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Abstract

Over recent years significant advancements in the field of assistive technologies have 

been observed. One of the paramount needs for the development and advancement that 

urged researchers to contribute in the field other than congenital or diagnosed chronic 

disorders, is the rising number of affectees from accidents, natural calamity (due to 

climate change), or warfare, worldwide resulting in spinal cord injuries (SCI), neural 

disorder, or amputation (interception) of limbs, that impede a human to live a normal life.

In addition to this, more than ten million people in the world are living with  form 

of handicap due to the central nervous system (CNS) disorder, which is precarious.

Biomedical devices for rehabilitation  the center of focus  many years. For 

people with lost motor control  or amputation, but unscathed sensory control, instigation 

of control signals from the source, i.e. electrophysiological signals, is vital for seamless 

control of assistive biomedical s. ontrol signals, i.e. motion intentions  arouse 

in the sensorimotor cortex of the brain that can be detected using invasive or non-invasive 

modality. With non-invasive modality, the electroencephalography (EEG) is used to 

record these motion intentions encoded in electrical activity of the cortex, and are

deciphered to recognize user intent for locomotion. They are further transferred to the 

actuator or end effector of the assistive device for control purposes. This can be executed 

via the brain-computer interface (BCI) technology. 

BCI is an emerging research field that establishes a real-time bidirectional connection 

between the human brain and a computer/output device. Amongst its diverse applications, 

neurorehabilitation to deliver sensory feedback and brain controlled biomedical devices 

for rehabilitation are most popular. While substantial literature on control of upper-limb 

assistive technologies controlled via BCI is there, less is known about the lower-limb 

(LL) control of biomedical devices for navigation or gait assistance via BCI. The types

of EEG signals compatible with an independent BCI are the oscillatory/sensorimotor

rhythms (SMR) and event-related potential (ERP). These signals have successfully been

used in BCIs for navigation control of assistive devices. However, ERP paradigm

accounts for a voluminous setup for stimulus presentation to the user during operation of

BCI assistive device. Contrary to this, the SMR does not require large setup for activation

of cortical activity; it instead depends on the motor imagery (MI) that is produced
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synchronously or asynchronously by the user. MI is a covert cognitive process also 

termed kinaesthetic motor imagery (KMI) and elicits clearly after rigorous training trials,

in form of event-related desynchronization (ERD) or synchronization (ERS), depending 

on imagery activity or resting period. It usually comprises of limb movement tasks, but 

is not limited to it in a BCI paradigm. In order to produce detectable features that correlate 

to the user’s intent, selection of cognitive task is an important aspect to improve the 

performance of a BCI. MI used in BCI predominantly remains associated with the upper-

limbs, particularly hands, due to the somatotopic organization of the motor cortex. The 

hand representation area is substantially large, in contrast to the anatomical location of 

the LL representation areas in the human sensorimotor cortex. The LL area is located 

within the interhemispheric fissure, i.e. between the mesial walls of both hemispheres of 

the cortex. This makes it arduous to detect EEG features prompted upon imagination of 

LL. Detailed investigation of the ERD/ERS in the mu and beta oscillatory rhythms during

left and right LL KMI tasks is required, as the user’s intent to walk is of paramount

importance associated to everyday activity. This is an important area of research,

followed by the improvisation of the already existing rehabilitation system that serves the

LL affectees. Though challenging, solution to these issues is also imperative for the

development of robust controllers that follow the asynchronous BCI paradigms to operate

LL assistive devices seamlessly.

This thesis focusses on the investigation of cortical lateralization of ERD/ERS in the 

SMR, based on foot dorsiflexion KMI and knee extension KMI separately. This research 

infers the possibility to deploy these features in real-time BCI by finding maximum 

possible classification accuracy from the machine learning (ML) models. EEG signal is 

non-stationary, as it is characterized by individual-to-individual and trial-to-trial 

variability, and a low signal-to-noise ratio (SNR), which is challenging. They are high in 

dimension with relatively low number of samples available for fitting ML models to the 

data. These factors account for ML methods that developed into the tool of choice 

to analyse single-trial EEG data. Hence  the selection of appropriate ML model for true 

detection of class label with no tradeoff of overfitting is crucial. The feature extraction 

part of the thesis constituted of testing the band-power (BP) and the common spatial 

pattern (CSP) methods individually. The study focused on the synchronous BCI 

paradigm. This was to ensure the exhibition of SMR for the possibility of a practically 

viable control system in a BCI. For the left vs. right foot KMI, the objective was to 



distinguish the bilateral tasks, in order to use them as unilateral commands in a 2-class 

BCI for controlling/navigating a robotic/prosthetic LL for rehabilitation. Similar was the 

approach for left-right knee KMI. The research was based on four main experimental 

studies. In addition to the four studies, the research is also inclusive of the comparison of 

intra-cognitive tasks within the same limb, i.e. left foot vs. left knee and right foot vs. 

right knee tasks, respectively (Chapter 4). This added to another novel contribution 

towards the findings based on comparison of different tasks within the same LL. It

provides basis to increase the dimensionality of control signals within one BCI paradigm,

such as a BCI-controlled LL assistive device with multiple degrees of freedom (DOF) for 

restoration of locomotion function. This study was based on analysis of statistically 

significant mu ERD feature using BP feature extraction method.

The first stage of this research comprised of the left vs. right foot KMI tasks, wherein the 

ERD/ERS that elicited in the mu-beta rhythms were analysed using BP feature extraction 

method (Chapter 5). Three individual features, i.e. mu ERD, beta ERD, and beta ERS

were investigated on EEG topography and time-frequency (TF) maps, and average time 

course of power percentage, using the common average reference and bipolar reference 

methods. A comparative study was drawn for both references to infer the optimal method. 

This was followed by ML, i.e. classification of the three feature vectors (mu ERD, beta

ERD, and beta ERS), using linear discriminant analysis (LDA), support vector machine 

(SVM), and k-nearest neighbour (KNN) algorithms, separately. Finally  the multiple 

correction statistical tests were done, in order to predict maximum possible classification 

accuracy amongst all paradigms for the most significant feature. All classifier models 

were supported with the statistical techniques of k-fold cross validation and evaluation of 

area under receiver-operator characteristic curves (AUC-ROC) for prediction of the true 

class label. The highest classification accuracy of 83.4% ± 6.72 was obtained with KNN 

model for beta ERS feature. The next study was based on enhancing the classification 

accuracy obtained from previous study. It was based on using similar cognitive tasks as

study in Chapter 5, however deploying different methodology for feature extraction and 

classification procedure. In the second study, ERD/ERS from mu and beta rhythms were 

extracted using CSP and filter bank common spatial pattern (FBCSP) algorithms, to 

optimize the individual spatial patterns (Chapter 6). This was followed by ML process, 

for which the supervised logistic regression (Logreg) and LDA were deployed separately. 

Maximum classification accuracy resulted in 77.5% ± 4.23 with FBCSP feature vector 
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and LDA model, with a maximum kappa coefficient of 0.55 that is in the moderate range 

of agreement between the two classes. The left vs. right foot discrimination results were 

nearly same, however the BP feature vector performed better than CSP.

The third stage was based on the deployment of novel cognitive task of left vs. right knee 

extension KMI. Analysis of the ERD/ERS in the mu-beta rhythms was done for 

verification of cortical lateralization via BP feature vector (Chapter 7). Similar to 

Chapter 5, in this study the analysis of ERD/ERS features was done on the EEG 

topography and TF maps, followed by the determination of average time course and peak 

latency of feature occurrence. However, for this study, only mu ERD and beta ERS

features were taken into consideration and the EEG recording method only comprised of 

common average reference. This was due to the established results from the foot study 

earlier, in Chapter 5, where beta ERD features showed less average amplitude. The LDA 

and KNN classification algorithms were employed. Unexpectedly, the left vs. right knee 

KMI reflected the highest accuracy of 81.04% ± 7.5 and an AUC-ROC = 0.84, strong 

enough to be used in a real-time BCI as two independent control features. This was using 

KNN model for beta ERS feature. The final study of this research followed the same 

paradigm as used in Chapter 6, but for left vs. right knee KMI cognitive task (Chapter 

8). Primarily this study aimed at enhancing the resulting accuracy from Chapter 7, using 

CSP and FBCSP methods with Logreg and LDA models respectively. esults were in 

accordance with those of the already established foot KMI study, i.e. BP feature vector 

performed better than the CSP. Highest classification accuracy of 70.00% ± 2.85 with 

kappa score of 0.40 was obtained with Logreg using FBCSP feature vector. esults

stipulated the utilization of ERD/ERS in mu and beta bands, as independent control 

features for discrimination of bilateral foot or the novel bilateral knee KMI tasks.

Resulting classification accuracies implicate that any 2-class BCI  employing unilateral 

foot  or knee KMI  is suitable for real-time implementation.

In conclusion, this thesis demonstrates the possible EEG pre-processing, feature 

extraction and classification methods to instigate a real-time BCI from the conducted 

studies. Following this, the critical aspects of latency in information transfer rate, SNR,

and tradeoff between dimensionality and overfitting needs to be taken care of, during 

design of real-time BCI controller. It also highlights that there is a need for consensus 

over the development of standardized methods of cognitive tasks for MI based BCI. 



  x 

Finally, the application of wireless EEG for portable assistance is essential as it will 

contribute to lay the foundations of the development of independent asynchronous BCI 

based on SMR. 
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Chapter 1

Introduction

1.1. Overview of brain-computer interface controlled actuators/output devices

1.2. Research aim and objectives

1.3. Thesis structure

1.4. References

Chapter Overview

The objective of this chapter is to highlight the significance of various factors involved 

in the development of brain-computer interface (BCI) controlled actuators/output 

devices. In this framework, the chapter discusses key issues and challenges involved in 

the feature selection and classification of sensorimotor-based EEG signals. The 

motivation and significance of the present study are highlighted, followed by a detailed 

discussion of the scope of this particular study. In the last section, the structure of the 

thesis is presented, including a brief summary of each chapter.
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Chapter 1 Introduction

1.1 Overview of brain-computer interface controlled actuators/output devices

From a recent survey it is observed that due to central nervous system (CNS) disorder, more 

than 10 million people in the world live with various forms [1] of disability. Existing assistive 

lower-limb (LL) devices based on sensors and smart control algorithms are known to be 

suitable for rehabilitation of lost mobility compared to passive devices that account for high 

metabolic cost of transport [2]. In order to account for such critical aspects, research has been 

carried out to develop algorithms matching user’s motion intention that could generate 

correct walking trajectories with wearable robots. However, the control features offered by 

these devices solely rely on actuation of the system derived from artificial sensors along finite 

state controller that attempts to implicate biomechanical gait mechanism [3, 4], resulting in a 

restricted seamless control. This lead to the development of controllers based on actuation 

signals directly driven by cortical activity in correlation with the user intent for volitional 

movements [5]. The state of the art brain-computer interface (BCI) provides an augmentative 

communication source by creating a muscle-free channel between the brain and the output 

device. It accentuates real-time bidirectional connection between the brain and 

actuator/output device. With these superior control properties, BCI is considered to be a 

novel engineering tool for neurorobotics, neuroprosthesis and assistive rehabilitation device 

applications for patients with neural disorders, spinal cord injury (SCI), or amputation.

Successful design with seamless control and development of brain actuated assistive devices 

with improved classification accuracy, information transfer rate, and signal-to-noise-ratio,

remains a significant research area through which it would be possible to minimize 

occurrence of non-volitional control and enhance the reliability of these devices under severe 

operating conditions of users. 

Since the first successful experiment on creating a direct link between a patient’s motor 

cortex and the external device (a projector), by Grey Walter in 1963  and later by NIH 

laboratory, to control artificial actuators via cortical neuron recordings [6], significant 

research has been carried out to monitor and decipher cortical neuron activity using cortical 

implants. However, the modality employed was invasive. It has significant properties as high 

spatial resolution (tenths of millimeters), broader bandwidth (0 to 500 Hz), high characteristic 

amplitude (50 to 100 V), less vulnerability to artifacts and less user-BCI system adaptability 

(training); followed by higher cost with an inflated risk of scar tissue formation [7]. The non-
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invasive modalities offer better solutions. Electroencephalography (EEG) is one such viable 

tool that offers effective specifications as, lower in cost, ease of use, safest method to record 

brain activity and high time resolution (millisecond scale temporal resolution)[8]; however 

there is a tradeoff between performance and features as, lower spatial resolution 

(centimeters), lower bandwidth (0 to 50 Hz), lower characteristic amplitude (10 to 20 V), 

high susceptibility to artifacts, and several hours of training for user-BCI adaptability [7].

Nevertheless, EEG account for the safest technology therefore remains popular choice for 

BCI modality. 

While BCIs may not require any voluntary muscle control, they are certainly dependent on 

normal brain function to some degree therefore the choice of BCI type depends on user's 

condition [9]. Research on EEG based BCIs for assistive device applications have been 

carried out since 2000 [9]. Majority of the electrophysiological input signals employed by 

researchers included event-related potentials (ERPs), steady-state visually evoked potentials 

(SSVEPs), slow cortical potentials (SCPs) and oscillatory/sensorimotor rhythms (mu and beta 

oscillatory activity also termed SMRs). The most challenging signals discerned, arose in the 

motor cortex against the execution or imagery of a motor task, i.e. SMRs. This is because of 

the proprioceptive feedback involved during execution of the task and the varying level of 

user concentration. Active research contributions were from Graz BCI and Wadsworth BCI 

research centers that focused on ERPs and SMRs [10, 11]. Their applications addressed 

amyotrophic lateral sclerosis (ALS)/totally locked-in patients to restore basic communication 

needs including, 1D-2D cursor control on a computer, answering spoken Yes/No commands, 

basic word processing speller, first point development of prototype systems integrating 

submenu for everyday use in people’s homes, and control of orthotic device for opening and 

closing paralyzed limb (hand grasp) [12]. However, less emphasis reflected LL movement 

restoration for patients with spinal cord injury (SCI), disarticulated leg muscles, inactive 

residual LL or amputees, until recently. Concept was made that the central-pattern-generators 

with less supraspinal control are involved in the control of bipedal locomotion [5, 13]. EEG-

based activity mode recognition for assistive portable devices has been deployed recently 

such as wheelchairs, assistive/guiding robots, orthosis and exoskeletons, [5]. However, 

challenges still remain in the field.

For BCI systems that employ SMR-based EEG as input signals, the long training process of 

users to adapt to the BCI system is challenging [14]. Same cortical areas should activate 

during the actual performance of a limb movement and imagination of the same movement 

[15]. Although supervised classification methods are employed to learn how to recognize
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specific patterns of EEG activities, i.e. to learn the mapping between the EEG data and 

classes corresponding to mental tasks, such as movement of the left or right hand. However, 

the learning task is challenging as various governing factors impact the output result, such as 

the varying physical and mental state (degree of attention and concentration), eye blinks and 

muscle artifacts that contaminate the EEG signal. 

Based on the somatotopic arrangement of sensory and motor cortices, the upper limbs 

particularly hand representation is on the mantle of the human cortex. It is lateralized, the 

reason why left and right hand movement’s ERD patterns can be spatially distinguished. In 

contrast, the LL e.g. the foot and knee’s motor area representation on the homunculus is 

located deep inside the interhemispheric fissure with low spatial resolution, which makes it 

very difficult for the detection of these patterns through the EEG signal [16], hence more 

exploration needs to be done in this area. There is a need to investigate the probability of 

using band-power and common spatial pattern features as input control signals to a BCI 

system.

Before 2009, BCIs to control prosthetic devices were limited to upper limb prosthetics e.g. 

the DARPA modular prosthetic limb [17]. This was attributable to lack of analysis tools for 

analyzing cortical dynamics with EEG due to excessive proprioceptive feedback during 

walking. Until recently, the concept was made that the central-pattern-generators with less 

supraspinal control is involved in the control of bipedal locomotion [5]. Though scientific 

contribution has been made in the field of rehabilitative robotics controlled via BCI, yet no 

contribution has been made to the direct user intent control of active prosthetic LL device via 

BCI employing SMR-based EEG only. 

1.2 Research aims and objectives

The rationale for this research project is to prove the possibility to deploy mu and beta

sensorimotor rhythms, elicited upon LL kinesthetic motor imageries, as input control signals 

for development of an augmentative communication channel in order to restore lost motor 

control in subjects with LL amputation, SCI, disarticulated leg muscles, or inactive residual 

LL. In a BCI paradigm, output device is controlled via input commands extracted from

cortical activity but these commands surpass the brain's usual output pathways of peripheral

muscles and nerves, and are encoded in an electroencephalographic activity (in case of non-

invasive EEG). Henceforth, providing an alternate source of basic communication and

control paradigm to the completely or partially paralyzed subjects, in order to express their

needs to caregivers, or independently operate program and control neuroprostheses



Chapter 1 Introduction

23 

seamlessly in real-time. Present-day BCIs that determine the intent of the user employ SMR 

electrophysiological signals. SMR-based BCI are either synchronous or asynchronous. 

Unlike the P300 (ERP) and SSVEP-based BCIs that require minimum/no training to adapt 

BCI system and vice versa, SMR-based BCIs typically require much longer training periods 

to attain high levels of performance. The training process is deployed, both to familiarize the 

user to system, and to provide calibration data for the system’s classifier(s).

Despite advancements in BCI expansion in the recent decade, less literature is available on 

the employment of SMR based on LL tasks, in particular there is no evidence on the knee 

kinesthetic motor imagery. Therefore challenges still exist in the development of non-

invasive SMR based-BCIs in regards to assistive (wearable) LL devices with a minimal 

probability of non-volitional output commands. The feature extraction and classification of 

feature vector for reduced error rate, effective information transfer rate and improved signal-

to-noise ratio (SNR) remain an open research problem in BCI systems. 

Gaps in the Research Field 

1. Less known facts and investigations are observed on the LL kinaesthetic motor

imagery (KMI) tasks based band-power and common spatial pattern features, that are

deployed as control signals, in any BCI protocol.

2. Selection of optimal frequency-band that consists of the maximum useful features and

reliable feature vectors to be used as input control signals to a BCI system is still an

open research problem.

3. Cognitive states used in BCI system i.e. the types of mental states/motor actions for

motor imagery is still an area open for research [9]. For instance, there is no

comprehensive approach to the detection of signals associated to knee imagery.

4. Similarly most efficient algorithms for translating LL SMR signals into device

commands are not conclusively defined.

5. No explicit development of ankle-foot prosthesis actuated by LL KMI is available.

The important research questions addressed in this project include:

What is the interaction platform between human brain signals and output device or outer

world?

How we can quantitatively predict which precise cortical activity is associated to specific

tasks?
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How can a BCI system prove to be reliable?

How BCI can effectively contribute to the use of prosthetic or assistive robotic devices

for rehabilitation?

The ultimate objective is to analyze and classify the sensorimotor rhythms i.e. mu and beta

band-power (BP) and common spatial pattern (CSP) features elicited upon user’s intent of 

locomotion, i.e. LL KMI tasks including foot dorsiflexion and knee extension, for BCI 

applications.

