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A B S T R A C T

By combining portable, handheld near-infrared (NIR) spectroscopy with state-of-the-art classification algo-
rithms, we developed a powerful method to test chicken meat authenticity. The research presented shows that it
is both possible to discriminate fresh from thawed meat, based on NIR spectra, as well as to correctly classify
chicken fillets according to the growth conditions of the chickens with good accuracy. In all cases, the random
subspace discriminant ensemble (RSDE) method significantly outperformed other common classification
methods such as partial least squares-discriminant analysis (PLS-DA), artificial neural network (ANN) and
support vector machine (SVM) with classification accuracy of> 95%. This study shows that handheld NIR
coupled with machine learning algorithms is a useful, fast, non-destructive tool to identify the authenticity of
chicken meat. By comparing and combining different protocols to measure the NIR spectra (i.e., through
packaging and directly on meat), we show the possibilities for both consumers and food inspection authorities to
check the authenticity and origin of packaged chicken fillet.

1. Introduction

The supply of sufficient healthy, safe, and authentic food to a
growing world population is one of the most important challenges for
the present and the future (Pischetsrieder, 2018). Detection of food
adulteration such as unlabelled replacement of food components may
be hindered because of the targeted focus of analytical techniques
(Reid, O'Donnell, & Downey, 2006; Sentandreu & Sentandreu, 2014).
From an analytical standpoint, successful detection of food adulteration
faces two major challenges (Reid et al., 2006). The first challenge
comprises untargeted determination of undeclared ingredients or un-
known (hazardous) naturally present substances. Secondly, and more
analytically challenging, are claims like animal welfare, fair trade, or
eco-friendly production. While these “soft claims” are generally beyond
the scope of analytical chemistry, the effects on the chemical compo-
sition of the product may still be found and quantified.

Meat authenticity (and traceability) are of particular importance in
modern society (Sentandreu & Sentandreu, 2014; Vlachos,
Arvanitoyannis, & Tserkezou, 2016). Recent events of meat

adulteration with non-declared species such as horse meat illustrate the
global need for clear and reliable checks for consumer products, but
even intact fresh meat is often indistinguishable between brands or
price-range. Nowadays price and lifestyle, together with religion and
health concerns, determine an individual's choice for particular food
products (Reid et al., 2006; Sentandreu & Sentandreu, 2014).

Detection technologies applied for food authenticity are mainly
based on spectroscopic and chromatographic techniques (Gallo &
Ferranti, 2016). Spectroscopic techniques have great potential for dis-
crimination of food materials. One promising and widely used tech-
nique in this context is near infrared (NIR) spectroscopy, a rapid and
non-destructive technique. NIR enables preliminary monitoring of dif-
ferent types of food and as an analytical technique is able to give
qualitative and quantitative information about complex samples (Abasi,
Minaei, Jamshidi, & Fathi, 2018; Lohumi, Lee, Lee, & Cho, 2015; Prieto,
Roehe, Lavín, Batten, & Andrés, 2009).

Developments in instrumentation technology have led to the
availability of portable spectroscopic devices. Modern handheld NIR
instruments that have been developed for food and drug quality control
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are fast, lightweight and relatively inexpensive. The trade-off for using
these devices is that the spectral region and resolution are limited
compared to benchtop technologies (Modroño, Soldado, Martínez-
Fernández, & de la Roza-Delgado, 2017; Pasquini, 2018; Zamora-Rojas,
Pérez-Marín, De Pedro-Sanz, Guerrero-Ginel, & Garrido-Varo, 2012).
Additionally, scattering effects and instrumental and ambient noise
make robust chemometric and machine learning methods crucial to
extract the relevant information from the spectra (Arvanitoyannis &
Van Houwelingen-Koukaliaroglou, 2003; Curran et al., 2018).

Previously, different chemometric and machine learning approaches
such as principal component analysis (PCA), partial least squares (PLS),
artificial neural network (ANN), linear discriminant analysis (LDA) and
support vector machine (SVM) have been used for the analysis of
handheld NIR spectra in relation to food research (Acquarelli et al.,
2017; Arvanitoyannis & Van Houwelingen-Koukaliaroglou, 2003;
Ballabio, Consonni, & Todeschini, 2009; Brereton & Lloyd, 2010;
Efenberger-Szmechtyk, Nowak, & Kregiel, 2018; Risoluti, Gregori,
Schiavone, & Materazzi, 2018; Zontov, Balyklova, Titova, Rodionova, &
Pomerantsev, 2016). However, these methods perform poorly for ex-
ploration and classification of complex analytical problems like fresh-
ness and growth system of food samples. Additionally, these methods
often need data preprocessing and selection of the best preprocessing
strategy is challenging on its own (Rinnan, 2014; Rinnan, Berg, &
Engelsen, 2009).

