconnected and changed 

every 10 minutes from high to low in order. The external loads used for the polarization were 1000 

ohm, 470 ohm, 220 ohm, 100 ohm, and 10 ohm. Cell potential generated from the plant-MFCs for 

every operated external load were measured with a multimeter after 10 minutes operation. From these 

cell potential, current generation and power generation were calculated according to equation 4.1 and 

4.2 and normalized to PGA. Note that this is not an indicator for the actual long term performance of 

the Plant-MFC since this method does allow to take capacitive current into account. 
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4.3 Results 

4.3.1 Rice paddy maintenance, growth and production above Plant-MFC application 

The tested Plant-MFCs did generate electricity and the paddy field maintenance was for this field 

study not strongly influenced. The rice paddy owner took care not to destruct a buried tube during 

land preparation and other maintenance activities. Rice plants did grow and produced rice during the 

experiments (Supplementary Figure S4.2). In all four crop seasons, no negative effect was observed 

in the rice paddy growth due to the tubular plant-MFC installation (Supplementary Figure S4.3). 

Conversely, the aboveground biomass production was on average between 27% and 35% higher 

above the tubular plant-MFC installation compared to one meter away from that location (Table 4. 

2). Although one cannot claim that this increase was due to the plant-MFC installation as there is 

variation in biomass production possible due to e.g. so called border effect [197]. This result is still 

important to prove that the co-installation of the Plant-MFC in a paddy field is suitable both for food 

and electricity generation. At moment of submission of this paper, the Plant-MFCs are still installed 

and no signs of impairment on the technology were revealed (data not shown). Further continuation 

could show the durability of the Plant-MFC and provide information on required maintenance. No 

maintenance was required in the first two years. 

Table 4. 2: Average aboveground wet biomass (Kg/m2) 

  3rd Crop season 4th crop season 

Above Plant-MFC 3±0.5 4.6±0.7 

One meter from Plant-MFC 2.3±0.5 3.4±0.8 

 

4.3.2 Continuous power production during the rice growing season 

During the rice growing season, a continuous electricity production was achieved (Figure 4. 6A & B 

and Supplementary Figure S4.4). A proper analysis was obtained from the fourth crop season in 

which data were automatically logged using LoRa technology. Maximum daily average power 

density of the triplicate experiment reached 9.6 mW/m2 PGA (Figure 4. 6A). Plant-MFC 2 was able 

to continuously generate a power density of 8.5 mW/m2 PGA for 60 days on the fourth growth season 

(Figure 4. 6A). Based on 72 days current generation in the fourth crop season during waterlogged 

conditions, 9.5 - 15Wh/m2 PGA energy density (at an average of 0.4±0.1 mW per meter tube) was 

achieved.  
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A. Power density 

 

 

B. Anode and Cathode Potential 

 

Figure 4. 6: Tubular plant-MFCs performances during fourth crop season: (A) Power density, and (B) Anode 

and Cathode Potential 
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Maximum of 44 mW/m2 PGA power density was achieved using polarization curve; this maximum 

power density must be carefully evaluated because it may be influence by a capacitive current as 

explained in Chapter 3 [45] (Supplementary Figure S4.5). This result was in the same order with 

other Plant-MFC power density in the paddy field (Table 4. 3). There were several peaks in power 

density (shown in green circles; best visible at Plant-MFC 1 and 2) as shown in Figure 4. 6A. Such 

peaks may have different origins that maybe related to the management of the rice paddy as a response 

to supply of fertilizer or potentially pesticides. They could have an effect on the electrochemically 

active bacteria in the paddy field. There is no direct evidence to support this last hypothesis, though 

it is known that pesticides on wetland have effects on rice field microflora [198]. In addition, it could 

be that the degradation of Isoprocarb/Mipcin (from Mipcindo 50) and Imidacloprid (both chemicals 

have an aromatic structure like in hexaclorobenzene) might provide an additional substrate for the 

EAB to generate electricity as have been shown that pesticide hexachlorobenzene degradation is 

enhanced in a soil MFC while generating electricity [199]. Also, it is known that addition of compost 

can affect current generation in Plant-MFC as well as that specific nutrients could include additional 

electron donor for electricity generation like in the case for urea obtained from urine [200–202]. 

 

Table 4. 3: Performances from selected Plant-MFC system using rice of tubular designs 

Plant-MFC types, Anode and 

Cathode materials 
Plant species 

Maximum 

power 

density 

(mW/m2 

PGA) 

Reference 

Paddy field 

Anode: Graphite felt below the soil surface 

Graphite felt above the soil surface, air cathode 

Rice   

(Oryza sativa) 

6 [48] 

Lab, Container Plant-MFC 

Anode: graphite mat and graphite rod 

Cathode: graphite granule, graphite rod, 100mM K3Fe(CN)6 

Rice   

(Oryza sativa) 

30 [62] 

Paddy field 

Anode: Graphite felt 

Cathode: Graphite felt modified with platinum catalyst, air 

cathode 

Rice   

(Oryza sativa) 

14 [63] 

Paddy field 

Anode: graphite felt 

Cathode: graphite felt modified with platinum catalyst, air cathode 

Rice   

(Oryza sativa) 

19 [49] 

Paddy field 

Anode: Graphite felt 

Cathode: Graphite felt with platinum catalyst modified with 

polystyrene-foam bars to maintain buoyancy 

Rice   

(Oryza sativa) 

80 [128] 

Lab-Perspex tubes  

Anode: graphite granule, vermiculite, carbon rod. 

Cathode: graphite felt interwoven carbon felt, air cathode 

Rice   

(Oryza sativa) 

72 [136] 
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Rice paddy-field MFC 

Anode: Circular graphite felt  

Cathode: Graphite felt with platinum catalyst, air cathode 

Rice   

(Oryza sativa) 

140 [50] 

PVC Pot Plant-MFC 

Anode: graphite felt interwoven with copper wire, soil from paddy 

field 

Cathode: graphite felt interwoven with copper wire, air cathode 

Rice   

(Oryza sativa) 

4.5 [203] 

 

Lab-tubular Plant-MFC from PVC with membrane 

Anode: graphite felt, graphite granule, golden wire 

Cathode: thick graphite felt, golden wire current collector, 

5mol.m-3 K3Fe(CN)6 

Reed mannagrass 

(Glyceria 

maxima) 

18 

12* 

[64] 

 

Tubular Plant-MFC with membrane and silicone gas diffusion 

layer in a lab constructed wetland. 

Anode: graphite felt and graphite stick 

Cathode: graphite felt with golden wire current collector, air 

cathode 

Phragmites 

australis 

Spartine anglica 

22a 

 

82a 

[60] 

 

Tubular Plant-MFC without membrane with silicone tube air way 

in paddy field. 

Anode: graphite felt and titanium wire current collector 

Cathode: graphite felt and titanium wire current collector, air 

cathode 

Rice   

(Oryza sativa) 

44 

9.6a 

8.5b 

This study 

*Average power density; a maximum daily average power generation; b average continuous power generation 

for 60 days 

In the fourth crop season, before the paddy field was irrigated the anode potentials were almost similar 

to the cathode potential which were around 500mV (Figure 4. 6 B). At this point, anode over potential 

was higher than cathode over potential. Thus, the anode resistance was higher than the cathode 

resistance (Figure 4. 7). There were several points that the anode potential went down to around 300-

100mV. These phenomena will be discussed further in section 3.4. When the paddy fields were 

watered, the anode potentials gradually decreased up to -369mV while the cathode potential remained 

stable around 400mV (Figure 4. 6B). This means that the cathode over potential was relatively stable 

and the anode over potential decreased. However, when the irrigation was stopped the anode potential 

increased rapidly and became higher than the cathode potential (Figure 4. 6 B and Figure 4. 7). This 

indicated a rapid increase in the anode over potential over the cathode over potential. Based on this, 

one can conclude that the cathode is not the limiting factor in this Plant-MFC as can be seen from 

Figure 4. 7. In addition, the weak peaks in the anode and the cathode potential profile in Figure 4. 7 

may be related to diurnal (day and night) effect as described in other studies [65]. However we did 

not specifically study this effect on this article.   
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Figure 4. 7: Anode and cathode internal resistance on Plant-MFC 1 during the fourth crop season 

 

4.3.3 Microbial community in the paddy field 

Microbial analysis shows that bacteria dominated the archaea in the paddy field soil. Total relative 

abundance of archaea was only 1.5±0.8% (Figure 4. 8). In the phyla level, Acidobacteria were the 

predominant bacteria followed by Proteobacteria, Planctomycetes and Verrucomicrobia.  The 

bacterial communities in the paddy field were diverse (Supplementary Table S4.1). At least more 

than 520 genera were identified. Proteobacteria are mainly from classes Betaproteobacteria, 

Deltaproteobacteria and Alphaproteobacteria.  

In general, the microbial communities from soil attached on the anode and the soil 2m apart from the 

anode are relatively similar (Figure 4. 8). However, there is an exception for Proteobacteria which 

were less enriched on the soil attached on the anode of Plant-MFC. This difference is related to 

Comamonadaceae family (order: Burkholderiales, Class: Betaproteobacteria). In the class level, 

Betaproteobacteria relative abundance was slightly higher in the soil far from the plant-MFC 

(18.5±1%) than in the soil attached on the anode Plant-MFC (10.5±4%).  In the order level 

Burkholderiales were more abundance in the soil far from reactor (9-16%) and less abundance in the 

soil attached to the anode (0.8-4.7%). This was from Comamonadaceae family which found to be 
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more abundance in the soil far from Plant-MFC (12±4%) than in the soil attached on the anode of 

Plant-MFC (1.7±1.3%). However, the genera level of this family are cannot be identified.  

 

Figure 4. 8: Microbial communities in the paddy field soil with relative abundance >1%. Y-axis shows 

relative abundance in % and X-axis (A, B, C, D, E and F) indicates the soil sample locations as described in 

Figure 4.4 

Result also shows that Deltaproteobacteria are presence in all soil samples with relative abundance 

of 2.7±0.2%. These bacteria were enriched on the anode of Plant-MFC using rice plants [186]. Some 

species within Deltaproteobacteria class that known to generate electricity are Geobacter, 

Deferrisoma, and Desulfobulbus [186].   

4.3.4 Plant-MFC can indicate a rain event as biosensor 

In between the crop seasons, the test paddy field was left in a dry condition. At these moment there 

was a non-continuous electricity production. During dry conditions the anode potential quickly 

increased to equal the cathode potential. However, there were several points in this period that the 
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anode potential went down and cell potential peaks were observed (Figure 4. 9). As the Plant-MFC 

likes anaerobic water logged conditions for the anode to generate electricity, these peaks suggested 

that the paddy field was inundated by water. Since the irrigation water was stopped to enter the area, 

the only possible reason of this inundation was rain. Since there is no rain data from the research site, 

rain data from two nearest climatology stations were utilized to predict the rain event in the research 

site. 

 

Figure 4. 9: Cell potential peak (possibly) due to rain events. The rain events were obtained from the two 

nearest climatology stations. 

Plotting the rain data (Supplementary Table S4.2) and the cell potential peak on the same graph as 

shown in Figure 4. 9, one can see that there is some correlations between rain and the cell potential 

peaks. This result suggests that there is a possibility to utilize Plant-MFC as a bio indicator (such as 

rain event or wetland drying indicator). In Figure 4. 9, there are some rain events (around 27 February 

2019 to 6 march 2019) occurred without accompanied by cell potential peaks. In addition, there are 

some peaks occurring (around 30 March 2019 to 5 April 2019) when there are no rain. In both cases, 

they happened on low rainfall (<20mm). The first case indicates that the rain state did not reach the 

research site. Moreover, the second case might indicate there is local rain in the research site. It should 

be noted that there is a mountain close by the research site. Bawang mountain (Bawang means Onion 
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in Indonesia Language) is situated about 8 km to the west side of the research site. Bawang mountain 

is stretching for 15 km from (0.856579, 109.465752) to (0.960704, 109.360416). The local climate 

of the research site is also influenced by the present of this mountain, for instance the orographic 

rainfall [204]. Therefore, an actual rain data from the Plant-MFC installation location are needed to 

further clarify this correlation. In this study, although it is known that temperature does affect current 

generation in the lab, temperature is not likely to influence the plant-MFC performances since 

temperature in the research site was rather constant during the day and night [205] (Supplementary 

Figure S4.6).  

 

4.3.5 Data acquisition via low range network integrated with 3G network enable long 

distance auto data collection 

Right after installation, the performance of the data acquisition was tested by comparing the anode 

potential, the cathode potential and the cell potential measured manually with a multitester and result 

delivered from the LoRa data logger. This step is important for data validation. During this research, 

there were 4 times data transfer disconnections. However, the connection was automatically 

reconnected again after 2-3 days and only one time there was a need to restart the LoRa gateway. 

This problem was most likely happened because of the 3G network in the research site was not stable 

due to weather conditions. Since this research site is located in an area without electricity grid, it is 

important to maintain the electricity supply for the system. In addition, enough credit on the mobile 

phone network was also a key to send the data to the 3G network. Based on this experience, LoRa 

technology is reliable to be utilized for automatic online long distance data acquisition.  

 

4.4 Conclusions 

Based on this study, we can conclude that installing a plant- MFC in a paddy field is possible and is 

generating electricity for over several crop cycles. Tubular plant-MFC can generate electricity 

continuously during the crop season as long as the rice paddy was flooded. In one crop season, 9.5-

15 Wh/m2 PGA electricity energy can be generated continuously. In between the crop seasons, Plant-

MFC may be utilized as a rain event indicator. This opens an opportunity to utilize Plant-MFC 

technology as a biosensor. An automatic long distance data transfer is possible via LoRa technology. 
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4.5 Associated Content 

Microbiota data (raw 16s rDNA amplicon sequences) is submitted to the EBI database 

(https://www.ebi.ac.uk/ena) under accession number PRJEB34787.  
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4.7 Supplementary Materials Chapter 4 

The following are available online at https://www.mdpi.com/1424-8220/19/21/4647/s1  

4.7.1 Supplementary Figures 

Figure S4.1. Plant-MFC installation in the paddy field. Tulubar Plant-MFCs were installed 

prior to paddy transplantation 

S4.1. A. Soil was manually hoed about 10-15 cm deep 
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S4.1.B. Tubular Plant-MFCs were installed in the soil by David Strik (left) and Emilius Sudirjo 

(right). Both silicones tube end were supported with bamboo sticks 

 

S4.1.C. Plant-MFC after installation. From left to right: Plant-MFC1, Plant-MFC2, Plant-MFC3, and 

two other Plant-MFC that is not related to this study 
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Figure S4.2. Aboveground biomass collection during the third crop season (on 13 February 

2019) 

S4.2.A. Harvesting aboveground biomass at one square meter area (marked with bamboo 

sticks) on top of Plant-MFC1 

 

S4.2. B. Plant-MFCs reactor (under soil marked with bamboo sticks) after biomass collection 
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S4.2. C. Nine 1-square meter plots for aboveground biomass collection 

 

 

 

 

 

 

 

 

 

 

Figure S4.3. Rice paddy visual observation from different stage of growth 

Figure S4.3. A 29 November 2017 

 

Plant-MFC 3  Plant-MFC 2  Plant-MFC 1  

North  
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Figure S4.3. B 30 June 2018 

 

Figure S4.3. C 17 July 2018 
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Figure S4.3.D 13 February 2019 (Plant-MFC1) 

 

Figure S4.3.E 13 February 2019 (Plant-MFC2) 
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Figure S4.3.F 13 February 2019 (Plant-MFC31) 

 

Figure S4.3.G 5 August 2019 (Under the small roof is LoRa sensor) 
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Figure S4.4. Plant-MFC performance manually measured with a multimeter before LoRa data 

acquisition installation 

 

 

Figure S4.5. Polarizarion curve on 29 November 2017. Current density, cell potential and power 

density 
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Figure S4.6. Temperature in fluctuation during the fourth crop season 
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4.7.2 Supplementary Tables 

Table S4.1. Microbial Relative abundance (%) for classes, orders, families and genera 

Table S1.A Classes 

Kingdom Phyla Classes Group I (From Mid reactor) Group II (end of reactor) Group III (Far from reactor) 

      A C B D F E 

k__Bacteria p__Proteobacteria c__Betaproteobacteria 9.75 11.67 6.38 14.03 19.35 17.60 

k__Bacteria p__Acidobacteria c__Solibacteres 7.15 7.37 8.63 8.32 9.41 7.65 

k__Bacteria p__Nitrospirae c__Nitrospira 3.78 3.66 6.39 4.19 7.26 6.11 

k__Bacteria p__Acidobacteria c__Acidobacteria-6 4.45 7.26 5.93 6.31 7.97 5.89 

k__Bacteria p__Planctomycetes c__Planctomycetia 5.27 6.04 5.28 4.30 4.73 3.78 

k__Bacteria p__Verrucomicrobia c__[Methylacidiphilae] 3.81 3.90 3.74 4.09 3.79 3.64 

k__Bacteria p__Acidobacteria c__Acidobacteriia 5.29 4.23 5.43 4.64 3.31 3.63 

k__Bacteria p__Planctomycetes c__Phycisphaerae 7.08 6.89 4.42 6.48 2.75 3.34 

k__Bacteria p__Proteobacteria c__Alphaproteobacteria 1.76 2.52 1.61 2.12 2.86 3.32 

k__Bacteria p__AC1 c__HDBW-WB69 0.75 1.21 0.41 0.84 2.55 2.92 

k__Bacteria p__Planctomycetes c__BD7-11 1.44 1.89 2.07 1.97 1.99 2.84 

k__Bacteria p__Verrucomicrobia c__[Pedosphaerae] 3.89 4.06 2.74 4.64 2.20 2.74 

k__Bacteria p__Proteobacteria c__Deltaproteobacteria 2.54 2.54 2.41 2.86 2.69 2.47 

k__Bacteria p__Acidobacteria c__BPC102 3.06 2.21 3.19 2.85 1.70 2.26 

k__Bacteria p__WS3 c__PRR-12 4.10 2.90 3.89 3.35 1.40 2.25 

k__Bacteria p__Acidobacteria c__DA052 3.03 2.41 3.81 2.42 2.05 1.99 

k__Bacteria p__OD1 c__ZB2 1.46 1.72 2.02 1.03 0.94 1.53 

k__Bacteria p__Verrucomicrobia c__[Spartobacteria] 0.61 0.81 0.60 0.73 1.27 1.45 

k__Bacteria p__Chloroflexi c__Ellin6529 3.75 2.55 1.13 2.39 0.77 1.25 

k__Bacteria p__Chloroflexi c__Anaerolineae 3.01 2.13 3.12 1.75 0.55 1.02 

k__Bacteria p__Firmicutes c__Clostridia 0.22 0.18 0.15 0.35 0.69 1.01 

k__Bacteria p__AD3 c__ABS-6 0.57 0.42 0.96 0.37 0.81 1.00 

k__Bacteria p__GAL15 c__unknown 0.31 0.45 1.35 0.51 1.70 0.92 

k__Bacteria p__Chloroflexi c__Ktedonobacteria 2.60 1.51 3.49 0.84 0.21 0.79 

k__Bacteria p__Gemmatimonadetes c__Gemm-1 1.03 1.32 0.64 1.16 0.41 0.60 

k__Bacteria p__NC10 c__12-24 0.66 0.55 1.14 0.64 0.51 0.49 

    Others classes <1% 18.65 17.59 19.07 16.82 16.11 17.52 

    TOTAL 100 100 100 100 100 100 
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Table S4.1. B Orders 

Kingdom Phyla Clases Orders 

Group I (From Mid 

reactor) 

Group II (end of 

reactor) 

Group III (Far from 

reactor) 

