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ABSTRACT
Societal dependence on, and commercial and scientific exploitation
of Earth-Oriented remote sensing from satellites is growing at an
exponential rate. The comprehensive EU Copernicus programme
provides a major contribution to the global effort, but even so, to
achieve the necessary global and temporal coverage requires syner-
gistic cooperation and associated interoperability of the Worlds
sensors. For a user to exploit Earth Observation (EO) data there
must exist confidence in data characteristics, quality and reliable
delivery. Although long-term data records for climate may be the
most demanding in nature, generation of analysis-ready opera-
tional data sets for applications, as diverse as food security to
pollution monitoring, all require the user to have some quantitative
level of confidence in the data and derived information. A long-
term Calibration/Validation (Cal/Val) vision necessitates clear own-
ership and long-term funding. Delineating the roles of the
European Commission (EC), space agencies and member states in
long-term Cal/Val would provide clarity. It is clear that the space
agencies have the responsibility to meet the mission requirement
of their spaceborne instruments but long-term validation is often
entrusted to interested parties bringing their own resources to the
task. Furthermore, there is a critical need for Fiducial Reference
Measurements (FRMs), acquired in operational mode, and compre-
hensive in coverage both spatially and temporally, to assure that
the satellite product accuracies are met. This paper discusses the
current status, gaps and challenges regarding long-term Cal/Val of
EO satellites and recommends the creation of a European coordi-
nating entity for satellite product calibration and validation. The
proposed entity would be an integrative organization coordinating
the European Cal/Val activities in partnership with the member
states and the space agencies and working together with existing
data providers to secure access to satellite and in-situ data of
traceable FRM standards.
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1. Introduction

To sustain leadership in Earth Observation (EO), Europe is investing billions of Euros into
the Copernicus Earth Observation Programme. These EO data are an essential component
of all Copernicus services. It follows that these services depend strongly on the quality of
the satellite data being delivered. Hence the effectiveness of this investment depends
critically upon sustained Calibration and Validation (Cal/Val) activities. Calibration is the
practice of assuring instrument performance to SI (International System of Units) or
community accepted standards. Validation is the practice of quantifying the accuracy of
the satellite-derived geophysical products (Justice et al. 2000).

Cal/Val activities must span the whole lifetime of the mission from pre-launch char-
acterization to the de-orbiting phase and should continue even after the mission’s life-
time in view of the creation of long-term consistent climate data records (CDRs) (National
Research Council, 2011; Hollman et al., 2013). Cal/Val consists of in-situ infrastructure,
product evaluations, reprocessing activities, the analysis of long-term series and efforts to
obtain consistency between multiple missions. There must be a sufficient array of Cal/Val
capabilities to assure long-term characterization of satellites i.e. Cal/Val cannot rely upon
single entities, measurement programme or funding sources, but rather must consist of
a broad range of coordinated activities. Measurements made for Cal/Val purposes are also
valuable in their own right.

The EO landscape is changing and faster than ever before. Ever more actors, including
commercial companies, are launching an increasing array of satellites, including hundreds
of small-sized EO platforms, such as cubesats and nanosats. It is expected that in the near
future Small Satellites (SmallSats) will increasingly be employed in operational and
science missions. While most of the large-scale missions are equipped with onboard
calibration devices, small satellites often lack these devices due to constraints on size,
weight and power consumption (Sterckx et al. 2014). Furthermore SmallSats will mainly
operate in constellations, which means that there will be many overpasses per day at
most locations. All this puts additional challenges on Cal/Val to ensure that the quality
expectations of SmallSats are met. Failure to ensure adequate Cal/Val will decrease the
confidence that can be attributed to the products resulting from such missions.

Given the envisaged step-change in satellite-based monitoring capabilities and the
increasing use of Copernicus Services, it is essential to revisit the current Cal/Val capabil-
ities and ask whether they are fit for purpose. In Section 2 we outline the theoretical basis
underpinning satellite Cal/Val. In Section 3 the current status of Cal/Val activities is
outlined and critically discussed. Section 4 reviews in detail current and emerging chal-
lenges in Cal/Val and the gaps which are commonly encountered. These include uncertain
long-term funding, scarcity of in-situ data of sufficient quality, lack of cross-cutting in-situ
coordination, fragmentation, unclear stewardship and lines of responsibility. Finally, in
Section 5 we make recommendations for the implementation of a sustainable European
Cal/Val strategy that can be used as a template by global partners.