In the present contribution, a powerful machine learning algorithm
is used based on ensemble learning (Merkwirth et al., 2004; Rokach,
2010). This method splits the data into multiple parts and combines the
best models for the different parts (of the NIR spectra) to come to a
majority vote classification. Random subspace discriminant ensemble
(RSDE) (Ho, 1998) is proposed here as a fast and reliable method to use
handheld NIR devices for food authenticity. The simplicity of the dif-
ferent components of our methodology will allow for “Measure &
Monitor” technology to evaluate food authenticity. The goals of the
presented research were (1) discrimination of fresh (Fr) and Thawed
(Th) samples and (2) discrimination of growth systems based on
handheld NIR spectra from three recording modes of on meat (OM),
through the top of the package (TP) and through the package held
bottom up (TB), such that the meat touched the covering foil.

2. Materials and methods

2.1. Sampling and data collection

Fresh chicken breast fillet samples were kindly provided Albert
Heijn B.V. (The Netherlands) and Musgraves Group Ltd. (Ireland) in
their standard supermarket packages in June 2015. The animal welfare
classification system differs between the countries of origin.

Albert Heijn B.V. has provided a set of 70 fresh chicken fillet sam-
ples from different production systems and batches, divided over a time
span of 3 weeks. Animal welfare was expressed on the packaging by “no
star” representing the lowest level of welfare and three stars re-
presenting the highest level of welfare.

Conventional chicken (CONV) (18 samples)
Free-range (1 star, 1*) (17 samples)
Specialty (2 stars, 2*) (17 samples)
Organic (ORG) (3 stars, 3*) (18 samples)

In the same period, Musgraves Group has provided a set of 83 fresh
chicken fillet samples from different production systems and batches,
divided over a time span of 2 weeks:

Standard chicken (STD) (18 samples)
Free range (FR) (15 samples)
Corn fed chicken (CF) (15 samples)
Marinated chicken (MAR) (35 samples)

Samples (153 total) were shipped in ‘fresh packs’, guaranteeing a
temperature between 4 and 7 °C for 96 h. Samples arrived within that
time-span. Marinated chicken fillets acted as controls, since these were
expected to be highly identifiable.

Thawed samples (133 in total) were obtained by freezing at − 18 °C
for 48 h and thawing for 24 h at + 4 °C. Twenty fresh samples were
used for β-hydroxyacyl-CoA-dehydrogenase (HADH) reference mea-
surements (13% of the total sample set) to assess their storage history,
i.e. whether the samples had been chilled or frozen (Boerrigter-Eenling,
Alewijn, Weesepoel, & van Ruth, 2017). For the Dutch set, three sam-
ples of each class were used for HADH, whilst for the Irish set two
samples were subjected to HADH per category. No deviations were
found in the freshness of the samples. Samples which were subjected to
HADH measurements were not subjected to NIR measurements for the
thawed category. No reference methods were available for confirmation
of the growing system of the chicken fillet samples. Providers have
confirmed that the indicated growing system is correct. Note that
growth conditions may be similar across countries (e.g., CONV and
STD), but that different labels have been attached in order to classify
between-country variation.