        A C B D F E 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__Burkholderiales 1.687 1.197 0.828 4.738 16.184 8.949 

k__Bacteria p__Acidobacteria c__Solibacteres o__Solibacterales 6.923 7.027 8.420 7.878 9.210 7.426 

k__Bacteria p__Nitrospirae c__Nitrospira o__Nitrospirales 3.783 3.658 6.389 4.186 7.264 6.114 

k__Bacteria p__Acidobacteria c__Acidobacteria-6 o__iii1-15 3.959 6.498 5.551 5.826 7.913 5.779 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__Neisseriales 2.544 5.136 1.846 2.090 0.209 3.749 

k__Bacteria p__Acidobacteria c__Acidobacteriia o__Acidobacteriales 5.287 4.225 5.428 4.637 3.308 3.627 

k__Bacteria p__Verrucomicrobia c__[Methylacidiphilae] o__S-BQ2-57 3.806 3.893 3.715 4.081 3.742 3.553 

k__Bacteria p__AC1 c__HDBW-WB69 o__unknown 0.752 1.210 0.412 0.838 2.552 2.924 

k__Bacteria p__Planctomycetes c__BD7-11 o__unknown 1.440 1.895 2.069 1.968 1.994 2.835 

k__Bacteria p__Verrucomicrobia c__[Pedosphaerae] o__[Pedosphaerales] 3.891 4.062 2.740 4.637 2.203 2.741 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__Rhodocyclales 2.896 2.944 1.755 3.055 0.815 2.678 

k__Bacteria p__Planctomycetes c__Planctomycetia o__Gemmatales 3.756 4.285 4.152 3.249 3.431 2.608 

k__Bacteria p__Planctomycetes c__Phycisphaerae o__WD2101 5.201 5.020 3.408 4.857 2.128 2.439 

k__Bacteria p__WS3 c__PRR-12 o__Sediment-1 4.077 2.886 3.878 3.342 1.399 2.251 

k__Bacteria p__Acidobacteria c__BPC102 o__MVS-40 3.012 2.157 3.084 2.745 1.571 2.135 

k__Bacteria p__Proteobacteria c__Alphaproteobacteria o__Rhodospirillales 0.767 1.348 0.881 1.103 1.260 2.038 

k__Bacteria p__Acidobacteria c__DA052 o__Ellin6513 3.029 2.413 3.810 2.424 2.048 1.988 

k__Bacteria p__OD1 c__ZB2 o__unknown 1.456 1.722 2.020 1.030 0.943 1.531 

k__Bacteria p__Verrucomicrobia c__[Spartobacteria] o__[Chthoniobacterales] 0.608 0.809 0.603 0.734 1.265 1.451 

k__Bacteria p__Chloroflexi c__Ellin6529 o__unknown 3.746 2.545 1.126 2.389 0.772 1.254 

k__Bacteria p__Proteobacteria c__Deltaproteobacteria o__Myxococcales 1.481 1.480 1.096 1.353 0.734 1.108 

k__Bacteria p__AD3 c__ABS-6 o__unknown 0.566 0.419 0.957 0.368 0.815 1.000 

k__Bacteria p__GAL15 c__unknown o__unknown 0.307 0.454 1.347 0.510 1.699 0.919 

k__Bacteria p__Chloroflexi c__Anaerolineae o__A31 2.466 1.461 2.676 1.281 0.477 0.828 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__Methylophilales 0.865 0.095 0.115 1.784 1.421 0.792 

k__Bacteria p__Gemmatimonadetes c__Gemm-1 o__unknown 1.028 1.323 0.643 1.159 0.407 0.595 

k__Bacteria p__Chloroflexi c__Ktedonobacteria o__Thermogemmatisporales 1.815 0.888 2.885 0.494 0.107 0.518 

k__Bacteria p__Planctomycetes c__Phycisphaerae o__CPla-3 1.199 1.009 0.320 0.821 0.172 0.382 

      Other orders <1% 27.655 27.939 27.848 26.423 23.957 25.785 

      TOTAL 100 100 100 100 100 100 
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Table S4.1.C Families 

Kingdom Phyla Classes Orders Families 

Group I (From 

Mid reactor) 

Group II 

(end of 

reactor) 

Group III 

(Far from 

reactor) 

          A C B D F E 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__Burkholderiales f__Comamonadaceae 1.3 0.6 0.4 4.5 15.9 8.6 

k__Bacteria p__Acidobacteria c__Acidobacteria-6 o__iii1-15 f__ 3.6 5.9 5.3 5.3 7.6 5.4 

Unassigned Other Other Other Other 5.4 5.3 5.7 4.5 4.3 5.3 

k__Bacteria p__Acidobacteria c__Solibacteres o__Solibacterales f__ 2.6 2.9 3.8 3.7 4.9 3.8 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__Neisseriales f__Neisseriaceae 2.5 5.1 1.8 2.1 0.2 3.7 

k__Bacteria p__Acidobacteria c__Acidobacteriia o__Acidobacteriales f__Koribacteraceae 5.2 4.2 5.4 4.5 3.3 3.6 

k__Bacteria p__Verrucomicrobia c__[Methylacidiphilae] o__S-BQ2-57 f__ 3.8 3.9 3.7 4.1 3.7 3.6 

k__Bacteria p__Nitrospirae c__Nitrospira o__Nitrospirales f__0319-6A21 1.9 1.9 3.4 1.9 4.0 3.1 

k__Bacteria p__AC1 c__HDBW-WB69 o__ f__ 0.8 1.2 0.4 0.8 2.6 2.9 

k__Bacteria p__Planctomycetes c__BD7-11 o__ f__ 1.4 1.9 2.1 2.0 2.0 2.8 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__Rhodocyclales f__Rhodocyclaceae 2.9 2.9 1.8 3.1 0.8 2.7 

k__Bacteria p__Planctomycetes c__Phycisphaerae o__WD2101 f__ 5.2 5.0 3.4 4.9 2.1 2.4 

k__Bacteria p__Acidobacteria c__Solibacteres o__Solibacterales f__Solibacteraceae 3.4 3.1 3.3 3.0 2.3 2.2 

k__Bacteria p__Acidobacteria c__BPC102 o__MVS-40 f__ 3.0 2.2 3.1 2.7 1.6 2.1 

k__Bacteria p__Planctomycetes c__Planctomycetia o__Gemmatales f__Gemmataceae 2.8 3.4 3.1 2.7 3.1 2.1 

k__Bacteria p__Proteobacteria c__Alphaproteobacteria o__Rhodospirillales f__Rhodospirillaceae 0.7 1.3 0.9 1.1 1.3 2.0 

k__Bacteria p__Acidobacteria c__DA052 o__Ellin6513 f__ 3.0 2.4 3.8 2.4 2.0 2.0 

k__Bacteria p__WS3 c__PRR-12 o__Sediment-1 f__PRR-10 3.1 2.1 3.0 2.5 1.1 1.7 

k__Bacteria p__Nitrospirae c__Nitrospira o__Nitrospirales 

f__[Thermodesulfovi

brionaceae] 1.0 0.9 1.5 1.4 1.5 1.6 

k__Bacteria p__OD1 c__ZB2 o__ f__ 1.5 1.7 2.0 1.0 0.9 1.5 

k__Bacteria p__Verrucomicrobia c__[Spartobacteria] o__[Chthoniobacterales] 

f__[Chthoniobacterac

eae] 0.6 0.8 0.6 0.7 1.3 1.5 

k__Bacteria p__Chloroflexi c__Ellin6529 o__ f__ 3.7 2.5 1.1 2.4 0.8 1.3 

k__Bacteria p__Verrucomicrobia c__[Pedosphaerae] o__[Pedosphaerales] f__ 1.2 1.2 0.9 1.8 0.8 1.2 

k__Bacteria p__AD3 c__ABS-6 o__ f__ 0.6 0.4 1.0 0.4 0.8 1.0 

k__Bacteria p__Verrucomicrobia c__[Pedosphaerae] o__[Pedosphaerales] f__auto67_4W 1.3 1.5 0.6 1.7 0.7 0.9 

k__Bacteria p__GAL15 c__ o__ f__ 0.3 0.5 1.3 0.5 1.7 0.9 

k__Bacteria p__Acidobacteria c__Solibacteres o__Solibacterales f__PAUC26f 0.5 0.5 0.9 0.6 1.5 0.9 

k__Bacteria p__Nitrospirae c__Nitrospira o__Nitrospirales f__Nitrospiraceae 0.3 0.5 0.8 0.3 1.1 0.9 

k__Bacteria p__Chloroflexi c__Anaerolineae o__A31 f__ 2.4 1.4 2.7 1.2 0.5 0.8 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__Methylophilales f__Methylophilaceae 0.8 0.0 0.1 1.7 1.4 0.7 

k__Bacteria p__Gemmatimonadetes c__Gemm-1 o__ f__ 1.0 1.3 0.6 1.2 0.4 0.6 

k__Bacteria p__Verrucomicrobia c__[Pedosphaerae] o__[Pedosphaerales] f__Ellin515 1.2 1.2 1.0 1.0 0.7 0.6 
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k__Bacteria p__Chloroflexi c__Ktedonobacteria o__Thermogemmatisporales 

f__Thermogemmatis

poraceae 1.8 0.9 2.9 0.5 0.1 0.5 

k__Bacteria p__Planctomycetes c__Planctomycetia o__Gemmatales f__Isosphaeraceae 1.0 0.9 1.0 0.6 0.3 0.5 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__MND1 f__ 0.8 0.9 0.7 1.0 0.3 0.5 

k__Bacteria p__Planctomycetes c__Phycisphaerae o__CPla-3 f__ 1.2 1.0 0.3 0.8 0.2 0.4 

        Other Families <1% 26.0 26.5 25.4 25.3 22.2 23.6 

        TOTAL 100 100 100 100 100 100 

 

Table S4.1. D Genera 

Kingdom Phyla Classes Orders Families Genera 

Group I 

(From 

Mid 

reactor) 

Group II 

(end of 

reactor) 

Group III 

(Far from 

reactor) 

            A C B D F E 

k__Bacteria p__Acidobacteria c__Acidobacteria-6 o__iii1-15 f__ g_unknown 3.60 5.87 5.35 5.29 7.61 5.44 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__Burkholderiales f__Comamonadaceae g__unknown 1.00 0.37 0.34 0.93 1.75 4.06 

k__Bacteria p__Acidobacteria c__Solibacteres o__Solibacterales f__ g_unknown 2.59 2.89 3.76 3.68 4.92 3.81 

k__Bacteria p__Verrucomicrobia 

c__[Methylacidiphilae

] o__S-BQ2-57 f__ g_unknown 3.81 3.89 3.72 4.08 3.74 3.55 

k__Bacteria p__Nitrospirae c__Nitrospira o__Nitrospirales f__0319-6A21 g_unknown 1.86 1.88 3.38 1.93 3.98 3.13 

k__Bacteria p__AC1 c__HDBW-WB69 o__ f__ g_unknown 0.75 1.21 0.41 0.84 2.55 2.92 

k__Bacteria p__Planctomycetes c__BD7-11 o__ f__ g_unknown 1.44 1.89 2.07 1.97 1.99 2.84 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__Burkholderiales f__Comamonadaceae g__Hydrogenophaga 0.21 0.11 0.03 3.00 

12.3

8 2.80 

k__Bacteria p__Acidobacteria c__Acidobacteriia o__Acidobacteriales f__Koribacteraceae g_unknown 4.54 3.49 4.61 3.61 2.47 2.64 

k__Bacteria p__Planctomycetes c__Phycisphaerae o__WD2101 f__ g_unknown 5.20 5.02 3.41 4.86 2.13 2.44 

k__Bacteria p__Acidobacteria c__Solibacteres o__Solibacterales f__Solibacteraceae 

g__Candidatus 

Solibacter 3.35 3.06 3.26 2.98 2.32 2.22 

k__Bacteria p__Acidobacteria c__BPC102 o__MVS-40 f__ g_unknown 3.01 2.16 3.08 2.75 1.57 2.13 

k__Bacteria p__Proteobacteria 

c__Alphaproteobacteri

a o__Rhodospirillales f__Rhodospirillaceae g_unknown 0.71 1.30 0.86 1.04 1.16 2.01 

k__Bacteria p__Acidobacteria c__DA052 o__Ellin6513 f__ g_unknown 3.03 2.41 3.81 2.42 2.05 1.99 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__Neisseriales f__Neisseriaceae g__Vogesella 0.75 1.03 0.60 0.38 0.10 1.91 

k__Bacteria p__Planctomycetes c__Planctomycetia o__Gemmatales f__Gemmataceae g_unknown 2.47 2.84 3.04 2.42 2.96 1.87 

k__Bacteria p__WS3 c__PRR-12 o__Sediment-1 f__PRR-10 g_unknown 3.11 2.10 3.02 2.50 1.10 1.70 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__Neisseriales f__Neisseriaceae Other 1.63 3.77 1.13 1.57 0.11 1.55 

k__Bacteria p__OD1 c__ZB2 o__ f__ g_unknown 1.46 1.72 2.02 1.03 0.94 1.53 
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k__Bacteria p__Chloroflexi c__Ellin6529 o__ f__ g_unknown 3.75 2.55 1.13 2.39 0.77 1.25 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__Rhodocyclales f__Rhodocyclaceae g_unknown 2.30 2.45 1.52 2.43 0.40 1.22 

k__Bacteria p__Verrucomicrobia c__[Pedosphaerae] o__[Pedosphaerales] f__ g_unknown 1.24 1.21 0.94 1.83 0.79 1.16 

k__Bacteria p__AD3 c__ABS-6 o__ f__ g_unknown 0.57 0.42 0.96 0.37 0.81 1.00 

k__Bacteria p__Verrucomicrobia c__[Pedosphaerae] o__[Pedosphaerales] f__auto67_4W g_uknown 1.29 1.50 0.63 1.70 0.69 0.93 

k__Bacteria p__GAL15 c__ o__ f__ g_unknown 0.31 0.45 1.35 0.51 1.70 0.92 

k__Bacteria p__Acidobacteria c__Solibacteres o__Solibacterales f__PAUC26f g__ 0.46 0.47 0.94 0.65 1.49 0.85 

k__Bacteria p__Chloroflexi c__Anaerolineae o__A31 f__ g_unknown 2.42 1.44 2.66 1.24 0.47 0.81 

k__Bacteria p__Proteobacteria c__Betaproteobacteria o__Methylophilales f__Methylophilaceae g__ 0.80 0.05 0.10 1.69 1.38 0.74 

k__Bacteria 

p__Gemmatimonadet

es c__Gemm-1 o__ f__ g_unknown 1.03 1.32 0.64 1.16 0.41 0.60 

k__Bacteria p__Verrucomicrobia c__[Pedosphaerae] o__[Pedosphaerales] f__Ellin515 g__ 1.24 1.22 1.05 1.02 0.66 0.58 

k__Bacteria p__Chloroflexi c__Ktedonobacteria 

o__Thermogemmatisporal

es 

f__Thermogemmatisporace

ae g__ 1.81 0.89 2.88 0.49 0.11 0.52 

k__Bacteria p__Planctomycetes c__Planctomycetia o__Gemmatales f__Isosphaeraceae g__ 0.97 0.89 1.01 0.56 0.31 0.49 

k__Bacteria p__Planctomycetes c__Phycisphaerae o__CPla-3 f__ g_unknown 1.20 1.01 0.32 0.82 0.17 0.38 

Unassigned Other Other Other Other Unassigned_Other 5.44 5.31 5.69 4.55 4.28 5.30 

          Other genera <1% 

30.6

5 

31.8

1 

30.2

8 

31.3

1 

29.7

4 

32.7

2 

          TOTAL 100 100 100 100 100 100 
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Table S4.2. Rainfall data vs peak at Plant-MFC during dry period between crop season 3 & 4 

Date 

Mempawah climatology station Paloh climatology station Rain 

possibility 

in the 

research 

site 

Rain 

(mm) 

Wind 

direction 
rain states 

Rain 

(mm) 

Wind 

Direction 
Rain states 

14-Feb-

19 2.80 NE moderate rain 

0 C 

no rain 

High 

possibility 

15-Feb-

19 4.00 C moderate rain 

0.1 C 

drizzle 

Low 

possibility 

16-Feb-

19 21.50 NE heavy rain 

8888 na data not 

available 

High 

possibility 

17-Feb-

19 14.30 C heavy rain 

1.8 C 

drizzle 

Low 

possibility 

18-Feb-

19 8888 C 

data not 

available 

0 C 

no rain unknown 

19-Feb-

19 0.00 E no rain 

0 C 

no rain unknown 

20-Feb-

19 0.00 NE no rain 

0 C 

no rain unknown 

21-Feb-

19 1.80 C drizzle 

0 C 

no rain unknown 

22-Feb-

19 113.00 E storm 

0 N 

no rain 

High 

possibility 

23-Feb-

19 0.00 NE no rain 

2.5 C 

moderate rain 

Low 

possibility 

24-Feb-

19 98.10 NE storm 

66.7 C 

storm 

High 

possibility 

25-Feb-

19 3.10 C moderate rain 

8888 na data not 

available 

Low 

possibility 

26-Feb-

19 9.30 E moderate rain 

8888 na data not 

available 

Low 

possibility 

27-Feb-

19 

11.2 NE 

heavy rain 

3.4 C 

moderate rain 

High 

possibility 

28-Feb-

19 

3.3 NE 

moderate rain 

8888 C data not 

available 

High 

possibility 

1-Mar-

19 

10 C 

heavy rain 

0 C 

no rain 

Low 

possibility 

2-Mar-

19 

1.5 W 

drizzle 

0 C 

no rain unknown 

3-Mar-

19 

0 C 

no rain 

14 C 

heavy rain unknown 

4-Mar-

19 

0 C 

no rain 

1.5 C 

drizzle unknown 

5-Mar-

19 

0 C 

no rain 

0 C 

no rain unknown 

6-Mar-

19 

0.2 C 

drizzle 

4.9 C 

moderate rain unknown 
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7-Mar-

19 

0 E 

no rain 

0.4 C 

drizzle unknown 

8-Mar-

19 

na W data not 

available 

8888 na data not 

available unknown 

9-Mar-

19 2.50 C moderate rain 

0 C 

no rain 

Low 

possibility 

10-Mar-

19 0.00 W no rain 

0.5 N 

drizzle unknown 

11-Mar-

19 na C 

data not 

available 

4.7 C 

moderate rain unknown 

12-Mar-

19 na na 

data not 

available 

8888 C data not 

available unknown 

13-Mar-

19 0 W no rain 

0 C 

no rain unknown 

14-Mar-

19 0 C no rain 

0 C 

no rain unknown 

15-Mar-

19 1 NE drizzle 

0 C 

no rain unknown 

16-Mar-

19 18.8 C heavy rain 

25.1 C 

heavy rain 

High 

possibility 

17-Mar-

19 0 NE no rain 

8888 C data not 

available unknown 

18-Mar-

19 

8888 na data not 

available 

0 C 

no rain unknown 

19-Mar-

19 

0 C 

no rain 

0 C 

no rain unknown 

20-Mar-

19 

0 W 

no rain 

0 C 

no rain unknown 

21-Mar-

19 

0 SW 

no rain 

0 C 

no rain unknown 

22-Mar-

19 

8888 na data not 

available 

0 C 

no rain unknown 

23-Mar-

19 

0 W 

no rain 

8888 na data not 

available unknown 

24-Mar-

19 

0 W 

no rain 

0 C 

no rain unknown 

25-Mar-

19 

0 SW 

no rain 

8888 N data not 

available unknown 

26-Mar-

19 0 NE no rain 

0 C 

no rain unknown 

27-Mar-

19 0.4 W drizzle 

0 C 

no rain 

High 

possibility 

28-Mar-

19 11.4 SW heavy rain 

8888 na data not 

available 

High 

possibility 

29-Mar-

19 1.3 SW drizzle 

3.8 C 

moderate rain 

High 

possibility 

30-Mar-

19 0 SW no rain 

0 C 

no rain unknown 
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31-Mar-

19 0 W no rain 

0 C 

no rain unknown 

1-Apr-

19 

8888 W data not 

available 

0 C 

no rain unknown 

2-Apr-

19 

8888 na data not 

available 

8888 C data not 

available unknown 

3-Apr-

19 

8888 na data not 

available 

8888 na data not 

available unknown 

4-Apr-

19 

8888 na data not 

available 

8888 na data not 

available unknown 

5-Apr-

19 

0 C 

no rain 

0 C 

no rain unknown 

6-Apr-

19 

0 W 

no rain 

0 C 

no rain unknown 

7-Apr-

19 

0 C 

no rain 

0 N 

no rain unknown 

8-Apr-

19 

0 W 

no rain 

0 C 

no rain unknown 

9-Apr-

19 

8888 na data not 

available 

0 C 

no rain unknown 

10-Apr-

19 

8888 na data not 

available 

13.9 C 

heavy rain 

High 

possibility 

11-Apr-

19 

0.4 C 

drizzle 

25.7 E 

heavy rain 

High 

possibility 

12-Apr-

19 

1.5 SW 

drizzle 

1.8 C 

drizzle unknown 

13-Apr-

19 

66.4 C 

storm 

0.1 C 

drizzle unknown 

14-Apr-

19 

0.2 E 

drizzle 

8888 na data not 

available unknown 

15-Apr-

19 

0 SW 

no rain 

1.3 N 

drizzle unknown 

0mm = no rain; 0-2.5 mm= drizze; 2,5-10 = moderate rain; 10-50 = heavy rain; >50= storm; 8888 

= data not available; na = not available;  

C = calm (0 m/s) 

Rain possibility in the research site was predicted based on the rain state and the wind direction 

from the climatology stations.  
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Chapter 5 

A Thin Layer of Activated Carbon 

Deposited on Polyurethane Cube Leads to 

New Conductive Bioanode for (Plant) 

Microbial Fuel Cell 
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Abstract 

 

Large-scale implementation of (plant) microbial fuel cells is greatly limited by high electrode costs. 