2. The theoretical basis underlying Cal/Val

Satellite Cal/Val starts at the manufacturing stage and should continue well beyond
decommissioning (National Research Council 2000; Zhou, Divakarla, and Liu 2016; Yoon
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and Kacker 2015). The typical steps as currently undertaken are outlined in Figure 1 and
described in this Section. This is the theoretical state-of-the-art practice (the ideal), but is
rarely accomplished presently.

All satellite missions should undergo comprehensive pre-launch calibration and char-
acterization (Datla et al. 2011). The pre-launch calibration constitutes the only opportunity
by which the instrument can be physically directly calibrated and characterized and is
applied, to varying degrees, for almost all satellite missions.

However, due to outgassing after launch, ageing of the instrument, and energetic
particle damage, changes to these pre-flight characterizations may occur in orbit. In orbit
calibration is often performed using on-board calibration devices, but currently no on-
board calibration device attains strict metrological traceability, they are prone to drift or
degradation (Sun, Chu, andWang 2016), and several examples (Sayer et al. 2017; Skokovic,
Sobrino, and Jimenez-Munoz 2017; Fu and Haines 2013) highlight that relying only on on-
board calibration alone is not sufficient to reach the mission accuracy requirements.
Vicarious calibration practices, making use of some combination of: ‘invariant’ natural
targets on the Earth or in space (such as the moon); absolutely traceable satellite
‘reference calibration’ measurements; and high-quality in-situ based observational cap-
abilities, have to be put in place (e.g. Neigh, McCorkel, and Middleton 2015).

Post-launch calibration verification and/or correction is an essential prerequisite to
obtain reliable and calibrated Level-1 data (e.g. radiance, reflectance, transmittance, radar
backscattering coefficient, radar-echo time delay) which form the basis for the derivation
of geophysical Level-2 products (i.e. derived geophysical and geochemical parameters at
the same resolution and location as Level 1 source data). With the aim to generate CDRs,

Figure 1. Pictorial representation of the steps necessary for comprehensive Cal/Val activities for
satellite missions on a sustained basis. Green boxes indicate specific Cal/Val activities, blue boxes
the steps in producing geophysical satellite data products and red lines reprocessing activities.
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biases, within and between successive sensors need to be quantified and accounted for.
Reprocessing of Level-1 data is required based on new insights gained in calibration
activities (Goryl et al. 2016). This means that adequate resources should be allocated to
maintain the calibration efforts and to ensure that reprocessing can be done regularly
based on the improved knowledge.

The Cal/Val of a mission is not limited to the sensor calibration. It includes also algorithm
verification, validation of the geophysical data, and inter-comparison with other missions,
all leading to the quantification of uncertainties. This can be best assured via multi-source
truly independent comparisons that serve to build confidence in the verity of the data.

Validation of Level-2 data (ideally based upon absolutely calibrated Level-1 data) is
a comparison between independent estimates of the same measurand. Ideally there are
multiple paired comparisons of the form (Immler et al. 2010):

m1 �m2j j < k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 þ Δ2

q
(1)

where m1 and m2 are two independent measurements of the same measurand, u1 and
u2are (ideally) fully traceable uncertainty estimates associated with these measurements,
and Δ denotes an additional irreducible uncertainty due to non-coincidence in space, time
and measurement geometry. Depending upon what level of k, the coverage factor (BIPM
2008., see also Immler et al. 2010; their Table 1), is obtained, the measurements can be
concluded to be consistent or otherwise to be within given level of confidence. In the real-
world such comparisons are challenging and the mismatch term can never be fully
eliminated. Multiple such comparisons are necessary to identify and quantify discrepan-
cies and would ideally include a broad range of Fiducial Reference Measurements (FRMs)
(see Sect. 3.4) from in-situ platforms. FRMs are a specific sub-set of commissioned ‘in-situ’
measurements with specific characterization tailored to meet the needs of satellite
validation (Mertikas et al. 2019; Ruddick et al. 2019).