NIR data was acquired using a MicroNIR Pro NIR (Viavi Solutions,
Milpitas, CA, USA), powered by the MicroNIR Pro software (version
2.2, Viavi Solutions) in diffuse reflectance mode in wavelength range of
approximately 908–1676 nm with an evenly distributed spectral re-
solution, resulting in 125 variables/measurement. A 99% white diffuse
reflectance standard was used for calibration followed by a dark mea-
surement. This calibration was repeated in 10 min cycles. The 153
chicken fillet samples were subjected to non-destructive NIR measure-
ments by applying the NIR with standard collar in three different ways:
on meat (OM), through package (TP) and through packaging bottom up
(TB). First, TPmeasurements were acquired by placing the package on a
flat surface and applying the NIR on the transparent top foil without
pressure above the fillet sample. In most cases an air pocket was be-
tween the foil and the sample. Secondly, the TB measurements were
performed by flipping the package bottom up, letting the fillet sample
lean on the top transparent foil, followed by NIR measurements through
this transparent foil. Finally, the transparent top foil was removed and
NIR measurements were taken directly on the fillet sample without
applying considerable pressure. Prior to freezing, the fillet package was
covered with a new layer of identical transparent top foil. Five re-
plicates were taken per OM/TP/TB, with a total of 4590 raw NIR
measurements. Scheme A1 of the appendix illustrates how the samples
were collected. The raw data used for this study is available as sup-
plementary material (Parastar et al., 2020).

2.2. Data handling and preprocessing

Spectral data was labelled to ensure replicate measurements and
measurements from different modes of the same fillet could be con-
nected. Training and test sets were created using the Duplex method
(Daszykowski, Walczak, & Massart, 2002; Puzyn, Mostrag-Szlichtyng,
Gajewicz, Skrzyński, & Worth, 2011; Snee, 1977) on the entire data set
in order to ensure a representative test set including boundary cases
(Reitermanova, 2010; Westad & Marini, 2015). All classes were re-
presented in the test set. Importantly, all measurements (i.e., spectra) of
a sample were assigned to either training set (70%) or test set (30%) in
order to ensure that the test set did not include data from the same
sample that the model was trained on.

When looking for the optimum pre-processing strategy a design of
experiments was used (Gerretzen et al., 2015). The predictive classifi-
cation model was built (PLS-DA, CP-ANN, SVM and RSDE) and vali-
dated using cross validation (CV). In every CV, spectra belonging to the
same chicken sample were removed from the train set (leave-chicken-
out). After training, tuning and evaluation of the model, the test set was
used for final performance estimation. The data analysis pipeline of the
presented work is shown in Scheme 1.

H. Parastar, et al. Food Control 112 (2020) 107149

2



2.3. Random subspace discriminant ensemble

Classification of the NIR spectra was done using Random Subspace
Discriminant Ensemble. This method divides the spectra into a number
of random subspaces (30 random subspaces as standard in this case),
selected from the spectral domain (e.g., a random subset of 60 wave-
lengths is the default in Matlab). Discriminant analysis (DA) was used to
classify the spectra in each subspace (Ho, 1998; Tan, Li, & Qin, 2008).
Each subspace may result in different classification probabilities. These
probabilities are combined by taking their average across all subspaces
to come to a single classification model of the full spectra. Fig. 1 shows
the general architecture of RSDE algorithm. The potential of RSDE in
high dimensional data comes from the fact that each model requires
only a limited number of variables.

2.4. Software

Chemometric data analysis was performed in MATLAB environment
R2016a, with the exception of the leave-class-out validation (Section
3.5), which was done in R2019B (Mathworks, MA, USA). The PLS-
Toolbox v7.8 (Eigenvector, WA, USA) was used for PLS-DA modelling,
the pre-processing toolbox (Gerretzen et al., 2015) was used to choose
the best preprocessing strategy (based on an experimental design), the
CP-ANN toolbox (Milano Chemometrics and QSAR Research Group)
was used for optimization of the Kohonen network and supervised
classification and the Classification Learner toolbox of MATLAB was
used for SVM and RSDE modelling.

3. Classification of NIR spectra

3.1. Fresh vs. thawed

The RSDE algorithm was first used to discriminate Fr and Th sam-
ples for each of the three different spectral recording modes. For the
preprocessing of the data, an experimental design was used to find the
best strategy with minimal classification error (Gerretzen et al., 2015).
Classification performance was evaluated using accuracy (Acc), preci-
sion (Pre), sensitivity (Sen), specificity (Spe) and error rate (ER)
(Ballabio & Consonni, 2013).

Fig. 2 shows the NIR spectra of Fr and Th samples in three different
spectral recording modes of OM/TP/TB. Coloring the spectra by re-
cording mode shows that there are clear differences in absorbance re-
lated to how the spectra were obtained. The differences are similar for
Fr and Th samples. Because Fr and Th samples have similar spectra, the
first challenge in this study was to discriminate Fr and Th samples based
on NIR spectra.