In this work, we study the potential of exploiting electrochemically active self-assembled biofilms in 

fabricating three-dimensional bioelectrodes for (plant) microbial fuel cells with minimum use of 

electrode materials. Three-dimensional robust bioanodes were successfully developed with 

inexpensive polyurethane foams (PU) and activated carbon (AC). The PU/AC electrode bases were 

fabricated via a water-based sorption of AC particles on the surface of the PU cubes. The electrical 

current was enhanced by growth of bacteria on the PU/AC bioanode while sole current collectors 

produced minor current. Growth and electrochemical activity of the biofilm were shown with SEM 

imaging and DNA sequencing of the microbial community. Electric conductivity of the PU/AC 

electrode enhance over time during bioanode development. The maximum current and power density 

of an acetate fed MFC reached 3mA/m2 projected surface area of anode compartment and 22mW/m3 

anode compartment. The field test of the Plant-MFC reached a maximum performance of 0.9 mW/m2 

plant growth area at a current density of 5.6 mA/ m2 PGA. A paddy field test showed that the PU/AC 

electrode was suitable as an anode material in combination with a graphite felt cathode.  Finally, this 

study offers insights on the role of electrochemically active biofilms as natural enhancers of the 

conductivity of electrodes and as transformers of inert low-cost electrode materials into living 

electron acceptors. 
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5.1 Introduction 

In a bioelectrochemical system (BES) application such as (Plant) Microbial Fuel Cell, electrode is a 

crucial part because of its function to accept released electrons from electrochemically active bacteria 

in the anode and to transfer the electrons to the final electron acceptor in the cathode [51,52]. 

Especially in plant microbial fuel cell with its relative low current density, large amounts of electrodes 

are required. One of the most utilized electrodes is graphite felt  [40,48–50,58,60,63–

65,96,126,130,130,136,137]. So far, in the best two weeks performance of a plant microbial fuel cell 

(Plant-MFC) utilizing graphite felt both for the anode and the cathode, 240 mW/m2 of power output 

was achieved [65].  Although graphite felt has shown itself to be a good electrode, its price (around 

€ 62/m2) has become an inhibiting factor in real applications [46]. For instance, the electrode cost 

(with graphite felt) for a tubular Plant-MFC are between 30 and 78% of the total cost [46]. Therefore, 

it is necessary to find an alternative cheaper electrode ideally without compromising on the 

performance.  

An innovative alternative to reduce the electrode cost is using microorganism to fabricate 

bioelectrodes [65,206]. These bioelectrodes consist of the biocatalyst of electrochemically active 

bacteria which grow in a biofilm that by itself can be highly conductive and as electrode itself [207]. 

Long term performance microbial colonization on the electrode surface structure resulted in a high 

current density [82,208]. Several studies show, for instance Xie et al [82], a conductive and macro-

porous three-dimensional scaffold is the most suitable material for such a bio electrode. In this sense, 

a wide variety of materials has been studied as three-dimensional bioanodes, which focus both on 

attaining high performing bioelectrodes and on a practically implementable bioanodes as well as cost 

reduction [209]. However, the cost reduction is still a challenge for the electrode production because 

the preparation techniques for some of the three-dimensional bioanodes are often fabricated with 

advanced materials and fabrication methods such as electropolymerization of pyrrole and carbonized 

sponges coated with polyaniline [208,210,211]. 

Desirable features to design a scalable bioanode are cost-effectiveness, high power output, good 

biocompatibility to support microbial growth and can be scaled-up[208]. Based on these features, this 

study considers reticulated polyurethane (PU) foam as the core three-dimensional structure using 

activated carbon (AC) as the coating material as a practical bioanode. On one hand, PU foam 

facilitates the open structure to support internal and external biofilm growth, bacterial accessibility 

and efficient transport of substrates[212,213]. On the other hand, AC confers a high surface area, 

hydrophilicity and conductivity to the surface of the PU foams[212,214,215]. Research (Chapter 2 

https://en.wikipedia.org/wiki/Euro_sign
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and Chapter 3) showed that AC is a suitable material for bioanode growth [45,88,142]. Foremost, 

both materials PU and AC have a lower cost (<€1 per kg) than most common electrode materials, 

such as graphite felt, graphene cloth, graphite foam and carbon nanotubes foam[216,217]. 

The use of PU foams fabricated with conductive materials as electrode materials has been 

successfully described before [208,212,218]. However, these electrodes were fabricated using 

additional high-energy input processes (e.g. carbonisation of the PU [212]), expensive material (e.g. 

carbon nano tubes [213,219]),  and complex method (e.g. sonication and polymeration of polypyrrole 

[220]). To reduce materials investment cost we investigated to exploit the electrochemically active 

and conductive biofilm as much as possible while using PU as carrier materials and a just 

thin/minimum layer of conductive activated carbon materials. Therefore, the objective of this study 

was to validate if the polyurethane foams coated with the activated carbon can perform as platform 

bioanodes for harvesting electric current in microbial fuel cells (MFCs). Hence, the role of the 

biofilm, the role of the bioanolyte and more importantly the performance and limitations of the 

PU/AC bioanodes were investigated. Furthermore, the field test result of PU/AC electrode in a paddy 

field is also presented. 

 

5.2  Material and Methods 

5.2.1 Preparation of PU/AC composites  
 

Composites consisted of reticulated PU cubic foams (Recticel, Ltd, Belgium) coated with milled AC 

(Norit PK 1-3, Norit Nederland BV, The Netherlands). All PU foams had dimensions of 1.5 cm x 1.5 

cm x 1.5 cm, a density of 30.4 kg m-3 and a porosity of 20 pores per inch (PPI) which is approximately 

equal to a pore diameter of 13 m. The AC bulk density is 240-400 kg/m3[221]. First, the granular 

AC was milled into fine particles with a miller machine (SM2000, Retsch GmbH, Germany). The 

particle size distribution of the activated carbon (D10 =2.9±1.25µm, D50= 4.5±1.13µm, 

D90=8.6±1.01µm) was measured with Laser Diffraction Technique (LA-960 HORIBA Scientific, 

HORIBA Instrument, INC, Irvine, USA). PU foams were washed with demineralized water and dried 

at 105ºC overnight. Then, a coating solution was prepared by mixing 4 gL-1 of AC with 400 mL of 

demineralized water in a beaker of 600 mL under magnetic stirring. The stirring speed and water 

temperature were controlled at 500 to 600 rpm and 30 ºC, respectively. After that, PU foams were 

coated in batches of four sponges by dipping them into the coating solution for one hour at constant 

stirring and 30 ºC temperature in a climatized room. Foams were carefully dropped in sequence and 
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kept in the middle of the vortex. Afterwards, the PU/AC composites were gently rinsed with 

demineralized water and dried at 105 ºC overnight. Loads of activated carbon attached to the PU 

foams were calculated via gravimetric mass balances as given in Equation (5.1). 

𝑊𝐴𝐶 =  
𝑊𝑓 − 𝑊𝑖

𝑊𝑓
 × 100                                                    (5.1) 

where WAC was the % of AC attached to foams, Wf was the final weight after treatment and Wi was 

the initial weight of plain foams [218].  

5.2.2 MFCs setup  

The experimental setup consisted of six flat-plate MFCs similar to earlier work[222]. Each MFC had 

two single flow channels (one for the cathode and one for the anode) separated by a cation exchange 

membrane (Fumasep FKD-PK-75, Fumatech, Braunschweig, Germany). Each channel had a 

projected surface area of 22 cm2 and a volume of 33 mL. The 33 mL anode volume was filled with 

or without three-dimensional electrode material as described in Table 5. 1. The cathode consisted of 

a flat graphite-Al2O3 blasted plate (Müller & Rössner GmbH & Co., Troisdorf, Germany) and four 

graphite felt layers with a thickness of 3 mm (FMI Composites Ltd., Galashiels, Scotland) inside the 

channel to increase the surface area. The anode integrated the anode material and two titanium current 

collectors with a length of 11 cm (No. 299, D=1 mm, Ti-gr1) separated by a distance of 5.5 cm 

(Figure 5. 1). Of the six reactors (Table 5. 1), in three of them, the anode material was eleven cube 

foams with one coating of activated carbon (PU/AC composites). One of the MFCs with PU/AC 

composites (PU/AC Inoculum) was used to grow the bioanodes and use the anolyte as inoculum for 

the other two (PU/AC I and PU/AC II). One MFC had as anode material a graphite felt (KFA-5mm, 

SGL Carbon GmbH, Bonn, Germany) layer to confirm that the used medium and inoculum in all 

MFCs were not limiting the development of bioanodes. The last two MFCs (Ti-CC I and Ti-CC II) 

deprived of anodes and used only Ti wire as current collectors that possibly act as anode.  

Table 5. 1: MFC reactors name with their anode materials and functions 

Reactors name Anode materials Function 

PU/AC I PU/AC composites  Studied reactor. Operated for 28 days 

PU/AC II PU/AC composites Studied reactor. Operated for 28 days 

PU/AC Inoculum PU/AC composites Inoculate reactor. Operated for 70 days 

Graphite felt Graphite felt Control. Operated for 73 days 

Ti-CC I Only current collector (Ti Wire) Blank reactor. Operated for 83 days 

Ti-CC II Only current collector (Ti Wire) Blank reactor. Operated for 83 days 

Note: PU/AC I and II were started after 42 days operation of the PU/AC Inoculum. PU/AC Inoculum result are not shown. 
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Figure 5. 1: Schematic illustration of the experimental set-up (MFC reactor). The number of PU/AC 

composites in the anode is 11 cubes 

 

 

5.2.3 MFCs operation 

MFCs were operated under recirculation and anaerobic conditions within an acclimatized room at 

30ºC. The flow rates were 3.5 mLs-1 for the anolytes and 3.3 mLs-1 for the catholytes. The anolytes 

had 0.020 M sodium acetate, 10 gL-1 sodium 2-bromoethane sulfonate and macro and micronutrients 

as described earlier (Supplementary Table S5.1 and Supplementary Table S5.2) [206]. Anolyte 

compartments were equipped with Ag/AgCl, 3M KCl reference electrodes (QIS, Oosterhout, The 

Netherlands). In the catholytes, 0.05 M potassium ferricyanide was chemically reduced in 0.05 M 

phosphate buffer at pH 7. On day one, both catholytes and anolytes were flushed with N2 gas (purity 

>99.9%) for one hour to remove oxygen. This was done to prevent oxygen diffusion from the cathode 

to the anode which may hamper the development of the bioanode [58]. Then, anolytes were inoculated 

with 11% v/v of mixed culture bacteria grown on acetate from previous experiments[65,88]. Acetate 
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(2 g/L sodium acetate) was further regularly (about every 2-4 days) injected into the anolyte to prevent 

substrate depletion. MFCs were operated with an external resistance of 50 kΩ. The pH of anolytes 

was manually controlled at 7 (±0.5) with anaerobic NaOH and HCl solutions to provide favourable 

conditions for electrochemically active bacteria[40]. Catholytes were replenished with fresh 

catholytes after cell voltages had decreased more than 150 mV. Anolytes were protected from light 

as much as possible with aluminium foil to prevent photosynthetic microorganisms from growing. 

Additionally, the actual current collectors were replaced by clean titanium wires after successful 

development of bioanodes. 

5.2.4 Measurements  

5.2.4.1 Electrochemical measurements 

For all MFCs, anode and cathode potential were measured versus the reference electrodes placed in 

the anode chamber. Potentials were collected every 600 seconds via Fieldpoint modules (National 

Instruments, USA) connected to a computer with Labview Software (Labview 2013, National 

Instruments, USA). All the electrochemical experiments were carried out with a potentiostat 

(Iviumstat, Ivium Technologies, The Netherlands). To know the maximum performance of the 

bioanodes polarization curves were performed in-situ with a three-electrode setup from a potential of 

-500 mV to 50 mV, in steps of 50 mV every 600 seconds[52]. In this setup, anodes were the working 

electrodes while the cathodes were the counter electrodes. The reference electrodes were located in 

the anode chamber. The cells were set to open cell for 30 minutes before the polarization curves. The 

average current measured for each anode potential in the last 60 seconds is shown in the results.  

Furthermore, to support understanding in electron-transfer in-situ and ex-situ cyclic voltammetries 

(CVs) were done under anaerobic conditions as in previous MFC research [223,224]. The in-situ CVs 

were done with a three-electrode setup (anodes were the working electrodes) from a potential of 50 

mV to -400 mV and increased back to 50 mV at a scan rate of 1 mV/s [225]. Three cycles were 

performed considering the last cycle as the result. The in-situ measurements were performed in MFCs 

after the start-up phase (t=3 days), the replacement of current collectors (on days 20) and the 

replacement of old anolytes for fresh ones (t=25 days). These fresh-anolytes were free of inoculum 

and acetate and were flushed for one hour with pure N2. In addition, the ex-situ CVs were performed 

in the replaced anolytes with a three-electrode setup using an Ag/AgCl, 3 M KCl reference electrode 

and two titanium wires integrating a graphite felt-layer of 1.5 x 2 cm as the counter and working 

electrodes (Supplementary Figure S5.1). The counter and working electrodes were placed in the 

anolyte under continuous N2 flushing; the electrodes were just in contact with the anolyte. The set 
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range for ex-situ CVs was from 50 mV to -400 mV at a scan rate of 5 mVs-1. Both scan rates, 1 mV/s 

and 5 mVs-1, were not destructive for the biofilm according to the literature[52,226]. 

Moreover, ohmic resistances of bioanodes were measured in-situ over time and ex-situ at the end of 

experiments via electrochemical impedance spectrometry (EIS) (Supplementary Figure S 5.2). All 

EIS were carried out with a two-electrode setup at an applied cell voltage of 0V, an amplitude of 

0.01V and 26 frequencies in the range of 10-4 to 106 Hz [52,227]. The reported ohmic resistances 

were obtained as described earlier [40]. Particularly for the ex-situ measurements, a device with gold-

plated electrodes was constructed for measuring the PU/AC bioanodes (Figure 5. 2). The electrodes 

had a gold layer thickness of 3 mm (Haveman Edelmetaal, Voorburg, Netherlands). A single PU-

cube (dimensions as earlier mentioned with 1.5 by 1.5 by 1.5 cm) was fixed between the electrodes 

to measure resistance; the distance between the electrodes was fixed at 1.2 cm and the cube pressed 

with about 20% volume reduction. The measurements were under saturated conditions with acetate-

free anolyte previously flushed with N2 for one hour. To achieve saturated conditions 1.5 mL of 

anolyte media were injected with a syringe in the centre of the sponge and from the bottom towards 

the top. Between measurements, the device and electrodes were cleaned with tissues and pure ethanol. 

Uncoated PU foams were measured with the same technique to assess the influence of the biofilm on 

the conductivity of the composites. Particularly, in Figure 5. 8, PU/AC/BIO I has one less 

measurement than PU/AC/BIO II because one sample from PU/AC/BIO I went to microbial analysis. 

Figure 5. 2: (a) Ex-situ conductivity device with two electrodes. (b) Overview of anolyte media injection to 

achieve saturated conditions. (c) Visual example of saturated conditions for ex-situ EIS measurement 

 

5.2.4.2 Physicochemical and reactants measurements  

The pH was manually measured with a pH meter (Meter Lab PHM210, Radiometer Analytical, 

France) while the conductivity of anolytes was measured with a multi-parameter meter (HQ440D, 
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HACH, USA). Acetate, bicarbonate, ferricyanide and ferrocyanide concentrations were measured to 

evaluate the performance of the bioanodes [52,228]. Acetate concentrations were measured in a gas 

chromatographer (7890B GC Systems, Agilent Technologies, USA) as described in previous 

research[206]. Bicarbonate concentration in anolytes was measured directly in a total organic carbon 

analyser (TOC-LCPH E200, Shimadzu, Japan). Ferricyanide and ferrocyanide concentrations were 

determined as described by Skyllas-Kazacos, et.al  [229] via spectrophotometry at 260 nm and 420 

nm (Infinite M200PRO, TECAN, Switzerland) with a cell of 10 mm (100-QS, Hellma Analytics, 

Germany) (Supplementary Figure S5.3).  

5.2.4.3 Microscopic and microbial analysis 

At the end of experiments, MFCs were disassembled and bioanodes were put in a solution of 2.5 % 

glutaraldehyde in phosphate buffer 0.1 M for scanning electrons microscopy (SEM)[230]. 

Subsequently, samples were rinsed 3 times in 0.1 M phosphate buffer pH=7.2 and were post-fixed 

using 1% osmium tetroxide for 1 hour. The samples were dehydrated in a graded ethanol solutions in 

water – 30%, 50%, 70%, 80%, 90%, 96%, 2 x 100% (for 10 min each).  Then, samples were critical 

point dried (CPD) with carbon dioxide in a Leica EM CPD300 (Leica Microsystems GmbH, Wetzlar, 

Germany). Afterwards, samples were mounted on SEM stubs by carbon adhesive tabs (EMS, 

Washington, USA) and subsequently coated with 12nm Tungsten (Leica, MED 020, Germany). 

Samples were analysed at 2 KV, 6 pA, in a field emission scanning electron microscope (Magellan 

400, FEI Company, Eindhoven, The Netherlands). 

Samples (anolyte and electrode) for microbial analysis were taken on day 28 (from PU/AC I) and day 

70 (from PU/AC Inoculum).  The samples were immediately stored in an -800C freezer after 

collection until the DNA sequencing was conducted. Sequencing steps were performed similar to the 

work of de Smit [150] and Chapter 3 [45].  

 

5.2.5 Calculations 

The Coulombic efficiency (CE) was calculated from Equation (5.2): 

𝐶𝐸 =  
𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐼𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
 × 100 

(5.2) 

where Imeasured is the current being produced and Iavailable is the maximum current theoretically possible 

given the consumed acetate[52,231]. 
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The total Ohmic resistance of the bioanode electrodes was calculated based on earlier research [232] 

and in-situ Ohmic resistance measurements over time (Table S5.3). Therefore, as in a circuit in series, 

the total resistance (ROhmic-bioanode) was the sum of the ohmic resistances involved (ROhmic-bioanode=RS 

+RBIO+RCR+RPU/AC). Thus, the studied resistances were the anolyte resistance (RS), the biofilm 

resistance (RBIO), the contact resistance between PU/AC electrodes and titanium current collectors 

(RCR) and the resistance of electrodes without biofilm (RPU/AC). Moreover, it was assumed that the 

RCR was equal to 1 Ω as earlier indicated by [233] and that the RS was the inverse of the anolyte 

conductivity multiplied by the distance between current collectors. For the RPU/AC, it was the initial 

ohmic resistance that wasdeducted from the measured in-situ Rohmic bioanode before inoculation of 

anolytes. The RBIO was supposed zero at start and later on deducted from the difference between 

RPU/AC and subsequent ohmic resistances after inoculation. 