The research objectives include:

i. Development of a clear understanding on human brain anatomy and ankle-foot

biomechanics followed by the control mechanism between neurons, LL (motor

tasks) and central pattern generators for walking gait. Analysis of the non-

invasive modalities to detect and monitor brain activity. Review of

conventional and existing BCI systems (based on EEG modality) that have

been incorporated in different LL wearable robotic applications.

ii. Establish the experimental set up from scratch and satisfy criteria for

synchronous BCI protocol (cue-paced) streaming data and timestamps/event

markers to describe the time course of the experiment.

iii. Recruitment of participants in the experiments, train them in LL motor

execution and kinesthetic imagery tasks and ensure progressive output in

performance.

iv. Observe significant changes in oscillatory activities, in relation to an

internally, or externally paced events that are time-locked, but not phase-

locked (induced) associated to event-related desynchronization (ERD) or

event-related synchronization (ERS). Following this, test statistics for

evaluation of significant feature vectors. Consequently, to analyze the ERD-

ERS and significant BP changes of most reactive mu and beta components and

CSP for LL tasks, to comply with the already built notion and results from

literature referring to the cortical lateralization of ERD/ERS during left-right

foot and knee tasks in sensory motor cortex. Establish correlation between the

motor execution and motor imagery tasks for the same limb.

v. Employ classification techniques for the 2-class BCI i.e. discrimination

between left and right tasks, by comparing results from linear discriminant

analysis (LDA), linear support vector machine (SVM), k-nearest neighbors

(KNN), and logistic regression (Logreg) (algorithm) models. This includes
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data standardization, and training of the classifier to improve the classification 

accuracy, signal-to-noise ratio, reduce error rate and prove its statistical 

significance. Consequently conducting the test statistics i.e. multiple 

comparison corrections for each classifier model outcome.

1.3 Thesis structure

This thesis is assembled as a combination of publications and submitted manuscripts resulting 

in 9 chapters as follows:

Chapter 1 gives an introduction to the field of research employed and an overall structure of 
the thesis.

Chapter 2 presents an overview of the related literature on control schemes employed by LL

motor imagery based BCIs for controlling LL assistive robots. Particular emphasis is put on 

the output of different methodologies adopted for the EEG signal pre-processing, feature 

extraction and training of the classifiers. The assistive LL robotic systems that employ 

sensorimotor rhythms and event-related potentials as input signals in a BCI for rehabilitation,

such as BCI wheelchair, BCI controlled humanoid and guidance robots, BCI orthotic and 

exoskeleton devices are reviewed here. The role of the shared control paradigms for wearable 

assistive devices is highlighted. A general framework for BCI controlled LL portable and 

assistive-robot devices for rehabilitation is represented in the novel form of a three-level 

hierarchical operational structure coupled to the shared controller and together connected to 

the portable output device and its surrounding environment. Latest developments in field of 

EEG-based BCIs are included. The findings of this work were published in the journal of

Frontiers in Human Neuroscience.

Chapter 3 provides a methodological description of the materials and methods for the EEG 

data acquisition. The pre-processing methods employed to de-noise and filter the EEG signal 

are demonstrated. Techniques employed for ERD/ERS percentage power change BP features 

and CSP feature extraction is shown. Following this, in order to characterize the features 

belonging to the two classes i.e. left vs. right motor imagery, the classification models are 

presented. In order to evaluate the performance of each classifier, test statistical analysis 

methods are discussed and the multiple comparison correction procedures adopted in each 

chapter.
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In Chapter 4, the study aimed at highlighting any observed differences in the mu oscillatory 

rhythm derived BP changes during different LL KMI tasks i.e. left vs. right foot dorsiflexion 

and left vs. right knee extension tasks for the same limb. Despite a small LL sensorimotor 

area representation in the homunculus, the foot and knee movement imagery elicited ERD 

patterns. An increase in the mid-central ERD was observed overall with all the participants.

The kinaesthetic knee imagery triggered mu ERD, mainly in the cortical foot area 

representation. No contralateral dominance of cortical areas was present in the case of left-

right knee imagery tasks, unlike with foot tasks. Results indicate the possibility of 

discriminating different movements within the same LL. This could increase the 

dimensionality of control signals in a BCI system. The findings of this work are published in

the journal of Acta Polytechnica Hungarica.

Chapter 5 presents the experimental outcomes from analysis and classification of ERD/ERS 

that elicit in the band-power feature vector, for mu and beta rhythms. This was based on 

cognitive tasks of left vs. right foot KMI. The analysis was carried out for two EEG 

montages, common average reference and bipolar reference to draw a comparison of 

resulting features that are significant enough to confirm the cortical lateralization. Analysis of 

mu and beta features was done using time-frequency (TF) maps, scalp topographies, and 

average time course for ERD/ERS. Consequently machine learning (ML) models were 

deployed for classifying left vs. right foot KMI. The study comprised of three different 

models to conclude the best one with maximum classification accuracy and AUC. All test 

statistics including multiple comparisons correction was included for evaluation of 

statistically significant model outcomes. The cortical lateralization was confirmed, which 

proved that mu ERD, beta ERD, and beta ERS can be deployed as independent control 

features in a BCI. The findings from this study are under review in the journal of PLOS One.

Chapter 6 reflects the findings from analysis of ERD/ERS patterns exhibited in the 

oscillatory rhythm from CSP and filter bank CSP (FBCSP) feature vectors respectively. 

Experimental protocol was based on left vs. right foot KMI for synchronous BCI. This was 

followed by deployment of ML models including linear LDA and Logreg. The study was 

carried out to improve the classification accuracy earlier established by literature. Results 

proved a successful improvement in the accuracy outcomes from the suggested FBCSP-LDA 

model. All test statistics including multiple comparisons correction was conducted for 

statistical evaluation of models. Classification results contribute to the possibility of
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exploiting mu and beta ERD/ERS features as control commands in a BCI. The findings from

this work are accepted in the journal of Biomedical Physics and Engineering Express.

Chapter 7 highlights the classification accuracies of mu ERD and beta ERS features based 

on left and right knee extension KMI. This cognitive task involved full knee extension while 

in sitting posture. The spatial proximity of left and right knee in the mesial wall of the 

sensorimotor cortex hinders the discrimination between the left and right tasks. Consequently 

ERD/ERS patterns were only reflected in the foot area of somatosensory cortex. However, 

this research’s results established the possibility to deploy knee KMI as cognitive input 

signals and use mu and beta as independent features for operating a 2 degrees of freedom 

BCI-controlled prosthetic or robotic knee.

Chapter 8 reflects the results from classification of oscillatory mu and beta ERD/ERS from 

CSP and FBCSP feature vectors respectively, following the synchronous BCI protocol of left 

vs. right knee extension KMI. In order to confirm the cortical lateralization of ERD/ERS, ML 

models, LDA and Logreg were used for an enhancement in the classification accuracy 

established from the previous chapter. FBCSP-Logreg model showed maximum classification 

accuracy amongst other models. Classification results provide the basis for the possibility of

exploiting mu and beta ERD/ERS features as control commands in a BCI. The results from

this research are published in the International Journal of Knowledge-Based and Intelligent 

Engineering System (Procedia Computer Science).

In the end, Chapter 9 outlines all the significant findings of this thesis and suggests some 

recommendations for further studies.
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Over recent years, brain-computer interface (BCI) has emerged as an alternative

communication system between the human brain and an output device. Deciphered

intents, after detecting electrical signals from the human scalp, are translated into

control commands used to operate external devices, computer displays and virtual

objects in the real-time. BCI provides an augmentative communication by creating a

muscle-free channel between the brain and the output devices, primarily for subjects

having neuromotor disorders, or trauma to nervous system, notably spinal cord

injuries (SCI), and subjects with unaffected sensorimotor functions but disarticulated or

amputated residual limbs. This review identifies the potentials of electroencephalography

(EEG) based BCI applications for locomotion and mobility rehabilitation. Patients could

benefit from its advancements such as wearable lower-limb (LL) exoskeletons, orthosis,

prosthesis, wheelchairs, and assistive-robot devices. The EEG communication signals

employed by the aforementioned applications that also provide feasibility for future

development in the field are sensorimotor rhythms (SMR), event-related potentials (ERP)

and visual evoked potentials (VEP). The review is an effort to progress the development

of user’s mental task related to LL for BCI reliability and confidence measures. As a novel

contribution, the reviewed BCI control paradigms for wearable LL and assistive-robots

are presented by a general control framework fitting in hierarchical layers. It reflects

informatic interactions, between the user, the BCI operator, the shared controller, the

robotic device and the environment. Each sub layer of the BCI operator is discussed in

detail, highlighting the feature extraction, classification and execution methods employed

by the various systems. All applications’ key features and their interaction with the

environment are reviewed for the EEG-based activity mode recognition, and presented in

form of a table. It is suggested to structure EEG-BCI controlled LL assistive devices within

the presented framework, for future generation of intent-based multifunctional controllers.

Despite the development of controllers, for BCI-based wearable or assistive devices that

can seamlessly integrate user intent, practical challenges associated with such systems

exist and have been discerned, which can be constructive for future developments in the

field.

Keywords: brain-computer interface (BCI), electroencephalography (EEG), spinal cord injury (SCI), exoskeletons,

orthosis, assistive-robot devices
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INTRODUCTION

The field of assistive technologies, for mobility rehabilitation, is
ameliorating by the introduction of electrophysiological signals
to control these devices. The system runs independent of
physical, or muscular interventions, using brain signals that
reflect user’s intent to control devices/limbs (Millán et al.,
2010; Lebedev and Nicolelis, 2017), called brain-computer
interface (BCI). Commonly used non-invasive modality to
record brain signals is electroencephalography (EEG). EEG
signals are deciphered to control commands in order to restore
communication between the brain and the output device when
the natural communication channel i.e., neuronal activity is
disrupted. Recent reviews on EEG-BCI for communication and
rehabilitation of lower-limbs (LL) could be found in (Cervera
et al., 2018; Deng et al., 2018; He et al., 2018a; Lazarou et al., 2018;
Semprini et al., 2018; Slutzky, 2018).

About five decades ago, EEG-BCIs used computer cursor
movements to communicate user intents for patient-assistance in
various applications (Vidal, 1973; Wolpaw et al., 2002; Lebedev
and Nicolelis, 2017). The applications are now widespread,
as machine learning has become one essential component
of BCI, functional in different fields of neurorobotics and
neuroprosthesis. For lower extremity, applications include
human locomotion assistance, gait rehabilitation, and
enhancement of physical abilities of able-bodied humans (Deng
et al., 2018). Devices for locomotion, or mobility assistance,
vary from wearable to (non-wearable) assistive-robot devices.
Wearable devices such as exoskeletons, orthosis, prosthesis,
and assistive-robot devices including wheelchairs, guiding
humanoids, telepresence and mobile robots for navigation are
the focus of our investigation.

Control schemes, offered by these systems, rely on the inputs
derived from electrophysiological signals, electromechanical
sensors from the device, and the deployment of finite state
controller that attempts to implicate user’s motion intention,
to generate correct walking trajectories with wearable robots
(Duvinage et al., 2012; Jimenez-Fabian and Verlinden, 2012;
Herr et al., 2013; Contreras-Vidal et al., 2016). Input signals are
typically extracted from the residual limb/muscles i.e., amputated
or disarticulated lower-limbs (LL), via electromyography (EMG),
from users with no cortical lesion or intact cognitive functions.
Such solutions consequently preclude patient groups whose
injuries necessitate direct cortical input to the BCI controller, for
instance users with neuromotor disorders such as spinal cord
injury (SCI) and stroke, or inactive efferent nerves/synergistic
muscle groups. In this case direct cortical inputs from EEG
could be the central-pattern-generators (CPG) that generate basic
motor patterns at the supraspinal or cortical level (premotor and
motor cortex); or the LL kinesthetic motor imagery (KMI) signals
(Malouin and Richards, 2010). The realization of BCI controllers
solely driven by EEG signals, for controlling LL wearable/assistive
devices, is therefore possible (Lee et al., 2017). Several
investigations reinstate that CPG with less supraspinal control is
involved in the control of bipedal locomotion (Dimitrijevic et al.,
1998; Beloozerova et al., 2003; Tucker et al., 2015). This provides
the basis for the development of controllers, directly driven from

cortical activity in correlation to the user intent for volitional
movements (Nicolas-Alonso and Gomez-Gil, 2012; Angeli et al.,
2014; Tucker et al., 2015; Lebedev and Nicolelis, 2017) instead of
EMG signals. Consequently, controllers with EEG-based activity
mode recognition for portable assistive devices, have become
an alternative to get seamless results (Presacco et al., 2011b).
However, when employing EEG signals as input to the BCI
controller, there necessitates a validation about the notion that
EEG signals from the cortex can be useful for the locomotion
control.

Though cortical sites encode movement intents, the kinetic
and kinematic changes necessary to execute the intended
movement, are essential factors to be considered. Studies indicate
that the selective recruitment of embedded “muscle synergies”
provide an efficient means of intent-driven, selective movement,
i.e., these synergies, stored as CPGs, specify spatial organization
of muscle activation and characterize different biomechanical
subtasks (Chvatal et al., 2011; Chvatal and Ting, 2013). According
to Maguire et al. (2018), during human walking, Chvatal and
Ting (2012) identified different muscle synergies for the control
of muscle activity and coordination. According to Petersen et al.
(2012), the swing-phase was more influenced by the central
cortical control, i.e., dorsiflexion in early stance at heel strike,
and during pre-swing and swing phases for energy transfer from
trunk to leg. They also emphasized the importance of cortical
activity during steady unperturbed gait for the support of CPG
activity. Descending cortical signals communicate with spinal
networks to ensure that accurate changes in limb movement
have appropriately integrated into the gait pattern (Armstrong,
1988). The subpopulations of motor-cortical neurons activate
sequentially amid the step cycle particularly during the initiation
of pre-swing and swing (Drew et al., 2008). The importance of
cortical activation upon motor imagery (MI) of locomotor tasks
has been reported in Malouin et al. (2003) and Pfurtscheller et al.
(2006b). Similarly, the confirmation of electrocortical activity
coupled to gait cycle, during treadmill walking or LL control,
for applications as EEG-BCI exoskeletons and orthotic devices,
has been discerned by (He et al., 2018b, Gwin et al. (2010,
2011), Wieser et al. (2010), Presacco et al. (2011a), Presacco et al.
(2011b), Chéron et al. (2012), Bulea et al. (2013), Bulea et al.
(2015), Jain et al. (2013), Petrofsky and Khowailed (2014), Kumar
et al. (2015), and Liu et al. (2015). This provides the rationale
for BCI controllers that incorporate cortical signals for high-level
commands, based on user intent to walk/bipedal locomotion or
kinesthetic motor imagery of LL.

While BCIs may not require any voluntary muscle control,
they are certainly dependent on brain response functions
therefore the choice of BCI depends on the user’s sensorimotor
lesion and adaptability. Non-invasive types of BCI depend on
EEG signals used for communication, which elicit under specific
experimental protocols. Deployed electrophysiological signals
that we investigate, include oscillatory/sensorimotor rhythms
(SMR), elicited upon walking intent, MI or motor execution
(ME) of a task, and evoked potentials as event-related potentials
(ERP/P300) and visual evoked potentials (VEP). Such BCI
functions as a bridge to bring sensory input into the brain,
bypassing damages sight, listening or sensing abilities. Figure 1
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FIGURE 1 | Generic concept/function diagram of BCI controlled assistive LL devices based on motor imagery.

shows a schematic description of a BCI system based on MI,
adapted from He et al. (2015). The user performs MI of limb(s),
which is encoded in EEG reading; features representing the task
are deciphered, processed and translated to commands in order
to control assistive-robot device.

Reviewed control schemes deployed by wearable LL and
assistive-robots are presented in a novel way, i.e., in form
of a general control framework fitting in hierarchical layers.
It shows the informatic interactions, between the user, the
BCI operator, the shared controller, and the robot device with
environment. The BCI operator is discussed in detail in the light
of the feature extraction, classification and execution methods
employed by all reviewed systems. Key features of present state-
of-the-art EEG-based BCI applications and its interaction with
the environment are presented and summarized in the form
of a table. Proposed BCI control framework can cater similar
systems based on fundamentally different classes. We expect
a progress in the incorporation of the novel framework for
the improvement of user-machine adaptation algorithms in a
BCI.

The reviewed control schemes indicated that the MI/ME
of LL tasks, as aspects of SMR-based BCI have not been
extensively used compared to upper limbs (Tariq et al., 2017a,b,
2018). This is due to the small representation area of LL, in
contrast to upper limbs, located inside the interhemispheric
fissure of the sensorimotor cortex (Penfield and Boldrey, 1937).
The review is an effort to progress the development of user’s
mental task related to LL for BCI reliability and confidence
measures.

Challenges presently faced by EEG-BCI controlled wearable
and assistive technology, for seamless control in real-time, to
regain natural gait cycle followed by a minimal probability of
non-volitional commands, and possible future developments in
these applications, are discussed in the last section.

GENERAL CONTROL FRAMEWORK FOR

BCI WEARABLE LOWER-LIMB AND

ASSISTIVE-ROBOT DEVICES

In order to structure the control architecture adopted by
various BCI wearable LL and assistive robot-devices, a general
framework is presented in Figure 2. This framework was
extended from Tucker et al. (2015) applicable to a range
of EEG-BCI controlled devices for LL assistance, including
portable exoskeletons, orthosis, prosthesis, and assistive-robots
(wheelchairs, humanoids, and navigation/telepresence robots).

Figure 2 reflects the generalized control framework, where
electrophysiological and transduced signal interactions, along
the feedforward and feedback loops, are shown for motion
intent recognition, during activity mode. Integral parts of the
framework include a user of the assistive robot-device, the
assistive-robot device itself, a BCI operator structure with sub-
level controls, shared control, communication protocol and
the interaction with environment. The BCI operator structure
constitutes of three sub-layers which are the feature extraction,
translation and execution layer, respectively. As a precaution to
ensure human-robot interaction safety, safety layers are used
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FIGURE 2 | Generalized framework in BCI controlled wearable LL and assistive devices for rehabilitation.

with the user and the robotic device parts of the framework.
The control framework is in a generalized form applicable to all
brain-controlled assistive robots.

BCI control is driven from the recognition of user’s motion
intentions; therefore we begin from the point of origin where
motion intentions arise (cortical levels). The first step involves
how to perceive and interpret the user’s physiological state (i.e.,
MI/ME or ERP) acquired via EEG. Following this, the status
of physical interaction between the user and the environment
(and vice versa), and the robotic device and the environment
(and vice versa) are checked. The assistive-robot’s state is
determined via electromechanical sensors. The user and assistive-
robot status inputs to the BCI operator and shared controller,
respectively.

Raw signals from the user and assistive LL device pass
through the communication protocol which directs them to
the connected client i.e., BCI operator via pre-processing
and shared control module. Real-time signal acquisition and
operating software could be used to assign event markers to
the recorded data e.g., OpenViBE, BioSig, BCI++, BCI2000
etc. (Schalk et al., 2004; Mellinger and Schalk, 2007; Renard
et al., 2010). The streaming connection can be made using
TCP (when the time synchronization requirements do not
need accuracy <100ms) or LSL which incorporates built-in
network and synchronization capabilities (with accuracy of 1ms)
recommended for applications based on ERPs.

Under the control framework components, BCI operator is
the core part comprising of three sub layers, described in detail
in section BCI Operator.

At feature extraction layer (intent recognition), user’s intent
of activities related to LL movements are perceived, discerned
and interpreted. Signal features associated to user’s kinesthetic
intent/execution of motor task (in case of SMR) are encoded

in form of feature vector (Lotte, 2014). The activity-mode
recognition for ERP, against displayed oddball menu for specific
location, uses frequency, or time domain features. It is the user’s
direct volitional control that lets voluntarily manipulate the state
of the device (e.g., joint position, speed, velocity and torque).

Translation layer (weighted class) takes account of the
translation of extracted signal features to manipulate the robotic
device, via machine understandable commands, which carry
the user’s intent. This is done by supervised, or unsupervised
learning (classification algorithm) which essentially estimates the
weighted class, represented by the feature vector, and identifies
the cognitive patterns for mapping to the desired state (unique
command).