The RSDE performed well in discriminating individual spectra of Fr
and Th samples; Acc values were 90.2% for training set, 87.6% for cross
validation (CV) and 85.2% for test set of OM samples. For TP samples,

Scheme 1. Data analysis pipeline for each presented study.

Fig. 1. Principle of the RSDE framework (sequential subspaces used for illustrative purposes).

H. Parastar, et al. Food Control 112 (2020) 107149

3



the values were 96.4%, 95.4% and 92.0% for train, CV and test sets,
respectively. The Acc values for TB samples were respectively 95.4%,
93.3% and 91.0% for train, CV and test sets. Details on the classification
power can be found in Table A1 in the appendix.

3.2. Classification in growth conditions

The ability of the RSDE method to classify individual NIR spectra
was promising. The next objective was to evaluate whether the RSDE
method could also be used to discriminate between the growth systems
of the chickens. The RSDE algorithm was used for classification of seven
growth conditions of 1*/2*/ORG/CONV/STD/FR/CF as well as MAR
samples in Fr and Th conditions in OM, TP and TB modes (details in
section 2.1). As an example, Fig. 3 depicts the discrimination perfor-
mance of RSDE for classification of chickens in different growth con-
ditions in terms of Acc in OM, TP and TB modes. As can be seen, the
values of Acc for training, validation and test sets are between 80 and
90% for OM (Fig. 3a), TP (Fig. 3b) and TB (Fig. 3c). The values of Acc
are low because of the complexity of the samples and similarity in the
NIR spectra of samples in different conditions.

To compare the results of RSDE model with common classification
methods in chemometrics, NIR data of chickens in different growth
conditions were classified by partial least squares-discriminant analysis
(PLS-DA) (Ballabio & Consonni, 2013; Gromski et al., 2015), counter
propagation-artificial neural network (CP-ANN) (Ballabio et al., 2009;
Ballabio & Vasighi, 2012) and support vector machine with quadratic
kernel function (Q-SVM) (Brereton & Lloyd, 2010). Model performance
of the RSDE was better than that of the other methods. In Fig. 3, the
classification results for PLS-DA, CP-ANN and Q-SVM for training, va-
lidation and test sets in terms of Acc are shown in comparison with
RSDE. Due to the type of subspace selection, the RSDE is only slightly
affected by noise and is less prone to overfitting (shown by similar Acc
values for train, validation and test sets).

For PLS-DA, the best preprocessing strategy was chosen according to
experimental design approach (lowest classification error) (Gerretzen
et al., 2015). In this regard, mean-centering and pareto scaling were the
best pre-processing strategies. Other attempts such as outlier detection
using Q-residuals/Hotelling's T2 (Ballabio & Consonni, 2013) and

variable selection using variable importance in projection (VIP) with
“greater than one” rule (Andersen & Bro, 2010) were performed to
improve PLS-DA classification. These methods slightly improved the
models but not to acceptable levels (see Table A2 for more details).

For CP-ANN, firstly, the genetic algorithm (GA) (Ballabio, Vasighi,
Consonni, & Kompany-Zareh, 2011) was used to optimize the network
topology including neurons and number of epochs, resulting in 40
neurons and 150 epochs. As shown in Fig. 3, the performance of CP-
ANN is not good in the CV and test sets.

In SVM, the quadratic kernel gave the best accuracy (among linear,
quadratic, cubic and radial basis function) (Brereton & Lloyd, 2010).
The performance of Q-SVM was better than PLS-DA and CP-ANN in
terms of Acc (see Table A3 for more details of Q-SVM performance), but
were still far from ideal (accuracy values were below 77.7%). In sum-
mary, going from linear PLS-DA to non-linear CP-ANN and Q-SVM
improved classification performance, but results were deemed in-
sufficient.

The RSDE outperformed other classification methods for dis-
crimination of growth conditions. To obtain a more detailed view of the
classification power of this method, the classification performance of
RSDE in terms of Acc, Sen, Prec for Fr samples in OM mode is presented
here; Acc value for eight classes was 79.4%, the Sen values ranged from
55.8 to 95.4% and Prec values ranged from 63.6 to 90.5% for the test set
(467 spectra). Though the Acc value of RSDE (79.4%) was significantly
higher than that of the closest Acc of Q-SVM (79.4% vs. 71.1%,
z = 2.9389, p = .00164) the classification performance strongly
showed room for improvement. Table A3 shows more details of the
classification performance of RSDE in terms of Acc, Sen, Prec for Fr
samples in OM mode.