It is critical that the in-situ FRMs have sufficient spatial and temporal coverage, and that
their spatio-temporal representativeness is well known. Access to the FRM data should be
guaranteed over the entire mission (including the commissioning phase), in a sustainable,
timely, open, and accessible way. An understanding of the measurement uncertainty of
the FRM data is critical, and these data are by definition well-validated themselves.
Furthermore uncertainties due to non-perfect spatial and temporal co-location between
satellite and in-situ measurements need to be accounted for in the error-budgets (e.g.
Verhoelst et al. 2015). Finally, not only the Level-2 products need to be validated, but also
validation of the ancillary data that satellite retrievals depend upon is necessary. Ideally,
FRM capabilities should be collocated to collect a multitude of reference data (for
example geophysical, geochemical and atmospheric datasets) allowing the validation of
various products and multiple sensors.

3. Current status of Cal/Val

3.1. Quality assurance framework for earth observations

The Committee on Earth Observation Satellites (CEOS) on behalf of the Group on Earth
Observations (GEO) established and endorsed the Quality Assurance Framework for Earth
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Observation (QA4EO, qa4eo.org), which established a core principle, supported by a set of
guidelines, which agencies should adopt to aid interoperability and usability of EO data
and derived products. The core principle was that Quality Indicators (QIs) should be
ascribed to data products, at each stage of the data processing chain – from collection
and processing to delivery (e.g. Nightingale et al. 2018). A QI should provide sufficient
information to allow all users to readily evaluate a product’s suitability for their particular
application, i.e. its ‘fitness for purpose’. To ensure that this process is internationally
harmonized and consistent, the QI needs to be based on a documented and quantifiable
assessment of evidence demonstrating the level of traceability to internationally agreed
(where possible SI) reference standards. Such standards may be man-made, natural or
intrinsic in nature. The documented evidence should include a description of the pro-
cesses used, together with an uncertainty budget (or other appropriate quality perfor-
mance measure). The principles of this framework are being widely adopted across the
global scientific community.

In Europe, QA4EO has been particularly strengthened by various EU and ESA (European
Space Agency) funded research and development projects such as QA4ECV (Quality
Assurance for Essential Climate Variables), Gaia-Clim (Gap Analysis for Integrated
Atmospheric ECV CLImate Monitoring), Fiduceo (Fidelity and uncertainty in climate data
records from Earth Observations) and the FRM series. Aspects of these projects in turn
have started to be implemented in operational services like Copernicus Climate Change
Service (C3S). Important developments include:

● Development of a measurement maturity assessment approach (Thorne et al. 2017)
which formalizes the need for documentation, metadata, uncertainty quantification
and sustainability and assignment of a broad range of existing observational cap-
abilities into a system of systems architecture where the peak are FRM quality
reference measurements.

● Employing a framework to improve the metrological rigour of uncertainty quantifi-
cation (e.g. Nightingale et al. 2018) and documentation for selected candidate
reference measurement series.

● Quantification of co-location uncertainties with regard to viewing geometry, mea-
surement type, spatio-temporal mismatches etc., and associated development of co-
location matchup database (Verhoelst et al. 2015)

● Harmonization of historical Level-1 data

3.2. Mission performance centres

For the Copernicus Sentinel missions, the nominal Level-1 and Level-2 product quality is
under the responsibility of their respective Mission Performance Centres (MPCs), which
are part of the Copernicus space component. With the creation of the MPCs the various
aspects of the Cal/Val chain are overseen with the aim to ensure that the mission
requirements are met at all product levels. As Cal/Val experts in the various domains are
directly involved in each MPC, anomalies in the quality of the data can be detected in an
early phase and timely mitigation actions can be taken. The MPC also serves as a point of
contact for external Cal/Val teams. Feedback from external activities is formalized in the
Sentinel Validation Teams, which can have members from the global user communities.
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The Sentinel Validation Teams support the missions through independent analyses as
well as through the collection of in-situ data.

While the MPCs have all the Cal/Val expertise in-house, they are critically dependent on
timely and sustainable availability of sufficient quality (ideally FRM) in-situ measurements
provided by in-situ networks and research infrastructures funded through multiple
sources. As no direct funding is allocated to in-situ data, as part of the MPC, there is no
mechanism to ensure a sustainable supply of timely delivered high quality in-situ data
throughout the whole mission life-time.

The MPC experts are often associated to a specific mission, while in view of inter-
mission consistency essential to the creation of long-term homogeneous time series,
a measurand-based approach instead of mission based-approach should be adopted
with expertise spanning multiple missions and knowledge transfer between the missions.
Such a coordinated approach may also reduce redundancy between MPC activities and
thus realize synergies and cost efficiencies freeing up resources for further development.