The desired state of user intent is carried to the execution
layer (commands for device-specific control) where an error
approximation is done with reference to current state. The state
of the device is also sent to the execution layer via shared
controller, as a feedforward control, in order to comply with the
execution layer. The execution layer sends control commands
to the actuator(s) of the device and visual feedback to the user
via shared control unit in order to minimize the possible error.
The feedback control plays a vital role in achieving the required
output (usually accounts for the kinematic or kinetic properties
of the robot-device).

This closes the overall control loop and the robotic device
actuates to perform the required task(s). As the wearable
assistive-robot is physically placed in close contact with the
user, and that the powered device is likely to generate output
force, safety mechanisms are kept into consideration with the
user and hardware in the control framework. Inter-networking
between subsystems of the generalized control architecture relies
on the exchange of information sent at signal-level as well as
physical-level.
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USER ADAPTABILITY AND EEG SIGNAL

ACQUISITION

The type of BCI is directed based on the user’s lesion level and
extent of adaptability to adhere with the specific BCI protocol.

User Adaptability
In order for the portable LL wearable-BCI controllers to be
compliant with residual neuromusculoskeletal structures, the
sensorimotor control loop of human locomotion is taken into
account, since the volitional and reflex-dependent modulation
of these locomotion patterns emerges at the cortical levels
(Armstrong, 1988; Kautz and Patten, 2005; Bakker et al., 2007;
Zelenin et al., 2011; Pons et al., 2013; Angeli et al., 2014; Marlinski
and Beloozerova, 2014; Capogrosso et al., 2016). This may
essentially preclude the direct control of LL via neural activity
alone, while keeping a balance and orientation during dynamic
tasks. However, the sole employment of cortical activity is still
useful for providing high-level commands to the controller of
the device to execute volitional movements (Carlson and Millan,
2013; Contreras-Vidal and Grossman, 2013; Kilicarslan et al.,
2013), for patients whose injuries necessitate a direct input from
cortex to the robotic device controller. Therefore, the critical
aspect for a functional portable LL device is the lesion measure
and the physiological constraints based on which the user can
adapt to the BCI protocol. The physiological constraints in such
cases can be compensated through assistance, like shared control.

EEG Signal Acquisition
The neuronal activity can be divided into spikes and field
potentials. Spikes show action potentials of neurons individually
and are detected via invasive microelectrodes. Field potentials on
the other hand can be measured by EEG and they reflect the
combined synaptic, axonal and neuronal activity of the neuron
groups (Yang et al., 2014; He, 2016).

The communication components in EEG activity useful for
BCI include, the oscillatory activity comprising of delta, theta,
alpha/mu, beta and gamma rhythms; the ERP (P300), the VEP,
and slow cortical potentials (SCP). Oscillatory rhythms fluctuate
according to the states of brain activity; some rhythms are
distinguished depending on these states (Semmlow and Griffel,
2014). TheMu and beta rhythms are also termed SMR. The SMR
elicit event-related desynchronization (ERD) or event-related
synchronization (ERS) which are directly related to proportional
power decrease upon ME/MI of limb(s) movement or power
increase in the signal upon rest, respectively; they are non-
phase locked signals (Kalcher and Pfurtscheller, 1995). Evoked
potentials on the other hand are phase-locked. A BCI system
employs evoked potentials when requiring less or no training
from the user i.e., a system based on stimulus-evoked EEG signals
that provides task-relevant information (Baykara et al., 2016),
useful for locked-in or multiple sclerosis patients. This involves
the presentation of an odd-ball paradigm in case of P300 or
multiple visual stimuli flashing, e.g., letters, digits on screen in
case of VEP. The P300 is derived from user response that evokes
approximately 300ms after stimulus triggering and corresponds
to positive voltage peak (Lazarou et al., 2018). VEP measures the

time for the visual stimulus to travel from the eye to occipital
cortex.

Users can generally be grouped based on their physical and
mental state, for instance locked-in patients with intact eye
muscles, can communicate via ERP signals, whereas patients with
motor complete but sensory incomplete SCI can utilize SMR
signals based on MI. Figure 3 shows the electrophysiological
signals that are extensively employed by BCI system for
communication; however EEG signals employed by the wearable
LL and assistive devices are highlighted for this study.

Deployed Oscillatory Rhythms
For assistive devices, the two commonly used SMR acquired from
the motor cortex aremu (8–11Hz) and beta (12–30Hz) rhythms,
which elicit upon ME/MI tasks. The ME task is based on the
physical motion of the user’s limbs that activate the motor cortex;
this includes the development of muscular tension, contraction
or flexion. The MI is a covert cognitive process based on the
kinesthetic imagination of the user’s own limbmovement with no
muscular activity also termed “kinesthetic motor imagery” (KMI)
(Mokienko et al., 2013). Motor tasks can generally be upper or
lower limb related (Malouin et al., 2008). The upper limb motor
tasks activate hand area (Vasilyev et al., 2017) and LL motor
tasks activate foot representation area of the cortex respectively
(Wolpaw and Wolpaw, 2012). The advantage with MI signals is
that they are free of proprioceptive feedback unlike ME tasks.

It was suggested by Wolpaw and Mcfarland (2004), that
the use of mu and beta rhythms could give similar results as
those presented by invasive methods for motor substitution.
A non-invasive BCI could clinically support medical device
applications (as discussed in section Lower-Limb Assistive-Robot
Applications in Different Environments). The BCIs for control
of medical device applications are reported in Allison et al.
(2007); Daly and Wolpaw (2008), and Frolov et al. (2017). It
was observed that BCI employed by assistive-robot devices for
control purposes was focused on upper limbMI (Belda-Lois et al.,

FIGURE 3 | Electrophysiological signals used in BCI controlled wearable LL

and assistive-robot devices.
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2011) such as hand and fingers, for applications including BCI
hand orthotics and exoskeleton (Schwartz et al., 2006; Soekadar
et al., 2015). This is because the foot representation area is near
the mantelkante, which is situated deep within interhemispheric
fissure of the human sensorimotor cortex (Penfield and Boldrey,
1937). However, it never withheld progress into this direction.
Research on LL, precisely the footMI/ME for controlling assistive
robots, is in progress (Pfurtscheller et al., 2006a; Hashimoto and
Ushiba, 2013; Tariq et al., 2017b, 2018). It was proved that the
induction of beta ERS in addition tomu-beta ERD, improved the
discrimination between left and right foot imagery and stepping
tasks, as accurate as hand MI (Pfurtscheller et al., 2005, 2006a;
Pfurtscheller and Solis-Escalante, 2009; Hashimoto and Ushiba,
2013; Liu et al., 2018) which provides a basis for research in BCI
controlled foot neuroprosthesis. To our knowledge no literature
on explicit employment of knee or hip KMI tasks in any BCI
experimental protocol is available except for (Tariq et al., 2017a).

Besides the KMI of LL, cortical signals arising from the
sensorimotor control loop of human locomotion intent is taken
into account, for the portable LL wearable-BCI controllers to
be compliant with the residual neuromusculoskeletal structures
(La Fougere et al., 2010) suggested that brain areas underlying
walking MI overlie the supplementary motor area and pre-
frontal cortex. The idea of walking from thought based on foot
imagery has also been presented in Pfurtscheller et al. (2006b).
A novel way of therapy that earlier provided limited grade
of motor-function recovery for chronic gait function impaired
subjects due to foot-drop was described (Do et al., 2011, 2012).
They integrated EEG-based BCI with non-invasive functional
electrical stimulation (FES) system. It resulted in enabling the
brain-control of foot dorsiflexion directly in healthy individuals.
Takahashi et al. (2009, 2012) validated the feasibility of short-
term training by employing ERD and FES based on dorsiflexion
of paralyzed ankle experiments. Beta corticomuscular coherence
(CMC) gave a measure of communication amid sensorimotor
cortex and muscles. García-Cossio et al. (2015) demonstrated the
possibility to decode walking intentions from cortical patterns.
Raethjen et al. (2008) found coherence in EEG at stepping
frequency and electromyography (EMG) anterior tibial muscles
pattern for rhythmic foot movements.

Work on analyzing EEG signals for detection of unexpected
obstacles during walking was presented recently (Salazar-Varas
et al., 2015). Observation of electrocortical activity related to
walking gait-cycle and balancing experiments has been reported
in Presacco et al. (2011b). Electrocortical activity resulting from
gait-like movements and balancing with treadmill, Erigo R tilt
table, and customized stationary bicycle with rigid reclined
backboard (as pedaling device) have been discussed in Wieser
et al. (2010), Gwin et al. (2011), Presacco et al. (2011a), Jain
et al. (2013), Petrofsky and Khowailed (2014), Bulea et al. (2015),
Kumar et al. (2015), and Liu et al. (2015).

Deployed Event-Related and Evoked Potentials
ERPs have successfully been deployed in ambulatory and
motor conditions without affecting the recorded EEG data. P300
showed to improve the performance of an EEG-based BCI system

during ambulatory conditions or foot dorsiflexion/plantar-
flexion condition (Lotte et al., 2009; Castermans et al., 2011b;
Duvinage et al., 2012). They used similar experimental protocol
i.e., oddball paradigm while subjects were physically walking
or moving feet in dorsiflexion or plantar-flexion direction. In
addition to this, the somatosensory evoked potentials (SEP) were
deployed in assistive technologies. These potentials commonly
elicit by bipolar transcutaneous electrical stimulation applied on
the skin over the trajectory of peripheral nerves of the upper limb
(the median nerve) or LL (the posterior tibial nerve), and then
recorded from the scalp (Sczesny-Kaiser et al., 2015). In addition
to the wearable devices, assistive technologies as EEG-BCI
controlled wheelchairs and humanoid robots have successfully
deployed the P300 (Rebsamen et al., 2007, 2010; Pires et al.,
2008; Iturrate et al., 2009b; Palankar et al., 2009; Lopes et al.,
2011; Kaufmann et al., 2014) and VEP signals (Bell et al., 2008).
However, the only drawback, with employment of ERP and VEP
signals in a BCI for the control of assistive devices precisely
wearables, is the presence of visual stimulus set-up within the
device that makes it less convenient for portable applications.

COMMUNICATION PROTOCOL

Like a basic communication system, the BCI for control of
assistive devices has an input, an output, translation components
for converting input to output, and a protocol responsible for the
real-time operation onset, offset and timing.

Acquired EEG signals are transferred to the BCI operator
via a communication protocol. Similarly sensor output from
the robot device is directed to the shared control unit via
communication protocol, Figure 2. Communication protocol
could be a transmission control/internet protocol (TCP/IP), a
suite of communication protocols used to interconnect network
devices on the internet or a private network. For instance, in
EEG-BCI controlled humanoids, the data (visual feedback images
from the humanoid monocular camera and motion commands
from the BCI system) were transmitted using wireless TCP/IP
communication between the humanoid and other systems (Chae
et al., 2011a,b, 2012).

An alternate approach is the lab streaming layer (LSL),
which allows synchronization of the streaming data across
devices. Information can be streamed over the network from
“Presentation to the LSL” (Iturrate et al., 2009b; Renard et al.,
2010; Kothe and Makeig, 2013; Gramann et al., 2014). Recent
assistive applications (Galán et al., 2008; Millán et al., 2009)
such as wheelchairs, and mobile robots, use controller area
network (CAN) bus which is a robust vehicle bus standard. It is
designed to allow microcontrollers and devices to communicate
in applications without a host computer and follows a message-
based protocol. It is a low cost, fault tolerant communication
system, with the data transfer rates in the range of 40 Kbit/s to
1 Mbit/s.

BCI OPERATOR

After passing through the communication protocol,
acquired EEG signals are directed to connected
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client, i.e., the BCI operator, but are pre-processed
first.

Preprocessing
The acquired raw EEG signals are pre-processed, as
they are susceptible to noise and artifacts. It could be
hardware/environmental noise, experimental error or
physiological artifact. As hardware and environmental noise are
not brain-related, it is best to remove them before converting
raw EEG to signal features.

Removal of Noise
Hardware noise in the EEG signal usually occurs due to
instrument degradation, electrode wear, mains interference
(AC power lines), electromagnetic wave sources as computers,
mobile phones, notebooks, wireless routers or other electronic
equipment. High noise frequencies in the signal can be removed
by notch filters (50 or 60Hz for power lines). To block
electromagnetic waves, electromagnetic shields could be used.

Removal of Artifacts
EEG artifacts arise due to physiological activities such as
skin impedance fluctuations, electrooculography activity, eye
blinks, electrocardiographic activity, facial/body muscle EMG
activity and respiration. As the frequency ranges, for the
aforementioned physiological signals are typically known, the
bandpass filter can be an effective preprocessing tool. Most
EEG-based BCI systems for assistive technologies have shown
the successful implementation of simple low-pass, high-pass,
or bandpass filters to remove physiological artifacts. Other
methods for artifact removal include temporal filtering, spatial
filtering, independent component analysis (ICA) (Viola et al.,
2009), principal component analysis (PCA), linear regression,
blind source separation (BSS) (Ferdousy et al., 2010), wavelet
transform, autoregressive moving average, nonlinear adaptive
filtering, source dipole analysis (Fatourechi et al., 2007) or
thresholding of meaningful parameters (e.g., channel variance)
based on a prior statistical analysis (Nolan et al., 2010).

Feature Extraction Layer
After preprocessing of data, different brain activities are classified
based on their selected features.

Band Power Features
The band power features, usually used, are the time-frequency
components of ERD/ERS. After bandpass filtering, resulting
signal is squared to obtain its power p [t] = x2 [t], where x is the
filtered single band EEG signal amplitudes and p is the resulting
band-power values. To smooth-out (average) the signal, a w-
sized smoothing window operation is used. This is followed by
a logarithm of the processed signal sample, using Equation 1:

p [n] = ln

(
1

w

w∑
k=0

p [n− k]

)
(1)

where p [n] are the smoothed band-power values, and w is the
smoothing window size. In their work (Presacco et al., 2011b;
Contreras-Vidal and Grossman, 2013), the feature extraction

method employed by EEG-BCI lower exoskeleton, for neural
decoding of walking pattern, included power spectral density
(PSD) analysis of the kinematic data and adaptive Thompson’s
multitaper for each channel of EEG recorded, during rest and
walking tasks. Decoding method employed a time-embedded
linear Wiener filter, independently designed and cross-validated
for each extracted gait pattern. Parameters of the model were
calculated with Gaussian distribution method. This ensured
the feasibility of successfully decoding human gait patterns
with EEG-BCI LL exoskeleton. Similarly, the results tested a
on paraplegic subject for BCI controlled lower exoskeleton
(Kilicarslan et al., 2013) reflect the method of decoding closed
loop implementation structure of user intent with evaluation
accuracy of 98%. Data was filtered in delta band (0.1–2Hz) using
2nd order Butterworth filter. The filtered data was standardized
and separate channels were used, to create feature matrix to
extract delta band features.

In 2012 (Noda et al., 2012) proposed an exoskeleton robot
that could assist user stand-up movements. For online decoding
they used 9th order Butterworth filter for 7–30Hz band. After
down-sampling, Laplace filter and common average subtraction
were applied for voltage bias removal. The covariance matrix
of the processed data was used as input variable for the two-
class classifier; the results were productive. Other EEG-BCI lower
exoskeletons (Gancet et al., 2011, 2012) considered employing
steady-state VEP (SSVEP) for motion intention recognition.
Proprioceptive artifacts removal (during walk) is aimed to be
removed using ICA. Other recent work on LL exoskeleton
controlled via SSVEP includes (Kwak et al., 2015). In the SEP-
controlled LL exoskeleton (Sczesny-Kaiser et al., 2015), SEP
signals were sampled at 5 kHz and bandpass filtered between 2
and 1,000Hz. In total 800 evoked potentials were recorded in
epochs from 30 before to 150ms after the stimulus, and then
averaged. Paired-pulse suppression was expressed as a ratio of
the amplitudes of second and first peaks, which was the primary
outcome parameter. For correlation analysis, they calculated the
difference of mean amplitude ratios.

For a BCI controlled robotic gait orthosis (Do et al., 2011,
2013) an EEG prediction model was generated to exclude EEG
channels with excessive artifacts. The EEG epochs corresponding
to idling andwalking states were then transformed into frequency
domain, their PSD were integrated over 2Hz bins, followed by
dimensionality reduction using class-wise principal component
analysis (CPCA). The results established feasibility of the
application.

BCI and shared control wheelchairs, based on MI signals
to ensure interference free navigation protocol, was presented
in Millán et al. (2009) and Carlson and Millan (2013). They
estimated PSD in the 4–48Hz band with a 2Hz resolution.
ERD was observed in the mu band power 8–13Hz. These
changes were detected by estimating the PSD features every
16 times/s using Welch method with five overlapped (25%)
Hanning windows of 500ms. In order to select subject-specific
features, that maximize the separability between different tasks
(based on training data cross validation) the canonical variate
analysis (CVA) was used. In a similar work presented by Galán
et al. (2008) for BCI controlled wheelchair, feature selection
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was done by picking stable frequency components. The stability
of frequency components was assessed using CVA one per
frequency component on the training set.

Time-Domain Parameters
The time-domain parameters compute time-varying power of

the first k derivatives of the signal; pi (t) = dix(t)
dti

where i =

0, 1, . . . , k and x is the initial EEG signal. Resulting derivatives
are smoothed using exponential moving average and logarithm,
used in feature vector generation, as given in Equation 2:

pi [n] = ln
(
u pi [n]− (1− u) pi [n− 1]

)
(2)

where p is the smoothed signal derivatives, u is the moving
average parameter, u ∈ [0; 1].

EEG-BCI for control of LL orthosis (Taylor et al., 2001;
Duvinage et al., 2012) combined a human gait model based on
a CPG and a classic but virtual P300 to decipher user’s intent for
four different speeds. P300 was used to control the CPG model
and the orthosis device by sending high-level commands. The
frequency band for P300 were high-pass filtered (temporal) at
1Hz cut off frequency using 4th order Butterworth filter. This
was followed by designing of an xDAWN-based spatial filter,
by linearly combining EEG channels. When EEG signals were
projected into this subspace, P300 detection was enhanced. The
resulting signal was epoched using time window that started
after stimulus, averaged and sent to the classifier. In another
related work (Lotte et al., 2009), the epoching of P300 signal was
done by selection of related time window, followed by bandpass
filtering in 1–12Hz range using 4th order Butterworth filter.
Post this; winsorizing for each channel was done by replacing
values within 5% most extreme values by most extreme values
from remaining 95% samples from that window. A subset of
the features was selected using the sequential forward floating
(SFFS) feature selection algorithm that ensured themaximization
of performance of the BCI system.

The EEG-BCI for foot orthosis reported in Xu et al. (2014),
employed bandpass filtering (0–3Hz). The system was based on
the detection of movement-related cortical potentials (MRCP).
The data between 0.5 and before 1.5 s, after the movements, were
extracted as the “signal intervals” while others were extracted as
the “noise intervals.” The measure analysis of variance, ANOVA,
was used for statistical analysis.

The P300-BCI wheelchair incorporated bandpass filtering
between 0.5 and 30Hz and characterized the P300 signal in
the time domain. For each EEG channel, 1-s sample recordings
were extracted after each stimulus onset and filtered using the
moving average technique. The resulting data segments for each
channel selected were concatenated, creating a single-feature
vector (Iturrate et al., 2009a,b).