 

5.2.6 Field test 

The similar PU/AC electrode was tested in a paddy field in West Kalimantan, Indonesia. Two tubular 

plant microbial fuel cell (Plant-MFC) similar to previously used in paddy field experiment but with 

a length of 50cm were prepared (Chapter 4). A 10 litre bucket filled with 5 litre water and 100 gram 

of activated carbon was used to prepare this electrode at 300C. Then the PU sheet (Medium Filter 

Foam 50x50x2 cm, Vijver Techniek (VT), Enschede, The Netherlands) was submerged in the bucket 

and mixed for 20minute with a mixer (Heidolph Type RZR1, Heidolph Instruments GmbH&CO.KG, 

Schwabach, Germany). In the first tubular Plant-MFCs (Figure 5. 3), both anode and cathode utilised 

the PU/AC electrode. While in the other one, the PU/AC was only utilised as anode while the cathode 

still used graphite felt. Both tubular Plant-MFCs were installed as described in Chapter 4 and operated 

at 1000 ohm external load [47]. Anode potential and cathode potential were measure against Ag/AgCl 

reference electrode and the potential data were logged with voltage sensor connected to a LoRa 

network as earlier described in Chapter 4 [47]. Current density and power density was normalized to 

plant growth area (PGA=0.02925 m2) as described in Chapter 4 [47].   
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 Figure 5. 3: Materials and completely constructed tubular Plant-MFC with PU/AC electrode 
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5.3 Result and Discussion 

5.3.1 A rough surface of activated carbon was created on the carbon-polyurethane by 

a simple water-based dipping method 
 

In this study, a simple electrode made of activated carbon deposited on the surface of reticulated 

polyurethane cube was successfully developed (Figure 5. 4). Results show that on average 3.3 mg/PU 

cube (∼1 kg m-3) of AC appears to be adsorbed on the surface of the polyurethane cube. The 

activated carbon was stuck on the polyurethane surface due to the water absorption capacity of the 

PU foams (earlier described by [234,235]), the high adsorption capacity of the AC particles [236] at 

the provided 30 oC  temperature and mixing. The same procedure at room temperature resulted into 

less adsorption and was therefore not investigated. There is a clear difference between the uncoated 

and coated PU cube (Figure 5. 4 d and e). In SEM images one can see that the AC-coating created a 

surface no longer clean and flat but a rough surface with deposits forming crevices of different micro-

sizes. Dry weight measurements confirmed that 3.3 mg per cubes of AC was deposited. Based on the 

total surface area available and considering an even distribution the AC layer was estimated to be on 

average between 2.5 and 4 micrometres (typical specific surface area of 20 PPI polyurethane is 984 

m2/m3 [237]). Furthermore, the remaining macro-porosity of the reticulated PU cube (Figure 5. 4 f) 

could potentially help to achieve internal and external bacterial colonization as well as long-term 

performance as demonstrated by Huysman and Xie [218,238]. In this sense, it could prevent clogging 

which has been a technical challenge for three-dimensional bioanodes with pores smaller than 10 m 

after six months of operation in MFCs [239].  

Result shows that activated carbon coating on the PU cube’s surface improved the PU conductivity, 

which is indicated by the decrease on the ohmic resistivity (Figure 5. 5). A double coating 

(PU/AC/AC) with the same method on the previously coated PU/AC is not necessary because it 

hardly improved the conductivity (Figure 5. 5). This might be due to the limited adsorption capacity 

of AC on the PU’s surface.  
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Figure 5. 4: (a) Uncoated clean polyurethane cube (1.5 x 1.5 x 1.5 cm); (b) Water-based process to coat the 

PU foam with activated carbon(AC); (c) PU/AC composites after coating; (d) SEM image of the uncoated PU 

foam’s surface; (e) SEM Image of the PU/AC composite’s surface; (f) SEM image of the PU/AC composite’s 

macroscale structure 

 

 

Figure 5. 5: Ex-situ measurement of ohmic resistivity. (PU) polyurethane cube before coated with Activated 

Carbon; (PU/AC) polyurethane cube after coated with activated carbon; (PU/AC/AC) polyurethane cube 

double coated with activated carbon. For comparison, the ohmic resistivity of the graphite felt is according 

the specifications (exact methode not provided) <1 Ω.m (SGL Carbon) 
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5.3.2 PU/AC works as bioanode and likely electrochemically active bacteria grown on 

the PU/AC improve its conductivity 
 

Newly developed PU/AC electrode acts as electron acceptor in an MFC anode. The PU/AC electrode 

accepted electrons that were liberated by the EAB and transported them via external load to the 

graphite felt cathode, thus electricity was generated. Figure 5. 6 shows that the PU/AC MFCs 

delivered electricity when used as anode while the blanks (only current collector/Ti wire) delivered 

no significant electricity. Both reactors, PU/AC I and PU/AC II, produced electricity in the same 

order with a maximum power density of 22 mWm-3 and 10.4 mWm-3 respectively.  When the current 

collectors were removed (dashed red line) and replaced with a new one, the PU/AC MFCs delivered 

no current anymore. This could be explained by a disturbance of a connection of the current collector 

(CC) to the PU/AC. Possibly there were also EAB grown in the biofilm that improved connectivity 

of the current collector to the PU/AC. Another explanation would be that the removed current 

collector contained the primary EAB; however, since the Blank experiments (only current collectors) 

showed no significant electricity generation the role of the current collector as electrode can be 

neglected. Figure 5. 7a supports that the biofilm was enabling the development of PU/AC electron 

acceptor because a SEM image of the surface of a CC showed no bacterial attachment. The poor 

biofilm attachment to the CCs demonstrated their unsuitability as anode material possibly due to their 

reduced biocompatibility and micro and macro-porous features[82]. With this proof-of-principle of a 

PU/AC bioelectrode the current and power density reached 3mA/m2 projected surface area of anode 

compartment and 22mW/m3 anode compartment, respectively. Columbic efficiency was low. The 

PU/AC I and PU/AC II only reached 0.07% and 0.02%, respectively. This low columbic efficiency 

could be caused by competing processes in the anode such  as syntropic acetate oxidizing microbes 

that convert acetate into CO2
 and H2, which were flushed out via the anolyte bottle. Though 

improvement will be needed to reach more significant current densities reached for bioanode in order 

of 25kA/m3[240]. 
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Figure 5. 6 : PU/AC electrode is able to deliver electricity in an MFC. (a) Power densities obtained in 

PU/AC bioanodes and blanks; the anode compartment volume was used for normalization. (b) Current 

densities obtained overtime and cathode and anode potentials; the projected surface area of anode 

compartment was used for normalization. The dashed (red) lines indicate the replacement of current 

collectors on day 20  
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Figure 5. 7: Electrochemically active bacteria. (a) Surface of the Titanium current collector after de-

construction of MFCs. (b) Biofilm development on PU/AC composite showing strong interaction 

between microbial nanowires and AC particles.  (c) PU/AC composite with a self-assembled biofilm, 

showing nanowires (pili) development.  (d) Biofilm growth was not uniformly developed on PU/AC 

composites. (e) Multi-layered biofilm formation and solid deposits after 70 days of operation in the 

reactor which anolyte was used as inoculum. (f) Diverse microbial community on the PU/AC 

bioanode  

 

Electrochemically active bacteria (EAB) seemingly did grow on the PU/AC electrode. The SEM 

images (Figure 5. 7) indicate that PU/AC foams were colonized by microbial communities spread 

onto the surface and forming wire structures. These observed structures could be the remains of 
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extracellular polymeric substances part of biofilms[226] and/or (nano) wires connections also called 

conductive pili[42] which acts as long-distance electron transport carriers. The biofilm was 

transforming the inert PU/AC composites into living electron acceptor terminals. The growth of the 

biofilm suggested that the mechanism of electron transport was through these wires (Figure 5. 7 (c) 

shows a spider-web kind of wires and (f) shows short wires of microbes connecting to the electrode). 

Though, these wires could (e.g. partly) also be exocellular polymer substances (EPS) of which 

biofilms are made of.  However, direct electron transfer or indirect through mediators have been 

described for MFCs [241,242]. It is not possible to define the exact mechanism of electron transfer 

for a mixed culture with the current state of knowledge[242].  

Results also show that the EAB also increase the PU/AC conductivity. In the end of the experiment, 

ex-situ ohmic resistivity was measured. Clean PU, Clean PU/AC (not used in experiment) and PU/AC 

with biofilms (from MFC 1 and 2) were measured with a gold-plated device as describe in the material 

and method. Figure 5. 8 clearly shows that PU/AC electrodes with biofilm have lower (~4 times) 

ohmic resistivity compared to the clean PU/AC.  This ohmic resistivity is still ~400 time higher than 

one of graphite felt (insert picture in Figure 5. 8). 

 

Figure 5. 8: Ex-situ Ohmic resistivity measured in the end of the experiment. Insert is the measured ohmic 

resistivity (Ω.m) of graphite felt. The same colour bars are replicates. PU/AC/BIO I has one less 

measurement than PU/AC/BIO II because one sample from PU/AC/BIO I went to microbial analysis 
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The conductivity of the biofilm developed on the PU/AC composites was on average ∼1.5 mS cm-1 

(Table 5. 2). Therefore, the increment of the conductivity of the PU/AC composites suggested that 

biofilms can modify the surface of the electrodes which is of interest for MFCs development. For 

instance, this bio-conductivity may be of great importance for the minimum use of electrode material. 

In this sense, biofilms can be carefully developed for an optimal design of electrodes in which the 

biofilm enriches the conductivity[243]. This finding is consistent with other studies that have also 

indicated the bio-conductivity of biofilms. Table 5. 2 shows that electrochemically active biofilms 

(EABFs) are conductive while different types of biofilm are less conductive or natural 

insulators[207,243,244]. Since the conductivity and current density of this PU/AC study is lower than 

other bioanodes there is likely room for improvement. A longer term operation or fed-batch adding 

of AC materials may enhance the performance due to more biofilm development or encapsulation of 

conductive AC properties. This potential improvement is supported by earlier work to enhance 

performance of bioanodes for microbial electro synthesis which showed that adding carbon nanotubes 

during operation did improve performance[245]. Furthermore, research on conductive biofilms has 

shown that the conductivity of a biofilm varies between microorganisms[207] and that higher 

conductivity is achieved in biofilms with nanowires structures in both biofilms with mixed and pure 

cultures[244]. Therefore, the observed nanowire structures (Figure 5. 7) may have contributed to the 

bio-conductivity in the PU/AC/BIO. 

Table 5. 2:  Biofilm conductivities reported in the literature 

Biofilm 

description 
Microorganism Conductivity 

Anode 

material 
Measurement Reference 

EABF- anodic Mixed culture  ∼2.4 mS cm-1 
Two-gold 

electrode 

In situ two-

electrodes 
[246] 

EABF- anodic 
Mixed culture (Geobacter 

spp.was 52%) 
250 S cm-1 

Two-gold 

electrode 

In situ two-

electrodes 
[207] 

EABF- anodic Mixed culture 6.1 S cm-1 
Two-gold 

electrodes 

In situ two-

electrodes 
[247] 

EABF- anodic Mixed culture 125 S cm-1 
Gold 

electrode 

In situ two-

electrodes 
[243] 

Methanogenic 

anodic biofilm 
Mixed culture ∼33.7 S cm-1 

Gold 

electrode 

In situ two-

electrodes 
[243] 

Fermentative 

anodic biofilm 
Mixed culture ∼0.5 S cm-1 

Gold 

electrode 

In situ two-

electrodes 
[243] 

EABF- anodic Geobacter sulfurreducens ∼5 mS cm-1 
Gold 

electrode 

In-situ two-probe, 

four-probe and, 

conformal mapping 

[244] 

EABF- anodic Mixed culture ∼679 S cm-1 
Two-gold 

electrodes 

In situ two-

electrodes 
[248] 

EABF- anodic Mixed culture ∼285 S cm-1 
Gold 

electrode 

In situ two-

electrodes 
[248] 

EABF- anodic Mixed culture ∼1.5 mS cm-1* 
PU/AC 

composites 

Ex-situ two-

electrodes 

This 

study 

*See Supplementary Table S5.4 for calculations. 
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For the bioanolyte, its role was shown with cyclic voltammetries (Figure 5. 9). The ex-situ CVs done 

in the anolytes removed from MFCs gave interesting findings (Figure 5. 9 a and b). One can see that 

in all anolytes indistinctly of the anode material a redox peak was observed around -200 mV. 

Therefore, it is evident that the bacteria were producing exogenous mediators[223,241,249] as no 

peaks were observed in the fresh abiotic anolyte (Figure 5. 9). The presence of exogenous mediators 

suggested that bacteria capable of electron transport through redox mediators were present in the 

bioanolyte.  

 

Figure 5. 9 : (a) Ex-situ CVs in old and fresh anolyte from PU/AC I and PU/AC II. (b) Ex-situ CVs in old 

and fresh anolyte from Blank I and Blank II 
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5.3.5 Diverse Microbial community both in the bioanode and bioanolyte 

predominantly by Proteobacteria 
 

The microbial analysis shows that there is no apparent different between microbial communities in 

the anolyte and on the PU/AC electrode (sponges). Figure 5. 10 shows the microbial community 

relative abundance (>1%) in samples. The microbial communities were predominantly by 

Proteobacteria phyla, followed by Bacteriodetes, Synergistetes, Firmicutes and Spirochaetae, 

respectively (Figure 5. 10). The electricity is possibly generated by some genera within 

Proteobacteria phyla that are known to electrochemically active such as Geobacter, Deferrisoma, and 

Desulfobulbus [186]. Additionally, Supplementary Table S5.5A-E shows all the microorganisms that 

were relatively abundant (>1%) from phyla to genus level.    

 

Figure 5. 10: Bacterial communities in the bioanodes of Microbial Fuel Cell in a long-term (70 days from 

PU/AC Inoculum) and short-term (28 days from PU/AC I) operation 

5.3.3 Field test: PU/AC electrode delivers electrical current in a Plant-MFC when 

used as an anode  

Field test result shows that the PU/AC electrode was able to deliver electric current when used as 

anode and coupled with graphite felt cathode (Figure 5. 11 a). However, the PU/AC electrode cannot 

act as cathode. Figure 5. 11 b shows that the PU/AC failed as a cathode to provide an access for 

oxygen reduction.  The fact that the PU/AC has failed as cathode could be to various reasons (e.g. a 

too low AC load) although it was reported that oxygen reducing biocathodes have conductive[250].  
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A. Plant-MFC with PU/AC anode and graphite felt cathode 

 

B. Plant-MFC with both the anode and the cathode use PU/AC electrode 

 

Figure 5. 11: Anode and Cell potential of Plant-MFC (a) PU/AC anode electrode and graphite felt cathode, 

(b) both anode and cathode were using AC/PU electrode. Both Plant-MFC were operated with 1000ohm 

external load. The red (dashed) line indicates that the water flow in the paddy field was stopped 

On average, current density and the power density of the Plant-MFC with PU/AC anode are 

2±1mA/m2 plant growth area (PGA) and 0.2±0.1 mW/m2 PGA, respectively. This current density is 

48 times lower than power density of similar tubular Plant-MFC with graphite felt anode in the same 

paddy field as explained in Chapter 4 [47]. The maximum current density (5.6 mA/ m2 PGA) and the 

maximum power density (0.9 mW/m2 PGA) (11-12 May 2019 on Figure 5. 12) were reached just 

after the nearby soil was ploughed and fertilized before rice was transplanted [47]. 
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Figure 5. 12: Current density and power density of Plant-MFC with PU/AC anode. The blue (dashed) line 

indicates rice transplanting day. The red (dashed) line indicates that the water flow in the paddy field was 

stopped 

 

5.4 Conclusion  

Study shows that an alternative electrode can be developed by coating PU cube with activated carbon 

(AC) using a water-based dipping-drying process. This production process creates a biocompatible 

surface without additional energy need for PU-carbonisation or use of toxic chemicals. Biofilms were 

able to grow on the PU/AC electrode and enhanced conductivity. Electricity production was 

successfully achieved with PU/AC bioanodes in MFCs and Plant-MFC.   
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5.5 Supplementary Materials Chapter 5 

5.6.1 Supplementary Figures 

Figure S5.1. Schematic for ex-situ CVs in the bioanolytes 

 

 

250 mL Schott Duran Bottle.  

The graphite felt size is 1.5 x 2 cm. The distance between WE and CE is 3cm 
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Figure S5.2. (A) Real experimental set-up and (B) schematic of the setup for in-situ EIS 

measurements in the bioanodes 

A.  
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B.  

 

CC is Titanium current collector; Cap is capillary filled with 3M gel KCl and connected to 

3M KCl Ag/AgCl reference electrode via a tube that also filled with 3M KCl solution. In is 

inflow of anolyte. Out is outflow of anolyte. 

 

 

Figure S5.3. Ferricyanide calibration curves and equations to calculate ferrocyanide 
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5.6.2 Supplementary Tables 

Table S5.1. Composition of anolytes and Wolfe’s vitamin solution 

Adapted from Ter Heijne et al., 2008 and 2007 [206,251] 

Anolyte: 0.020 M sodium acetate, 10 gL-1 sodium 2-bromoethane sulfonate, 0.13 gL-1 KCl, 0.2 gL-1 

NH4Cl 0.2 gL-1, 1 mLL-1 Wolfe’s vitamin solution and 1 mL.L-1 modified Wolfe’s micronutrient 

solution, all mixed in phosphate buffer 0.05 M at pH 7 

 

 Concentration (g/L) CAS number 

Pyridoxine 1 58-56-0 

Nicotinic acid 0.5 59-67-6 

Riboflavin 0.25 83-88-5 

Thiamine 0.25 67-03-8 

Biotin 0.2 58-85-5 

Folic acid 0.2 59-30-3 

Vitamin B12 0.01 68-19-9 
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Table S5.2. Modified Wolfe’s micronutrient solution 

(adapted from Helder et al., 2012 [58] 

 

 Concentration (g/L) CAS number 

EDTA 1.5 60-00-4  

MgSO4-7H2O 3 10034-99-8 

MnSO4-H2 0.5 10034-96-5 

NaCl 1 7647-14-5  

FeSO4-7H2O 0.1 7782-63-0 

Co(NO3)2-6H2O 0.1 10026-22-9  

ZnSO4-7H2O 0.1 7446-20-0  

CuSO4-5H2O 0.01 7758-99-8 

AlK(SO)4-12H2O 0.01 7784-24-9 

H3BO3 0.01 10043-35-3  

Na2MoO4-2H2O 0.01 10102-40-6  

 

 

 

 

 

 

 

 

http://www.nlm.nih.gov/cgi/mesh/2009/MB_cgi?term=60-00-4&rn=1
https://www.chemicalbook.com/CASEN_7647-14-5.htm
http://www.sigmaaldrich.com/catalog/search?term=10026-22-9&interface=CAS%20No.&N=0&mode=partialmax&lang=en&region=NL&focus=product
http://www.merckmillipore.com/NL/en/search/-?SingleResultDisplay=SFProductSearch&TrackingSearchType=pdp_related_product&SearchTerm=*&SearchParameter=%26%40QueryTerm%3D*%26feature_cas_no_value%3D7446-20-0
http://www.sigmaaldrich.com/catalog/search?term=10043-35-3&interface=CAS%20No.&lang=en&region=US&focus=product
http://www.sigmaaldrich.com/catalog/search?term=10102-40-6&interface=CAS%20No.&lang=en&region=US&focus=product
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Table S5.3. Total Ohmic resistance of the bioelectrodes 

 PU/AC I In-situ measurements PU/AC II In-situ measurements 

Days 0 5 13 20 0 5 13 20 

Ohmic resistance (Ω) 28.480 69.950 178.500 169.900 11.590 59.440 166.400 145.100 

 28.460 69.310 173.400 173.100 11.670 60.080 164.600 156.000 

 28.460 88.320 183.100 172.600 11.770 60.020 168.900 145.800 

Average 28.467 75.860 178.333 171.867 11.677 59.847 166.633 148.967 

STDEV 0.012 10.795 4.852 1.721 0.090 0.353 2.159 6.101 

Conductivity (mS/cm) 9.790 10.010 10.970 11.240 9.790 10.410 10.990 11.330 

Cond (ms) 56.782 58.058 63.626 65.192 51.887 55.173 58.247 60.049 

Rs (mΩ) 0.018 0.017 0.016 0.015 0.019 0.018 0.017 0.017 

Distance CC (cm) 5.800    5.300    

Rs (Ω) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Relectrode (Ω) 28.467    11.677    

Rbiofilm (Ω)  47.393 149.867 143.400  48.170 154.957 137.290 

Rcr (Ω) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Rtotal (Ω) 29.467 76.860 179.333 172.867 12.677 60.847 167.633 149.967 

         

Table S5.4. Biofilm conductivity calculation 

The conductivity of the biofilm was calculated with the average Ohmic resistances measured ex-situ. 

First, the Ohmic resistivities were calculated from the Ohmic resistances by considering an area of 

(0.015x0.015 cm) 0.000225 m2 and a length of 0.012 m (distance between electrodes during ex-situ 

measurements. Second, the conductivity of the biofilm was equal to the difference between the 

PU/AC and the PU/AC/BIO. 