3.3. In-situ networks and research infrastructures

Several global in-situ observation networks exist providing current and historical in-situ
data records. For example, in the atmospheric domain, there are many well-established
networks covering various atmospheric variables, like the Total Carbon Column Observing
Network (TCCON) (http://www.tccon.caltech.edu/) focusing on greenhouse gases, the
Network for the Detection of Atmospheric Composition Change (NDACC) (http://www.
ndacc.org), the Global Climate Observing System (GCOS) Reference Upper-Air Network
(GRUAN) (http://www.gruan.org) and (Southern Hemisphere ADditional OZonesondes)
SHADOZ (https://tropo.gsfc.nasa.gov/shadoz/) focusing on atmospheric composition and
temperature, the Baseline Surface Radiation Network (BSRN) (https://bsrn.awi.de/) for
radiation measurements, the Atmospheric Radiation Measurement (ARM) sites (https://
www.arm.gov) which provide important in-situ observations for temperature/moisture
sounding validations, etc. Many of these have been established with a research aim. This
focus is starting to change to better consider satellite Cal/Val needs.

There are also a handful of dedicated networks for satellite Cal/Val. For example, in the
land domain the CEOS Working Group on Calibration & Validation (WGCV) has recently
created RadCalNet (Radiometric Calibration Network) (http://www.Radcalnet.org),
a network of well-characterized surface targets, equipped with automated instruments
to allow SI traceable radiometric Cal/Val of the GEOSS (Global Earth Observation System of
Systems) high spatial resolution optical sensors. The automated systems of RadCalNet
increase the number of potential sensor match-ups and reduces overall uncertainty. With
its open access policy, the network provides the opportunity to perform vicarious calibra-
tion of their satellite sensors to agencies, commercial operators and organizations lacking
resources and expertise. Individual member sites remain responsible for their own infra-
structure and Quality Assurance (QA) with centralized processing and coordination from
one or more lead agencies who are able to provide the necessary expertise. This initiative
is similar to the longstanding AErosol RObotic NETwork (AERONET) (https://aeronet.gsfc.
nasa.gov/) for aerosols operated by NASA.

Major challenges associated with the use of some existing networks for satellite Cal/Val
are (1) that most of them are not explicitly dedicated to satellite Cal/Val activities, (2) that
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the measurement quality is not always at the level of traceable reference data, (3) that the
data are not necessarily ‘open access’, (4) that sustainability is not guaranteed on the long
term, (5) that point in-situ data are often sparse and not always representative of
a satellite pixel/spatial resolution and coverage, and can be at different vertical levels
from the satellite observation, and (6) that interoperability and comparability between
networks are not necessarily assured.

The environmental research infrastructures (RIs) that are set up at the European level,
build upon the existing global networks while providing a clear governance structure and
strict quality requirements. The aim is to ensure a sustainable European infrastructure for in-
situ observations, serving user communities with easily accessible reference data – through
a single data portal per RI – and associated services, building on satellite dedicated networks
such as RadCalNet and Aeronet-OC (Ocean Colour). The user communities include the
research community, Copernicus, international assessments, policy makers, and the satellite
community. ENVRI is the community of major European Environmental Research
Infrastructures. Examples of current operational RIs are IAGOS (In-service Aircraft for
a Global Observing System) and ACTRIS (Aerosol, Clouds and Trace Gases Research
Infrastructure in the atmospheric domain), Coriolis, Euro-ARGO (European contribution to
the International Argo Programme) and EMSO (European Multidisciplinary Seafloor and
water column Observatory) in the ocean domain, and ICOS (Integrated Carbon Observation
System covering the carbon cycle (ecosystem, atmosphere and ocean).

Again, the RIs are not dedicated to satellite Cal/Val and the sustainability depends on
the interests and commitments from the Member States. Not all parameters currently
measured from space are covered by the European RIs.

3.4. Fiducial reference measurements

A number of ESA funded FRM projects have been established in recent years with the
express aim of establishing SI traceable reference methods and standards to support the
validation of EO sensor products, with an emphasis on the Copernicus programme. These
projects have coordinated with experts in the relevant domains to establish robust proto-
cols, and to carry out comparisons to assess the state of the art, develop rigorous uncertainty
budgets, and provide training with the aim to build a coherent internationally consistent
validation network. They have variously developed the protocols, and pioneered the
inaugural comparisons for performing FRM measurements in different domains. However,
the operational implementation, i.e. the sustainable provision of FRM data to support the
Cal/Val of the Sentinel fleet and other missions, is not part of these projects, nor is it
envisaged to be sustainable from the current developers’ resources.