Common Spatial Patterns
The common spatial pattern (CSP) features are sourced from a
preprocessing technique (filter) used to separate a multivariate
signal into subcomponents that have maximum differences in
variance (Müller-Gerking et al., 1999). The difference allows

simple signal classification. Generally, the filter can be described
as a spatial coefficient matrixW, as shown in Equation 3:

S=WTE (3)

where S is the filtered signal matrix, E is the original EEG
signal vector. Columns of W denote spatial filters, while WT

are the spatial patterns of EEG signal. In their work (Choi
and Cichocki, 2008) used SMR to control wheelchair. For
pre-processing they employed the second order BSS algorithm
using a modified and improved real-time AMUSE algorithm
that enabled a rapid and reliable estimation of independent
components with automatic ranking (sorting) according to
their increasing frequency contents and/or decreased linear
predictability. The AMUSE algorithm worked as 2 consecutive
PCAs; one applied to the input data and the second applied
to the time-delayed covariance matrix of the output from the
previous stage. For feature extraction, CSP filter was used that
distinguish each data group optimally from the multichannel
EEG signals.

SMR-based humanoid robots used the KMI of left hand,
right hand, and foot as control signals (Chae et al., 2011b,
2012). Sampled EEG signals were spatially filtered with large
Laplacian filter. During the overall BCI protocols, Laplacian
waveforms were subjected to an autoregressive spectral analysis.
For amplitude features extraction, every 250ms observation
segment was analyzed by the autoregressive algorithm, and the
square root of power in 1Hz wide frequency bands within 4–
36Hz was calculated.

Translation Layer
After passing through the feature extraction layer, the feature
vector is directed to the translation layer to identify user
intent brain signals, and manipulate the robotic device
via machine understandable commands for interfacing.
Different classification techniques for distinct features are
used. Classification algorithms, calibrated via supervised or
unsupervised learning, during training phase, are able to detect
brain-signal patterns during the testing stage. This essentially
estimates the weighted class, represented by the feature vector
for mapping to the desired state (unique command). A recent
review on most commonly used classification algorithms for
EEG-BCIs has been reported by (Lotte et al., 2018). Some of the
commonly used classification methods in EEG-BCI controllers
for LL assistance are LDA, SVM, GMM, and ANN (Delorme
et al., 2010, 2011).

Linear Discriminant Analysis
One of themost extensive and successfully deployed classification
algorithms, in EEG-BCI for assistive technologies is the linear
discriminant analysis (LDA). The method employs discriminant
hyper-plane(s) in order to separate data representing two ormore
classes. Since it has low computational requirements, it is most
suitable for online BCI systems. A feature a can be projected
onto a direction defined by a unit vector ω̂, resulting in a scalar
projection b, given by Equation 4:

b =
⇀
a · ω̂2 (4)
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The aim of LDA classification is to find a direction ω̂, such
that, when projecting the data onto ω̂ it maximizes the distance
between the means and minimizes the variance of the two classes
(dimensionality reduction). It assumes a normal data distribution
along with an equal covariance matrix for both classes (Lotte
et al., 2007). LDA minimizes the expression given by Equation 5:

(
mφ −m�

)2
s2φ + s2�

(5)

where mφ and m� are the means and sφ and s� are the
standard deviations of the two respective classes, after projecting
the features onto ω̂. EEG-BCI lower exoskeletons used LDA
for the reduction of data dimensionality (Kilicarslan et al.,
2013). EEG-BCI lower orthosis employed a 12-fold LDA using
voting rule for decision making in selection of speed (Lotte
et al., 2009; Duvinage et al., 2012). Dimensionality reduction,
using CPCA and approximate information discriminant analysis
(AIDA), were used in the robotic gait orthosis system (Do et al.,
2011, 2013). The BCI-driven orthosis (Xu et al., 2014) used
the manifold based non-linear dimensionality reduction method,
called locality preserving projection (LPP), along with LDA, to
detect MRCPs. EEG-BCI wheelchairs successfully deployed LDA
(Galán et al., 2008; Iturrate et al., 2009a,b). LDA was successfully
used for translation of EEG signal into movement commands in
humanoids (Chae et al., 2011a,b, 2012).

Support Vector Machine
The goal of SVM classifier is to maximize the distance between
the separating hyper plane and the nearest training point(s) also
termed support vectors. The separating hyper plane in the 2D
feature space is given by the Equation 6:

y=ω
Tx+ b (6)

where ω, x ∈ R2 and b ∈ R1. The hyper plane (also called
the decision border) divides the feature space into two parts.
Classified results depend on which side of the hyper plane the
example is located. In SVM, the distances between a hyper plane
and the nearest examples are called margins.

Though SVM is a linear classifier, it can be made with non-
linear decision boundaries using non-linear kernel functions,
such as Gaussian or radial basis functions (known as RBF).
The non-linear SVM offers a more flexible decision boundary,
resulting in an increase in classification accuracy. The kernel
functions, however, could be computationally more demanding.
EEG-BCI wheelchairs have successfully used linear SVM for
dynamic feature classification (Bell et al., 2008; Choi and
Cichocki, 2008; Ferreira et al., 2008; Rebsamen et al., 2010;
Belluomo et al., 2011). It was also successfully implemented
in EEG-BCI humanoid (Bell et al., 2008) and mobile robots
(Ferreira et al., 2008; Belluomo et al., 2011).

Gaussian Mixture Model
The GMM is an unsupervised classifier. This implies that the
training samples of a classifier are not labeled to show their class.
More precisely, what makes GMM unsupervised is that during

the training of the classifier, estimation is done for the underlying
probability density functions of the observations (Scherrer,
2007). Several EEG-BCI applications utilized the GMM as a
feature classifier, such as lower exoskeletons, wheelchairs and
mobile robots (Galán et al., 2008; Millán et al., 2009; Carlson and
Millan, 2013; Kilicarslan et al., 2013).

Artificial Neural Network
The ANNs are non-linear classifiers inspired by human’s nervous
system ability to adaptively react to changes in surroundings.
They are commonly used in pattern recognition problems,
due to their post-training capability to recognize sets of
training-data-related patterns. ANNs comprise of assemblies
of artificial neurons that allow the drawing of non-linear
decision boundaries. They can be used in different algorithms
including multilayer perception, Gaussian classifier, learning
vector quantization, RBF neural networks, etc. (Anthony and
Bartlett, 2009). In their proposed model for lower exoskeleton
(Gancet et al., 2011, 2012), they aim at adopting processing
method as dynamic recurrent neural network (DRNN).

Execution Layer
Once classified, the desired state of user intent is carried to the
execution layer for an error approximation. The approximation
in reference to the present state of the device is used to drive the
actuator for reducing any error. The execution layer of control is
highly device-specific. It could rely on feedforward or feedback
loops (Tucker et al., 2015).

Feedforward control needs somemodel to predict the system’s
future state, based on the past and present set of inputs and the
device state. Aforementioned control inputs can be effective for
reducing the undesired interaction forces, that could occur due
to the added mass, inertia and friction of the device (Murray
and Goldfarb, 2012). On the contrary feedback controllers do
not require a model of the system, but require an estimate of
the current state. The controller compares current state with the
desired state of the device and modulates the power input to
the device accordingly (Millán et al., 2009; Duvinage et al., 2012;
Noda et al., 2012; Contreras-Vidal and Grossman, 2013; Do et al.,
2013; Kilicarslan et al., 2013; Xu et al., 2014; Contreras-Vidal
et al., 2016).

SHARED CONTROL

Shared control is used to couple the user’s intelligence, i.e.,
cognitive signals with precise capabilities of the robotic device
given the context of surroundings, resulting in reduced workload
for the user to continuously deliver commands to drive
the robotic device. Inputs to the shared control module are
sensory readings of the robotic device and output of the BCI
operator (classified signal). The classified signal is combined
with the robot’s precise parameter e.g., velocity to generate
smoother driving output. Several assistive technologies for motor
impairment have successfully employed shared controllers for
navigational assistance to maneuver the assistive devices in
different directions, independently and safely (Galán et al., 2008;
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Millán et al., 2009; Tonin et al., 2010, 2011; Carlson and Millan,
2013).

This refers to the idea of switching between operators, i.e.,
if the user needs no navigational assistance he will be granted
full control over the robotic device; otherwise, sole mental
commands will be used and modified by the system. One key
aspect of shared control is the two-way communication between
the human and the robot. The shared control is beneficial
primarily for navigational directions. In the case of robots with
only three possible steering mental commands such as forward,
left, and right, there is a need of assistance by the device for
fine maneuvering. Secondly, the cognitive commands might not
always be perfect, i.e., could be vague. In the case of errors, an
extra navigational safety is required by the system to interpret the
meaning of the command. In this way the system would be able
to perceive any new environment.

LOWER-LIMB ASSISTIVE-ROBOT

APPLICATIONS IN DIFFERENT

ENVIRONMENTS

The last integral part, of the control framework, is the robotic
device, as observed in Figure 2. In this section, the current state-
of-the-art EEG-based activity mode recognition in a BCI for
control of LL assistive devices is summarized in Table 1.

BCI Exoskeletons
In order to control a LL robotic exoskeleton (NeuroRex),
Contreras-Vidal and Grossman (2013) and Kilicarslan et al.
(2013) decoded neural data for human walking from Presacco
et al. (2011b). They evaluated the degree of cognitive-motor-body
adaptations while using portable robot. Their results proved that
NeuroRex can be regarded as an augmented system of locomotor
therapy (LT) by reviewing its initial validation in a paraplegic
patient having SCI. They also performed comprehensive clinic
assessments for user safety protection.

The MINDWALKER (Gancet et al., 2011, 2012) is another
project where researchers proposed a novel idea of presenting the
SCI patients with intact brain capabilities. The facility of crutch-
less assistive LL exoskeleton is based on brain neural-computer
interface (BNCI) control for balanced walking patterns. It also
evaluated the potential effects of Virtual Reality (VR) based
technology that could support patient/user training for reaching
a high confidence level for controlling the exoskeleton virtually
before the real transition. Other brain controlled exoskeletons are
reported in Noda et al. (2012), Kwak et al. (2015), Sczesny-Kaiser
et al. (2015), and Lee et al. (2017).

BCI Orthosis
EEG-based activity mode recognition for orthotic devices has
been investigated by Duvinage et al. (2012). They proved the
concept of considering user’s intent by combining CPG-based
human gait model and classic P300-BCI for five different
states; three speed variations, a stop state and a non-control
state. Using unnatural P300 command by augmented reality
eyewear (from Vuzix, Rchester, USA) decision was sent to

the Virtual Reality Peripheral Network (VRPN) server to be
exploited while wearing LL orthosis. This was based on the pilot
study carried by Lotte et al. (2009), where a solution to the
constraints, such as deterioration of signals (during ambulation),
was avoided by using slow P300 for control during sitting,
walking and standing. Authors of Castermans et al. (2011a) used
an experimental protocol to limit movement artifacts present in
EEG signals compared to real walk on treadmill. They suggested
that rhythmic EEG activity could be exploited for driving a
user intent-based foot-ankle orthosis built on PCPG algorithm.
Similar investigation was conducted by Raethjen et al. (2008).

In their work, Do et al. (2013) proposed a novel approach
of BCI controlled lower extremity orthotics to restore LL
ambulation for partially and complete SCI subjects suffering from
cardiovascular disease, osteoporosis, metabolic derangements
and pressure ulcers. They developed an EEG prediction model
to operate the BCI online and tested the commercial robotic
gait orthosis system (RoGO) for two states, idling and walking
KMI. Similarly, testing for intuitive and self-paced control of
ambulation was also done with an avatar in a virtual reality
environment (VRE) (Wang et al., 2012; King et al., 2013). Other
similar investigations are reported in Wang et al. (2010) and Do
et al. (2011).

The BCI driven motorized ankle-foot orthoses, known as
(BCI-MAFO), intended for stroke rehabilitation was presented
in Xu et al. (2014). Their system was able to detect imaginary
dorsiflexion movements (for walking gait) within a short latency,
by analyzing MRCPs. Upon each detection, the MAFO was
triggered to elicit passive dorsiflexion, hence, providing the user
a binary control of robotic orthosis. The MEP was elicited by
transcranial magnetic stimulation (TMS); the results reflected
an effective way to induce cortical plasticity for motor function
rehabilitation.

BCI Wheelchairs, Humanoids, and Mobile

Robots
Assistive technologies such as wheelchairs controlled via EEG-
BCI have extensively been researched. In their work, Carlson
and Millan (2013) proposed the idea of combining a commercial
wheelchair and BCI with a shared control protocol. The paradigm
was based on KMI of left/right hand, both feet, or in idle
state; each against three distinct tasks as move left/right or
forward by avoiding obstacles. Modifications in the commercial
mid-wheel drive model (by Invacare Corporation) were directly
controlled by a laptop. An interface module, based on remote
joystick, was used between the laptop and wheelchair’s CANBUS-
based control network. Wheel-encoders were added for motion
feedback alongside sonar sensors and webcams for environment
feedback to the controller using cheap sensors compared to other
systems. Previous solution required continuous commands from
the user, in order to drive the wheelchair, that ended up in high
user workload (Millán et al., 2009). Other similar systems were
proposed by Vanacker et al. (2007) and Galán et al. (2008).

Research on the challenges faced during fully control
automated wheelchairs with BCI was done by Rebsamen et al.
(2007, 2010). Their results proved that if synchronous evoked
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P300 signals are used for mobile commands, and oscillatory
rhythms are used for stop command, the system is efficient
and safe enough to drive the real-time wheelchair in possible
directions. They used Yamaha JW-I power wheelchair with two
optical rotary encoders attached to glide-wheels for odometry, a
bar code scanner for global positioning and a proximity sensor
mounted in front of the wheelchair for collision avoidance.
User could reach the destination, by selecting amongst a list
of pre-defined locations. This was primarily for patients with
lost voluntary muscle control, but intact cognitive behavior who
could use a BCI, such as LL amputees.

Other P300-BCI wheelchairs’ research include work done by
Iturrate et al. (2009a,b) where the system relied on synchronous
stimulus-driven protocol. The work done by Palankar et al.
(2009) focused on, completely and partially locked-in patients,
and provided them with an effective model of a 9-DOF
wheelchair-mounted robotic arm (WMRA) system. Pires et al.
(2008) and Lopes et al. (2011) contributed in visual P300
based BCI for steering wheelchair assisted by shared-control.
Kaufmann et al. (2014) validated the feasibility of a BCI based on
tactually-evoked ERP for wheelchair control. Other wheelchairs
controlled via EEG-based BCI include (Choi and Cichocki, 2008;
Tsui et al., 2011; Huang et al., 2012; De Venuto et al., 2017).

In their report (Tonin et al., 2010, 2011) presented a
BMI-controlled telepresence robot for people with motor
impairment that could allow them completion of complex tasks,
in similar time as that consumed by healthy subjects. They
were able to steer RobotinoTM (by FESTO), via asynchronous
KMI of left/right hand and feet. The system incorporated
shared control for obstacle avoidance, safety measures and for
interpreting user intentions to reach goal autonomously. A
similar project was earlier presented by Millan et al. (2004)
for mobile robot control in indoor environment via EEG.
In order to recognize environment situations, a multilayer
perception was implemented. Sensory readings were mapped
to 6 classes of environmental states: forward movement, turn
left, follow left wall, right turn, follow right wall and stop.
These environmental states were generated against mental
tasks as relax, KMI of left/right hand, cube rotation imagery,
subtraction and word association. Research for control of
two coordinated mobile robots, via SMR and ERP, that
could be useful for motor impaired people, is done by
Belluomo et al. (2011). Similarly mobile robot (Pioneer 2-DX)
control based on mu ERD/ERS was done by Ferreira et al.
(2008).

As per our knowledge, reflected from the literature, there is
no viable active prosthetic ankle-foot, or prosthetic LL device,
controlled via EEG-BCI for amputees.

PRACTICAL CHALLENGES

In order to design a controller for an assistive-robot device there
is a need of a seamless integration between the BCI operator,
and the execution of required tasks from the output device
with minimal cognitive disruption. However, there are challenges
associated to the real-time implementation of the system, when

dealt with motor impaired population. Some open problems
and challenges associated to wearable systems have recently
been summarized in (Deng et al., 2018; Lazarou et al., 2018;
Semprini et al., 2018). The following sections discuss in detail
practical challenges associated to EEG-BCI wearable and assistive
technologies.

Wearable Lower-Limb Device Challenges
A critical need for reliable EEG-BCI is required that could
interpret user intent and make context-based decisions from
the user’s present internal state. This would allow a direct and
voluntary operation of the wearable LL devices beyond the
user’s affected physical, cognitive or sensory capabilities. With
wearable LL devices it is observed that they did not embed
shared controllers. The system should involve the development
of reliable discrete classifiers, combined with continuous (model-
based) neural interfaces, to predict the subject’s intent without
needing continuous supervisory control, but an “assist-as-
needed” control from the BCI. Wearable LL technologies
should embed features such as, self-calibration, self-analysis
(with backward-forward failure attribution analysis) and error-
correction. This is followed by adopting appropriate behavioral
testing methods for performance evaluations of the system.

Clinical evaluation of wearables needs standardized safety
and tolerability assessment of important factors such as
cardiometabolic, musculoskeletal, skin, and biomechanical risks,
followed by the assessment of cognitive-behavioral discrepancies
that define the user profile. Cardiorespiratory safety is of
principal importance as individuals with stroke and SCI may
have autonomic instability that can alter the pressure of
blood-flow. Their heart rates may not respond correctly to
increased cardiorespiratory demands, depending on the lesion
intensity. The cardiorespiratory demands of supported BCI-
exoskeleton/orthosis usage must primarily be assessed and
carefully monitored also for reasons as: (1) the mean peak
heart fitness levels after SCI vary considerably depending
on the lesion characteristics, but are generally much lower
than normal; and (2) the skeletal muscle after SCI (or any
central-nervous system injury) shifts in a shortfall severity
from slow to a fast jerk molecular composition. Patients
with abnormal gait biomechanics and fitness levels must
show adequate cardiorespiratory tolerance based on subject
perceived exertion scales, and objective monitoring of metabolic
profiles. This metabolic surveillance, along with careful clinical
measures, to assess muscle injury, is inevitable for validating
the cardiorespiratory, metabolic, and muscle safety during
exoskeleton/orthosis use.

During rehabilitation, the wearable robotics may impose
unusual joint kinetics and kinematics that could potentially
injure bone or skin, particularly in stroke or SCI patients
that usually have osteoporosis, unusual spasticity patterns, or
contractures. For safe utilization a standard screening for
assessment of bone health using dual X-ray absorptiometry and
identification of abnormal torque or impulses ahead of time,
could retain from injury. There should be a careful consideration
between engineers, clinicians, and subjects with neurological
disability to rightly apply this new technology.
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Substantial research and understanding of the cortical
representations, for the perception of bipedal locomotion, is vital
for evaluating changes in cortical dynamics when wearing closed-
loop BCI portable devices, and gauging on how these changes are
correlated with gait adaptation. As the BCI wearable devices are
designed to be stable, they have to finish one complete cycle of
gait before stopping, resulting in a slow time-response compared
to the model’s output. This is why in some systems the subject
has to keep standing, as long as he can, after stopping the robot
for continuously recording the model’s output state.

With P300-wearable LL devices, the decision time is
relatively slow for real-time applications such as walking.
The solution could involve implementation of more complex
pipelines that include artifact removal techniques specific to
gait-artifacts, followed by a better management of stimulus
presentation duration. The P300 pipeline does not allow working
asynchronously, which is an important aspect for the patient’s
comfort (can be tiring). Following this, the poor experimental
paradigm that usually includes a screen on a treadmill is not
applicable for street walking; accordingly, an augmented reality
eyewear seems to be indispensable.

Assistive-Robot Challenges
Clinical evaluations revealed that subjects with poor BCI
performance require an extra need for assistance while
maneuvering assistive-robots during complex path plans such as
narrow corridors, despite the arduous BCI training.