One of the surprising aspects of RSDE algorithm is its insensitivity to
preprocessing. In other words, conventional chemometric spectral
preprocessing does not affect the performance of this algorithm and
therefore, raw data can be used as input for this algorithm (Figure A1
and Table A4) (Ho, 1998; Tan et al., 2008; Zheng, Hu, Tong, & Du,
2014). Additionally, the detector of the MicroNIR is especially sensitive
in the region of approximately 1425–1575 nm. In the raw spectra in
Fig. 2 it could be observed that absorbance units of 3–3.5 were re-
corded. The detector operated at its limits in this region and noise is

Fig. 2. NIR spectra from different modes of fresh (left) and thawed (right) chicken fillets.
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visible with some large spikes. Still, there were no issues in classifying
the samples, including in the external model validation, indicating the
power of RSDE in NIR spectroscopy.

3.3. Combining modes

In the previous analyses, we classified single NIR measurements. Of
course, it is also possible to take multiple NIR scans of a sample through
multiple sample handling protocols (i.e., OM, TP and TB) and to com-
bine the spectra (Borràs et al., 2015). This is cost-insensitive as multiple
measurements are easy to obtain with handheld technologies. By simply

concatenating the measurements of OM, TP and TB NIR spectra, we can
boost the performance of RSDE. In this manner, the spectral dimension
is increased and the RSDE has more flexibility to select random sub-
spaces and as a result classification may be improved.

Two different options for data combination were tested (i) different
measurement modes (i.e., TP/TB for consumers and OM/TP/TB for food
administration); and (ii) multiple spectra from same mode (i.e., OM/
OM/OM, TP/TP/TP and TB/TB/TB). To combine different measurement
modes, we randomly selected one of replicate spectra from each mode
TP and TB (and OM) of a sample to simulate ‘uncontrolled consumer
measurements’. Table 1 gives detailed classification Acc values of the
RSDE when classifying the individual or combined NIR spectra. The
results in Table 1 confirmed that the data combination resulted in im-
provement of the classification over individual modes.

For the second combination method (multiple measurements of the
same mode) there was no significant improvement of the classification
performance compared to the individual measurements. Single mea-
surements closer to the meat lead to better performance of the RSDE, as
can be seen from the increasing values going from column 3 to column
5. Apparently, a single measurement is already highly representative of
the sample, and combining data will improve the classification per-
formance only if new aspects of the sample are added to the data (e.g.,
measurements in OM, TP and TB).

Fig. 3. Classification Acc in OM (a), TP (b) and TB (c) modes.

Table 1
Accuracy of RSDE (in %) for individual and combined spectra.

Data TP TB OM TP/TB OM/TP/TB

Fresh Train 94.4 95.4 96.2 100.0 100.0
CV 86.2 88.7 92.0 95.3 98.4
Test 85.1 86.7 91.4 96.9 99.4

Thawed Train 90.3 91.5 94.5 100.0 100.0
CV 82.6 82.2 84.2 94.4 95.8
Test 80.9 81.1 83.0 91.7 94.7

H. Parastar, et al. Food Control 112 (2020) 107149

5



For a fair comparison with other classification methods, the TP/TB
and OM/TP/TB combined data sets were also analysed with Q-SVM, CP-
ANN and PLS-DA. In summary, the RSDE again strongly outperformed
the other methods. The classification accuracy of 99.4% for the OM/TP/
TB test set was significantly higher than the 82% of the Q-SVM
(z = 5.3586, p < .00001), the 65.4% of the CP-ANN and the 63.5% of
the PLS-DA. Also the classification accuracy of 96.9% for the TP/TB test
set was significantly higher than the 81.3% of the Q-SVM (z = 4.4773,
p < .00001), the 63.6% of the CP-ANN and the 62.4% of the PLS-DA.
More details on the differences between models for the classification of
TP/TB and OM/TP/TB test set (160 spectra) are provided in Table A5.