Taking the FRM philosophy further, it is essential that maximum benefit can be
obtained from investments in efforts that build upon activities and infrastructure with
the aim of addressing multiple Cal/Val measurands allowing vicarious validation of multi-
missions and multi-products. For example, supersites which provide validation for
a minimum of three different satellite products are being established. First initiatives
have come from CEOS WGCV Land Product Validation (LPV) (Figure 2) but opportunities
for hosting temperature, radiometry and atmospheric measurements in the same loca-
tions, could be stimulated further with improved coordination and a strategic vision. In
the first instance these efforts should explore synergies with existing networks and RIs.
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3.5. Inter-agency Cal/Val efforts

The last decade or so, with the rapid increase in the number of satellites on-orbit, has
made this coordination and joint development of Cal/Val infrastructure the primary focus
of CEOS activities. In particular the establishment of ‘test-sites’with associated methods of
use, have served as an increasing focus for satellite operators. Identifying a subset of
possible sites encourages common usage and consequently facilitates cross-comparison
and interoperability. Interoperability is a characteristic of a product or system, whose
interfaces are completely understood, to work with other products or systems, at present
or in the future, in either implementation or access, without any restrictions. For EO this
not only requires interchangeable formats but also the means to combine data of
potentially different quality and/or biases in a transparent and meaningful manner. It
also allows CEOS WGCV members to concentrate their research efforts in a combined
manner to improve understanding of these endorsed sites.

The stimulus of this increased coordination stems from the recognition that meeting
societal needs requires the combined efforts of all space agencies. This also requires that
their data can be readily combined and ‘interoperable’. The needs of climate time series
place the greatest demands on this interoperability, requiring trustable long-term (multi-
decadal) measurements to detect trends with sufficient fidelity.

Whilst climate is most demanding, operational services in meteorology, marine and
land applications are all increasingly dependent on the assimilation and/or integration of
multiple data sets from different sources. In fact the meteorological community has
established its own complimentary group to CEOS to create a Global Space-based Inter-
Calibration System (GSICS), where it seeks to harmonize predominantly meteorological
satellite Level-1 products through cross-calibration to a common set of reference satellites
(different spectral domains). In this way, data from all contributing agencies can be readily

Figure 2. Location of LPV Supersites (reproduced from https://lpvs.gsfc.nasa.gov/LPV_Supersites/
LPVsites.html).
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used in their local regional weather models and, although the ultimate goal is SI-
traceability, in the near-term consistency and interoperability to a ‘good’ sensor meets
the immediate operational needs.

An example of a coordinated Cal/Val infrastructure in the land domain, funded by
multiple-agencies is RadCalNet. Many other inter-agency efforts can be found on the
CEOS Cal/Val portal (http://calvalportal.org) and whilst they show significant progress and
community commitment to work together for common societal goals, they are each
dependent on the goodwill and continuing resources of a few agencies to provide
leadership, common integrating infrastructure and expertise. Loss of this for some areas
makes it difficult to ensure long-term continuity and thus reliance for an operational
system like Copernicus. It should be noted that all activities of CEOS are undertaken on
a ‘best efforts’ basis by each of the members as there are no mechanisms for formal long-
term coordination or commitment of resources.

In addition to establishing common reference targets/methods for vicarious calibra-
tion, CEOS and the member space agencies also organize ‘round-robin’ comparisons to
ensure that instrumentation and methods are also harmonized. This is particularly impor-
tant where more transient campaign-based satellite validation is required, such as for
ocean temperature. Round Robin efforts have proved to be very useful to identify areas
for (retrieval) improvement (e.g. Lorente et al. 2017). These are often, but not per defini-
tion, done as inter-agency or multi-group efforts.