The use of adaptive assistance with BCI wheelchairs increases
the task performance of the user; however, the fixed activation
levels of the system do not integrate the user’s performance.
This is due to the varying fatigue and hormone levels of the
user, due to which the shared controller may not offer constant
level of assistance. Consequently, similar system behavior is
always activated when the activation threshold is reached, even
though an experienced user might still be able to recover from
the disorientation on its own. System performance could be
increased, if a user model is built at runtime, and the level of
experience to determine the thresholds is estimated when the
system behavior is activated.

Various customized filtering approaches have been deployed
by researchers during different states of wheelchair use, for
instance, the regular on and off switching of filter in between
sessions of start and stop. Given in Kwak et al. (2015), when
the filter was switched on or off, the subject was required to
use another mental mode (or at least adapt its existing one)
as the driving system was different when the filtering was
applied. This resulted in a confusion mode which is a common
problem in shared control systems. When the subject’s acquired
strategies are built up using one driving system (i.e., without
filtering) and applied to the other situation (i.e., with filtering),
it ends up in a weak performance, leading to a situation where
the environmental filter is actually working against the user’s
intention. With present BCI-wheelchairs that incorporate shared
controllers, if the activation levels of the system do not integrate
the user’s performance, it could lead to degradation or loss of
function.

Reportedly P300-wheelchairs were too slow to stop in
real-time, after the selection of a sub-goal from menu, the
user has to focus on a validation option, due to which the
wheelchair stops and waits for the next command (followed
by validation) from the user. Consequently this ends up in
more stationary positions than actually moving to specific
destinations.

CONCLUSIONS

In this paper, we have presented a comprehensive review of
the state-of-the-art EEG-BCI controlled wearable and assistive
technologies for users having neuromotor disorder, SCI, stroke,
disarticulation or amputation of residual LL. All reviewed
applications are presented in the form of a generalized BCI
control framework. The control framework is inclusive of the
user, the BCI operator, the shared controller, and the robot device
with the environment. Each element of the control framework
was discussed in detail. The BCI operator is based on sub-
layers, each of which is highlighting the feature extraction,
classification and execution methods respectively, employed
by each application. The reviewed applications comprised
of oscillatory rhythms, event-related and evoked potentials
as input signals. The EEG-BCI based portable and assistive
device applications included exoskeletons, orthosis, wheelchairs,
mobile/navigation robots and humanoids. Key features from
each application were discussed and presented in the Table 1.

Based on the review we concluded that LL tasks, such as knee,
or hip joint movements, have never been explicitly employed as
MI or ME tasks in any BCI experimental protocol. Only foot
or upper limb kinesthetic tasks are deployed. Additionally, it is
observed that the EEG-based activity mode recognition, used
to control wearable LL devices, only comprise of exoskeletons
and orthosis. No viable prosthetic ankle-foot, or prosthetic LL
device, employing EEG signals, for activity mode recognition, is
currently available.

In most applications based on P300, strong output signals
were observed that resulted in accurate command functions. It
was followed by a slow performance pace and a loss in the user
concentration due to stimulus presentation. On the contrary,
applications employing SMR, where no stimulus protocol is
involved, reflected a faster performance speed, followed by a
weaker output signal during asynchronous mode.

Performance of EEG-based BCI, deployed by assistive
technologies, is constrained due to the design of non-invasive
modalities, compared to invasive ones and due to the limited size
of features employed. In the case of complex movements more
sets of parameters are required to execute a seamless output. This
is still one of the challenging problems that require expertise
to develop efficient and robust algorithms to apprehend user’s
motion intention.

In the most of the reviewed applications, there is a lack
of quantitative performance indicators for the algorithms’
evaluations. There is no explicit signal classification, percentage
given. Error measurements between expected and real system
trajectories are missing. There is no indication about the
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measurements of the user-energy consumption, the walking
endurance and the system costs. Finally, an important issue
of carrying tests under realistic conditions, with patients
having LL pathologies, needs special attention, provided the
observations make the comparison of the dynamic behavior of
each application difficult.
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Chapter Overview

This chapter describes the experimental protocol adopted for synchronous BCI, and 

the recruitment of participants alongside the establishment of hardware-software 

interface setup for acquisition of EEG data. Techniques which are used to pre-process 

raw EEG data in order to reduce noise from the signal are presented, followed by

EEG feature extraction methods, for band-power (BP) and common spatial patterns 

(CSP). Machine learning (ML) models used to estimate the class of feature vectors are

discussed in detail. Consequently, criteria used to evaluate the performance of the BCI 

system offline are described. The advantages associated to individual classification 

algorithms for improving classification accuracy and signal to noise ratio (SNR) 

during various LL KMI tasks are highlighted. Finally multiple comparison corrections 

for ML models are discussed.
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3.1 Introduction

This chapter describes the established paradigm to acquire EEG signals elicited by following 

Graz BCI protocol. The signal processing techniques employed for extraction and 

classification of ERD/ERS from BP and CSP features that elicit upon distinct left-right LL 

KMI tasks have been discerned. This chapter is divided into five key sections: Section 3.2

discussed the experimental setup and data acquisition method used in the research, section 

3.3 discusses pre-processing techniques used to denoise and filter mu and beta frequency 

bands from the EEG signal, section 3.4 discusses the methods used for BP and CSP feature 

extraction, section 3.5 describes the ML models i.e. classification techniques for mapping 

task to the desired state, and section 3.6 discusses the evaluation criteria of the offline BCI 

performance.

3.2 Experimental paradigm and data acquisition

3.2.1 Subjects and experimental design

This research recruited nine healthy participants as shown in Table 3-1, with no history of 

neurological disorder, or any impairment, aged between 21-28 years, who voluntarily

participated in the experiments. The participants had no BCI experience either. Ethics 

approval for the research was granted by the College Human Ethics Advisory Network 

(CHEAN) of RMIT University, Melbourne, Australia.

Table 3-1 Characteristics of participants volunteering in BCI experiments

Participants Gender Age Neuromuscular 
Disorder

BCI Experience
(prior biosignal 

feedback training)
1 Female 25 Nil No
2 Female 25 Nil No
3 Male 23 Nil No
4 Male 27 Nil No
5 Male 22 Nil No
6 Female 28 Nil No
7 Female 24 Nil No
8 Male 21 Nil No
9 Male 23 Nil No



52 

Participants were directed to sit on a comfortable seat in front of a monitor screen (17’’),

keeping a distance of about 1.5 m, as shown in figure 3.1 and figure 3.2. Experimental 

paradigm was based on the standard Graz BCI protocol for synchronous BCI. To avoid the 

probability of any proprioceptive signals induced because of muscle movement, a flat 

wooden plate was put underneath the feet of participants. This was to loosely fix both legs 

and allow the knees to flex at from full extension position, and keep the ankles at neutral 

position. During the foot KMI experiment, participants were asked to dorsiflex their foot 

approximately for 1-2 seconds, in accordance with the nominal walking gait 

measurements [1]. Similarly during knee KMI experiment, participants fully extended their 

knee following the respective visual cue, for the same duration.

Figure 3.3 shows schematic overview of protocol timing for the experiment. Each run was 

initiated with a blank screen, called ‘baseline’ that lasted for 30 seconds. During baseline 

period, the participant was asked to relax and get ready for the experiment. Baseline was 

followed by the initiation of each trial. The trial began with the presentation of a fixation 

cross on screen for 3 seconds (used as reference period for processing of epochs). One second 

long audio beep stimulus, right before the visual cue display, was incorporated in the first 

trial only, to alert the participant about the beginning of the experiment. This was followed by 

2 seconds of visual cue display and 5 seconds long blank screen to perform related task 

(kinaesthetic motor imagery or execution), making 10 seconds in total for one trial. The 

visual cues in each trial reflected the left or right lower-limb movement directions. In foot 

KMI experiments, participants were instructed to dorsiflex their foot only once (for 1-2

seconds) during each task performance period. Similarly, for knee KMI experiments 

participants were asked to extend their knee once, i.e. for 1-2 seconds. To ensure no 

adaptation is taking place the visual cues in each of the LL experiment were displayed in a 

random order. Each trial was followed by a random pause interval of 1.5 to 3.5 seconds 

during which participants were asked to relax. Figure 3.4 represents the experimental plan for 

each run. Each run/session consisted of 40 trials, with a total of 20 trials for left and 20 for 

right KMI task. The experiment consisted of four runs/sessions for processing and analysis of 

data during each LL study.
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Figure 3.1 Systematic overview of the established experimental setup for ERD/ERS band-

power feature extraction and classification using machine learning. 

Figure 3.2 Overview of experimental setup for feature extraction using common spatial 

pattern (CSP) and filter-bank CSP (FBCSP), and classification using machine learning.
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Figure 3.3 Experimental Protocol for each trial reflecting timing of visual cues, with audio 

beep for first trial only, for (A) foot KMI and (B) knee KMI. 

Figure 3.4 Experimental plan reflecting details of each run (session).

A

B
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3.2.2 Measuring brain activity

The neural activity measurement techniques are important tools for investigation of the 

spatial and temporal arrangement of the supra-spinal neurons involved in motor control such 

as locomotion and other limb movements. The electrophysiological activity of human brain is 

produced both by the electro-chemical transmitters exchanging information between the 

neurons and by the ionic currents generated within the neurons. This allows for direct 

characterization of the neuronal activity. Electrophysiological activity can be measured by

various modalities. This research explicitly involved the electroencephalography (EEG)

modality for being the safest technology (highly non-invasive) and portable. It provides a 

high time resolution (millisecond scale temporal resolution) [2], with a spatial resolution in 

centimetres, frequency bandwidth between 0 to 50 Hz, and characteristic amplitude of 10 to 

20 V [3].

3.2.3 10-20 System used in EEG

To measure the small electrical potentials reflecting the activity of neuron in the brain, metal 

electrodes are placed on the head/scalp, usually by means of a conducting electrode gel (not 

in case of dry electrodes). Basically a bio-signal amplifier measures the potential difference

between two electrodes. Measurement from each electrode is referred to a common electrode 

called `reference'. I used the BrainMaster Discovery 24E amplifier (BrainMaster 

Technologies Inc., Bedford, USA) with 10-20 eletrocap embedding Tin electrodes. 

Electrodes were mounted in the cap based on the 10-20 system. The international 10-20 

system is a standard scheme standardized by the American Electroencephalographic Society,

for naming and positioning scalp electrodes for EEG [4]. Wherein ‘10’ and ‘20’ refer that the 

actual distance between adjacent electrodes are either 10% or 20% of total right-left (ear to 

ear) or front-back (nasion to inion) distance of the skull, as shown in figure 3.5.
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Figure 3.5 The standard 10-20 system for electrode placement over scalp used in EEG cap

[5].

Figure 3.6 Setting up the EEG electrocap on a participant in mechatronics lab at Bundoora 

east campus RMIT.

3.2.4 Data acquisition 

In order to record EEG signals from each participant, the EEG neurofeedback BrainMaster 

Discovery 24E amplifier (BrainMaster Technologies Inc., Bedford, USA) was used in the 

experiment as shown in figure 3.6. It was interfaced with the acquisition server of OpenViBE 

software http://openvibe.inria.fr/downloads/. The standard 10-20 Electro-cap was used to 

acquire brain signals from the motor cortex [6]. System’s 19 channels were referenced to

linked earlobes (LE) derived from the electrodes A1, A2 and a ground electrode. Remaining 

channels provided for monitoring other electrophysiological signals were not used. All 
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channels were sampled using 256 Hz sampling frequency, with a 24-bit resolution. Amplifier 

bandwidth was from 0 to 100 Hz and EEG channel bandwidth was from 0.43 to 80 Hz.

In order to set the experimental protocol, the OpenViBE designer tool that comes along 

integrated feature boxes was used. Inside OpenViBE designer window the .lua script and the 

default settings were customized for using the Graz-Stimulator box to allow for the onset of 

different visual cue timings. The BrainMaster Discovery and OpenViBE software were 

interfaced by setting the acquisition server properties of OpenViBE and connecting the 

required modules as presented in figure 3.7. The recordings were made using the edf and gdf

writer boxes of OpenViBE that lead to the storage of both signals and the corresponding 

stimulations, respectively [7].

Figure 3.7 As part of experimental setup, the established hardware-software connection 

between Discovery 24E amplifier and OpenViBE acquisition software.

3.3 Pre-processing techniques to reduce noise and artifacts from EEG

For pre-processing of acquired EEG signal, the statistical EEGLAB package (a plugin of 

MATLAB) was used [8]. During offline mode, the EEG data was converted to reference-free 

form by using the common average reference method. Data was pre-processed using finite 

impulse response (FIR) bandpass filter (implemented in EEGLAB [8]) with a low-cut 

frequency of 7 Hz and high-cut frequency of 12 Hz for mu rhythm and 13 Hz low-cut with 30 
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Hz as high-cut frequency for beta rhythm as shown in figure 3.8. These frequency bands 

contain most informative features about the limb movements for classification of feature 

vectors [9]. In order to filter out the 50 Hz (electrical) line noise and continuous component 

from biological drift, the notch filter was already incorporated in the amplifier (Discovery 

24E) recording settings. Next, for tasks belonging to each class, epochs, i.e. trial of 10 

seconds length were extracted for left task first and then for right task, with respect to the 

visual cues presented to the participants. Each epoch starts 3 seconds prior to the cue onset, to 

be used as reference period during analysis, and ends 5 seconds after the offset, making a 

total of 10 seconds. The time window of cue for task performance was kept 5 seconds since 

dominant ERS occurs following movement offset. The processing of recorded data was based 

on single-trial EEG signals.

3.3.1 Spatial filtering (ICA and CSP)

Based on literature [10] it has been demonstrated that for improving the signal-to-noise ratio, 

spatial filters overall are useful in single-trial analyses. For this reason, this study includes 

both the independent component analysis (ICA) and common spatial patterns (CSP) filters. 

For the band-power (BP) features classification, ICA was employed whereas for CSP features 

the CSP filter was used.

In the first case, i.e. for BP features, the source signal (epoched data) was filtered using the 

ICA spatial filter. Observed EEG signal is given as:

,     1 

where is the observed single-trial EEG signal, , where n is the number of training 

trials. is the un-mixing matrix and is the single-trial signal. This method was used for 

time-frequency analysis of ERD/ERS band-power features. The ICA finds a linear 

transformation of non-Gaussian data , to get the resulting components as statistically 

independent as possible [11]. EEG signal is therefore separated into independent components

to account for different neural activities, this also includes artifacts such as eye movements

(saccades), blinks and muscle activities [8]. In this thesis, the logistic infomax ICA algorithm, 

executed in the EEGLAB function ‘bin’ [8], is used for the preprocessing of training set. It

yielded an un-mixing matrix and source signals i.e. independent components

, where s is the number of independent components, c is the number of channels, t the
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number of time samples and j = 1 … n, is the number of training trials. This procedure 

resulted in the elimination of eye artefacts and muscle movements.

In second part of our research, the other spatial filters were used i.e. the CSP and filter bank 

CSP (FBCSP) for CSP features classification. FBCSP method computes the un-mixing 

matrix in order to yield features that have optimal variances for discriminating the classes 

of measured EEG signal [12, 13] (in this case 2 classes). This is achieved by resolving the 

eigenvalue decomposition problem.

, 2

where and are the estimates of the covariance matrices of EEG signal based on two 

tasks i.e. left and right movement, the diagonal matrix consists of the eigenvalues of ,

and the column vectors of are the filters for CSP projections. For best results, most 

suitable contrast is provided by filters with the highest and lowest eigenvalues. It is therefore 

common to retain eigenvectors from both ends of the eigenvalue spectrum [13].

Figure 3.8 Band-power/Common spatial pattern feature decoder and classifier training in one 

fold of the cross-validation.

3.4 Feature extraction techniques

3.4.1 Time-frequency analysis: the wavelet transform

In order to analyse the difference between left and right foot (dorsiflexion) and left and right 

knee (extension) movements in the spectral and temporal domains, for BP features, the EEG 
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power spectrum for left and right movement KMI was taken into account. The time-

frequency features represent the subject-specific ERD/ERS patterns, from the single-trial

signals as shown in figure 3.8. For every trial, a wavelet coefficient matrix is computed 

with 100 time samples and 3 separate frequency bins (7-12 Hz for mu, 13-24 Hz for low beta

and 25-35 Hz for high beta) for the i-th source signal. In order to get spectral power, the 

resulting coefficients are squared and the transformation is computed to get resulting

time-frequency representation . The feature vector of the j-th trial is obtained by the 

concatenation of the time-frequency coefficients that is computed from the i-th

independent component signal inside [9]:

3

In equation 3, is the j-th feature vector, where , here is the number of training 

trials, is the time-frequency coefficient vector of the i-th source, , here is the 

number of independent components in , the number of time samples is and is the 

number of frequency bins.

In EEGLAB, the event-related spectral (amplitude, phase and coherence) perturbation 

function ‘ERSP’ (i.e. the epoch-mean power spectrum) was used to extract and assess the 

ERD/ERS patterns. This function was applied to the ICA components (data recorded from

single electrodes). I evaluated the event-related time/frequency measure using ERSP, i.e. 

calculating the mean event-related changes in the power spectrum at a data channel or 

component over time in the broad frequency range for oscillatory rhythms (mu-beta) [14].

ERSP plots generalize the narrow-band ERD and ERS. ERSP Calculation requires computing 

the power spectrum over a sliding latency window then averaging across data trials. The 

colour at each image pixel indicates power (in dB) at a given frequency and latency relative 

to the time locking event. For trials, if is the spectral estimate of trial at 

frequency and time 

4

In equation 4, the sinusoidal wavelet (short-time Discrete Fourier Transform) transform 

(DWT) was used to compute i.e. for calculating the power spectrum density of each 
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EEG epoch. In DWT the number of cycles is increased slowly with frequency. This feature 

provides better frequency resolution at higher frequencies than conventional wavelet

approaches which use constant cycle length [8]. This method is also better matched to the 

linear scale for frequencies visualization. For visualization of power changes across the 

frequency range, the mean baseline log power spectrum is subtracted from each spectral

estimate, producing the baseline-normalized ERSP. The significance of deviations from 

baseline power was evaluated using the bootstrap-t statistical method, with confidence 

interval of 95% (p<0.05). In this method, a substitution for data distribution is created by 

selecting spectral estimates for each trial from the randomly selected latency windows in the 

assigned epoch baseline i.e. prior to the stimulus onset, followed by their averaging. After 

repeating this process many times (default: N=200) a substitute ‘baseline’ amplitude 

distribution is generated whose specified percentiles are then taken as significant thresholds

i.e. significant ERD and ERS features. This was implemented by developing a MATLAB

script based on following equations 5 to 8.