Efforts to validate the developed RSDE models were made by using
two shuffling methods (y-randomization and the permutation test)
(Rücker, Rücker, & Meringer, 2007). After permutation, classification
accuracy of the RSDE deteriorated. As an example, in the classification
of growth conditions of Fr samples in OM mode, CV classification ac-
curacy was reduced from 99.0% (non-shuffled) to an average of 17.4%
for permutated data. For the combined data, it is noteworthy that the
RSDE is so powerful that it can get> 80% accuracy in a training set.
However, cross validation and test set reveal that no structure was
present in the data, as the accuracies drop to values which are no better
than random assignment (See Table A6 for more details).

3.4. Leave-class-out analysis

In the previous analyses, the RSDE model was trained on data from
all growth conditions. But what if spectra from a not before seen growth
condition were classified by the RSDE? To evaluate this, a final study
was done based on a leave-class-out (LCO) methodology. Several RSDE
models were trained (and cross-validated) using 8–1 = 7 classes, while
the left out class was completely used as a test set. This method was
used 8 times, such that every class was left out, and classified, once.

It is important to note that RSDE classifications are done according
to the highest classification probability, regardless of the absolute value
of that probability. Because there is no ‘correct classification’ in the LCO
situation, cut-offs were imposed on the classification probability, before
a classification would be accepted. This can protect a researcher from
classifying highly deviating spectra. The results of the LCO analysis,
with varying cut-offs are shown in Table A6. The classification accuracy
of each 7-class models was over> 98.5% (see column 2). One of the a
priori expectation was to find that CONV and STD (having similar
growth conditions) would be classified as the other in most situations.
By increasing the minimum classification probability, we expected to
see this pattern more clearly.

Even when no cut-off was used for the classification probability, the
results defied expectations. The CONV spectra were classified as either
1* (63.3%) or ORG (36.7%), while the majority (54.4%) of STD spectra
were classified as FR. Furthermore, the majority (66.7%) of the 1* and
the majority (83.3%) of ORG spectra were classified as CONV.
Somewhat in line with expectations was that CF spectra were mainly
classified as FR (74.7%) and FR spectra as CF (62.7%).

Though the total number of spectra that could be classified de-
creased when we increased the minimum classification probability the
results became more distinct (See sub-tables of Table A7). For example,
with a cut-off of 0.90, an unexpected pattern became apparent. Namely,
the classifications reveal that Dutch fillets (1*, 2*, ORG and CONV) are
always classified as other Dutch fillets, and Irish (FR, STD, CF and MAR)
fillets are always classified as other Irish fillets. We expect that this
pattern is related to the difference in lifetime of the chickens (Irish
chickens on average live longer than Dutch chickens). Interestingly, the
control fillets of the MAR condition work well in the sense that they are
mostly classified as STD, and much less as the more premium fillets FR
and CF.

4. Conclusion

A RSDE was used as a fast and reliable machine learning algorithm
for authentication of the growth condition of chicken fillets and their
freshness within a thoroughly validated chemometric workflow with
several specific practical implementations. The RSDE considerably
outperformed other common classification models such as PLS-DA, CP-
ANN and SVM. Also, combining spectra improved the classification
performance of this method even further. We demonstrated that the use
of a relatively inexpensive portable device was able to provide very fast
results in the application of NIR spectroscopy in food authenticity.
Considering the measurement time of approximately 8s (~3.0s per NIR
measurement and a few seconds to flip the package) a complete analysis
(measure and monitor) would require approximately 20s, including
data analysis. The combination of handheld NIR with RSDE algorithm
may offer a very interesting and reliable tool for monitoring meat au-
thenticity (and quality) directly in the field.

The RSDE algorithm was so powerful that it could not only clearly
discriminate between NIR spectra based on the growth conditions of the
chickens, the Leave-Class-Out validation provided the authors with new
insights about the differences between country of origin and the dif-
ferences in meat. Our analyses do indicate that some adjustments to the
existing implementation are needed before the methodology can be
applied in a real-world setting. Imposing minimal classification prob-
abilities can protect from classifying meat of known origin (i.e.,
chicken) into just any class. However, it is not advised to use this
method for classification of meats from unknown origin (i.e., other
animals). Therefore, future work could implement a pre-screening
based on, for example, the Mahalanobis distance of a new spectrum to
the spectra of the known classes. After these adaptation, the combined
approach presented in this work is very fast and if applied throughout
the supply chain, it could improve the quality of meat that reaches
consumers’ tables in everyday life.
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Appendix

Scheme A1. Details of the data collection.