4. Cal/Val gaps, challenges and opportunities

4.1. Scarcity of data, spatio-temporal coverage, data quality, and data delivery

A large amount of in-situ data is collected by those observation networks and European
Research Infrastructures and other networks supporting the Copernicus Services. However,
within the in-situ community, there is limited awareness of the required coverage (in
parameter space as well as spatially and temporally) and the requirements for FRM quality
and documentation of the measurements in order to be useful for satellite Cal/Val. Of the
large volume of in-situ data collected, only a limited portion is actually directly suitable for
Cal/Val, and often there is a need for ‘translational’ techniques to enable the exploitation of
in-situ data such that they do become useful for satellite validation (e.g. from surface
concentration to column, or upscaling from small footprint to large pixel) which is either
not recognized or the technique insufficiently developed. Despite the significant efforts
that have been undertaken by space agencies through CEOS and EU H2020 projects on
defining guidelines and protocols and implementing procedures for performing in-situ
measurements fit for the purpose of Cal/Val (Figure 3), the level of understanding in the in-
situ community of the needs for satellite calibration and validation is still low.

Moreover, many of the existing networks and RIs have been built bottom-up and the
site locations have not been optimized for the needs of satellite Cal/Val. As a couple of
examples: i) the locations of the current TCCON sites do not cover the range of surface
albedos for which satellite validation is crucial; ii) high-altitude mountain sites are useful
for specific research purposes but are not suitable for the validation of satellites with an
extended footprint. The locations in space and time of the in-situ Cal/Val data should
cover the uncertainty space of the satellite data, i.e. they should cover all parameters that
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may have an impact on the performance of the satellite, such as latitude, season, solar
zenith angle, viewing angle, surface albedo, aerosol load, cloud cover etc.

To minimize co-location uncertainties, wherever possible, the in-situ data must be
collected at times close to the satellite overpass. This implies that in some cases, the
acquisition of the in-situ observations must be scheduled otherwise than what is adopted
routinely. However, this may entail extra costs and logistics issues. Furthermore, some
techniques are intrinsically tied to physics such as optical techniques which can limit
substantively any flexibility.

Additional concerns are the lack of open data access and delayed delivery of the data.
The in-situ data should be made available as soon as possible after the measurements
have been made to the MPCs and other centres and institutes involved in the Cal/Val of
satellite missions. Delays in the availability of in-situ data will result in delays in the Cal/Val
activities, which in turn might lead to an unwanted extension of the commissioning phase
or, in the operational phase, to costly and timely reprocessing of the data if validation
indicates that the specified product accuracies are not met. As Cal/Val activities span the
entire end-to-end duration of a satellite mission, the timely provision of in-situ data
should be guaranteed during the entire mission.

In-situ data 

“fit for purpose”

Fiducial quality

Long-term recordsTimely available

Spatial & temporal 

coverage

Co-located

Figure 3. Conceptual outline of the requirements imposed on in-situ data in order to be fit for the
purpose of Cal/Val.
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4.2. Long-term records and sustainability

Long-term data records are essential for monitoring global change, such as ozone hole
recovery or climate change. While satellites nowadays play an essential role for global
monitoring, most of the geophysical parameters that can be observed from satellites have
a longer heritage ofmeasurement by in-situ sensors. The comparison of satellite data to in-situ
is therefore not only relevant for the Cal/Val of the satellite data record, but also to be able to
understand the changes occurring before the satellite era and place satellitemeasurements in
context. Also, in-situ data are crucial to intercalibrate between previous and current satellite
missions, as a newer generation of satellite sensors often have better spatial, spectral and/or
vertical resolutions compared to previous generations. This is especially important when the
satellite missions do not have a sufficient overlap (or even in the worst case any overlap)
period during which they are both operational. The in-situ data can be used to harmonize the
multi-mission satellite data record, but only if made in a sustainable way and to FRM-
principles. To link to the period before the satellite data record, as well as to link the different
satellite missions, long-term in-situ FRM data are essential.

There are several challenges regarding the long-term in-situ data records:

● Historical in-situ measurements are often not well-documented, which makes quality
assessment and the generation of harmonized long-term records difficult.

● Instrumentation, protocols, site locations and algorithms may have changed over
time, which could introduce spurious trends and jumps in the historical data records.

● Due to the highly fragmented in-situ landscape, with in-situ data often collected at
national or regional level and the paucity of openly accessible centralized databases, it
is often very complicated to find and/or access the data to generate long-term records.

● Collection of in-situ data may stop because of lack of funding or often short-term
prioritization, which breaks the long-term data record.

Some initiatives pose very nice examples, such as the efforts to provide consistent,
quality-assured validation data for satellite measurements of the ozone layer (NDACC),
aerosol properties (AERONET), upper-air meteorological data (GRUAN), ocean colour
radiances through MOBY (Marine Optical BuoY) and altimetric sea-level via the OSTST
(Ocean Surface Topography Science Team) Cal/Val group.