5

6

7

8

The sample differences were squared, labelled as after subtracting the mean of the 

bandpass filtered data for each sample to overcome masking of induced activities caused by 

the evoked potentials. Samples were subsequently averaged over trials and over sample 

points. Here is the total number of trials, is the j-th sample of the i-th trial of the 

bandpass filtered data, and is the mean of the j-th sample averaged over all bandpass 

filtered trials. Whereas is the power or inter-trial variance of the j-th sample and is the 

average power in the reference interval [15-18].
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3.4.2 Band power (percentage power change in ERD/ERS) features

The channels associated to the sensorimotor cortex i.e. features elicited by the central 

electrode sites C3, Cz, and C4 were analysed with the most significant BP decrease, or 

increase, during each of the left and right KMI task. It is a well-established fact that the 

oscillatory brain activity lie in the 0 to 50 Hz frequency band, however the frequency window 

for analysis of ERD and ERS associated to KMI was kept to 7-12 Hz and 13-30 Hz because 

they occur within only this narrow frequency sub-band. As mentioned earlier, the power 

spectrum density of each EEG signal epoch was calculated using DWT. For band-power 

calculations, let be a single-trial EEG signal epoch within the time interval ,

where and are the time points in seconds satisfying the condition for task performance 

duration i.e. . Here the single-trial EEG signal refers to the EEG signals 

recorded during the KMI task (left vs. right) of one single trial, that is, one-time KMI. For a 

specific frequency band i.e. mu first then beta, the percentage power change for left or right 

KMI EEG epoch is given as:

9

In equation 9, is the band-power of ; and is the mean 

band-power of the baseline prior to cue onset EEG epochs within the same time interval, 

given as:

10

In equation 10, , since 20 baseline EEG signals were taken as reference for each 

participant [19]. The left vs. right KMI task-based ERD/ERS amplitude for foot dorsiflexion 

and knee extension were tested statistically for two EEG montages, i.e. common average and 

bipolar reference respectively. We followed figure 3.9, where multiple comparisons were 

drawn between common average reference and bipolar reference extracted BP features at 

each channel. This was conducted by applying the family-wise error rate, using Bonferroni 

correction. Finally, the performance of the three ML models and their comparison was done 

using false discovery rate (FDR) correction.
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Figure 3.9 Layout of study carried out for band-power features

3.4.3 Common spatial pattern (CSP) features

In the case of the CSP feature extraction, the FBCSP filter was applied for a left vs. baseline 

and right vs. baseline, for three different frequency bands 7–12 Hz (mu), 13–30 Hz (beta), 7–

30 Hz (mu and beta), in the time segment starting after the cue i.e. task performance duration 

of 5 seconds. Furthermore e = 2 eigenvectors from the top and from the bottom of the 

eigenvalue spectrum were retained. This method was implemented on the pre-processed 

training dataset, that yielded the un-mixing matrix and source signals ,

where is the number of sources i.e. the 

CSP projections, is the number of channels, the number of time samples is and ,

here is the number of trials of training sets.

When the spatial filtered signal from (1) uses from (2), it maximizes the difference in 

variance of the two classes of bandpass filtered EEG signal. The pairs of CSP features of j-

th trial for band-pass filtered EEG signal are given by:

FDR Corrections FDR Corrections 
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11

where ; signifies the first and the last columns of ; returns the 

diagonal elements of the square matrix; returns the sum of diagonal elements in the 

square matrix [20].

Consequently, the FBCSP feature vector for the j-th trial is formulated as:

12

where , ; represents the total number of trials in data.

The training data, that comprised extracted feature data, is given as equation 13 and the true 

class labels is denoted as equation 14, in order to make a difference from the testing and 

prediction data, 

13

14

where ; ; and ; and are the feature vector and true class label 

respectively, from the j-th training trial, ; where represents the total number 

of trials in training data [20].

3.5 Classification techniques

3.5.1 Linear discriminant analysis (LDA)

This method is explained for a 2 class BCI; consider a set of features defined 

in a two dimensional feature space. A feature can be projected onto a direction defined by a 

unit vector using the following equation 15:
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15

This is a scalar projection of a vector onto a unit vector . Resulting equation above is a 

scalar and therefore the projection results in a dimensionality reduction from two to one 

dimension. The figure 3.9 reflects two projections of the given features onto two different 

vectors . Let us take the two classes as (reflected as red circles) and (reflected as green 

circles). Upon first projection, data from different classes is separable via simple thresholding 

of the scalar . If instead of the first projection the second projection is performed, the data 

becomes inseparable. LDA classification aim is to find such a direction that when 

projecting the data onto it maximizes the distance between the means and minimizes the 

variance of the two classes. In short, LDA minimizes the following equation 16:

16

where and are the means and and are the standard deviations of the two 

respective classes after projecting the features onto [21].

Figure 3.10  Two projections of population from the same class onto different vectors . The 

left projection makes the classification of data simple, the right projection makes the data 

inseparable.

3.5.2 Support vector machine (SVM)

Support vector machine (SVM) uses a hyperplane i.e. a decision border to divide the feature 

space into two classes. The hyperplane is defined by the following equation 17:
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17

where and . The classified results depend on which side of the hyper plane 

the feature is located. In SVM, the distances between a hyper plane and the nearest features

are called margins. The goal of SVM is to find such a hyperplane for which the distances 

between the hyperplane and the closest examples are maximized. Figure 3.10 shows an 

example of two possible hyperplanes in a two-dimensional space. We can see that for the first 

plot the margins are larger than for the second plot. In that case, the former hyperplane is 

preferred to the latter by the support vector machines algorithm.

Though SVM is a linear classifier, it can be made with nonlinear decision boundaries using 

non-linear kernel functions, such as Gaussian or radial basis functions (known as RBF). The 

non-linear SVM offers a more flexible decision boundary, resulting in an increase in 

classification accuracy. The kernel functions, however, could be computationally more 

demanding therefore we kept the classifier with linear boundaries. The high computational 

time could induce delays in the information transfer rate between the classified feature vector 

and the mapping to output commands in a BCI.

Figure 3.11  Two possible linear decision boundaries, the left decision boundary with a 

larger margin is preferred over the small margin (on the right) by the SVM.

3.5.3 k nearest neighbour (KNN)

The nearest neighbour algorithm aims at assigning a feature vector to a class according to its 

nearest neighbour(s). In the case of k nearest neighbour (KNN), this neighbour can be a 

feature vector from the training set, or a class prototype. It is a discriminative nonlinear 

classifier [22].
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The aim of this technique is to assign the dominant class to an unseen point among its k 

nearest neighbours within the training set [23]. These nearest neighbours are typically

obtained using a metric distance in BCI studies. KNN can approximate any function with a 

sufficiently high value of k and enough training samples, this enables it to produce nonlinear 

decision boundaries. However this algorithm is very sensitive to the curse-of-dimensionality

[24]. When used in BCI systems with low dimensional feature vectors, KNN might prove to 

be efficient [25].

3.5.4 Logistic regression (Logreg)

Logistic regression is a machine learning (ML) algorithm used for classification problems; it 

is based on the predictive analysis algorithm and the concept of probability. For 2-class BCI, 

Logreg assigns observations to a discrete set of two classes. It transforms its output by the 

logistic sigmoid function and returns a probability value. In order to map the predicted values 

to probabilities, the sigmoid function is used, that maps any real value into another value 

between and as given:

18

19

where is the Logreg hypothesis expectation, and is the sigmoid function. The

classifier is expected to return a set of classified outputs based on probability after passing the 

inputs through a prediction function with a probability score between and .

3.6 Evaluation criteria for BCI performance

3.6.1 Bootstrap statistic

In order to statistically assess the ERD/ERS values, an efficient approach is the bootstrap. It 

calculates the confidence and significant ERD/ERS values [15]. This method estimates the 

distribution of a test statistic by resampling the data, i.e. by replacing the unknown population 

distribution with known empirical distribution [17]. The estimator properties i.e. confidence 

intervals are determined based on the empirical distribution [26]. This technique does not 

require any Gaussian or other parametric distribution assumption on the data. The confidence 

interval is determined by equation 20:
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20

where and , here is the sample mean and is the sample

variance of the j-th sample of N number of trials, is the bootstrap that should be larger than 

500, is the mean of the bootstrap estimates. After calculation of the confidence interval, 

the assessment of whether a value is significant, or not, is determined by checking if both 

confidence values of this sample show the same sign. This means an ERS is significant with,

for instance, 95% confidence, when both 95% confidence limits of this value are positive, 

similarly for an ERD value to be significant both its confidence limits should be negative.

3.6.2 Cross-validation

Cross-validation is used in the training process of the classifier. During cross-validation, the 

model is repeatedly tested on different subsets of the training dataset and parameters are 

optimized. This is done using -fold cross-validation, meaning the training set is divided into 

sets of equal size. The classifier is then trained times with a different set held out 

each time to validate the model on the remaining set. For each fold, a misclassification rate 

is computed. From this, the average of the errors can be calculated as a training 

misclassification rate [23]. Standardization of data is done prior to cross-validation 

procedure.

3.6.3 Misclassification rate

The misclassification rate (mcr) is directly related to the prediction accuracy as prediction 

d straightforward performance 

measures in classification problems. The predicted output is compared to ground truth and the 

number of misclassified samples is expressed as a loss function. The loss function, or 

estimate of the misfit between prediction and ground truth, is given by equation 21:

21

is the loss estimate of the k-th sample with being the vector of predictions and the

vector of targets containing the ground truth of the k-th sample, and the total number of 
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samples in [27]. Multiplying by 100, we obtain the loss expressed as percentage of 

misclassified samples of the total amount of samples, the misclassification rate (mcr).

3.6.4 Kappa coefficient

The kappa coefficient is commonly used as a performance measure for classification 

algorithms [22, 28]. The Cohen’s Kappa is a measure of the agreement between two outputs,

here between the ground truth and the prediction. A perfect agreement between prediction 

and expected value (or ground truth) is indicated by a kappa value of 1. Thus, is always less 

than 1 or equal to 1.

For the kappa computation, the prediction accuracy or the ‘observed level of agreement’ can

be obtained from a confusion matrix; such a sample confusion matrix is seen in table 3-2, or 

using as seen in equation 22.

22

Table 3-2 Sample confusion matrix for a binary classification problem. It displays 

probabilities for each occurrence; P11 and P22 representing correctly classified samples.

     Ground Truth

Prediction

Left Right Total

Left P11 P12 P1a

Right P21 P22 P2a

Total P1b P2b PTotal

To compute kappa score from the confusion matrix, the observed level of agreement is

obtained by:

23

Next, the chance agreement is calculated as:

24

Following this, kappa coefficient is computed using:



70 

25

According to Landis and Koch [29], the value of can be interpreted in the following way as

shown in table 3-3:

Table 3- kappa value interpretation [29]

 Strength of Agreement 
< 0.00 Poor 
0.00-0.20 Slight 
0.21-0.40 Fair 
0.41-0.60 Moderate 
0.61-0.80 Substantial 
0.81-1.00 Almost perfect 

3.6.5 Receiver operator characteristic (ROC) curve and area under the ROC curve

Another common performance measure is the ROC curve [30]. ROC curves were first 

introduced in the 1940’s and came along with the development of radar [31]. Ever since 

Spackman used these curves to evaluate and compare the performance of his machine 

learning algorithms in 1989, their use is spread widely [32]. The following description of 

ROC curves is based on Fawcett’s article [32].

The ROC curve is generated by plotting sensitivity, also called the true positive rate ( ), 

on the y-axis, against (1 – specificity), also called the false positive rate ( ), on the x-axis 

[30, 32]. Equations for sensitivity and specificity can be found in equation 26 and 27,

respectively. A diagonal line in the ROC space (y = x) reaching from (0,0) to (1,1) represents 

a classifier that randomly guesses the class belonging. A shift of the curve towards the upper 

left corner suggest that the algorithm detects some information from the given data that 

indicates the belonging to one of the two classes. A curve that lies below the diagonal 

performs worse than randomly guessing the class labels. The classifiers used in this research, 

produce a probability for each instance, called a score. The score indicates the likelihood of 

an instance belonging to a certain class. The curve is created by applying a threshold to the 

data and varying the threshold from - the point (0,0) 

and with lowering the threshold one value after the other is generated. Positive instances 

classified as positive are placed an increment up in positive y-direction and false positives, 
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negatives classified as positives, are placed one increment to the right in x-direction. This 

way, the ROC curve is stepwise created from (0,0) to (1,1).

For reasons of comparison, the area under the ROC curve (AUC) is commonly computed. 

This quantifies the ROC curve to one single value and allows for a fast and easy comparison

of different algorithms. Due to the ROC graph’s x- and y-limits of 0 and 1, the AUC value 

will always be between 0 and 1. An area of 0.5 represents the diagonal line mentioned earlier 

and corresponds to a randomly guessing algorithm. Thus, the area should always be greater

than 0.5. A perfect classifier has an area of 1. AUC represents the probability that the 

algorithm ranks a randomly chosen instance from class 1 higher than a randomly chosen 

instance from class 2. This means that the more distinct the features of the classes are, the 

larger is AUC [33]. AUC indicates the confidence level in a prediction model; the higher 

AUC, the more confident is the model in assigning the correct class [34].

26

27

3.6.6  Family-wise error rate /Bonferroni correction for multiple comparisons

For multiple comparisons of ERD/ERS features, as well as classifier outcomes, the respective 

p-values were used for evaluating the statistically significant features and classifier models

respectively. In order to carry out multiple comparison corrections, the Bonferroni correction

for p-values adjustment was followed using equation 28, from [35].

, 28

where is the family wise error rate, is the specified per comparison error rate, and

is the number of comparisons performed, Bonferroni correction is given by Equation 29.

, 29

where was kept to , with the number of statistical analyses conducted on the data 

sample.
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3.6.7 False discovery rate correction

The other approach used to compare the performance of multiple classifier models, is the

false discovery rate (FDR) correction. As each feature vector is independent, we applied the 

Benjamini-Hochberg procedure to decrease the possibility of any false discovery rate [36].

For Table 3, equation 30, defines the FDR.

Table 3- Errors in multiple testing of N hypotheses [37]

Hypothesis Non-significant 

discovery

Significant discovery Total

True null 

False null

Total declared

FP and FN are number of false positives (Type I error) and false negatives (Type II error); 
TP and TN are number of correct declared significant and non-significant discoveries, and DP
is number of rejected null hypotheses i.e. declared positives.

30

This technique controls FDR at a threshold which is pre-specified, , on an average. 

For this research study, the level was designated to standard level of 5% for the reason of 

comparison. To apply the procedure for multi-model testing correction with models, the -

values are arranged in ascending order, corresponding to 

null hypotheses, . Following this, in a step-up manner, evaluate inequality 

given in equation 29, in reverse sequential order, beginning from the last value ,

31

The comparison is stopped when the above inequality is true. Finally, reject all the 

hypotheses for which is less than or equal to  i.e., the models belonging 

to the rank are significantly discriminant. 

3.6.8 Mann-Whitney U test  

In case of two classifier models, the statistical evaluation technique used to compare the 

classification results was the Mann-Whitney U test. Mann-Whitney U test also termed as the 



73 

Wilcoxon rank-sum test is a nonparametric test of the null hypothesis. The null hypothesis 

refers to the fact that it is equally likely that a randomly selected classification accuracy value 

from one algorithm will be less than or greater than a randomly selected classification 

accuracy value from the second algorithm.

Under the null hypothesis , the resulting accuracies of populations from both the 

algorithms are equal. The alternative hypothesis is the contrary i.e. the accuracies are not 

equal. The probability of an observation from a population A exceeding an observation from 

population B is different (larger, or smaller) than the probability of an observation 

from B exceeding an observation from A.

32

3.7 Conclusions

In conclusion, it is clear that the evaluation criteria ensure reliability and better performance 

of the established BCI system, i.e. based on the truly observed performance of the classifier

model and not by chance. For significant BP feature extraction, bootstrap method was 

employed, and for comparing results among references, family-wise error rate correction was 

used. In case of CSP features, kappa coefficient was used as performance measure of the 

classification algorithms. In addition to this, while classifying both features, the k-fold cross 

validation was deployed with each model. Finally the performance evaluation of each model 

was done using the FDR and Mann-Whitney U test.
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Chapter Overview

The spatial proximity of LL in the somatosensory cortex and its placement within the 

mesial wall halts its detection using EEG. This is particularly the case with ankle and 

knee joints. The aim of this chapter is to discriminate the left and right LL KMI and 

investigate the possibility to use two KMI tasks within the same limb. BP features in 

the mu (7-12 Hz) band were recorded from central electrode positions and inspected 

using the common average reference. This study exploits the distinct left knee and left 

foot imagery tasks  as a single cognitive entity  within the same left limb  and similar 

for the right LL. It could potentially increase the dimensionality of control signals in a 

BCI to restore the locomotion function in a LL assistive device for rehabilitation.

This study  published in Acta Polytechnica Hungarica.

M. Tariq, P. M. Trivailo, Yutaka Shoji, and M. Simic. Comparison of event-related
changes in oscillatory activity during different cognitive imaginary movements within
same lower-limb. Acta Polytechnica Hungarica, 16(2) 77-92, 2019.
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Abstract: The lower-limb representation area in the human sensorimotor cortex has all 
joints very closely located to each other. This makes the discrimination of cognitive states 
during different motor imagery tasks within the same limb, very challenging; particularly 
when using electroencephalography (EEG) signals, as they share close spatial 
representations. Following that more research is needed in this area, as successfully 
discriminating different imaginary movements within the same limb, in form of a single 
cognitive entity, could potentially increase the dimensionality of control signals in a brain-
computer interface (BCI) system. This report presents our research outcomes in the 
discrimination of left foot-knee vs. right foot-knee movement imagery signals extracted 
from EEG. Each cognitive state task outcome was evaluated by the analysis of event-
related desynchronization (ERD) and event-related synchronization (ERS). Results 
reflecting prominent ERD/ERS, to draw the difference between each cognitive task, are 
presented in the form of topographical scalp plots and average time course of percentage 
power ERD/ERS. Possibility of any contralateral dominance during each task was also 
investigated. We have compared the topographical distributions and based on the results 
we were able to distinguish between the activation of different cortical areas during foot 
and knee movement imagery tasks. Currently, there are no reports in the literature on 
discrimination of different tasks within the same lower-limb. Hence, an attempt towards 
getting a step closer to this has been done. Presented results could be the basis for control 
signals used in a cognitive infocommunication (CogInfoCom) system to restore locomotion 
function in a wearable lower-limb rehabilitation system, which can assist patients with 
spinal cord injury (SCI).

Keywords: Cognitive state; motor imagery; electroencephalography; brain-computer 
interface; event-related desynchronization; event-related synchronization 
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1 Introduction 

Brain-computer interface (BCI) is an emerging technology that connects human 
brain to an output device, in order to communicate the cortical command signals 
to manipulate the actuator. These cortical signals are translated to device (e.g. 
computer) operatable commands [1]. The state-of-the art BCI is based on the idea 
of developing an artificial, muscle-free communication channel that acts as a 
natural communication channel between the brain and a machine [2, 3]. 
Applications of BCI systems are widespread and vary from the fields of 
neuroscience, rehabilitation, cognitive infocommunications (CogInfoCom) [4] to 
entertainment, and defence [5]. Neurorehabilitation is the research area, which 
caters audiences with neurodegenerative disorders, spinal cord injury (SCI), 
amyotrophic lateral sclerosis (ALS) [6, 7], or lower-limb amputation [8]. The 
applications include neurorobotics, e.g. BCI-controlled wearable/assistive robots 
for mobility restoration. Such devices can be useful for direct communication in 
inter-cognitive CogInfoCom applications [2, 9], and necessitates more research in 
this area. 

In this study, the physiological signals used to detect natural cognitive capability 
of humans, are based on non-invasive modality, i.e. electroencephalography 
(EEG). We use this approach for its low cost and easy handling. When the human 
cognitive capability is combined with information and communication 
technologies (ICT), it results in an important aspect of CogInfoCom [10]. In order 
to connect high-level brain activity to infocommunication networks, BCI enables 
flow of rich information from the brain, and eventually heterogeneous cognitive 
entities into the ICT network [9, 10]. In this study, the source of information 
relevant to human cognitive states, include information on level of engagement 
during imagination of task and rest/idling, reflecting a decrease and increase in 
mu wave (8-12 Hz) respectively [11]. 

