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Abstract-Multivariate experiments and genomics 
studies applied to mammalian cells often produce lists 
of genes or proteins altered under treatment/disease vs. 
control/normal conditions. Such lists can be identified 
in known protein-protein interaction networks to 
produce subnetworks that “connect” the genes or 
proteins from the lists. Such subnetworks are valuable 
for biologists since they can suggest regulatory 
mechanisms that are altered under different 
conditions. Often such subnetworks are overloaded 
with links and nodes resulting in connectivity diagrams 
that are illegible due to edge overlap. In this study, we 
attempt to address this problem by implementing an 
approximation to the Steiner Tree problem to connect 
seed lists of mammalian proteins/genes using 
literature-based protein-protein interaction networks. 
To avoid over-representation of hubs in the resultant 
Steiner Trees we assign a cost to Steiner Vertices based 
on their connectivity degree. We applied the algorithm 
to lists of genes commonly mutated in colorectal cancer 
to demonstrate the usefulness of this approach.  

I. INTRODUCTION 

Advanced experimental technologies that measure 
many cellular components at once often produce lists of 
genes or proteins that were identified as statistically 
altered under treatment vs. control conditions. The size of 
such lists ranges between handfuls to thousands. To assist 
in interpreting such experimental result it is often desired 
to place such lists in functional context. For this, Gene 
Ontology [1] analysis is commonly used. Alternatively, 
protein-protein interaction networks can also be used to 
“connect” seed lists of genes or proteins based on known 
protein interactions. Several graph-theory algorithms can 
be used to “connect” seed lists of proteins using known 
intracellular interactions networks. Formally, the input to 
such algorithms is an undirected graph  and a 
set of vertices (the seed list) .  The task is to find a 
subgraph G’ that links the vertices from N. Applications 

of this concept to analyze biological networks is an active 
area of research: For example, this approach was used for 
expanding metabolic networks [2]; enriching classical 
pathways [3]; linking disease genes with disease 
phenotype using information from protein interaction 
networks, microarrays, and in-silico predicted interactions 
[4]; Asthana et al. [5] used interactions from multiple 
sources to fill-in additional proteins in a complex, using 
seed lists of proteins already known to be in a complex; 
Ideker et al. [6] used protein interaction networks to 
identify clusters of differentially expressed genes; Scott et 
al. [7] used a similar approach to detect signaling 
pathways in yeast. Connecting seed lists is also used to 
predict protein function [8]. 

),( EVG =
VN ⊂

We implemented Genes2Networks [9], a web-based 
tool that uses ten mammalian protein interaction databases 
to connect seed lists of gene symbols. The algorithm 
implemented for Genes2Networks finds all paths within a 
certain path-length threshold between pairs of nodes from 
seed lists. The output subgraphs are  visualized using 
AVIS [10], a web-based pathway viewer. Efforts to 
improve visualization of biochemical pathways is also an 
active field of research [11]. For biologists, having an 
output subgraph created from seed lists visualized as 
connectivity diagram is informative. When seed lists are 
relatively large (>30) such maps are overloaded with 
information because visualization algorithms need to 
project high-dimensional networks into two or three 
dimensions having to “draw” overlapping nodes and 
tangled links. Hence, it is often desired to find minimal 
subgraphs that could be used to “connect” seed lists in the 
context of large-scale interaction networks. Such minimal 
subgraphs are useful because they are visually 
manageable, and can present the intermediate vertices that 
are most relevant to the seed list. 

Given a seed list of vertices, Steiner Trees (STs) are 
used to find such minimal “skeleton” subgraphs [12, 13]. 
STs are similar to minimal spanning trees [14], except that 
STs include intermediate vertices and consider weights of 
edges [12, 13] or vertices [15]. Intermediate vertices, 
called Steiner Vertices (SVs), are vertices that are not 
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present in the seed lists but exist in the background 
network and appear in the output ST. Finding the ST is 
NP-hard [13, 16] and a dynamic programming solution 
was first suggested by Dreyfus and Wagner [13]. Many 
approaches since then have improve the performance of 
the Dreyfus-Wagner algorithm [17, 18]. Approximations 
are required for practical applications, for example, when 
the seed list is ~>10 and the background network is large 
[19].  Applications of ST in biology so far include 
reconstructing phylogenetic trees [20, 21] and predicting 
protein folds [22]. ST were also implemented to analyze 
seed lists of genes and proteins in yeast using a large 
protein interaction network [15, 23]. The ST application to 
connect seed lists of genes or proteins as it was 
implemented so far has a major drawback. The SVs that 
are used to connect seed lists are often highly connected 
vertices (hubs). Hence, the inclusion of hubs in the output 
ST has a strong bias because regardless of the seed list 
hubs would reappear in many output STs. Here, we 
developed an approach to overcome this drawback by 
assigning a cost to edges based on the connectivity degree 
of the vertex at the head of the edge. We implemented an 
algorithm that quickly approximates a ST using measures 
such as the shortest path length [24].  We use 
Genes2Networks to create a subgraph from a large 
mammalian protein-protein interaction network developed 
from multiple sources, and then find the ST in this 
subgraph. To demonstrate its usefulness, we applied this 
algorithm to seed lists of genes identified as mutated in 
colorectal  cancer [25].  