The central position of in-situ data in Cal/Val calls for actions ensuring a long-term
perspective for handling the in-situ data, including quality control, preservation and
accessibility. There is a clear need to collect, to quality control and to harmonize the
historical data relevant for Cal/Val. Furthermore, the requirements for long-term in-situ
data records for satellite Cal/Val should be brought to the attention of the providers of the
in situ data and their funding bodies. The way forward to achieve this is through a central
cross-cutting coordinating in-situ Cal/Val facility.

4.3. Fragmented landscape and lines of responsibility

Cal/Val is a shared responsibility of many organizations and entities. The space agencies
have the responsibility to meet the mission requirements of their spaceborne instru-
ments. To meet these requirements, sustainable access to in-situ data is needed. However
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it is unclear who is responsible for the timely and sustained provision of these data
beyond the initial commissioning phase of the mission. Data collection by networks,
campaigns, and RIs is not specifically dedicated to Cal/Val of the Copernicus Space
Component (see previous section). Differences between various in-situ networks may
even remain unnoticed when no regular inter-comparison is performed. On top of this,
many of the in-situ activities are of a limited duration and there is no ensured continuity,
either of availability of in-situ data or of timely access to the data. A stewardship plan to
guarantee the sustainable provision of key in-situ data is clearly lacking.

Cal/Val activities are often tied to a single mission with mission specific requirements
defined. However, for the generation of long-term ECV data records, data from past,
current and future missions have to be combined. This requires inter-calibration and
reprocessing efforts to harmonize the satellite observations of the different missions,
which can fall under the responsibility/auspices of different agencies. The establishment
of long-term stewardship, through for instance an independent authority with appro-
priate expertise in Cal/Val, would be a way forward to assure consistency between
missions.

4.4. Future challenges

Currently, Earth Observation is dominated by the large satellite programmes of (inter)
national players, such as the Copernicus programme. However, Earth Observation is rapidly
evolving with the emergence of new actors and new technologies including innovative
constellations of Cube- and Nano-satellites. ESA is also exploring the domain of High-
Altitude Pseudo Satellites (HAPS). The opening of these new markets and opportunities is
adding complexity, and increasing the urgency with which Cal/Val must be optimized. At
present there is little quality assurance or transparency on products from these smaller
satellites. To ensure that European entrepreneurs have an open marketplace to offer
services in a competitive manner requires a good public infrastructure to independently
assess quality.

In addition, constructing accurate long-term climate records puts increasing demands
on the quality of the data, in order to meet the uncertainty and decadal stability require-
ments for many parameters. This should be carried out in a coordinated manner to
minimize duplication of effort. Achieving this would have clear benefits for all applications
of Earth Observation.

One step towards improving this situation is the creation of an ‘in-orbit SI traceable
calibration system’ where a few specially designed SI traceable reference satellite sensors
such as CLARREO (Climate Absolute Radiance and Refractivity Observatory) and TRUTHS
(Traceable Radiometry Underpinning Terrestrial- and Helio- Studies) could provide cross-
calibration to other sensors. The use of innovative orbits can permit comparisons in all
latitudes. Although steps towards this are envisaged and under development, it will take
some time before they are realized in practise and even then will be unlikely to be
comprehensive and will not remove the need for complementary in-situ infrastructure
and measurements.

In the meantime the vicarious in-situ data used for Cal/Val are also evolving. Different
in-situ instrumentation are being developed at finer space and time scales and their data
are being used to locally validate satellite instruments and products. These Cal/Val data

INTERNATIONAL JOURNAL OF REMOTE SENSING 4507



are not always incorporated and archived into European in-situ networks or RIs. The
development of Cal/Val instrumentation on drones is also advancing. Today, the Cal/Val
data from dedicated sites or new instrumentation are not being centrally stored in RIs or
linked in a consistent way to their appropriate satellite missions.

For several applications, the current satellite observations that use a limited number of
spectral bands will be superseded by instruments with hyperspectral capabilities. New in-situ
infrastructure is required to calibrate the additional spectral information. Also, more instru-
ments will be observing from geostationary orbits, providing high temporal sampling of the
geophysical field. To validate these geostationary data, the in-situ information should also be
acquired with a high temporal resolution. Furthermore, accurate auxiliary information on the
angular dependence of the surface reflection as a function of wavelength should be available,
as this is an important piece of ancillary information needed in many satellite retrievals.