 

Ohmic 

resistance (Ω) 

Ohmic 

resistivity 

(Ω.m) 

Biofilm Ohmic 

resistivity (Ω.m) 

Biofilm conductivity 

(mS.cm-1) 

Biofilm   6.10 1.6 

PU/AC/Bio 101.584 1.905 
  

PU/AC 426.950 8.005   

PU 1050.367 19.694   

Graphite 0.358 0.007   
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Table S5.5. Relatively abundant (>1%) of bacteria in the paddy field soil from phylum to genus 

level. The PU/AC inoculum was first developed as bioanode and consequently used to develop 

the PU/AC I 

Table S5.5A Phyla 

Phyla 

Anolyte Electrode (PU/AC cubes) 

PU/AC Inoculum  

70 days 

PU/AC I  

28 days 

PU/AC Inoculum  

70 days 

PU/AC I  

28 days 

Proteobacteria 63.43 52.12 61.80 61.91 

Bacteroidetes 17.42 26.88 16.59 15.82 

Synergistetes 11.22 11.87 7.01 9.46 

Firmicutes 3.30 4.55 6.57 5.96 

Spirochaetae 1.65 2.18 3.55 0.96 

Actinobacteria 0.26 0.62 1.04 1.43 

Cloacimonetes 0.10 0.07 0.79 2.13 

Deferribacteres 0.46 0.11 0.03 0.28 

Verrucomicrobia 0.02 0.02 0.02 0.00 

Bacteria_Other 0.04 0.03 0.04 0.02 

Archaea_Euryarchaeota 0.01 0.02 0.02 0.03 

Others 2.09 1.52 2.54 2.01 

TOTAL 100 100 100 100 

Others are summary from phyla that less than 1% 

 

Table S5.5B Classes 

Classes 

Anolyte Electrode (PU/AC Cubes) 

PU/AC Inoculum  

70 days 

PU/AC I  

28 days 

PU/AC Inoculum 

70 days 

PU/AC I  

28 days 

Betaproteobacteria 48.912 40.431 56.242 46.448 

Bacteroidia 10.720 18.592 10.452 9.628 

Synergistia 11.221 11.870 7.015 9.456 

Gammaproteobacteria 6.346 2.330 2.659 7.626 

Alphaproteobacteria 0.952 0.678 1.001 5.674 

Clostridia 3.154 4.465 6.470 5.486 

Sphingobacteriia 6.353 7.870 5.680 5.018 

LNR A2-18 0.096 0.065 0.786 2.127 

Deltaproteobacteria 7.076 8.482 1.656 2.083 

Actinobacteria 0.264 0.623 1.036 1.425 

Flavobacteriia 0.252 0.304 0.368 1.128 

Spirochaetes 1.646 2.181 3.552 0.956 

Archaea 0.010 0.017 0.015 0.025 

Others 2.998 2.093 3.066 2.919 

TOTAL 100 100 100 100 

Others are summary from classes that less than 1%  
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Table S5.5C Orders 

Orders 

Anolyte Electrode (PU/AC Cubes) 

PU/AC Inoculum  

70 days 

PU/AC I  

28 days 

PU/AC Inoculum 70 

days 

PU/AC I  

28 days 

Burkholderiales 35.139 19.448 45.158 26.307 

Rhodocyclales 13.331 20.732 10.604 19.845 

Bacteroidales 10.718 18.591 10.451 9.624 

Synergistales 11.221 11.870 7.015 9.456 

Pseudomonadales 5.359 1.873 2.203 5.507 

Clostridiales 3.113 4.405 6.402 5.467 

Sphingobacteriales 6.353 7.870 5.680 5.018 

Rhizobiales 0.434 0.183 0.504 4.726 

Cloacimonetes_LNRA2

-18_Uncultured 

bacterium 0.095 0.061 0.759 2.104 

Xanthomonadales 0.889 0.327 0.354 1.949 

Desulfovibrionales 6.918 8.393 1.609 1.682 

Flavobacteriales 0.252 0.304 0.368 1.128 

Spirochaetales 1.646 2.181 3.552 0.956 

Archaea 0.011 0.023 0.019 0.035 

Others 4.522 3.739 5.321 6.196 

TOTAL 100 100 100 100 

Others are summary from orders that less than 1%  

 

Table S5.5D Families 

Families 

Anolyte Electrode (PU/AC Cubes) 

PU/AC Inoculum  

70 days 

PU/AC I  

28 days 

PU/AC Inoculum 

70 days 

PU/AC I  

28 days 

Rhodocyclaceae 13.331 20.732 10.604 19.845 

Comamonadaceae 24.553 7.795 29.265 15.199 

Alcaligenaceae 8.872 7.621 14.166 10.374 

Synergistaceae 11.221 11.870 7.015 9.456 

Porphyromonadaceae 8.953 14.936 7.363 6.833 

Lentimicrobiaceae 6.346 7.857 5.634 4.986 

Pseudomonadaceae 4.471 1.825 1.745 4.276 

Brucellaceae 0.336 0.058 0.286 4.078 

Rikenellaceae 1.757 3.638 3.086 2.789 

Cloacimonetes_uncultur

ed bacterium 0.095 0.061 0.759 2.104 

Clostridiales_Family 

XIII 1.291 1.509 1.755 2.008 

Xanthomonadaceae 0.889 0.327 0.354 1.948 

Desulfovibrionaceae 6.918 8.393 1.607 1.682 

Moraxellaceae 0.889 0.048 0.457 1.231 

Flavobacteriaceae 0.250 0.302 0.367 1.126 

Ruminococcaceae 0.529 0.622 2.263 1.098 

Spirochaetaceae 1.645 2.181 3.549 0.956 

Burkholderiaceae 1.652 3.910 1.686 0.677 

Archaea 0.011 0.023 0.019 0.035 

Others 5.991 6.293 8.019 9.299 

TOTAL 100 100 100 100 

Others are summary from families that less than 1% 
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Table S5.5E Genera 

Genera 

Anolyte 
Electrode  

(PU/AC Cubes) 

PU/AC 

Inoculum  

70 days 

PU/AC I  

28 days 

PU/AC 

Inoculum  

70 days 

PU/AC 

I  

28 days 

Rhodocyclaceae_uncultured 12.382 19.290 5.858 18.892 

Comamonas 18.071 3.659 10.623 10.249 

Synergistaceae_uncultured 7.367 6.899 6.298 9.236 

Kerstersia 1.563 2.860 10.769 9.017 

Lentimicrobium 6.346 7.857 5.634 4.981 

Pseudomonas 4.456 1.816 1.635 4.186 

Ochrobactrum 0.320 0.049 0.281 4.031 

Petrimonas 2.529 3.339 2.804 3.367 

Hydrogenophaga 0.588 0.257 16.937 3.171 

VadinBC27 wastewater-sludge group 1.757 3.635 2.978 2.788 

Cloacimonetes_uncultured bacterium 0.095 0.061 0.759 2.104 

Desulfovibrio 6.917 8.393 1.605 1.682 

Anaerovorax 0.988 0.991 0.965 1.591 

Proteiniphilum 4.652 8.769 1.250 1.370 

Porphyromonadaceae_uncultured 1.269 2.037 1.475 1.266 

Acinetobacter 0.889 0.048 0.457 1.231 

Sphaerochaeta 1.643 2.180 3.549 0.953 

Alcaligenes 6.817 4.186 2.888 0.690 

Paludibacter 0.235 0.260 1.184 0.652 

Pandoraea 1.399 3.587 0.755 0.646 

Dechlorobacter 0.438 1.019 4.468 0.417 

Aminiphilus 2.700 3.421 0.541 0.120 

Cloacibacillus 1.145 1.547 0.153 0.094 

Archaea 0.011 0.023 0.019 0.035 

Others 15.424 13.817 16.112 17.231 

TOTAL 100 100 100 100 

Others are summary from genera that less than 1% 
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In this thesis, research has been conducted to improve the performance of Plant-MFC while reducing 

its cost. The production cost of a membrane-less Plant-MFC is still dominated by the electrode cost. 

Therefore, we studied an alternative electrode that utilized mixture of activated carbon and sediment 

(Chapter 2 and 3). At the same time, we also studied long-term performance of tubular Plant-MFC in 

a paddy field to get insight Plant-MFC’s real potential (Chapter 4). Finally, we also investigated a 

new electrode with a simple dipping method of activated carbon on polyurethane cubes (Chapter 5). 

As a starting point for discussion, a theoretical available power from a paddy field is estimated based 

on rice carbon rhizodeposition and paddy field methane emission. A theoretical available power gives 

an insight how far performance meets theoretical understanding.  Based on the experimental results, 

we discuss the applicability of the Plant-MFC as an off-grid power source in a rural area of a 

theoretical Indonesian case for low power devices. For this, a technical design to power a small power 

usage device was made for a household in a rural area of Indonesia. The applicability was assessed 

on technical, social, and environmental criteria as well as economic and some scenarios were 

suggested which could improve the real application. Values for a plant-MFC system to fulfil basic 

electricity needs were calculated. 

 

6.1 The theoretical power output of a paddy field based Plant-MFC 

Paddy fields have a potential power of 58-419 mW/m2. There are at least two estimations about the 

maximum potential power generated by plant microbial fuel cells that have been proposed.  Here we 

discuss these two approaches and recalculate the theoretical power output for a paddy field based 

Plant-MFC.  

6.1.1 First estimation using solar radiation conversion into photosynthetic electricity 

In this estimation, the maximum potential power generation from Plant-MFC is calculated based on 

conversion efficiencies (CE) of solar radiation in a specific area into electricity which involves several 

processes (i.e., photosynthetic, plant rhizodeposition, rhizodeposit availability for microorganisms, 

and energy recovery by the Plant-MFC). Earlier the maximum power generation of Plant-MFC was 

estimated to be between 1.6 and 3.2 W/m2 PGA under Western European Condition (solar radiation 

of 150 W/m2)[231]. In this technically pursued high estimation, Strik et al based their calculation on 

photosynthetic efficiency of 5%, plant rhizodeposition of 70%, and 60% energy recovery by the 

Plant-MFC, which resulted in 2.1%  conversion efficiency from solar radiation into electricity [231]. 

According to commonly achieved efficiencies, this estimation was overvalued because it assumed 
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that all plant rhizodeposits are available for electrochemically active bacteria. In addition, the plant 

rhizodeposition (70%) and energy recovery (60%) are also much higher than the commonly found 

plant rhizodeposition of 11% [252] and the achieved energy recovery of 9-10% [142,253]. 

An adjustment is made to calculate the maximum theoretical power generation from Plant-MFC in 

paddy fields (Box 6.1 as adapted from Deng, et.al [253]). The solar radiation (SR) in Indonesia is 

varying between 167 and 242 W/m2 [254]. Rice is a C3 type photosynthesis plant[255]. Under full-

spectrum solar radiation(sunlight), theoretical maximum photosynthetic energy conversion efficiency 

for C3 type plant is 4.6%[256]. However, this theoretical maximum limit is hardly achieved. A typical 

photosynthetic efficiency during growth phase for C3 type plant is 3.2% [257]. The rhizodeposition 

of rice differs between growing seasons from early rice, late rice, and for the entire planting period 

which are 23.16 ± 8.87%, 28.16 ± 12.94%, and 27.00 ± 9.3%, respectively[258]. This means that the 

rhizodeposition of rice is ranging from 14-41%. Until now, the availability of these rhizodeposits for 

electrochemically active bacteria is remain unknown. However, microbial community analysis of 

Plant-|MFC do report significant relative abundance of species (56%) Desulfobulbaceae and (16%) 

Geobacteraceae, which are often enriched on bioanode of microbial fuel cells[189]. This relative 

abundance does not directly report their activity and direct proof of being electrochemical active. 

However, specific Geobacter species are evidently electrochemically active and enrichment is taking 

place[102,244,259].  Therefore, a ‘fair’ estimation of the rhizodeposit availability for microorganism 

is 30%. Finally, the energy recovery for such Plant-MFC system is 9-10%[142,253]. Applying these 

more realistic values (in Equation 6.1) gives a maximum potential power generation in a tropical 

paddy field (Indonesia) is 21- 95 mW/m2 PGA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 6.1 – Conversion of solar radiation into electricity via photosynthesis and rhizodeposition in Plant-

MFC system.  

 

The theoretical power output (P) from Plant-MFC (in W/m2) is calculated using Equation (6.1)  

  

P = SR x Pe, rice x Rp, rice x Ra x Er (6.1) 

 

SR is solar radiation in a specific location (W/m2)  ; 167 - 242 W/m2 

Pe, rice is photosynthetic efficiency for rice (C3 type plant) ; 3.2% 

Rp, rice is rhizodeposition of rice     ; 14% - 41% 

Ra is rhizedopesition availability for microorganism    ; 30% 

Er is energy recovery      ; 9% - 10% 
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6.1.2 Second estimation using available electron donors  

The second estimation applies a different approach to predict the maximum potential power of Plant-

MFC from a wetland. In this approach, the maximum potential power generation is estimated based 

on the site-specific such as plant species (e.g. primary production), climate (e.g. solar radiation and 

temperature) and the external carbon inflow [96]. Together all these factors provide a total amount of 

electron donor that will be used by the EAB to generate electricity. Using this approach, Wetser, et.al 

predicted that Plant-MFC is potentially able to generate a power density up to 90 and 500 mW/m2 

PGA in peat soil and salt marshes, respectively [96]. Moreover, based on the ability of the EAB to 

outcompete the methanogens for electron donors[136], it is suggested that methane emission is 

prevented and all available carbon donors are utilized to generate electricity. Therefore, the second 

approach can also be estimated using methane emission flux [46].   

In the above-mentioned approach, Wetser, et.al assumed that all the carbon mass/methane are 

converted into electricity, so as this is not necessarily reached the predicted potential power output 

becomes overestimated. In fact, there is a competition between the EAB and other microorganisms 

(e.g., methanogens)[260,261]. At a low substrate concentration, methanogens are outcompeted by the 

EAB indicated by the coulombic efficiencies of 15-30%[260]  only about 30% of the total carbon in 

the rhizosphere is proposed to be available for the electrochemically active bacteria[253]. 

Furthermore, using a one-dimensional process based model, methane reduction in a paddy field due 

to competition with Plant-MFC is predicted to be around 17-28%[262]. Using the same principle as 

explained by Wetser, et.al, a new calculation is made (using Equation 6.2 as presented in Box 6.2) to 

estimate the Plant-MFC power output in a paddy field. 

The available electron donor is estimated from carbon rhizodeposition of the rice plant and from the 

methane production in the paddy field. The carbon rhizodeposition from the rice plant depends on the 

stage of rice growth [258]. The carbon rhizodeposition rate in the early rice phase (first 2 months after 

seedling) and in the late rice phase (last two months before harvesting) are 36-178 mg/m2/hour and 

51-260 mg/m2/hour, respectively[258]. The available carbon (as electron donor) for Plant-MFC is 

estimated 30% of the total carbon rhizodeposition (section 6.1 first estimation), which are 11-53 

mg/m2/hour and 15-78 mg/m2/hour for the early rice and the late rice phase, respectively. Using 

Equation 6.2, the maximum potential power generation from paddy field for early rice and late rice 

is 58-286 mW/m2 and 83-419 mW/m2, respectively. The limitation of this approach is it includes no 

additional external carbon flux (e.g., dead plant matters, organic fertilizer, etc) that can also be 

potential substrates.  
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Methane emission flux from a rice paddy field in Indonesia varies between 16 and 35 mg/m2/hour 

[263]. The methane production was estimated based on a fact that 76% of the generated methane is 

re-oxidized to carbon dioxide by methane oxidizing bacteria in the wetland rhizosphere [264]. Thus, 

the gross methane production from the paddy fields in Indonesia is 67-146 mg/m2/hour. The available 

methane as an electron donor is 17-28% from the total methane production (based on the model of 

methane reduction from rice paddy field), which is 11.3 – 40.8 mg/m2/hour [262]. Using Equation 

6.2, the maximum potential power generation from paddy field is 90-330 mW/m2. 

It seems that both solar radiation conversion and available electron donor estimation’s methods result 

in the same order of magnitude for total available power from the paddy field. However, for further 

discussion in this thesis, we decided to use the second estimation (58-419 mW/m2) as the total 

available power from a paddy field because it was calculated with more realistic values (e.g., rice 

carbon rhizodeposition, paddy field methane emission) for rice plants.  

Box 6.2 – Plant-MFC power output estimation using available electron donor based on available carbon 

(C) or Methane (CH4).  

 

The theoretical power output (P) from Plant-MFC (in W/m2) is calculated using Equation (6.2)  

 

𝑃 =
𝐽. 𝑛. 𝐹. 𝑈

𝑀. 𝑡
  

(6.2) 

 

P is the power (in W/m2);  J is the available electron donor for electrochemically active bacteria (in g.m-

2.hr-1); n is the number of electrons (4 for carbon, 8 for methane); F is the Faraday constant (96485 

A.s.mol-1); U is the Plant-MFC cell voltage (0.6V based on chapter 4), M is the molar mass of electron 

donor (12 g.mol-1  for carbon and 16 g.mol-1 for methane), and t is the amount of seconds in one hour (in 

s.hr-1).  

The J values use in this thesis: 

Available electron donor based on carbon rhizodeposition: 

J = 11-53 mg.m-2.hr-1 for the early rice 

J = 15 -78 mg.m-2.hr-1 for the late rice 

 

Available electron donor based on methane flux: 

J = 11.3-40.8 mg.m-2.hr-1  

 

This power output bases on long term data and does not include dynamics and other environmental 

conditions (e.g. temperature) that can affect the power over time (e.g. cell potential was taken value 

from an experiment but this is not a mechanistically described theoretical value based on 

bioelectrochemical processes.) 
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6.2  Plant-MFC is able to generate up to 11% of the total available power from 

the paddy field and still can be increased 

 

Power generation from Plant-MFC in the paddy field can still be increased. Based on the explanation 

on section 6.1, the total available power from a paddy field varies from 58 mW/m2 (3.4 mW/tube) to 

419 mW/m2 (24.5 mW/tube) dependent on the rice growth phase. On average, the Plant-MFCs in the 

paddy field were able to generate power of 6.6 mW/m2 (0.4 mW/tube). This power output is only 2 - 

11% of the total available power from a paddy field (see section 6.1). A 10 minutes polarization 

shows that the Plant-MFC can generate at least up to of 44mW/ m2
 (2.6 mW/tube) but this result is 

just a temporary that cannot directly be linked to the yearly average power density.  

As have been shown in chapter 4, the cathode was not the limiting factor of that actual Plant-MFC 

since the cathode potential was stable (around 400mV), meaning the oxygen supply was sufficient. 

During the wet period, the anode potential of around -200mV until -400 mV resulted in high cell 

potential (0.6-0.8 V). The current limitation can be explained with competing reactions (e.g., 

methanogenesis) and limited access to electrochemically active bacteria (EAB). However, this aspect 

is included in the theoretical performance (section 6.1). In addition, not 100% of the soil is occupied 

with the Plant-MFC’s anode; so not all available substrates can be used.  

Several ways could possibly improve the power output of Plant-MFC in paddy field. First, it is 

important to understand where and when a potential donor is available; as correct placement of the 

Plant-MFC at hotspots of the available electron donor could increase the electricity generation. For 

instance, the methane emission indicates the availability of electron donor that potentially be co-

utilized by the EAB. Methane is released into the atmosphere via three processes: (i) methane loss 

via diffusion across the water surface, (ii) methane loss as bubble (ebullition) from paddy soil, which 

is the major release mechanism during the land preparation and initial growth, and (iii) methane loss 

via the rice plant, which has been reported as the most important phenomena[265–267]. Methane is 

emitted via aerenchyma of leaves, nodes and panicles of the rice plants[268]. Leaves are the major 

release location at the early stages and node (via cracks and porous structure) are later more important 

[268]. The methane emission fluctuates seasonally depending on the fertilization regimes, the water 

management and the rice growth stages[269–272]. Soil and added organic matters (e.g., rice straw) 

are the initial sources for methane production[266,273]. NPK fertilizer, manure and their combination 

increase seasonal methane fluxes by 67.4, 20.4, and 101.2%, respectively[269]. Optimization of 

irrigation practice from continuously flooding to intermittent irrigation will reduce the methane 
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emission by 50% [270]. Root and root exudates of the wetland rice plant are the major carbon sources 

at ripening stage[273]. There are no significant differences among the methanogens population in rice 

soils up to 18 cm depth [271]. The methanogenic bacteria population was low during the early 

growing stages of early rice, then gradually increased and reached its maximum, from the yellow 

maturing stage to the late rice stage[271]. The methanogens are found more in the rhizospheric soil; 

during the initial and peak-tillering stages, the methanogenic activities in rhizospheric soil is 1.7-2.2 

times higher than those in non-rhizospheric soil [271]. By knowing when and where the potential 

electron donor is available, one can decide the correct place and time to install the Plant-MFC. If and 

to what extent the various local hotspots on current generation can be (temporarily) technically 

utilized is unknown. 