Table A1
Classification results (in %) for freshness classification of chicken fillets based on Fr and Th. Sensitivity (Sen) and precision (Pre) are reported. Precision (Pre) indicates
how confident one can be about the given classification

OM TP TB

Train CV Test Train CV Test Train CV Test

Acc 90.2 87.6 85.2 96.4 95.4 92.0 95.4 93.3 91.0
Fr Sen 90.1 89.1 88.4 97.0 95.1 94.3 97.2 94.3 91.1

Pre 90.3 89.4 87.1 98.3 96.3 94.0 96.3 93.1 90.0
Th Sen 89.4 86.3 84.0 98.1 96.0 93.2 95.1 92.0 92.2

Pre 90.0 87.2 85.2 96.2 94.2 95.1 96.0 93.2 91.3

Table A2
PLS-DA classification results (in %) after outlier detection and variable selection. Sensitivity (Sen) and specificity (Spe) are reported.

OM TP TB

Train CV Train CV Train CV

Explained Variance 97.1 97.1 100.0 100.0 99.8 99.8
Optimal number of LVs 6 6 5 5 6 6
Preprocessing used? yes yes no no yes yes

1* Sen 84.4 84.1 49.4 49.1 82.4 82.3
Spe 64.2 64.0 90.2 90.0 82.0 81.3

2* Sen 81.8 81.6 52.5 51.0 80.9 80.2
Spe 61.6 61.5 89.0 88.8 81.1 80.5

FR Sen 88.9 88.1 92.0 91.0 82.9 81.7
Spe 69.3 67.9 75.6 75.7 81.5 80.3

CONV Sen 78.2 75.6 92.5 91.2 86.3 83.1
Spe 57.1 59.4 31.3 31.1 52.6 53.1

STD Sen 78.5 78.0 88.7 88.1 82.1 80.3
Spe 64.6 65.0 56.7 55.9 50.6 52.1

ORG Sen 81.5 83.0 94.4 93.0 84.3 80.6
Spe 67.4 67.1 73.5 73.2 83.2 83.2

CF Sen 83.2 78.1 89.8 89.2 79.2 77.7
Spe 60.5 60.1 51.3 50.1 57.2 57.3

MAR Sen 86.1 86.0 71.1 71.0 83.2 81.0
Spe 92.2 92.2 88.3 88.2 93.3 93.2
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Table A3
Classification performance (in %) of RSDE and Q-SVM models for classification of eight growth conditions. Precision (pre) indicates how confident one can be about
the given classification. The test set contained 467 spectra.

OM samples Acc RSDE Q-SVM

Train CV Test Train CV Test

85.1 78.5 79.4 77.7 68.7 71.1

1* Prec 83.0 76.0 74.8 73.0 66.0 62.2
Sen 85.0 80.0 79.5 90.0 84.0 80.3

2* Prec 85.0 78.0 80.0 72.0 61.0 68.8
Sen 84.0 77.0 76.2 69.0 55.0 62.9

FR Prec 83.1 76.8 73.2 80.7 72.0 66.4
Sen 79.2 76.0 69.1 73.8 64.0 63.2

CONV Prec 80.0 70.0 82.8 88.0 68.0 42.9
Sen 70.0 59.0 55.8 30.0 14.0 14.0

STD Prec 90.2 89.0 88.5 89.0 84.2 85.2
Sen 93.2 90.1 93.0 91.2 90.2 91.0

ORG Prec 81.0 72.0 63.6 82.0 66.0 65.5
Sen 77.0 66.0 67.7 72.0 59.0 58.1

CF Prec 82.4 78.0 80.3 88.2 71.2 53.3
Sen 77.1 62.2 59.8 35.1 24.3 22.5

MAR Prec 93.0 90.0 90.5 88.0 82.0 88.4
Sen 97.0 93.0 95.4 91.0 89.0 93.8

The Q-SVM had the closest overall test set Acc to RSDE. Still the RSDE significantly outperformed Q-SVM (z = 2.9389, p = .00164).

Table A4
RSDE classification performance (in %) for raw and preprocessed Fr data in OM mode for classification of growth conditions.