5. Recommendation: a european coordinating entity for satellite calibration
and validation

Our analysis, above, and recent and persistent calls for action from stakeholders in the EO
community (GCOS-WMO 2016), lead us to conclude that there is a need for a European
coordinating entity for satellite product calibration and validation. The proposed entity
would be an integrative organization coordinating the European Cal/Val activities in
partnership with the member states and the space agencies and working together with
existing data providers to secure access to satellite and in-situ data of traceable FRM
standard alongside necessary ancillary data as to fully understand the geophysical state of
each co-location provided.

We envisage an entity providing an architecture to service the European Earth
Observation system meeting the goals of the European Commission, it’s partners and
the global community. The entity would leverage existing investments in infrastructure,
including RIs and networks, but would not claim ownership of measurements or data;
the entity would complement and enhance, rather than replicate or replace current
activities. We do not propose a data warehousing or database organization but rather
an expert facility/grouping acting both as a knowledge repository and coordinating
body. It would advocate for quality assurance in calibration and validation measure-
ments, promote FRM compliance and assist in achieving FRM status where lacking,
facilitating access to metrological expertise and traceability to international standards
for comparisons and uncertainty analysis. Elements of the organizational tasking would
include capacity building advocacy, recommendation for reprocessing activities, identi-
fying synergistic solutions to Cal/Val problem and securing and allocation of funding
across missions and networks. Forward-looking, there would be actions to support new
technologies and observations to reach FRM candidacy and ultimately FRM status
expanding the observables and QA of satellite datasets and analysis. The entity would
be a template for other actors or regions enhancing European leadership in EO and
EO QA.

Such an entity would need to coordinate between space agencies and other stake-
holders, including the European Environment Agency (EEA), the European Commission,
and EU member states. There is currently no organization with the necessary expertise,
coordination and planning capabilities, engaged in this kind of activity. As noted by the In
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Situ State of Play report, the EEA, whilst responsible for coordinating Copernicus In Situ is
not a specialist in satellite Cal/Val organization and does not have the necessary familiarity
with FRM-quality standards or certification. The proposed entity could assume a role
complementary to Copernicus In Situ activities. The entity would become the de facto
contact point for international coordination of Cal/Val activities, liaising with international
partners including CEOS. It would help define and disseminate best practice across and
between domains, and in particular, support harmonization of the Cal/Val approaches
adopted in the various MPCs and their equivalents elsewhere. In supporting the propaga-
tion of FRM standards and attainment of QA the body would become a de facto
certification entity with the data recommended by the entity known to be of high and
traceable standards and fit for the purpose of Cal/Val. This certification by inclusion also
meets a user need for open and accessible standards in an increasingly complex data
provision landscape. We would anticipate that the entity would also act to encourage the
timely and free delivery of data in time-critical situations leveraging its inherent authority
as a community resource.

To maintain a user base and gain the acceptance of the community, a sustained
approach is needed. Operating at longer timescales than projects or campaigns the entity
could play an important role in helping the transition from developing FRMs to facilitating
their operationalization and sustainable deployment. Sustainability in FRM observations
remains a challenge. The entity should therefore have some capacity to support FRM
expansion and to provide gap-filling support in an emergency. We propose a limited role
in resourcing critical observations, commissioning targeted and supplementary observa-
tions that meet the needs of priority Cal/Val activities. This might see the organization
acting as facilitator of last resort to ensure the continued delivery of a minimum set of
validation capability should the existing infrastructures demise. We do not propose
a funding agency, but rather a capabilities driven organization that has the resourcing
and leverage with stakeholders to maintain and strengthen infrastructure critical to
European Space Policy.

Such an entity will require resourcing commensurate with its established mandate.
Furthermore, it will require access to specialist expertise that may, today, be lacking
outside of national metrology institutes, space agencies and major aerospace concerns.
Specification of resourcing and staffing of such an entity is beyond the scope of this
whitepaper. However, we would emphasize that the success of Copernicus QA will be
largely dependent on access to in situ data of traceable standards and data processing
performed by specialists with the confidence of end-users. As such, a Cal/Val entity must
retain the confidence of the community and international peers. Achieving such
a solution would secure the future of European Earth Observation, the Copernicus
Services and the legacy of the largest cohesive global monitoring programme.
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