II. METHODS 

A. The Steiner Tree problem 
The ST problem  [26] in graphs is described as: 

Given an undirected graph , where 
 is an edge length function, and a non-empty 

set of seed vertices , called terminals, find a 

subgraph of G such that there is a path between 
every pair of terminals, and the total length is minimized: 

c)E,(V, G =
REc →:

VN N, ⊆
(N)T G

∑
∈

=
)(

G )(  |(N)T| 
NTe Gi

iec    (1) 

The vertices are called non-terminals; non-
terminals that end up in are called Steiner 
Vertices (SVs).   

N \ V
(N)T G

 
B. Distance Network Heuristic 

Since the ST problem is NP-hard, many 
approximation algorithms are available. We chose to use 
an approximation algorithm called the Distance Network 
Heuristic (DNH) [27]. This approximation uses the 

Distance Network, which is defined as a fully connected 
subgraph )c,E(N,  D DDG = , where is an 

edge length function, where is the length of the 
shortest path between the terminals n

REc DD →:
ij)(ec DD

i and nj. 
Algorithm steps: 
Step 1: Construct the distance network for N  (N)DG

Step 2: Determine a minimum spanning tree of  (N)DG

Step 3: Replace each edge in the minimum spanning tree 
by the corresponding shortest path. Let TD 
denote this network.   

Step 4: Determine a minimum spanning tree TDNH of the 
subgraph of G induced by the vertices of TD.   

Step 5: Delete from TDNH non-terminals vertices with 
degree k=1 

The DNH has complexity of , finding the 
Distance Network contributes mostly to this complexity, 
using a Fibonacci heap can improve the complexity to 

)O(nv2

vlogv))O(n(e +  in sparse networks [28].  In this work 
we chose to use a Binary heap to compute the distance 
network, this gives a complexity 
of elogv))  O(n(vlogv + . We chose to implement a 
binary heap because it is simpler to implement and known 
to outperform better than the Fibonacci heap for moderate 
sized graphs [26]. 
The worst case error ratio for the DNH is:  

n
2-2  

|(N)T|
|T|

G

DNH ≤    (2) 

 
for any network G and any set of N terminals [26]. 
Although in practice the DNH usually performs much 
better than the worst case error ratio, it is easy to find 
examples of STs that will be missed by DNH. Even 
though the DNH may not always produce the true ST, the 
other approximation algorithms that exist do not perform 
significantly better and have similar error ratios [26].  
From now on we will refer to the approximate ST from the 
DNH as the ST solution. 

 
C. Assigning Cost to Edges  

To find the ST we replaced each undirected edge with 
two directed edges.  In the first version G1 = (V1, E1, 
c1), the weight of each edge is set to be 1, 1  )(ec 1ij1 =  for 

all i, j.  In the second version )c ,E ,(V  G 2222 = , the 
length of each edge was set as the degree of the vertex at 
the head of the edge . )degree(v  )(ec 2j2ij2 =

The ST found in graph G1 is likely to include major 
hubs as SVs. Vertices that are hubs have high degree and 
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therefore appear in more possible paths, a node appearing 
in many paths is more likely to be included as an SV. Hub 
SVs might not be as interesting because they would appear 
in STs found using many random seed lists. We would 
like to isolate SVs specific to specific seed lists, the ST 
found using G2 will accomplish this because the costs of 
the edges will favor paths that do not go through hubs. For 
example, see Fig. 1.  

 
Figure 1. Comparing a graph before and after being converted to G2.  V-
Vertices, N-terminals, SV-SV, edge costs are shown, edges included in 
ST are solid; edges from the graph not included in the ST are dashed.  
The ST on the right is different from the ST on the left since it does not 
go through two vertices with highest degree. 
 
D. Mammalian Protein-Protein Interaction Network 

We merged the following available protein-protein 
interaction datasets: The human and mouse interactions 
from the BioGRID [29], DIP [30], HPRD [31], IntAct 
[32], MINT [33], Ma’ayan et al. [34], BIND [35], PPID 
[36] and  Reactome [37]. All interactions from these 
databases report protein-protein and signaling interactions 
determined experimentally, and include the PubMed 
reference of the research article that describes the 
experiments used to identify the interaction. This network 
was filtered by excluding articles that contributed more 
than five interactions to reduce the content of interactions 
determined using high-throughput methods and 
interactions extracted from review articles. 