Investigations on the possibility to use BCI system for post-stroke rehabilitation 
have been carried out in order to reinstate upper and lower-limb functions [12]. 
However, applications of existing BCI systems, for the control of various devices, 
such as a robotic exoskeleton, are not straightforward. One potential factor is the 
low dimensional control of these systems, i.e., they can only identify limited 
number of cognitive tasks as unique control commands. The most frequently used 
cognitive state motor imagery tasks, in a BCI system, are left hand vs. right hand, 
and foot kinesthesis motor imageries [13]. Successful control of cursor movement 
in two dimensions, on a computer screen, based on left vs. right hand motor 
imagery, was done by deploying the mu (8-12 Hz) and beta (18-26 Hz) rhythm, 
followed by several training sessions [14]. The same BCI cursor control strategy 
was extended to three-dimensions, where in addition to left-right hand imagery, 
foot motor imagery was incorporated, as well [15].
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Successful quantification of left vs. right hand and foot motor imagery have been 
reported, including studies on the discrimination of different upper limbs [16], but 
no literature exists on the decoding of different movements within the same lower 
limb . Investigations on independent lower-limb motor imagery tasks have been 
reported recently [2, 17-19], however, those studies did not cover the same limb 
tasks. This is because of the well-established fact about 
lower-limb representation area on the sensorimotor cortex. That precludes its 
exploitation during different imagery tasks. In addition to that, each joint 
representation within the same limb has a very close spatial representation to each 
other [20], which makes it difficult to discriminate each movement with 
electroencephalographic (EEG) signals.

In our research, we included foot and knee kinaesthetic imagery tasks within the 
same limb, as cognitive states. Each state was further divided into left vs. right 
imagery tasks, in order to increase the possibility for discriminating each task; 
thereby increasing the dimensionality of the BCI control signal. Recorded EEG 
signals, against each task, were quantified by observing the event related changes 
associated to the task in oscillatory mu rhythm. The changes in oscillatory activity, 
with respect to an internally, or externally paced events, are time-locked, but not 
phase-locked, i.e. induced, known as event related desynchronization (ERD) or 
event related synchronization (ERS) [21, 22]. This study could be useful for the 
development of multi-dimensional control signals as a single cognitive entity in a 
BCI system for rehabilitation  applications [9, 23]. Presented results are in 
accordance with an important aspect of CogInfoCom, i.e. the combination of the 
natural cognitive capability of human and ICT [24].

2 Methods 

2.1 Experimental Protocol 

This study was based on experiments performed on three healthy subjects with no 
history of neurological disorder, or any impairment. The age range was between 
25-27 years, where all subjects participated on voluntary basis. None of the
participants had any experience with BCI before. Ethics approval, for this
research, was granted by the College Human Ethics Advisory Network (CHEAN)
of RMIT University, Melbourne, Australia.

During the experiment every subject was directed to sit on a comfortable chair 

experimental protocol was based on the standard Graz protocol for synchronous 
BCI. Each trial began with a blank black screen that lasted for 30 seconds, in order 
to let the subject relax and get familiar with the environment. Following that, the 
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trial began with the presentation of a green fixation cross on screen for 3 seconds 
(used as reference period for processing of epochs). One second long audio beep 
stimulus, right before the visual cue display, was incorporated in the first trial 
only, to alert the subject about the beginning of the experiment, see Figure 1 (left). 
Next, the visual cues of 2 seconds length were displayed followed by a 5 seconds 
long blank screen to perform the related task (imagery), making a total of 10 
seconds for each trial. The visual cues in each trial reflected either the left or right 
movement. The foot and knee session was carried out separately. Our 
experimental paradigm consisted of alternate sessions, i.e. the first session for left-
right foot kinaesthetic motor imagery (KMI), next session for left-right knee KMI, 
third for foot KMI and finally knee KMI. The cue set for each session is shown in 
figure 2. This was introduced to avoid a state of confusion for the subject with 
several tasks in a single session. 

A standard one session protocol is composed of 40 trials, including 20 trials for 
each tasks, i.e. left or right KMI. The visual cues in each trial were displayed in a 
random order so that no adaptation could occur. Each trial was followed by a 
random pause interval of 1.5 to 3.5 seconds, in which the subjects were asked to 
rest. The experiment was divided into 4 sessions, i.e. foot, knee, foot and knee 
KMI respectively. Figure 1 (left) presents the schematic of experimental protocol 
reflecting the timing of cues, where each trial is 10 seconds long. For each session 
the respective visual cue set is given in figure 2, where (a) depicts left and right 
foot movements (dorsiflexion for 1 second) and (b) depicts left and right knee 
movements (extension for 1 second) respectively. 

Figure 1 
Experimental protocol timing in seconds (left) and 10-20 electrode channel locations (right)
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Figure 2 
Visual cues in the experimental protocol, for (a) left - right foot dorsiflexion, and (b) left- right knee 

extension 

2.2 EEG Recording 

In order to record EEG activity, the EEG neurofeedback BrainMaster Discovery 
24E amplifier (BrainMaster Technologies Inc., Bedford, USA) was utilised. The 
standard Graz synchronous BCI protocol was established using OpenViBE 
software (http://openvibe.inria.fr/downloads/) that also enabled the embedding of 
time stamps in each recorded trial. Overall experimental set up had the amplifier 
interfaced with the acquisition server of OpenViBE. To acquire brain signals from 
the motor cortex, the standard 10-20 Electro-cap was used [25]. The EEG system 
had 19 channels (10-20 sites), channel 20 (A2) was referenced to A1 (A2-A1) 
(Figure 1, right). Remaining channel including AUX1 and AUX2, provided for 
monitoring of other electrophysiological signals were not used. All channels were 
sampled using 256 Hz sampling frequency, with 24-bit resolution. The DC 
amplifier bandwidth was from 0.0 Hz to 100 Hz, followed by EEG channel 
bandwidth from 0.43 to 80 Hz. 

The customized experimental protocol was designed using OpenViBE designer 
tool that comes along integrated feature boxes. The designer tool window is based 
on Lua script that was modified for generating customized scenario, Graz-
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Stimulator box was used to allow for the onset of different visual cue timings. 
Figure 3 reflects the connection established between the BrainMaster Discovery 
24E and OpenViBE together synchronized. Each session was recorded in the 
standard EDF and GDF file formats using writer boxes of designer tool in 
OpenViBE. 

Figure 3 

Established connection for real-time EEG data acquisition and incorporation of event time-stamps in 
the data stream 

2.3 Signal Processing 

In order to process and visualize the acquired data offline, the statistical EEGLAB 
package was used. During offline processing, the EEG data was converted to 
reference-free form by using the common average reference method. The data was 
pre-processed using FIR bandpass filter between 8-12 Hz, which was the required 
frequency bandwidth range for mu rhythm. Next, each epoch, i.e. trial of 10 
seconds length was extracted, which included 3 seconds period prior to cue onset, 
to be used as reference period during analysis. 

The epoched data was then filtered using spatial filter, i.e. the independent 
component analysis (ICA) for artifacts removal.

For each subject, spectral plots were generated that reflected the 2-class statistics, 
where each class was related to each task. Following this, the average time course 
ERD and ERS for mu rhythm (8-12 Hz) were plotted, where only statistically 
significant ERD/ERS were displayed. This was done using validation method to 
ensure statistically significant data, i.e. to allow assigning measures of accuracy 
(confidence interval) to sample estimates. We used the bootstrap statistical 
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significance method, with confidence interval of 95%. In this way the significant 
ERD-ERS features were selected. The central electrode areas C3, Cz, and C4 
linked to sensorimotor cortex were used to analyse mu band with the most 
significant bandpower decrease, or increase, during each task. 

The standard procedure for calculation of ERD/ERS patterns was adopted from 
[26]. After bandpass filtering of each trial, the samples were squared and 
subsequently averaged over trials and over sample points [27]. This directed to the 
resulting proportional power decrease (ERD), or power increase (ERS) compared 
to the reference interval, which was selected as the period of 3 seconds before the 
trigger onset of visual cues. In order to overcome masking of induced activities 
caused by the evoked potentials, the mean of the bandpass filtered data was 
subtracted from the data for each sample [28]. 

The ERD/ERS was calculated from EEGLAB [29, 30] integrated function event-
related spectral perturbations (ERSP) based on wavelet decomposition. ERSP 
detects the event-related shifts in the power spectrum. It measures the mean event-
related changes in the power spectrum at one data channel averaged over trials. Pj

is the power or intertrial variance of the jth sample and R is the average power in 
the reference interval [r0, r0+k]. To convert ERSP to ERDS, equations 1 and 2 
were used; ERSP was normalized to the reference interval [29]: 

(1) 

(2) 

3 Results 

The results obtained from all three subjects, s1, s2 and s3 are presented in this 
section. 

3.1 ERD/ERS Quantification 

In order to quantify the significant cognitive bandpower changes of mu rhythm, 
each combination of lower-limb tasks was pre-processed and spatial filter was 
applied on the filtered data. Resulting signals were evaluated for each central 
electrode position directing towards the sensorimotor cortex, and the potential area 
where mu rhythm elicits. Table 1 shows the illustration of quantification approach. 
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Table 1 
Unsupervised feature extraction-based approach 

Tasks Pre-
processing 

Spatial 
filter 

Scalp 
location 

Time-frequency 
feature 

extraction 
LF vs. LK 

Bandpass 
filtering, 
Epoching 

ICA
C3 

Wavelet (short-
time DFT) 
transform

RF vs. RK C4 

LF-LK vs. 
RF-RK

Cz

3.1.1 Spectral Topographical Plots 

The cognitive state output, in the form of percentage power ERD and ERS 
spectral maps, for all participants, against the foot and knee tasks for each session 
respectively, were plotted between 8-12 Hz frequency of mu band. Each session 
comprised of left-right tasks of foot followed by knee, i.e. different movements 
within the same limb. Figure 4 represents the topographical scalp plots of each 
subject during left-right foot and left-right knee imagery respectively, for 8 to 12 
Hz.

For s1, it was observed that during left foot, and left knee, imagery tasks, the foot 
as well as hand area mu rhythm (mu ERD) was enhanced in both cases. However, 
with left foot imagery the ERD was localized towards left hemisphere, C3, 
whereas the left knee imagery showed broad-banded ERD towards central area Cz 
and edged towards parietal region. The right foot and knee tasks, in the same limb 
somehow revealed similar output. However, with right foot imagery prominent mu
ERD overlying the primary hand area was observed, where ERD was dominantly 
visible at electrode position C3 in addition to Cz. This pointed towards the 
possibility of contralateral spectral power dominance during right foot task. On 
the other hand, the right knee imagery depicted an enhancement in the mu ERD 
foot area representation edged towards parietal region. 

The left foot imagery with s2 enhanced the ERD patterns at central electrode 
positions predominantly C3, similar to s1, as well as the premotor areas. This was 
not the case with left knee imagery task, which did not exhibit enhancement in 
power concentration. Following this, during the right foot imagery an overall 
increase in mu ERD power concentration was observed over the primary, 
supplementary and pre-motor areas with contralateral dominance. Interestingly a 
small increase in mu ERS spectral power was visible during the right knee 
imagery task, which was strictly localized towards the central and parietal regions. 
This directed towards no prominent ERD. 

The resulting plots of s3, during left foot task, elicited power concentration in 
ERD focused towards the hand and foot area. However, the left knee imagery 
depicted a very clear focal enhancement in mu ERD foot area representation. 

Avg 
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During the right foot task, a higher power concentration in mu ERD overlying the 
central cortical regions with a shift towards parietal area was visible. Similarly, 
the right knee task, elicited increased power ERD strictly in cortical foot area, at 
central region of the cortex. No contralateral power distribution was visible with 
subjects 2 and 3. 

3.1.2 ERD/ERS Average Time Course in mu Rhythm 

The resulting cognitive states, in form of ERD/ERS time course for mu rhythm 
with frequency range of 8-12 Hz at electrode positions C3, C4, and Cz are shown 
in Figure 5. The results elicited by s1 are presented. 

In order to compute the specified time and frequency resolution, i.e. averaging 
over sample points, the EEGLAB integrated sinusoidal wavelet transform (short-
time discrete fourier transform (DFT)) was used. A t percentile bootstrap statistic 
(percentile taken from baseline distribution, ,
was applied to get significant ERD and ERS values [29]. The basic aim of 
bootstrap technique is to replace the unknown population distribution with a 
known empirical distribution and based on the empirical distribution estimator, 
determine the confidence interval, in this case 95% confidence [21]. 

Different movements within the same lower-limb elicit various percentage power 
ERD and ERS. Figure 5 reflects each combination of tasks for different joint 
positions, within the same lower-limb. The selection of central electrode position, 
for plotting each combination of tasks, within the same limb, was based on the 
probability to observe any contralateral dominance in the power concentration 
ERD. Therefore, C3 was selected for observing right imagery task characteristic 
ERD within the same limb. C4 was selected to detect left task characteristic ERD, 
Cz was chosen to observe left and right task ERD characteristics and their impact 
on the midline of the central lobe for each participant. The task combinations 
within the same lower-limb are given in Table 2. 

Table 2 
Task combinations within the same lower-limb 

Electrode position Mental task Bandpower features 
C3 Imagery right foot vs. right knee  ERDS average 
C4 Imagery left foot vs. left knee             ERDS average 
Cz Imagery right foot-knee vs.        

left foot-knee  
ERDS grand average 

At C3 during right foot and knee imageries, ERD time course was obtained by 
taking average of power changes in mu rhythm across all trials with each subject. 
At the end of visual cue (shown by green window in Figure 5), the mu power 
attenuates for approximately 0.6 seconds, after onset of cue. Evident ERS was 
visible at approximately 3 seconds, which is referred to the period of task 
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performance. Since each of the foot dorsiflexion and knee extension task, were 1 
second in length, the appearance of an ERS at 3 seconds correlates to the 
completion of task by the subject. 

The left foot and knee imagery movements at electrode position C4 did not depict 
a very prominent ERD. However, at the beginning of cue onset at approximately 
0.3 seconds a desynchronization of the foot area is visible followed by another dip 
at approximately 4 seconds (imagery interval). ERS was visible between 4 and 5 
seconds towards the termination of the task performance interval. 

Finally, at electrode position Cz, most dominant percentage power decrease, ERD 
was visible throughout the beginning of visual cue onset window followed by the 
task performance interval. These results are in accordance with the established 
results from the spectral power distribution maps. The presence of large centrally 
localized ERD patterns validates the notion of enhanced foot mu area 
representation elicited by Cz upon foot and knee imagery related tasks. 

Clear results at Cz were due to the grand average taken for all four trials and 
sessions for each participant, which was not the case with C3 and C4, where the 
average of each trial and session for only two tasks was taken. 

The grand-average amplitude of mu ERD for all subjects based on common 
average reference derivation at central electrode positions is shown in figure 6. 
The error bars represent the standard deviation. As depicted earlier from results, 
there was no significant inter-task difference within the same limb, observed at 
electrode positions C3, Cz and C4 (P<0.05, t-test). However, it is important to 
mention here that the bar graphs were only plotted for mu ERD and not ERS, to 
infer knowledge about its behavior output. Taking beta ERD/ERS features into 
account could add to the overall information during lower-limb tasks within the 
same limb. 
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Figure 4 
Topographical scalp maps of each subject during left-right foot and left-right knee imagery 

respectively between frequencies of 8-12 Hz 



M. Tariq et al. Comparison of Event-related Changes in Oscillatory Activity During  
Different Cognitive Imaginary Movements Within Same Lower-Limb

– 88 –

Figure 5 
ERD and ERS time course for mu rhythm (8-12 Hz) of subject 3 at electrode position C3 for right foot 
and right knee imagery alongside their average, C4 for left foot and left knee imagery alongside their 

average, and Cz for left and right foot and knee imagery respectively alongside their average. The 
green window indicates visual cue presentation from 0 and 2 seconds 
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Figure 6 
Average amplitude of mu ERD from all subjects based on common average reference derivation at 
central electrode positions. The red and blue bars indicate left foot and left knee motor imageries, 
respectively, and pale red and pale blue bars indicate right foot and right knee motor imageries, 

respectively. Error bars represent standard deviations 

4 Discussion 

We analysed the discrimination of cognitive states, as a result of imaginary left-
right foot and knee motor tasks within the same limb. It was observed that an 
increase in power concentration of mu ERD overlying hand and foot area occured 
with majority of the subjects. Although the hand area in this study was not needed 
to perform a task, we therefore, consider it to be in an idling state. Generally, no 
explicit contralateral dominance was visible, except for s1 and s2, who both 
showed contralateral dominance during right foot imagery task at C3. As foot, the 
knee area representation is also situated in the mesial wall, which makes it 
difficult to elicit clear ERD patterns upon knee imagery tasks. However, with left 
and right knee discrimination tasks, in all subjects, centrally localized ERD 
patterns were mainly observed throughout. The focal mu rhythm was visible in 
cortical foot representation area with small activation of hand area with s1 only 
during left knee imagery. 

For neurorobotics and human ICT applications, this can lead to the inference that 
kinaesthetic knee imagery blocks or desynchronizes foot area mu rhythm, at 
central electrode positions and shifts over supplementary, pre-motor areas and in 
some cases towards parietal region. Results suggest that the cortical knee 
representation area is situated near the foot sensorimotor areas. The other task in 
same lower-limb, i.e., foot motor imagery, not only activated hand and foot area 
mu ERD but also elicited contralateral dominance during right foot kinaesthetic 
imagery. The knee kinaesthetic imagery on the other hand does not provide 
enough evidence of contralateral dominance of the cognitive states upon left vs. 
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right imagery tasks. This was also validated by the average mu ERD bar graph, 
that reflected difference during left-right foot tasks but no significant difference 
during the knee tasks. More investigations in this area could be very useful for 
CogInfoCom based systems to highlight the activeness of specific brain regions 
indicating human level engagement in biofeedback-driven frameworks. 

5 Conclusions and Future Work 

This research broadened new horizons towards investigation of cognitive states as 
event-related changes in oscillatory activity of mu during foot and knee motor 
imageries within the same lower-limb. The results provide useful information on 
human level of engagement during imagination of task and rest, as reflected by mu
rhythm activity. Despite a small lower-limb sensorimotor area representation in 
the homunculus, the foot and knee movement imagery elicited ERD patterns. 
Based on the spectral power plots, an increase in the mid-central ERD was 
observed overall with all the subjects. The kinaesthetic knee imagery triggered mu
ERD, mainly in the cortical foot area representation, with small shift towards 
parietal lobe. No contralateral dominance of cortical areas was present in the case 
of left-right knee imagery tasks, unlike with foot tasks. Obtained results suggest 
that intra-subject cognitive-state variability exists during the reactivity of mu
components. This makes it difficult to draw a clear difference between different 
lower-limb tasks within the same limb. However, clear results with one subject; 
indicate the possibility of discriminating different movements within the same 
lower-limb. Suggested protocol could be exploitable to increase the 
dimensionality of control signals, as a cognitive entity, in a BCI system.
Involvement of more participants and classification of feature vector is the future 
aim of this investigation, to develop a multi-dimensional CogInfoCom tool for 
BCI controlled devices.
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Chapter 5

Mu-beta event-related (de)synchronization and 
EEG classification of left-right foot dorsiflexion 
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Chapter Overview

A study to differentiate between left and right foot KMI and the role of ML models in 

implementing this  is important to develop a better understanding of cortical excitability.

The objective of this chapter is  to investigate the cortical 

lateralization of ERD/ERS in the BP mu and beta bands  during left and right foot 

KMI, using EEG topographic and time-frequency maps. This was followed by the

determination of classification accuracy of the two KMI tasks in a BCI paradigm. The

study was conducted for two reference methods to record EEG, i.e. the common 

average and bipolar reference. Three ML models were deployed for statistical 

comparisons to evaluate the highest classification accuracy. Results confirmed the 

cortical lateralization of ERD/ERS and set forth the utilization of mu and beta as

independent control features based on bilateral foot KMI in a BCI.