Data Acc Test

Train CV

Raw data 90.4 82.4 81.9
Preprocessed data∗ 91.4 81.2 81.1
Preprocessed data without outliers∗∗ 91.7 80.8 80.9
Preprocessed data after outlier removal∗∗∗ 90.6 82.7 81.9

∗ Mean centering and standard normal variate (SNV) as preprocessing.
∗∗ Q-residuals and Hotelling's T2 were used for outlier detection.
∗∗∗ Mean-centering and SNV on the data without outliers.

Table A5
Comparing classification performances for the 160 combined Fr test set data into growth conditions.

Data Method Acc

Train CV Test

OM/TP/TB RSDE 100.0 98.4 99.4
SVM 92.7 81.5 82.0
CP-ANN 90.2 68.3 65.4
PLS-DA 78.8 66.5 63.5

TP/TB RSDE 100.0 95.3 96.9
SVM 88.8 82.2 81.3
CP-ANN 87.2 66.2 63.6
PLS-DA 76.3 64.3 62.4

Accuracy of RSDE for the test set was significantly higher than the accuracies of other methods, with all p-values < .00001 based on one-sided z-
tests.
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Table A6
Permutation test (y-randomization) for evaluation of RSDE performance on combined data

RSDE model Training 5-fold CV Holdout CV(25%)

Acc %

Data 100.0 99.0 100.0
Shuffled y-1 82.0 14.9 15.0
Shuffled y-2 81.0 19.8 19.0
Shuffled y-3 82.2 15.1 6.8
Shuffled y-4 80.7 19.5 17.0
Shuffled y-5 83.1 17.6 13.6

Table A7
RSDE Classification performance for Fr combined data (OM/TP/TB) in leave-class-out validation. Acc values (column 2) are based on 10 Fold Cross validation of the
remaining 7-class data. Percentages sum to 100 (to 1 decimal place) over rows.

Assignment of spectra, no cut-off

Left out Acc #Spectra 1* 2* FR ORG STD CONV CF MAR

1* 99.3 30 – 10.0 6.7 66.7 10.0 6.7
2* 99.6 85 38.8 – 3.5 31.8 24.7 1.2
FR 99.8 75 – 37.3 62.7
ORG 98.8 30 16.7 – 83.3
STD 99.2 90 1.1 54.4 – 28.9 15.6
CONV 99.3 30 63.3 36.7 –
CF 99.4 75 74.7 16.0 – 9.3
MAR 99.0 175 3.4 2.3 26.9 41.7 25.7 –

Assignment of spectra (cut-off p > .50)
Left out Acc #Spectra 1* 2* FR ORG STD CONV CF MAR

1* 99.3 19 – 5.3 78.9 5.3 10.5
2* 99.6 73 45.2 – 34.2 19.2 1.4
FR 99.8 75 – 37.3 62.7
ORG 98.8 30 16.7 – 83.3
STD 99.2 77 1.3 57.1 – 28.6 13.0
CONV 99.3 26 65.4 34.6 –
CF 99.4 63 79.4 14.3 – 6.3
MAR 99.0 138 1.4 26.1 46.4 26.1 –

Assignment of spectra, (cut-off p > .75)
#Spectra 1* 2* FR ORG STD CONV CF MAR

1* 99.3 9 – 100.0
2* 99.6 33 75.8 – 21.2 3.0
FR 99.8 47 – 19.1 80.9
ORG 98.8 19 5.3 – 94.7
STD 99.2 35 74.3 – 11.4 14.3
CONV 99.3 19 73.7 26.3 –
CF 99.4 33 90.9 6.1 – 3.0
MAR 99.0 71 19.7 59.2 21.1 –

Assignment of spectra, (cut-off p > .90)
#Spectra 1* 2* FR ORG STD CONV CF MAR

1* 99.3 3 – 100.0
2* 99.6 24 91.7 – 8.3
FR 99.8 26 – 15.4 84.6
ORG 98.8 8 12.5 – 87.5
STD 99.2 8 62.5 – 12.5 25.0
CONV 99.3 14 71.4 28.6 –
CF 99.4 17 100.0 –
MAR 99.0 31 16.1 67.7 16.1 –
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Fig. A1. Effect of preprocessing on data scattering in PCA space. Raw data (upper left), preprocessed data by mean centering (MC) and standard normal variate (SNV)
(upper right), original data without outliers (bottom left) and preprocessed data after outlier removal using MC and SNV (bottom right). Red circles show extreme
values which were removed in bottom figures according to Q-residuals and Hotelling's T2 tests.
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