Second, the placement of the tube could be higher, closer to an area where mixing is occurring. Earlier 

research in a flat plate Plant-MFC has shown that more current can be generated when anode was 

placed closer to the surface, but still in the anaerobic zone, which has more substrate due to local 

mixing (chapter 4 from [46] ). In the paddy field case, mixing is predicted to happen mostly in the 

water and topsoil because of water management. Additional substrates from applied fertilizers will 

be deposited on the topsoil and spread over the paddy field by the water flow, which may supply 

additional alternative electron donor. In addition, root density of rice plant is decreasing over the 

depth. Highest root density is found in the depth between 2 and 7 cm from topsoil [274]. More carbon 

rhizodeposit will be found in the area with high root density because the rhizodeposition is positively 

correlated with the rate of root growth[275]. However, the radial oxygen loss (ROL) strongly affect 

the O2 availability in the rhizosphere of rice, which will negatively affect the anode of the Plant-MFC 

potential[276]. The Radial oxygen loss (ROL) in the rice plant is highly dynamic and affected by the 

photosynthesis activity as indicated by less ROL during the night-time compared to one in the daytime 

[276]. Furthermore, the ROL is higher on the root of young rice than the mature one[276,277]. The 

oxygen concentration at which methanotrophs won the competition from heterotrophs did not depend 

on methane concentration, but it was highly affected by organic carbon concentrations in the paddy 

soil. At low organic carbon concentration rhizosphere, the ROL is mostly consumed by methane 

oxidizing bacteria [278]. Therefore, if temporary more oxygen and/or substrates and the placement 

of the electrode is fixed, the net substrate availability for EAB will likely vary with time as electron 

donors and competing electron acceptors are supplied at different rates at various time. 

Third, a suitable mechanical treatment that does not potentially damage the Plant-MFC installation is 

needed to bring substrates to the Plant-MFC anode. In this research, for safety reason, the soil on top 

of the Plant-MFC location was not ploughed prior to the crop season after the Plant-MFCs have been 
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installed. Finally, a different system could be tested. For instance, granular anode materials mixed 

through the soil (to provide a conductive matrix) can be applied to the paddy field prior to the tubular 

Plant-MFC installation to potentially harvest more substrates. The granular anode material (e.g. 

biochar or granular activated carbon) should be able to promote electron transfer and to improve the 

soil quality which can increase rice yield[84,279,280].  Still, a thicker anode electrode will also 

increase the resistance of the Plant-MFC that will limit the possible current output. 

6.3  Plant-MFC design for a small power usage device 

 

According to chapter 4, 0.4±0.1 mW/m tube of power can be generated from a one-meter tubular 

Plant-MFC. This power is an average performance of triplicate Plant-MFCs at a cell potential of 0.6V 

with 1000 ohm load; thus 0.64mA current was delivered. On such low voltage source, one needs a 

power harvester that can step the potential up to a certain useful potential e.g. 5V [281,282].   

On designing Plant-MFC systems to power an electronic device, a 1-m length tubular Plant-MFC is 

used a basis. This length is considered as an optimum length based on the Plant-MFC performance in 

the paddy field, in which no oxygen limitation was observed (Chapter 4). Even though, previous 

similar design tubular Plant-MFC in salt marsh and peat soil suggested a maximum length of 0.31m 

and 0.77m for passively supplied oxygen, respectively[46]. Based on the performance of this 1-m 

tubular Plant-MFC, a strategy to harvest power is proposed. 

The tubular Plant-MFC delivers relatively low current density (0.64 mA/tube) at a high voltage (0.6V) 

compared to e.g. fuel cell fed with hydrogen[283].  The voltage can be increased from 0.6V to a 

useful potential, e.g. 5V using a power harvester [281,282]. Therefore the first strategy was to increase 

the current output to the current output of target devices. For this purpose, the Plant-MFC must be 

connected in a parallel connection (Box 6.2). The proposed design is presented in Figure 6. 1.  

 

 

 

 

 

 

 

 

 

Box 6.2 – Series and parallel connection in electricity  

In the electricity connection total voltage (V) and current (I) depend on how one connects the Plant-MFC as 

shown on the following equations: 

 

In series connection  

         V = V1 + V2 + V3 + ... + Vn (6.2) 

          I  = I1 = I2 =I3 = ... = In (6.3) 

 

In parallel connection 

 

         V = V1 = V2 =V3 = ... = Vn (6.4) 

          I = I1 + I2 + I3 + ... + In (6.5) 
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Figure 6. 1: Schematic design of tubular Plant-MFC for power harvester. Space needed (marked in green) 

per tubular Plant-MFC reactor is (X+ reactor’s diameter) times (Y+ reactor’s length). X= space between 

reactors in the parallel connection and Y=space between reactors in the series connection 

 

The number of tubes (m) in an array of parallel connection is obtained by dividing the target devices 

current by the current output of one Plant-MFC (0.64 mA/tube). Then, the parallel array needs to be 

connected in series (Box 1). The number of the parallel array in series (n) is calculated by dividing 

the operating voltage from target device by the cell voltage of one Plant-MFC (0.6V). Total required 

Plant-MFCs (tubes) to power a target device are a result of multiplication between the numbers of 

tubes in the parallel array (m) and the number of parallel array in the series connection (n). If the 

Plant-MFCs are installed in one horizontal layer with a distance of 25cm between them, space for one 

reactor is 0.31 m2 (0.25 m2 extra space (marked in green in Figure 6.1) and plant growth area/PGA 

(0.0585 m2). Table 6. 1 shows total Plant-MFCs and total area for their installation to power some 

target devices.  
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Table 6. 1: Design of Plant-MFC for several target devices based on average tubular Plant-MFC 

performance in a rice paddy field during crop growth season 
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Ref 

NiCd battery 

1.2V; 700 mAh; 

10 charging at 

70mA; 1.5 V 

1.5 70 109 3 327 101 1.8 (+20%) 70.1 (+0.2%) 

[284] 

1.5 70 17 3 51 16 1.8 (+20%) 73.1 (+4.4%) 

5mm white LED 

0.8 lumen 

(690mcd at 20mA, 

at 700 beam) 

3.6 20 32 6 192 60 3.6 (+0%) 20.6 (+3%) 

[29] 

3.6 20 5 6 30 9 3.6 (+0%) 21.5 (+7.5%) 

1 LED light 1 W 

(SMD) 

5 200 311 9 2799 868 5.4 (+8%) 200.1 (+0.1%) 
[31] 

5 200 47 9 423 131 5.4 (+8%) 202.1 (+1.1%) 

Cree Xlamp XM-

L2 High Power 

LEDs; 1200 view; 

212 lumen 

2.85 700 1088 5 5440 1687 3 (+5%) 700.1 (+0.02%) 

[30] 

2.85 700 164 5 820 254 3 (+5%) 705.2 (+0.7%) 

Small solar 

lighting kit (7.4V; 

3000mAh; 10hr 

charging at 

300mA at 7.5 V) 

7.5 300 467 13 6071 1883 7.8 (+4%) 300.5 (+0.2%) 

[31] 

7.5 300 70 13 910 282 7.8 (+4%) 301 (+0.3%) 

Mobile phone 

Nokia 110  

(3.7 V; 800mAh; 

10hr charging at 

80 mA and 4.5V) 

4.5 80 125 8 1000 310 4.8 (+7%) 80.4 (+0.6%) 

[32] 

4.5 80 19 8 152 47 4.8 (+7%) 81.7 (+2.1%) 

STS3x 

temperature 

sensor node 

3.3 1.7μA 1 6 6 2 3.6(+9%) 0.64(+37821%) 
[285] 

3.3 1.7μA 1 6 6 2 3.6(+9%) 4.3(+253293%) 

SHT2x (RH/T) 

humidity sensor 

node 

3.6 0.9μA 1 6 6 2 3.6(+0%) 0.64(+72294%) 
[286] 

3.6 0.9μA 1 6 6 2 3.6(+0%) 4.3(+483650%) 

MICA 2 sensor 

nodes (active 

mode) 

3 8 13 5 65 20 3 (+0%) 8.4 (+4.6%) 
[287] 

3 8 2 5 10 3 3 (+0%) 8.6 (+7.5%) 

TelosB sensor 

node (active 

mode) 

3 3.3 6 5 30 9 3(+0%) 3.9(+15.8%) 
[287] 

3 3.3 1 5 5 2 3(+0%) 4.3(+29%) 

Zigbe (Transfer 

mode) 

3 12.2 20 5 100 31 3(+0%) 12.8(+4.6%) [288] 

3 12.2 3 5 15 5 3(+0%) 12.9(+4.9%) 

LoRa (Transfer 

mode) 

3 33.3 52 5 260 81 3(+0%) 33.5(+0.5%) [288] 

3 33.3 8 5 40 12 3(+0%) 34.4(+3.3%) 

BLE (Transfer 

mode) 

3 3.3 6 5 30 9 3(+0%) 3.9(+17%) [288] 

3 3.3 1 5 5 2 3(+0%) 4.3(+30.3%) 

Note: MICA 2 sensor nodes (active mode) is a sensor node for light, temperature, humidity, barometric pressure, 

accelerator, GPS, RH, acoustic, Video sensor, microphone, sounder, magnetometer. At Sleep mode only needs 75µW 

(3V, 25µA). TelosB sensor node is a sensor node for Light, temperature, humidity. At sleep mode only needs 8µW.  

ZigBee is a wireless communication technology (100m range). LoRa (Long range) is a wireless communication 

technology (5 km range). Bluetooth low energy (BLE) is a wireless communication technology (10-50m range). For each 

target device, above: calculated from average performance (0.4 mW/tube; 0.6V, 0.64 mA/tube); below: calculated from 

max performance (2.6 mW/tube; 0.6V, 4.3mA/tube) 
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Of course, there are several factors must be considered before implementing this design into a real 

application. The efficiency of a DC-DC power booster, which is around 74 – 90 % [281,282],  will 

increase the total number of tubes by 10-26%. For some target device, the power loss from the DC-

DC power booster can be compensated by the overcapacity (Table 6. 1 ). It is also important to have 

a proper control for long term operation of Plant-MFC in series connection to avoid voltage 

reversal[289]. The parallel connection can be further improved using a power management system 

that can electronically connect the tube in parallel without directly put them in a parallel connection 

to minimize the voltage reversal possibility[290]. 

In rice cultivation, a paddy field is not always in a waterlogged condition. For instance, according to 

Chapter 4, the wet period is around 91day per crop season. In West Kalimantan, Indonesia, the wet 

period for common rice cultivation is from 1 May until 31 July (first crop season) and from 1 

November until 31 January the next year (second crop season). Therefore, it is important to match 

the energy supply and demand between the Plant-MFC and the target devices. Figure 6. 2 shows an 

example of the energy supply and demand between Plant-MFC and the 5mm LED. In this figure, 192 

tubes of Plant-MFCs (Table 6. 1) use to power 5mm LED (3.6V, 20mA). The LED will be used for 

lighting 12 hours per day during the night-time. From Figure 6. 2 one can see that during the wet 

period, more power is produced than is consumed. Surplus power (marked in yellow) can be stored 

(i.e. in a battery) for later use in the dry period. For this, a battery system (e.g. at least with 113Wh 

capacity) that can last long (10 years or more) and has low self-discharge (2-3% per month) is 

preferable[291]. The need for storage is important because the energy harvested from Plant-MFCs 

fluctuates during the wet period of rice growth (Figure 6. 2). 
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Figure 6. 2: Energy supply and demand simulation for 5mm LED (i.e. used for lighting 12 h/day) powered 

by 192 tubular Plant-MFC (0.4 mW/tube) in a paddy field for 1 year (2 crop seasons). For left y-axis(for 

thin lines): The dark-green line shows actual daily energy supply of tubular Plant-MFC operated in a paddy 

field (Chapter 4). The light-green line is average energy supply (calculated based on the average power 

generation of 0.4 mW/tube chapter 4). The red line is average energy demand (calculated based on constant 

energy demand for 5mm LED for lighting 12h/day). For right y-axis (for thick lines): The dark-green line 

is cumulative energy supply from daily energy supply of tubular Plant-MFC operated in a paddy field 

(Chapter 4). The light-green line is the cumulative average energy supply; The red line is the cumulative 

average energy demand 

 

 

6.3.1 Overview of materials and cost estimation 

Tubular Plant-MFC used in this study (Chapter 4) costs €23.2 per meter tube (Table 6. 2).  This cost 

can still be reduced up to 78% by replacing the utilized material with other cheaper materials 

providing they will work similarly because not all electrode materials may work similarly good as 

shown in Chapter 3 [45]. For example, the tubular Plant-MFC cost may be reduced to €5.2/m tube 

when using alternative cheaper material; by replacing the silicone tube with €0.5/m RCR silicone 
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tube (RCR, Jiangsu, China)[292], the spacer with €0.5/m2 EIMO air filter (EIMO,Guangdong, 

China)[293], and the graphite felt with €16.41/m2 GT Graphite felt (Deqing Guotai,, Zhejiang, 

China)[294].   

 

Table 6. 2: Material needed per 1-m-length Plant-MFC and its cost estimation 

Plant-MFC component 
Material need 

(per tube) 

Price 

(Euro) 

Actual 

price per  

tube 

(Euro) 

Cost 

Percentage 

Reference 

for material 

cost 

Electrode: Graphite felt, 5 mm 

thickness      
Anode  1m x 19 cm 0.19 m2 62 m-2 11.8 51% [46] 

Cathode 1 m x 10 cm 0.1 m2 62 m-2 6.2 27% [46] 

Silicone tube: 

ISS 6,Lapp Group, Stuttgart, 

Germany 2 m 1.82m-1 3.6 16% [46] 

Spacer 1m x 15 cm: 

Filter media VNF 290; 
Topswtwfilters, Maarheeze, 

The Netherlands 0.15 m2 8.5 m-1 1.3 6% [295] 

Current collector:  

Ti wire diameter 0.25mm 3 m 

 

0.09 m-1 0.3 1% [296] 

TOTAL COST   23.2 100%  
 

6.3.2 Scenarios of using felt/AC/PU+AC 

In chapter 3, we have shown that AC can be mixed with sediment to generate electricity with a current 

density of 16.1 mA/m2 plant growth area and power density of 1.04 mW/m2 PGA.  If the graphite felt 

in the tubular Plant-MFC is replaced with activated carbon by retaining the same dimension (840ml 

for the anode and 330 ml for the cathode). Using an apparent density of 290 g/L for activated carbon 

[45], this amount is equal to 243.6 gr and 95.6 gr activated carbon for anode and cathode, respectively. 

Since AC price is much cheaper (€ 0.7/kg) in compared to the graphite felt [216], the reactor cost can 

be reduced up to €0.7/ reactor in combination with cheaper materials for spacer, silicone tube and 

current collector.  

In chapter 5, we have shown proof of principle of three-dimensional robust bioanodes were 

successfully developed with inexpensive polyurethane foams (PU) and activated carbon (AC). Here, 

even less AC can be utilized for the same type of Plant-MFC reactor.  We have shown that 1 kg AC 

per m3 PU was able to act as an electrode. If we use a PU foam sheet with a thickness of 5mm (as 

used in Chapter 5), the number of use activated carbon for this AC/PU electrode is only 5 g/m2. This 
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AC/PU electrode also delivered 0.2 mW/m2 PGA power output (0.01 mW/tube) when tested in the 

paddy field (Chapter 5).  Based on this result, the capital cost for this new electrode with a thickness 

of 5mm is only €0.03/m2 (cost AC €0.7 /kg and cost PU €5.2/m3[216,217]). Therefore, the total cost 

for one-meter length tubular Plant-MFC could be reduced to €0.5 in combination with cheaper 

materials for spacer, silicone tube and current collector. Although possible more electrode material is 

needed since the power output was 33 times lower than graphite felt.  

6.4  Some criteria that should (likely) be met for successful use of Plant-MFC  

 

For the successful integration of the Plant-MFC with household appliances, several criteria must be 

met. In this pre-assessment, Plant-MFC is envisioned to be applied as an off-grid power source (i.e., 

in most cases are located in a remote area). The assessment criteria are listed in Table 6. 3 below. 

Table 6. 3: Techno-Economic assessment criteria of successful application of the Plant-MFC 

Assessment criteria Criteria definition 

Technical  1. Plant-MFC must work in a real-life condition. 

2. Plant-MFC must deliver power suited for a target device. 

3. Plant-MFC must be scalable via a proposed serial-parallel 

connection. 

 

Economic 1. Energy generation cost of Plant-MFC (€/ kWh) must not be higher 

than that of the energy cost from a battery source. 

2. Payback period of the Plant-MFC must be lower than its expected 

lifetime. The payback period is calculated based on the production 

cost of Plant-MFC system and the energy price per kWh of 

primary/secondary battery price rather than the normal grid 

electricity price.  

  

Environmental safety 

and health 

The materials must be safe for the environment, not only during the 

production and operation but also after the lifetime.  

 

Social Plant-MFC technology should bring benefit for workers who produce 

it, consumers who use the technology and local communities at the 

installation location.  
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6.4.1 Technical criteria: Plant-MFC can power a low power consumption device 

Technically, the Plant-MFC must work in a real-life condition (not only in the lab/pilot scale). For 

this reason, power demand and supply must be matched. Figure 6. 3 shows that at present power 

density (0.4 mW/tube), Plant-MFC is suitable to power low power consumption devices (<1W) with 

a reasonable number of needed tubes. For instance, sensor nodes (3-6 μW) need only 6 tubes and a 

5mm white LED (72 mW) and a NiCd battery (105 mW) need 192 and 327 tubes, respectively. From 

Figure 6. 3 one can see that if the average Plant-MFC power density can reach its maximum power 

as achieved from polarization (2.6 mW/tube), the number of tubes to power some target devices 

reduces significantly. At this point, Plant-MFC can be used to power a mobile phone using 152 tubes. 

A smaller number of tubes will reduce possible connection problem (such as voltage reversal and 

contact resistance) and the land use.   

 

Figure 6. 3: Total needed tube to power several target devices (as presented in Table 6.1) at different Plant-

MFC power densities. The area in light red indicates the maximum theoretical available power in a paddy 

field as calculated in section 6.1 ranges from 58 to 419 mW/m2 (3.4-24.5 mW/tube). The yellow line 

indicates the maximum power output (44 mW/m2 or 2.6 mW/tube) and the green line indicates the average 

power output (6.6 mW/m2 or 0.4 mW/tube) of the studied Plant-MFC in the paddy field as explained in 

Chapter 4. 
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In a scalable process, high efficiency of power harvester system is needed for Plant-MFC because the 

power output from a single tube is low. Such a low power system is susceptible to small changes, 

including efficiency. Moreover, a compatible power management system that can avoid/minimize 

polarity reversal is in need. Finally, as has been shown in Figure 6. 2, power demand and supply must 

match. If one installs Plan-MFC in a non-permanent wetland (e.g. paddy field), energy storage is 

needed to store generated power for later use in the dry period.  

6.4.2 Economic criteria: Plant-MFC cost is comparable to the energy cost of a battery 

For implementation, Plant-MFC must meet the economic criteria. Although it is not easy to 

justify the economic value of such a system as potential environmental benefits are not simply 

returned into ‘cash’. The Plant-MFC is a power source with electricity storage capabilities (Chapter 

2). Providing no substrate limitation and the anode is always in a waterlogged anaerobic condition, 

the Plant-MFC needs no battery because it can deliver power continuously in 24h/day (Chapter 4).  

As we envisioned Plant-MFC for an off-grid power source, especially in a rural area, therefore 

the common electricity price (€0.2/ kWh) is cannot be used [297]. In many off-grid electrification 

systems, batteries are the most-used energy source [298]. Energy from batteries is much more 

expensive compared to grid electricity price. The cost per kWh for primary (non-rechargeable) battery 

such as alkaline type D cell, C cell, AA cell, AAA cell, 9 volts) is ranging from €70 to €527, with an 

average €286 [299]. In addition, the cost per kWh for secondary (rechargeable) battery depends on 

the battery type and the specific energy. On average, the cost per kWh for Lead Acid, NiCd, NiMH 

and Li-ion batteries are €135, €405, €405, and €585, respectively[299]. The actual cost for a battery 

in a remote area may be higher than the above-mentioned prices because of difficult transportation 

access (Chapter 4). 