III. RESULTS 

In order to verify that our algorithm reduces the 
probability for the presence of hubs in resultant STs, or in 
other words, the ST found using G2 did not isolate as 
many hubs as the ST found using G1, we generated 100 
sets of 35 randomly chosen terminals from the mammalian 
protein-protein interaction network, N1-N100, |N| = 35. 
Using each set of terminals, Ni, as input to 
Genes2Networks we generated 100 subgraphs, G(Ni) for 
i=1..100. We created G1(Ni) and G2(Ni) from these 
subgraphs, for each set of terminals Ni, using the methods 
described previously. We found STs, TDNHG1(Ni) and 
TDNHG2(Ni), for each i, and compared the results by 

counting the number of times each vertex appeared as a 
SV in TDNHG1(Ni), for i=1..100, and comparing it to the 
number of times the vertex appeared as SV in 
TDNHG2(Ni), for i=1..100. 

 
Figure 2. Frequency of SVs found using 100 randomly generated sets of 
terminals. The Plot shows the 100 most frequently appearing SVs and the 
number of times they appeared as SVs using G1 (blue, dashed) and G2 
(red, solid). 
 

Fig. 2 shows that when we used G2, the frequency of 
the vertices appearing as SVs is reduced, suggesting that 
our algorithm reduces the probability for SVs to reappear 
in many STs regardless of the content of seed lists. Since 
we are using Genes2Networks [9] with a limited path 
length threshold, paths that do not go through hubs may 
not be included in the initial subgraph, and as such, will 
not be found by the DNH algorithm. Therefore, we expect 
that if we would have used the protein-protein interaction 
network directly as the input to the DNH algorithm, the 
difference between the frequencies of vertices appearing 
as SVs would be magnified.  

To illustrate the usefulness of our approach for the 
application of analyzing lists of mammalian genes, we 
used a recent publication by Sjoblom et al. [25]. In their 
study, the authors identified many mutations in human 
genes in breast and colorectal cancers. The study reports 
lists of genes that are heavily mutated in those cancers. 
The authors speculated that some of those genes may 
function in the same pathways and the genetic alteration 
may share related functional outcomes. To further 
examine this we used a list of 69 genes that were 
identified as being highly mutated in colorectal cancer. 
Fig. 3a shows the output subgraph created with 
Genes2Networks [9]. This subgraph contains many 
tangled edges. In contrast, in Fig. 3b, we use the ST 
algorithm without assigning weights. The connectivity 
diagram is more informative. Fig. 3c improves the 
specificity of the output ST by reducing the influence of 
hubs, using costs on the edges, G2. 

Encouragingly, some of the SVs appearing to connect 
the mutated genes in the STs are classic colorectal cancer 
genes, often used as biomarkers to determine disease 
progression. Some SVs function within well-studied 
signaling pathways. For example, AXIN2 [38] and β-
catenin [38] were identified in proximity to APC and 
TCF7L2 all known to participate in the same pathway. It 
is notable that although β-catenin appeared in both STs, 
AXIN2 only appeared when we used G2. The output STs 
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can also visually suggest clustering and hierarchical 
organization of mutated genes. TP53 is a root vertex in 
both STs, and it becomes more central in the G2 map. This 
happens because TP53 is a hub. The output trees from G1 
have less distinct roots but are also very informative. For 
example, one of the branches from MAP2 connects 
Ephrins to adapter proteins such as GRB2, CRK and 
CRKL all are known to function in the MAPK pathway. 
Another example is the terminal braches from TP53 which 
are nuclear proteins connected through regulators of 
transcription such the histone deacetylase HDAC1 and 
nuclear kinase CDK2. 

 
Figure 3a. Subnetwork output for the colorectal cancer seed list using 
Genes2Networks. 
 

 
Figure 3b. ST output for the colorectal cancer seed list without assigning 
cost to edges (G1), seed nodes are green Steiner vertices are light cyan.  
 

 
Figure 3c. ST output for the colorectal cancer seed list assigning cost to 
the edges (G2), seed nodes are geen, Steiner vertices are light cyan. 
 

These functional modules, identified automatically, 
are already known to become mutated in colorectal cancer 
and are known to play important functional roles in the 
different stages of cancer progression. Other less studied 
“connectors” can provide novel hypotheses for directed 
experimental exploration. 

IV. CONCLUSIONS 

The ST approach to connect seed lists of genes can be 
used to extract knowledge from complex biological 
networks by visually producing sizable connectivity 
diagrams that can suggest SVs as additional potential 
players, cluster genes or proteins based on their relations 
in network connectivity space, and trim dense subgraphs 
to keep the most important vertices and edges. ST 
algorithms can produce many correct or correct 
approximations for the solution output ST. additionally, 
finding STs requires that there exists a path between every 
gene in the seed lists. Hence, it might be more appropriate 
to output the union of all possible STs (Steiner Forest). 
The methods presented here can be used for the analysis of 
a variety of experimental results, for example, 
microarrays, proteomics, or protein/DNA arrays. Data 
from such studies can be incorporated into the algorithm 
to assign weights to terminals and SVs accordingly based 
on quantifications observed experimentally. The output 
STs can also incorporate gene classification such as Gene 
Ontology, linkage to known pathways, and clustering 
analysis; all would improve interpretations of the ST 
output. 
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