In this sense, the Plant-MFC could be a competitive technology as a power source. Figure 6. 4 shows 

power generation cost (€/ kWh) from Plant-MFC at several production and implementation cost 

scenarios and two different expected lifetime. A pessimistic five-year lifetime is at least expected for 

the spacer, the electrode and the current collector since we have experienced no maintenance for the 

last 2 years from studied paddy field based tubular Plant-MFC. Furthermore, the lifetime may reach 

30 years especially because no other catalysts than the electrochemically active bacteria are utilized 

that renews themselves all the time [300]. From Figure 6. 4 one can see that based on present average 

power output of a paddy field based Plant-MFC (line A), the generation cost for the actual cost Plant-

MFC with an expected lifetime of 30 years is €249/ kWh, which is already in the range of electrical 

power generation cost of batteries. Even so, if the cheaper available material is used for the same 



Chapter 6  General Discussion 

183 

 

expected lifetime of 30 years, the generation cost for Plant-MFC would decrease to €77/ kWh. In 

section 6.1, we have estimated that a paddy field has the potential to generate power up to 419 

mW/m2. Assuming that the Plant-MFC can utilise 50% of this available power (Figure 6. 4 line C), 

the cost generation of the actual Plant-MFC within 30 year lifetime is 8.3 €/ kWh. In addition, in this 

calculation a moderate implementation cost of €50 per m2 is added to the production cost of each 

Plant-MFC [300]. If the implementation cost could be reduced or neglected in case of self-installation, 

the actual generation cost could have been much lower than presented. The influence of this 

implementation cost can be clearly seen from a Plant-MFC with a production cost of €1 per tube. In 

this Plant-MFC, the implementation cost becomes the major cost. The implementation cost might be 

reduced if Plant-MFC is applied on a large scale.  

 

 

Figure 6. 4: Generation cost from Plant-MFC at several production costs assuming implementation cost 

€50/m2. Line (A) average energy output paddy field based Plant-MFC at 6.6 mW/m2 (0.4 mW/tube); (B) 

maximum energy output paddy field based Plant-MFC at 44 mW/m2 (2.6 mW/tube); (C) 50% of the 

maximum theoretical energy output from paddy field based Plant-MFC ~200 mW/m2 (this thesis section 

6.1). The green area shows the generation cost range for batteries 

 

Furthermore, here we also calculated the payback period of several Plant-MFCs based on the 

production cost relative to the energy price from a primary battery (€286/ kWh). Figure 6. 5 shows 

that at present power density (0.4 mW/tube), the payback period for the actual cost (€23.2/tube) Plant-
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MFC is 23.2 years. If the power density of current paddy field based Plant-MFC could reach its 

maximum performance as obtained from polarization (yellow line), the payback period is only 3.6 

years. Reducing the Plant-MFC cost from current actual cost (€23.3/tube) to a scenario A (€1/tube) 

might shorten the payback period to only 1 year based on the average power output of paddy field 

based Plant-MFC. To sum-up, the plant MFC can be considered as economically feasible as an off-

grid power source to power 5mm LED to replace kerosene lamp providing there is no serial-parallel 

technical connection problem.   

 

Figure 6. 5: Payback period (in year) of 1-m tubular Plant-MFC from different production cost scenarios. 

The area marked in light red is the maximum theoretical available power that can be extracted by 1m tubular 

Plant-MFC (with PGA 0.0585m2) when installed in a rice paddy field (3.4-24.5 mW/tube). The green line 

indicates the average power output and the yellow line indicates the maximum power output of the studied 

Plant-MFC in the paddy field as explained in Chapter 4 
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6.4.3 Environmental safety and health criteria: Plant-MFC is expected safe to 

implement in an environment 

Ensuring that a product is safe for the environment and human health is part of product risk 

assessment’s purpose [301,302]. Product risk assessment can be made either by 

suppliers/manufactures or by regulators but the ultimate responsibility for product safety sits with 

suppliers while the regulator has an oversight or governance role with responsibility for ensuring the 

suppliers comply with the law and supply products that present an acceptable safety risk to consumers 

[301]. In a comprehensive product risk assessment made by manufactures of a new product, it has to 

take into account all relevant product hazards and is the basis for the reduction of risk to acceptable 

level when a product is design or produced [302]. In short, a product risk assessment must consider 

safety in design, production and in the marketplace[301,303]. Providing that the Plant-MFC is 

manufactured in accordance with the ISO 10377:2013 about consumer product safety[303], the 

assessment in this thesis is limited only to the marketplace, which is in the product implementation 

in the environment. For this assessment, main components in the Plant-MFC (graphite felt for the 

electrode, titanium wire for the current collector, and polyester/polypropylene for the spacer and cable 

ties) is assessed whether it is expected to be safe for human and environment.  

Graphite felt is not classified as hazardous under the Globally Harmonized System of Classification 

and Labelling and the US (Occupational Safety and Health Administration) OSHA Hazard 

Communication Standard[304]. The graphite felt may create airborne dust during its handling and 

therefore avoid creating and breathing airborne dust as it can irritate or harm the respiratory system. 

Moreover, the graphite felt dust may cause minor irritation of skin and eyes. To avoid such risk, it is 

important to do a precaution by wearing safety tools such as mask, gloves and google when working 

with graphite felt. Graphite felt is not listed as a carcinogen by the International Agency for Research 

on Cancer (IARC), US OSHA or the US Department of Health and Human Services National 

Toxicology Program (NTP) [304]. Graphite is relatively inert, stable and non-reactive material and 

would be expected to be of negligible consequence in the environment. This product does not contain 

substances that could cause it to be a hazardous waste if it is disposed. Disposal should be in 

accordance with applicable waste disposal regulation. Though it should be noted that various different 

graphite felt exists in the market, which some of them may contain pollutants. Therefore, it is 

important to wisely choose the one that less or not polluted. 

Titanium wire is not listed as a carcinogen. It is a solid metal at room temperature with a melting 

point at 16750C. Titanium alloys are stable at room temperature. It does not rust even in saltwater and 
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is safe for field application[305]. Furthermore, Titanium alloy grade 2 is commercially pure titanium 

that has good corrosion resistance and biocompatible, even with human body[306].  

The air filter used as a spacer is made of plastic polymers such as polyester and polypropylene.  

According to the MSDS [307,308], these polymers are not classified as a hazardous material and are 

thermally stable at environmental temperature. So far, there is no negative information about 

ecological effect of these polymers when implemented in the waterlogged soil. However, there is a 

study that polyester and polyester-polyurethane can be biodegraded by Cyanobacteria and Archaea 

[309]. This biodegradation may shorten the expected lifetime of the product. However, to what extent 

is this biodegradation effect on the environment is still unknown. Therefore, providing there is no 

reported negative impact of the material, it considers suitable for field implementation. The 

installation of these polymers (as part of the Plant-MFC) in the wetland should not be seen as plastic 

pollution since they will be removed from the soil when the expected lifetime is reached.  The waste 

disposal (after the Plant-MFC de-installation) should be accordance with applicable waste disposal 

regulation. Alternatively, an eco-friendly plastic material can be used for the replacement of current 

used material[310]. 

Alternative new developed electrode material PU/AC (Chapter 5) that using reticulated polyurethane 

(PU) and activated carbon (AC) is also assessed. There are two types of polyurethanes thas is the 

ester type and the ether type[311]. Polyurethane is not regulated for carcinogenicity and no exposure 

limit has been established in the U.S by OSHA[312]. Reticulated PU is chemically inert and thermally 

stable at environmental temperature, therefore, it is not expected to react with any chemical when 

deployed in the environment [313]. There is also no negative information about ecological effect of 

PU when implemented in the waterlogged soil. Polyurethane can be biodegraded by Pestalotiopsis 

(Equadorian fungus)  both in aerobic and anaerobic conditions[314]. However, it is difficult to clarify 

the fate of residues after degradation of the PU[311].  After the Plant-MFC de-installation, waste 

disposal should be accordance with applicable waste disposal regulation. 

Activated carbon (AC) is flammable solid that can cause serious eye irritation and may cause 

respiratory irritation[315]. For human safety, this product should be handled with precautions in 

accordance with safety instruction[315]. Under the normal environmental condition, AC is 

chemically stable and non-reactive [315].  AC has also been used in water purification[221] 

Moreover, AC has been widely used for in-situ sediment treatment remedy[122]. Thus, AC is 

considered safe for environmental implementation. 
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Based on the above-mentioned information, it may be that Plant-MFC is harmless to the environment 

providing the waste, after the lifetime of the Plant-MFC, is treated in accordance with applicable safe 

and clean waste disposal regulations. However, a complete life cycle assessment and real study on 

safety and potential direct environmental impact are still needed to give a detail justification for this 

technology. 

6.4.4 Social criteria: community engagement is required to create a social acceptance 

The social impact of a product when it is launched into a market is important to be assessed in a 

practical and harmonised method. For this, there is a consensus on the needs to address social issues, 

a workable, robust and aligned method for measuring and managing social impact at product level 

through the Roundtable for Product Social Metrics [316]. In this assessment, the boundary of the 

assessment includes those parts of the value chain that are relevant for the assessment either from 

cradle to grave, from cradle to gate or from gate to gate. The assessment covers the impact on at least 

three stakeholder group, which are worker, consumers and local communities [316].  According to 

the handbook for product social impact assessment, a complete product social impact assessment is 

design to address three main objectives: (i) make positive and negative impacts of products 

measurable and visible, (ii) support decision-making and communication at product level, and (iii) 

contribute to overall sustainability assessment [316]. However, at the current stage of development, 

a complete social impact assessment of Plant-MFC product is not ready yet. 

Currently, the Plant-MFC product is still in an infancy stage, in which mass production of Plant-MFC 

product that involves many workers and consumers does not exist yet. The Plant-MFC market is still 

limited to research and development even though some educational and decorative products are also 

introduced [317]. Therefore, the social impact assessment for workers and consumers or even local 

communities stakeholders is hard to assess. Here we briefly self-assess some social criteria (adapted 

from Annex 9 of the handbook for product social impact assessment) that should be met by Plant-

MFC for all three stakeholders [316]. Some relevant social topics at this stage (in our opinion) are 

health and safety, experienced well-being, and community engagement. The Plant-MFC must be safe 

for the health of workers, consumers and local communities at all its stages (production, installation, 

operation and end of life). The consumers should be able to experience positive feeling or emotional 

states (e.g., feeling of green lifestyle) associated with the use of the product. Finally, community 

engagement with local communities at location where the Plant-MFC is implemented is required for 

creating social acceptance. In this way, one has reduced the risk of unnecessary vandalism, especially 

due to a curiosity about the product. 
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6.5  Outlook 

6.5.1 Plant-MFC to power a sensor  

In this thesis, we have shown that the Plant-MFC is theoretically possible to power a low power 

consumption device. Plant-MFC needs from one to few hundreds of tubes to power a device from 

µW to up to 0.5W (Figure 6. 3). As have been discussed that connecting many tubes may cause 

electrical problems such us voltage reversal [289], an implementation involving little or no tube 

connections is preferred for Plant-MFC applications to avoid serial-parallel connection problems. At 

current development, while increasing the power density of the Plant-MFC is needed, Plant-MFC is 

already suitable to power environmental sensors that only needs µW to several mW power.  

At least two studies have shown that Plant-MFC can power a low energy data transmitter. First, a pot-

based Plant-MFC (height= 30 cm and diameter=20 cm) was able to power a sensor node, which 

consists of microcontroller, sensors and Long Range (LoRa) transceiver, for ozone and carbon 

dioxide detection, which send the collected data to a wireless sensor network (WSN) [318].  The pot 

based Plant-MFC can also be considered as a bio-battery that has been discussed in Chapter 3, which 

in this case could be placed in a house for green decoration while powering a sensor. Second, three 

parallel-connected Plant-MFCs (floating Plant-MFCs in a pond) can be operated over 1-year 

providing power sources for low energy data transmitters [190].  

Globally, the market for sensors is growing. It is predicted to continuously increase from US$ 116.1 

billion in 2019 to US$ 190.6 billion in 2021[319]. Environmental sensors are often deployed in a 

hardly accessible remote area. In this case, the cost for power sources (e.g., battery) could be less 

than €10, but the labour costs associated with the battery replacement can be substantially higher than 

the cost of the battery itself [320]. This cost could be avoided by installing a local power harvester, 

for instance, the Plant-MFC based power harvester, which envisioned could be operated without any 

maintenance for longer periods (5-30 years).  

As the principle of Plant-MFC requires waterlogged conditions to work, we suggested that this 

technology is suitable to power environmental sensor systems for wetlands. For instance, Plant-MFC 

could be integrated with peatland monitoring system, which consists of a water level sensor, soil 

moisture sensor, rainfall sensor, temperature sensor and GPS sensor [321].  Plant-MFC could also be 

integrated with agricultural sensors such us soil-related sensor and plant-related sensors which could 

provide relevant information about irrigation, fertilization, pest control and animal and pastures 

monitoring [287,322].  
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6.5.2 Plant-MFC function as a sensor 

Apart to power a sensor, Plant-MFC can also function as a biosensor. In this thesis (Chapter 4), we 

have shown that Plant-MFC performance during the dry period in a paddy field has some correlations 

with the rain event at which the Plant-MFC was installed.  Although a specific type of researches is 

needed to further understanding such correlation between the rain event, the state of the rain and the 

cell potential peak of a Plant-MFC.  

Furthermore, Plant-MFC might also be utilized as a soil quality indicator. When installed in the soil, 

Plant-MFC anode potential represents spatial soil redox potential. This in-situ soil redox potential can 

provide essential information about soil characteristics that can function as a soil quality indicator 

because the redox potential regulates plant physiology and phenology, plant/pathogen interactions, 

nutrient availability, heavy metal toxicity, soil genesis and greenhouse gas emission [323]. However, 

research is still needed to understand this relationship for practical implementation. 

 

6.5.3 Plant-MFC couple with other technologies for an additional value 

Finally, as have been shown in this thesis (section 6.2) and over a decade of Plant-MFC research 

[324], the electricity generation is still far lower than the theoretical available value. The Plant-MFC 

is far away from being a potential large green electricity sources (€1493/kWh for 5 year lifetime and 

€249/kWh for 30 year lifetime) that could be competitive with e.g. cheap renewable electricity from 

solar photovoltaics (€0.053 - 0.20per kWh)  or onshore wind power (€0.040 - €0.09 per kWh)[325]. 

In this sense, Plant-MFC application should ideally be combined with other technologies that can 

bring an added value for the coupled technology or combine functions using the same spatial 

location[46]. The latter can reduce the competition on land for e.g. energy versus food or biodiverse 

green infrastructure. For instance, Plant-MFC might be coupled with constructed wetland wastewater 

treatments [326,327], green biodiverse roofs [129], coproduction of food and electricity in paddy 

fields (chapter 4),  methane gas mitigation and reduction[136,262], and decorative and educational 

devices[66] 
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6.6  Concluding Remark 

 

In an off-grid area where battery still uses as power sources, Plant-MFC could be a competitive 

technology. Current Plant-MFC electricity cost generation (€249-€1493 per kWh) is not competitive 

to other renewable energy cost generation (€ 0.04-€0.2 per kWh). Novel electrode material 

optimisation can improve economic competitiveness. To what extent the power output can be 

improved towards the theoretical output is unclear. The actual energy/electron fluxes in the bioanode 

of the Plant-MFC are not all directly measured. Also competing processes must be quantified to reveal 

the limitations to understand how technical improvement could be applied. Nevertheless, Plant-MFC 

may be used to power various low power devices. Depending on the device, many tubes and large 

surface area are needed. In a conceptual design, an area of 60 m2 and 192 1-meter Plant-MFC tubes 

are required to power 5mm LED which has comparable luminous with kerosene lamp (~1 lumen). In 

addition, Plant-MFC can also be used to power an environmental sensor and might function as a 

biosensor. The portable Plant-MFC can be considered as a bio battery, which expands the limitation 

at where one can install a Plant-MFC since it is moveable. Furthermore, as shown in this thesis Plant-

MFC is also able to co-exist with rice production in the paddy field which can reduce the competition 

on land for e.g. energy versus food.  
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Summary 

As an energy carrier, electricity access is one of important aspect for human development. There is a 

positive correlation between electricity consumption per capita and human development index (HDI) 

and also gross domestic product (GDP).  However, the world electrification is not equally distributed. 

Most of those who do not have electricity access live in rural areas and located in developing 

countries. In these area, some people use polluted kerosene lamps as their light source or expensive 

gasoline generator as their electricity source. Other than that, battery is also widely used as a power 

source. In addition to the unequal electrification, the world electricity generation is still dominated by 

fossil fuel sources that has a negative impact on the environment, increased health risk and global 

climate change. Therefore, it is important to shift from conventional energy source to low-carbon 

renewable electricity sources.  

This thesis “Plant Microbial Fuel Cell in Paddy Field: a power source for rural area“ aims to 

assess the applicability of the plant  microbial fuel cell (Plant-MFC) as a low power off-grid power 

source in a rural area for a theoretical Indonesian case. To achieve this, a technical design was made 

for a household in rural area of Indonesia based on the latest research developments. Then, the 

applicability was assessed on technical, social, and environmental safety and health criteria as well 

as economics and some scenarios were suggested which could improve the real application. Values 

for a plant-MFC system to fulfil basic electricity needs were calculated. 

The main highlights and findings on this work are summarized in accordance with the chapters 

outlined in this thesis as following. 

Chapter 2 “Marine Sediment Mixed with Activated Carbon Allows Electricity Production and 

Storage from Internal and External Energy Sources: A New Rechargeable Bio-Battery with Bi-

Directional Electron Transfer Properties” investigates the abilities of marine sediment and 

activated carbon to store and generate electricity in a bio-battery. In this work, several mixture of 

marine sediment and activated carbon were studied in a bio electrochemical system (BES). When 

operated in the MFC mode, the system generated electricity with solely marine sediment as the anode 

electron donor, resulted in the creation of a bio-battery. The results show that by usage of marine 

sediment and activated carbon (AC) electricity was generated and stored. The internal electrical 

storage density is 0.3 mWh/kg AC marine anode.  These insights give opportunities to apply such 

BES systems as e.g. ex-situ bio-battery to store and use electricity for off-grid purpose in remote 

areas. 

Chapter 3 “Activated Carbon Mixed with Marine Sediment is Suitable as Bioanode Material 

for Spartina anglica Sediment/Plant Microbial Fuel Cell: Plant Growth, Electricity Generation, 

and Spatial Microbial Community Diversity” aims to investigate the suitability of a mixture of 

activated carbon and marine sediment as a bioanode in a plant-MFC system with Spartina anglica. 

This work focused on study how different mixtures of the activated carbon (AC) and the marine 

sediment (MS) as an anode material affected the plant vitality, electricity generation and spatial 

microbial community. Results show that Spartina anglica grew in all of the plant-MFCs, although 

the growth was less fertile in the 100% activated carbon Plant-MFC. On long-term (2 weeks) 

performance, mixture of 33% and 67% marine sediment outperformed other Plant-MFCs in terms of 
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current density (16.1 mA/m2 plant growth area) and power density (1.04 mW/m2 plant growth area). 

Results also show a high diversity of microbial communities dominated by Proteobacteria and 

indicates that the bacterial communities were affected by the anode composition. These findings show 

that the mixture of activated carbon and marine sediment are suitable material for bioanodes and 

could be useful for the application of Plant-MFC in a real wetland. 

Chapter 4 “Performance and Long Distance Data Acquisition via LoRa Technology of a Tubular 

Plant Microbial Fuel Cell Located in a Paddy Field in West Kalimantan, Indonesia” provide an 

insight about the field performance of tubular Plant-MFC. In this study, one-meter tubular Plant-MFC 

with graphite felt anode and cathode were installed in triplicates in a paddy field for four rice growth 

seasons. An online data acquisition using LoRa technology was developed to investigate the 

performance of the tubular Plant-MFC over the final whole rice paddy growing season. The result 

revealed that the Plant-MFC do not negatively affect the rice growth. A continuous electricity 

generation was achieved during a wet period in the crop season. On average the Plant-MFC generated 

power of 6.6 mW/m2 plant growth area (0.4mW per meter tube). The Plant-MFC also shows a 

potential to be used as a bio sensor, e.g. rain event indicator, during a dry period between the crop 

seasons. 

Chapter 5 “A Thin Layer of Activated Carbon Deposited on Polyurethane Cube Leads to New 

Conductive Bioanode for (Plant) Microbial Fuel Cell” exploits the potential of electrochemically 

active self-assembled biofilms to fabricate three-dimensional bio electrodes for of (plant) microbial 

fuel cells with minimum use of electrode materials. For this purpose, polyurethane foams coated with 

activated carbon was prepared and studied as platform bio anodes for harvesting electric current in 

lab microbial fuel cells (MFCs) and field Plant-MFCs. Results show that electric conductivity of the 

PU/AC electrode enhance over time during bioanode development. The maximum current and power 

density of an acetate fed MFC reached 3mA/m2 projected surface area of anode compartment and 

22mW/m3 anode compartment. The field test of the Plant-MFC reached a maximum performance of 

0.9 mW/m2 plant growth area at a current density of 5.6 mA/ m2 PGA. A rice paddy field test showed 

that the PU/AC electrode was suitable as anode material in combination with a graphite felt cathode.   

Finally, the main findings of this thesis are summarized and discussed in Chapter 6, “General 

Discussion”. In this chapter, a theoretical available power for Plant-MFC system from a paddy field 

is presented to give an insight how far performance of current Plant-MFC meets theoretical 

understanding. Based on the experimental results, this chapter answers the thesis goal to discuss the 

applicability of the Plant-MFC as an off-grid power source in a rural area by assessing its technical, 

economic, social, and environmental safety and health criteria. Finally, an outlook for future Plant-

MFC application is provided. 
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Ikhtisar 

Sebagai pembawa energi, akses terhadap listrik menjadi salah satu aspek penting dalam pembangunan 

manusia. Ada sebuah hubungan yang positif antara pemakaian listrik per kapita dengan indek 

pembangunan manusia (IPM) and juga pendapatan domestik bruto (PDB). Akan tetapi, tingkat 

elektrifikasi di dunia saat ini tidak tersebar dengan merata. Kebanyakan mereka yang tidak memiliki 

akses terhadap listrik bermukim di daerah-daerah pedalaman dan berada di negara-negara 

berkembang. Di daerah-daerah tersebut, sebagian masyarakat masih menggunakan lampu minyak 

tanah sebagai sumber penerangan mereka atau genset berbahan bakar bensin sebagai sumber tenaga 

listrik mereka. Selain itu, baterai juga masih digunakan secara luas sebagai sumber daya listrik. Selain 

elektrifikasi yang tidak merata, saat ini pembangkit-pembangkit listrik di dunia masih didominasi 

oleh sumber bahan bakar fosil yang berdampak negatif terhadap lingkungan, kesehatan, dan 

perubahan iklim global. Oleh karena itu, penting untuk beralih dari sumber energi konvensional ke 

sumber listrik terbarukan rendah karbon. 

Disertasi ini " Plant Microbial Fuel Cell in Paddy Field: a power source for rural area (Sel Bahan 

Bakar Mikroba Tanaman di Sawah: sumber tenaga untuk daerah pedalaman)" bertujuan untuk menilai 

penerapan sel bahan bakar mikroba tanaman (SBBMT) sebagai sumber daya luring listrik yang 

berdaya rendah di daerah pedalaman untuk sebuah kasus teoritis Indonesia. Untuk mencapai tujuan 

ini, sebuah desain teknis dibuat untuk rumah tangga di daerah pedalaman Indonesia berdasarkan 

perkembangan penelitian terbaru. Kemudian, kemungkinan penerapan SBBMT dinilai berdasarkan 

kriteria teknis, ekonomi, sosial, dan keselamatan lingkungan dan kesehatan. Beberapa skenario yang 

dapat meningkatkan aplikasi nyata juga disarankan. Akhirnya, harga/nilai untuk sistem SBBMT 

untuk memenuhi kebutuhan listrik dasar dihitung. 

Sorotan utama dan temuan-temuan pada pekerjaan ini dirangkum sesuai dengan bab-bab yang 

diuraikan dalam disertasi ini sebagai berikut. 

Bab 2 "Marine Sediment Mixed with Activated Carbon Allows Electricity Production and 

Storage from Internal and External Energy Sources: A New Rechargeable Bio-Battery with Bi-

Directional Electron Transfer Properties (Sedimen Laut yang Dicampur Dengan Karbon Aktif 

Memungkinkan Produksi dan Penyimpanan Listrik dari Sumber Energi Internal dan Eksternal: 

Baterai Biologis Isi Ulang Baru dengan Properti Transfer Elektron Dua Arah)" menyelidiki 

kemampuan sedimen laut dan karbon aktif (KA) untuk menyimpan dan menghasilkan listrik di dalam 

sebuah baterai biologis. Dalam karya ini, beberapa campuran sedimen laut dan karbon aktif dipelajari 

dalam sistem elektrokimia biologis. Ketika dioperasikan dalam mode MFC (sel bahan bakar 

mikroba), sistem dapat menghasilkan listrik dengan hanya menggunakan sedimen laut sebagai donor 

elektron di dalam anoda, menghasilkan penciptaan baterai biologis. Hasil menunjukkan bahwa 

dengan penggunaan sedimen laut dan karbon aktif, listrik dihasilkan dan disimpan. Kepadatan 

penyimpanan listrik internal adalah 0,3 mWh/kg anoda KA-sediment laut. Wawasan ini memberikan 

peluang untuk menerapkan sistem elektrokimia biologis, seperti misalnya baterai biologis ex-situ, 

untuk menyimpan dan menggunakan listrik untuk keperluan di daerah terpencil secara luring. 

 

Bab 3 “Activated Carbon Mixed with Marine Sediment is Suitable as Bioanode Material 

for Spartina anglica Sediment/Plant Microbial Fuel Cell: Plant Growth, Electricity Generation, 

and Spatial Microbial Community Diversity (Karbon Aktif yang Dicampur dengan Sedimen Laut 

Cocok sebagai Bahan Bioanoda Sel Bahan Bakar Mikroba Tanaman/Sedimen dengan Spartina 

anglica: Pertumbuhan Tanaman, Pembangkitan Listrik, dan Keragaman Komunitas Mikroba 

Spasial)” bertujuan untuk menyelidiki kesesuaian campuran karbon aktif dan sedimen laut sebagai 

bioanoda dalam sistem SBBMT dengan Spartina anglica. Karya ini difokuskan pada studi bagaimana 

berbagai campuran karbon aktif (KA) dan sedimen laut (SL) sebagai bahan anoda mempengaruhi 
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daya hidup tanaman, pembangkit listrik dan komunitas mikroba spasial. Hasil menunjukkan bahwa 

Spartina anglica tumbuh disemua SBBMT, meskipun pertumbuhannya kurang subur di SBBMT 

dengan 100% karbon aktif sebagai anoda. Pada kinerja jangka panjang (2 minggu), campuran 33% 

KA dan 67% SL mengungguli SBBMT lainnya dalam hal kerapatan arus listrik (16,1 mA/m2 area 

pertumbuhan tanaman (APT)) dan kerapatan daya (1,04 mW/m2 APT). Hasil penelitian juga 

menunjukkan keberagaman yang tinggi dari komunitas mikroba yang didominasi oleh Proteobacteria 

dan menunjukkan bahwa komunitas bakteri dipengaruhi oleh komposisi anoda. Temuan ini 

menunjukkan bahwa campuran karbon aktif dan sedimen laut adalah bahan yang cocok untuk 

bioanoda dan dapat berguna untuk aplikasi lapangan SBBMT di lahan basah. 

Bab 4 " Performance and Long Distance Data Acquisition via LoRa Technology of a Tubular 

Plant Microbial Fuel Cell Located in a Paddy Field in West Kalimantan, Indonesia (Kinerja dan 

Akuisisi Data Jarak Jauh melalui Teknologi LoRa dari Sel Bahan Bakar Mikroba Tanaman berbentuk 

Tubular yang Berlokasi di Sawah di Kalimantan Barat, Indonesia)" memberikan wawasan tentang 

kinerja lapangan SBBMT tubular. Dalam studi ini, satu meter SBBMT tubular dengan anoda dan 

katoda terbuat dari laken grafit dipasang sebanyak rangkap tiga di sawah selama empat musim tanam 

padi. Perolehan data daring menggunakan teknologi LoRa dikembangkan untuk menyelidiki kinerja 

SBBMT tubular selama musim tanam padi terakhir. Hasil penelitian menunjukkan bahwa SBBMT 

tidak berpengaruh buruk terhadap pertumbuhan padi. Pembangkitan listrik secara berkelanjutan 

dicapai selama periode basah dimusim tanam. Rata-rata SBBMT menghasilkan kerapatan daya 

sebesar 6,6 mW/m2 APT (0,4mW per meter SBBMT). SBBMT juga menunjukkan potensi untuk 

dapat digunakan sebagai sensor biologis, misalnya sebagai indikator terjadinya hujan, selama periode 

kering sawah. 

Bab 5 " A Thin Layer of Activated Carbon Deposited on Polyurethane Cube Leads to New 

Conductive Bioanode for (Plant) Microbial Fuel Cell (Lapisan Tipis Karbon Aktif yang 

Diendapkan pada Kubus Poliuretana mengasilkan Bioanoda Konduktif Baru untuk Sel Bahan Bakar 

Mikroba (Tanaman))" memanfaatkan potensi pembentukan biofilm secara elektrokimia untuk 

membuat elektroda biologis tiga dimensi bagi SBBMT dengan penggunaan minimum bahan 

elektroda. Untuk tujuan ini, busa poliuretana (PU) yang dilapisi dengan karbon aktif (KA) disiapkan 

dan dipelajari sebagai dasar anoda biologis untuk memanen arus listrik dalam sel bahan bakar 

mikroba di laboratorium dan di lapangan. Hasil menunjukkan bahwa daya penerus listrik pada 

elektroda PU/KA meningkat dari waktu ke waktu selama proses perkembangan anoda biologis. 

Kerapatan arus maksimum dan daya dari sel bahan bakar mikroba umpan asetat mencapai 3mA/m2 

luas permukaan anoda dan 22mW/m3 volum anoda. Uji lapangan SBBMT mencapai kinerja 

maksimum 0,9 mW/m2 APT dengan kerapatan arus sebesar 5,6 mA/m2 APT. Hasil pengujian di 

sawah menunjukkan bahwa elektroda PU/AC cocok sebagai bahan anoda dalam kombinasi dengan 

katoda berbahan laken grafit. 

Akhirnya, temuan utama dari disertasi ini dirangkum dan dibahas dalam Bab 6, "General Discussion 

(Diskusi Umum)". Dalam bab ini, daya teoretis yang tersedia di sawah untuk sistem SBBMT 

disajikan untuk memberikan wawasan seberapa jauh kinerja SBBMT saat ini memenuhi pemahaman 

teoritis. Berdasarkan hasil percobaan, bab ini menjawab tujuan disertasi untuk membahas penerapan 

SBBMT sebagai sumber listrik luring (off-grid) di daerah pedalaman dengan menilai kriteria teknis, 

ekonomi, sosial, dan keselamatan lingkungan dan kesehatan. Akhirnya, prospek untuk aplikasi 

SBBMT di masa depan beberkan. 
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Isi ringkas 

Njaji pemaba tanaga, ada angin ia listrik njaji salah sote banda nang panting dalapm m’maju idup 

keleno. Ada obongan nang baik antara listrik nang dingguna satiap keleno duan indek pembangunan 

keleno, uga duan pangaselan domestik kotor. Tapi, sambongan listrik nang ada ka dunia kini ari ntu 

angin merate. Kobo umpu iya nang angin balistrik na biase ia badiapm ka binua-binua nang monggo 

duan ka nagara-nagara nang gi angin maju. Ka binua-binua nang di madah na tadi, urakng kampong 

ia ada nang nompok pelita ontok panarakng malam ari duan ada uga nang ngidup masen genset ontok 

listrik. Selain na, banyak uga nang ngguna batu bateri ontok somber listrik ia. Salait masalah 

sambongan listrik nang angin merate, sampe mpitu ari sabagian aya masen-masen pengasel listrik 

masih makai minyak bumi nang diri nao angin baik ontok utat diri, ontok idup keleno duan ontok 

iklim dunia. Karna na, panting ontok diri beraleh dari somber tanaga lama nang ngasel banyak karbon 

pangotor ka somber listrik nang bisa dimbaru nang inik karbon. 

Disertasi ntu “Plant Microbial Fuel Cell in Paddy Field: a power source for rural area (Sel Bahan 

Tunu Mikroba Tanaman ka Uma Paya: somber tanaga ontok binua nang monggo)” batujuan ontok 

nele apekah Sel Bahan Tunu Mikroba Tanaman (SBTMT) bisa njaji somber tanaga ka luar jaringan 

listrik nang batanaga amuk ka binua nang monggo ontok contoh kasus teoritis Indonesia. Ontok 

nyacah tujuan na, sote rancangan teknis dinggawe ontok rumah ka binua monggo di Indonesia duan 

dasar asel-asel panalitian nang baru. Lalu, kamungkinan ontok makai SBTMT dingaji uga dari sisi 

teknis, ekonomi, sosial duan kasalamatan utat sakitar wan kasehatan keleno. Beberape ncana uga 

dimere ontok bisa m’maik aplikasi nyata ia. Akher ia, itongan uga dimuat ontok nele apekah sestem 

SBTMT bisa ontok nyukup listrik nang dimaralu. 

Togoan utama duan panamu-panamu dalap pegawe ntu dingerangkum sasuai duan bab-bab nang 

dinjalas dalap disertasi ntu bage pitu. 

Bab 2“Marine Sediment Mixed with Activated Carbon Allows Electricity Production and 

Storage from Internal and External Energy Sources: A New Rechargeable Bio-Battery with Bi-

Directional Electron Transfer Properties (Lolok laut nang dingucal duan karbon aktif bisa ngasel 

duan ngombes listrik dari somber tanaga dari dalap duan luar: Bateri biologis isi ulang baru duan 

sipat-sipat pinah elektron dua arah)” neliti tantang kamampuan lolok laut duan karbon aktif ontok 

ngasel duan ngombes listrik ka dalap sabuah bateri biologis. Dalap pegawe ntu, beberape camporan 

lolok laut duan karbon aktif dimalajar dalap sestem elektrokimia biologis. Waktu di njalat dalap 

pungsi MFC (sel bahan tunu mikroba), sestem ngesel listrik. Lolok laut nang njaji sote-sote ia somber 

elektron ka dalap anoda, ngasel bateri biologis. Asel panalitian mere tahu diri kalo lolok laut duan 

karbon aktif bisa ngasel duan ngombes listrik. Karapatan pengombesan listrik dari dalap ia na sakitar 

0,3 mWh/kg anoda KA-lolok laut. Panamuan ntu mere paluang ontok ngguna sestem elektrokimia 

biologis ntu, misal ia njaji bateri biologis nang bisa dimakai ontok biniu-binua nang monggo. 

Bab 3 “Activated Carbon Mixed with Marine Sediment is Suitable as Bioanode Material 

for Spartina anglica Sediment/Plant Microbial Fuel Cell: Plant Growth, Electricity Generation, 

and Spatial Microbial Community Diversity (Karbon Aktif nang dingucal duan Lolok Laut Bisa 

Njaji Bioanoda Sel Bahan Tunu Mikroba Tanaman/Lolok duan Spartina anglica:  Patumuhan 

Tanaman, Pambangkitan Listrik, duan Janis-janis Mikroba ia” batujuan ontok ngago kacocokan 

camporan karbon aktif duan lolok laut ontok njaji bioanoda ka dalap sestem SBTMT duan Spartina 

anglica. Pegawe ntu dimusat ontok nele bagemane pengaroh macam-macam janis camporan karbon 

aktif duan lolok laut nang dingguna njaji bahan anoda ka kamampuan idup tanaman, pambangkitan 

listrik, duan kalompok mikroba ka dalap ia. Asel ia nonjokkan kalo Spartina anglica tumuh ka samua 

SBTMT, cuma angin gila ombok ka SBTMT nang cuma dingisi duan karbon aktif. Dalap jangka 

panyakng (2 minggu), 33% karbon aktif duan 67% lolok laut ngalabihi SBTMT nang lait ia dalap hal 
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karapatan arus listrik (16,1 mA/m2 tampat tumuh tanaman(TTT)) duan karapatan tanaga 1,04 mW 

/m2 TTT. Asel pegawe uga nonjokkan kalo kalompok mikroba nang ada ka dalapm anoda na mbada 

banyak macam janis ia. Janis nang paling banyak adalah Proteobacteria. Janis-janis kalompok 

mikroba ntu kana pangaroh dari janis campuran anoda ia. Tamuan ntu mere tau kalo campuran karbon 

aktif duan lolok laut na cocok ontok njaji bahan bioanoda duan bisa baguna ontok dimakai dalap 

sestem SBTMT ka taya paya. 

Bab 4 " Performance and Long Distance Data Acquisition via LoRa Technology of a Tubular 

Plant Microbial Fuel Cell Located in a Paddy Field in West Kalimantan, Indonesia (Onjok Gawe 

duan Ngompol Data Dari Jauh Ngguna Teknologi LoRa dari Sel Bahan Tunu Mikroba Tanaman 

Tubular ka Uma Paya ka Kalimantan Barat, Indonesia)” mere tau tantang onjok gawe lapangan dari 

SBTMT tubular. Dalap panalitian ntu, sameter SBTMT tubular nang anoda duan katoda ia tabuat dari 

laken grafit dimasang rangkap tege salama ampat mosem nanam padi. Pangompolan data dari jauh 

ngguna teknologi LoRa dingarancang ontok nele onjok pegawe SBTMT tubular salama mosem tanam 

padi nang kaampat. Asel panalitian mere tau kalo SBTMT tubular angin maba pangaruh nang jaek 

ka kaombok’an padi. Listrik di ngasel tarus manarus salama paya dingae’. Rate-rate SBTMT tubular 

ngasel karapatan tanaga 6,6 mW/m2 TTT (0,4 mW satiap SBTMT). SBTMT bisa uga njaji sensor 

biologis, misal ia njaji penanda ujat salama paya dingarikng. 

Bab 5 " A Thin Layer of Activated Carbon Deposited on Polyurethane Cube Leads to New 

Conductive Bioanode for (Plant) Microbial Fuel Cell (Lapisan Tipis Karbon Aktif nang dingandap 

ka Busa Poliuretana Njaji Bioanoda Konduktif nang Baru ontok Sel Bahan Tunu Mikroba Tanaman)" 

ngguna potensi biofilm sacara elektrokimia ontok nggawe elektroda biologis tege dimensi ontok 

SBTMT duan bahan elektroda nang inik. Ontok ntu, busa pilouretana (PU) nang dingalapis duan 

karbon aktif(KA) dinyiap duan dimalajar njaji tampat pamole anoda biologis ontok nganyi arus listrik 

dalap sel bahan tunu mikroba (SBTM) ka laboratorium duan ka lapangan. Asel nonjokkan kalo 

konduktivitas listrik elektroda PU/KA batamah dari waktu ka waktu salama pangambangan elektroda 

biologis. Karapatan arus nang paling tinggi duan tanaga dari SBTM nang dinyolo umpat asetat nyacah 

3mA/m2 luas anoda duan 22 mW/m3 isi anoda. Pangujian ka lapangan SBTMT tubular ncapai onjok 

gawe paling tingi 0,9 mW/m2 TTT duan karapatan arus ia 5,6 mW/m2 TTT. Asel pangujian ka uma 

paya nonjokkan kalo elektroda PU/AC cocok ontok njaji bahan anoda nang dingawan duan katoda 

dari laken grafit. 

Penyantak ia, tamuan utama dari disertasi ntu dingerangkum duan dimbahas dalap bab 6, “General 

Discussion (Diskusi Omom)”. Dalap bab ntu, tanaga teoritis nang tasadia ka uma paya ontok sestem 

SBTMT dinjalas ontok mere tahu sabarape jauh dah onjok pegawe dari SBTMT kini ari ntu mampu 

nyacah pamahaman teoritis ia. Ngguna asel panalitian, bab ntu mere jawaban ka tujuan disertasi ontok 

mbahas kamungkinan pamakaian SBTMT njaji somber listrik ontok binua-binua nang monggo. 

Ontok ntu, kriteria teknik, ekonomi, sosial, duan kasalamatan lengkongan duan kasehatan keleno di 

mbahas sote-sote. Pangabis ia, pandangan-pandangan tantang kamungkinan pemakaian SBTMT 

ontok masa depan di mbahas uga. 
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