This study is currently under review in PLOS One.

M. Tariq, P. M. Trivailo, M. Simic. Mu-beta event-related (de)synchronization and
EEG classification of left-right foot dorsiflexion kinaesthetic motor imagery for BCI.
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ABSTRACT 

The left and right foot representation area is located within the interhemispheric fissure of the 

sensorimotor cortex and share spatial proximity. This makes it difficult to visualize the cortical 

lateralization of event-related (de)synchronization (ERD/ERS) during left and right foot motor 

imageries. The aim of this study is to investigate the possibility of using ERD/ERS in the mu, low beta, 

and high beta bandwidth, during left-right foot dorsiflexion kinaesthetic motor imageries (KMI), as 

unilateral control commands for a brain-computer interface (BCI). EEG was recorded from nine 

healthy participants during cue-based left-right foot dorsiflexion KMI tasks. The features were 

analysed for common average and bipolar references. With each reference, mu and beta band-

power features were analysed using time–frequency (TF) maps, scalp topographies, and average 

time course for ERD/ERS. The cortical lateralization of ERD/ERS was confirmed. Statistically 

significant features were classified using LDA, SVM, and KNN model, and evaluated using the area 

under ROC curves. Multiple comparisons to distinguish between classifier performances were done 

and false discovery rate (FDR) corrections were applied. An increase in high beta power following the 

end of KMI for both tasks was recorded, from right and left hemispheres, respectively, at the vertex. 

The single trial analysis and classification models resulted in high discrimination accuracies, i.e. 

maximum 83.4% for beta ERS, 79.1% for beta ERD, and 74.0% for mu ERD. With each model the 

features performed above the statistical chance level of 2-class discrimination for a BCI. Our findings 

indicate these features can evoke left-right differences in single EEG trials. This suggests that any BCI 

employing unilateral foot KMI can attain classification accuracy suitable for practical 

implementation. Given results stipulate the novel utilization of mu and beta as independent control 

features for discrimination of bilateral foot KMI in a BCI.  

Keywords: event-related (de)synchronization (ERD/ERS), electroencephalography (EEG), mu ERD, 

beta ERD, beta ERS, brain–computer interface (BCI) 
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1. Introduction

People affected by neurological disorder, stroke, or spinal cord injury (SCI) necessitate a therapeutic 

goal of motor gait rehabilitation using assistive technologies [1, 2].  For lower-limb affectees, to re-

gain the dorsiflexion of foot drop is vital [3-5]. The lost motor control functions could be emulated by 

inducing neuroplasticity using a brain-computer interface (BCI) system [6].  BCI provides an 

alternative neuropathway that translates human brain activities into commands for controlling 

external devices or prostheses [6, 7]. 

BCIs that use EEG features such as oscillatory/sensorimotor rhythm (SMR) are recorded over the 

somatic sensorimotor cortex. SMR are concentrated in the alpha (mu) (7-12 Hz), beta (13-35 Hz), 

and gamma (>36 Hz) frequency bands [8, 9]. BCIs have successfully deployed SMR to identify any 

changes related to the physical movement (motor execution, ME) or imagination of movement 

(motor imagery, MI) of any limb [10]. This is because an increase in the corticomotor excitability is 

involved during MI and ME of limb movement which is both muscle-specific and temporally 

modulated [11]. Both the execution and imagery tasks have been used in experiments, because the 

ME and MI implicate overlapping neural structures within the central nervous system [11]. However, 

from literature, MI tasks have been preferred over ME ones, to avoid any possibility of 

proprioceptive feedback. The MI is a covert cognitive process, where the user makes a kinaesthetic 

imagination of his/her own limb movement without any muscular intervention, also called 

kinaesthetic motor imagery (KMI) [1, 12].  

Each limb movement elicits a unique pattern in the SMR mu and beta features [9]. These patterns 

are reflected in the form of either a power decrease termed event-related desynchronization (ERD) 

that correlate to movement preparation [13], or an increase in power termed event-related 

synchronization (ERS) associated to resting/idling state, or an inhibitory state [14, 15]. The cortical 

localization of ERD/ERS patterns is due to the somatotopic arrangement of the motor cortex. The 

upper limbs e.g. hand area representation is on the mantle of the cortex, followed by lateralization 

[16], that makes the spatial discrimination between left and right movement prominent compared 

to lower limbs. The right-left hand ME or KMI mu ERD correlate to the bilateral hand area (C3 and C4 

electrode positions) of the sensorimotor cortex with evident contralateral dominance compared to 

ipsilateral side [17, 18]. These contralateral and ipsilateral differences in mu ERD have been classified 

by BCI to be used as control features for operating external devices [19-21].   

On the contrary, right-left lower-limb ME or KMI tasks are not extensively deployed due to the close 

location of left-right lower-limbs’ areas to each other. The foot motor area is situated deep within 

the interhemispheric fissure of the sensorimotor cortex that makes the left and right foot ME or KMI 
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difficult to be spatially discriminated since they produce nearly identical EEG patterns [16]. 

Therefore, we can find studies where general foot KMI-based BCIs deploy feet KMI as one feature 

without discriminating the left-right side [22, 23]. However, studies available on the left-right 

discrimination of foot KMI , proposed the mu ERD and beta ERS/rebound (post task completion), as 

possible EEG features for classification [7, 17, 24, 25]; where the ERD/ERS patterns generate at the 

vertex [24]. According to [18], if a BCI user exhibits a slight left–right difference, the differences 

could be enhanced, and improve the control accuracy of a BCI via visual feedback. Besides 

aforementioned features, the possibility to research mu ERS as a new feature for classification of 

left-right foot KMI task is less due to its limited frequency bandwidth, but beta ERD still has a 

significant margin to be explored due to its wider frequency range.  Hashimoto et al. [17] proposed a 

bipolar referenced ERD–ERS lateralisation enhancement, resulting in a two-class (left vs. right foot) 

classification accuracy of 81.6% in synchronous mode for one out of nine subjects. However, this was 

not the case with the remaining eight subjects, with an average classification accuracy of 69.3% for 

all subjects. The low average classification accuracy yields the possibility to deploy other 

methodology designs for higher discrimination accuracy. Further analysis of ERD/ERS in the mu and 

beta frequencies could provide more informative feature vector.  

The incorporation of machine learning algorithms in the bilateral left-right foot classification is 

limited to linear discriminant analysis (LDA) or to the support vector machine in case of unilateral 

foot KMI [17, 25]. Careful selection of a new algorithm based on the size of the feature vector and its 

dimensions is required. For BCI systems that employ low dimensional feature vectors, the KNN 

algorithm can prove to be efficient [26].  

Present study investigated the possibility to exploit the spectral, spatial and temporal EEG features 

in the range of 7 to 35 Hz, i.e. mu ERD, beta ERD, and beta ERS (post movement). The aim was to 

propose a novel methodology for analysis and discrimination of unilateral foot KMI using the 

common average and bipolar references, and comparing the features resulting from each reference. 

We proposed three classification models i.e. LDA, SVM, and KNN, to assess their performance 

against the statistical chance level, followed by the evaluation of developed method and multiple 

comparison corrections. Such features could be useful in BCI applications where more than one 

output necessitate in a system. The study directs to the utilization of three independent control 

features that could be used within one BCI system.  
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2. Methods

2.1 Participants 

This study involved nine healthy participants, aged between 21-28 years, taking part in the 

experiment voluntarily. All participants submitted a written consent, i.e. they signed a participant 

consent form to engage in the study. None of them had any history of neurological disorder. 

Participants had no prior BCI experience. For this research, the ethics committee granted the 

approval, i.e. the RMIT College Human Ethics Advisory Network (CHEAN) Melbourne, Australia.  

Participants were directed to sit on a comfortable chair and watch a monitor screen (17’’) placed in 

front of them, at a distance of approximately 1.5 m. In order to avoid the possibility of 

proprioceptive signals induced due to muscle movement, a flat wooden surface was placed 

underneath the feet of participants. This way, both legs were loosely fixed. That allowed the knees 

to flex at 60o from full extension position, and ankles at the neutral position. During the experiment, 

participants were asked to dorsiflex their foot approximately 25o for 1 second, in accordance with 

the nominal walking gait measurements [27]. 

2.2 Cortical activity recording 

EEG signals were recorded using the neurofeedback BrainMaster Discovery 24E amplifier 

(BrainMaster Technologies Inc., Bedford, USA). EEG was referenced to the linked earlobes A1 and A2 

and recorded from 19 scalp electrodes. In order to acquire signals from the motor cortex, an 

electrocap with electrodes (C3, C4, Cz, F3, F4, F7, F8, Fz, FP1, FP2, O1, O2, P3, P4, Pz, T3, T4, T5, T6) 

mounted in and positioned according to the international 10-20 system [28], was used, as shown in 

Fig 1(A). Monopolar EEG was amplified and band-pass filtered in the frequency range of 1-100 Hz. All 

channels were sampled at 256 Hz, quantised with 24-bit resolution. Ground electrode was 

positioned near the forehead of the participants. The experimental protocol was designed using 

OpenViBE designer tool that comes with integrated feature boxes [9, 29, 30].  

After recording, EEG signals were processed. We converted the EEG signals into reference-free forms 

to analyse results from two different EEG derivations, i.e. common average and bipolar reference 

methods. The common average reference method used all electrodes as an identical reference 

electrode. Whereas for the bipolar method, the monopolar electrodes which were used for feature 

extraction, were limited to those near the vertex, i.e. voltage differences were transversely 

measured at two channels C3-Cz and Cz-C4, to emphasize the left-right cortical differences elicited in 

mu, low beta, and high beta for analysis. 
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Fig 1. (A) EEG electrode/channel locations. (B) Experimental protocol for foot kinaesthetic motor 
imagery tasks, with cue timings expressed in seconds, during one trial.  

2.3 Foot motor tasks 

The experiment consisted of four cue-based sessions without feedback. Each session comprised of 

40 trials, with 20 trials for left foot and 20 trials for right foot KMI in a random order. Before the four 

cue-based KMI sessions, a practice session was conducted, wherein participants performed a motor 

execution (ME) session of the same task in order to practice for measurement trials. During ME, 

participants were instructed to dorsiflex the foot approximately 25o maintained for 1 second 

(nominal walking gait) at each cue. Following practice, the KMI sessions were conducted. 

Each trial began with the presentation of a green fixation cross on screen for 3 seconds, used as 

reference period for processing of epochs. One second long audio beep stimulus, precisely before 

the visual cue display, was incorporated in the first trial only. This was to alert the participant about 

the beginning of the experimental trial, see Fig 1(B). Next, the visual cue of 2 seconds length was 

displayed followed by a 5 seconds long blank screen to perform the related task (imagery), making a 

total of 10 seconds for each trial. This was followed by random pause intervals of 1.5-3.5 seconds at 

the end of the trials, to prevent fatigue. The visual cues in each trial reflected either the left or right 

foot dorsiflexion image with an arrow pointing in the respective direction. Both visual cues were 

displayed in a random order to avoid possibility of any adaptation. 

2.4 Time-frequency analysis and topography of ERD/ERS 

In this study, we analysed both the ERD and ERS for each SMR i.e. mu (7-12 Hz), low beta (13-24 Hz) 

and high beta (25-35 Hz) [31]. An internal or external paced event results in the generation of an 

ERD/ERS, which is not phase-locked to the event [32]. The decrease in percentage power or 

synchrony of the underlying neurons is termed ERD, while its increase is called ERS, with respect to a 

reference period [33]. We used an inter-trial variance (ITV) method [34] to calculate the values of 
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ERD/ERS. It is a frequency domain measure of exact or partial synchronization of activity at a specific 

latency and frequency, to a set of (experimental) events to which EEG data trials are time-locked 

[35]. This method compares EEG phases among trials and measures phase variance. 

The EEG data was converted to reference-free form by using the common average reference method 

first and then the bipolar reference.  Data was pre-processed using finite impulse response (FIR) 

bandpass filter (implemented in EEGLAB [35]) with a low-cut frequency of 7 Hz and high-cut 

frequency of 35 Hz for capturing  mu and beta rhythms, as shown in Fig 2. These frequency bands 

contain most informative features about the limb movements for classification of feature vectors 

[36]. In addition to this, there is low possibility of any EMG contamination in those EEG frequency 

bands [37]. 

Fig 2. Band-power feature decoder with classifier training and testing in one-fold of the cross-
validation. 

Following this, epoching of the 40 trials (10 seconds) was done separately (class-wise), i.e. 20 left 

foot KMI and 20 right foot KMI epochs. Each extracted trial included the period of -3 to 0 seconds 

prior to the cue onset, used as reference period (baseline). The time window of cue for task 

performance was kept 5 seconds since dominant ERS occurs following movement offset. The 

processing of recorded data was based on single-trial EEG signals. Here the single-trial EEG refers to 

the EEG signals recorded during the KMI task (left vs. right) of one single trial. In order to remove any 

ocular artifact from the EEG signal, we employed the independent component analysis (ICA), as 

shown in Fig 2. It is proven from literature that spatial filters in single-trial analysis, improve the 

signal-to-noise ratio [38].   It decomposes EEG signal into separable localized sources of potentials 

[35]. The ICA transforms observed EEG signal (epoched data) as follows: 
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,    (1) 

where  is the observed single-trial EEG signal, , where n is the number of training trials. 

 is the un-mixing matrix and  is the single-trial signal, i.e. independent component [39]. From 

filtered data, we rejected artifacts (such as EMG contamination due to muscle movement) by using 

‘reject components by map’ (EEGLAB function). 

To analyse the difference between left and right foot dorsiflexion in the spectral and temporal 

domains, the EEG power spectrum for left and right foot KMI was considered. Time-frequency (TF) 

features represent the subject-specific ERD/ERS patterns, from the independent component signal . 

Based on the ITV method, the filtered average event-related potential (ERP) were subtracted from 

stimulus-locked single filtered EEG trials (class-wise), to overcome masking of induced activities. The 

samples were squared and sampled to estimate the power change in each frequency band, following 

method presented in [14, 40]. For every trial, a wavelet coefficient matrix was computed with 100 

time samples and 3 separate frequency bins (7-12 Hz for mu, 13-24 Hz for low beta and 25-35 Hz for 

high beta) for the i-th component signal. In order to get spectral power, the resulting coefficients 

were squared and the  transformation was computed to get resulting TF representation . 

The feature vector of the j-th trial  is obtained by the concatenation of the TF coefficients  that is 

computed from the i-th independent component signal inside . 

  (2) 

In Equation 2,  is the j-th feature vector, where , here  is the number of training trials,  

is the TF coefficient vector of the i-th component, , where  is the number of independent 

components in , the number of time samples is  and  is the number of frequency bins. 

The significance of deviations from baseline power was evaluated using the bootstrap-t statistical 

method [41], with confidence interval of 95% (p < 0.05). In this method, a substitution for data 

distribution is created by selecting spectral estimates for each trial from the randomly selected 

latency windows in the assigned epoch baseline i.e. prior to the stimulus onset, followed by their 

averaging. After repeating this process many times (default: N=200) a substitute ‘baseline’ amplitude 

distribution was generated whose specified percentiles were then taken as significant thresholds i.e. 

significant ERD and ERS features. This was implemented by developing a MATLAB script. Significant 

ERD/ERS are shown as TF maps, as given in Fig 3.  
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2.5 Feature extraction 

Based on literature, the most reactive channels associated to the motor imagery reflect in the 

central lobe [24]. A MATLAB script was used to extract mu and beta features from channels C3, Cz, 

and C4, associated to the sensorimotor cortex. It took into account the common average reference 

and bipolar references separately, for analysing the most significant band-power (BP) decrease, or 

increase, during each of the left and right KMI task. The power spectrum density of each EEG epoch, 

which was determined using TF analysis, was calculated. For BP calculations, let  be a single-

trial EEG signal epoch within the time interval , where  and  are the time points in 

seconds satisfying the condition for task performance duration i.e. . For a specific 

frequency band i.e. mu, low beta, or high beta, the percentage power change  for left or right KMI 

EEG epoch   is given as: 

(3) 

In Equation 3,  is the band-power of ; and  is the mean band-

power of the baseline prior to cue onset EEG epochs within the same time interval, given as: 

  (4) 

In Equation 4, , as twenty baseline EEG signals were taken as reference for twenty left 

epochs (KMI cues), similarly  for twenty right epochs with each participant.  

2.5.1 Test-statistic and family-wise error rate correction for multiple comparisons of ERD and ERS  

For statistic evaluation and comparison of features, two independent samples t-test were conducted 

on the two groups (left foot KMI and right foot KMI) of each feature for channels C3, Cz, and C4, 

across participants. Table 1 shows the actual test-statistic values for common average reference and 

bipolar reference driven features. These p-values were used for multiple comparisons, to direct 

towards the statistically significant features. 

In order to carry out multiple comparison corrections, we used the Bonferroni correction for p-

values adjustment from common average and bipolar references for each channel. Following 

scheme was followed: 
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   Observed p-value (common average reference) 

ERD/ERS Feature   Corrected p-value 

   Observed p-value (bipolar reference) 

The observed p-values obtained from each reference were corrected for mu and beta ERD/ERS, 

respectively. Equation 5 is used to calculate the family-wise error rate [42]. 

,  (5) 

where  is the family wise error rate,  is the specified per comparison error rate, and  is the 

number of comparisons performed. Here, , with three statistical analyses conducted on 

the same sample of data, , the Bonferroni correction is given by Equation 6.  

       (6) 

Any observed p-value less than the corrected p-value i.e., 0.017 is declared statistically significant, as 

seen in Table 1. With each feature, the comparisons were done for one channel from common 

average reference and two from bipolar channels, given as:  

C3, and C3-Cz, Cz-C4 
Cz, and C3-Cz, Cz-C4 
C4, and C3-Cz, Cz-C4 

Table 1 reflects the statistical test results i.e. the degrees of freedom, t-values and adjusted p-values. 

Following this, the 2-D topographic ERD/ERS (adjusted p-values) scalp maps were constructed for 

each participant, using the average ERD/ERS values in the most reactive frequency bands on all 

channels by using ‘topoplot’ (EEGLAB function). 
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2.5.2 Individual peak latencies 

With both references, the significant features with adjusted p-values were detected at a specific 

latency from cue-onset for each participant. They occur in the range of 7-12 Hz for mu ERD and 

between 13-35 Hz for beta ERD/ERS, as shown in Table 2. It reflects the individual peak latencies for 

left and right KMI task, in the respective frequency bands. 

Table 2: Individual peak latencies from cue-onset for significant mu ERD, beta ERD, and beta ERS, 

using common average reference (CAR) and bipolar reference (BIP), across participants. 

Participant Mu ERD (7-12 Hz) Beta ERD (13-35 Hz) Beta ERS (13-35 Hz) 
Latency from 
left- cue (s) 

Latency from 
right- cue (s) 

Latency from 
left- cue (s) 

Latency from 
right- cue (s) 

Latency from 
left- cue (s) 

Latency from 
right- cue (s) 

CAR BIP CAR BIP CAR BIP CAR BIP CAR BIP CAR BIP 
P1 2.62 2.75 2.80 2.90 1.90 1.80 1.82 2.00 4.20 4.65 4.50 4.50 
P2 2.83 2.32 2.73 1.90 2.11 2.25 1.95 2.10 3.85 3.95 4.05 3.90 
P3 1.80 2.10 2.22 2.10 1.62 2.15 1.78 1.95 2.80 2.75 3.15 3.05 
P4 2.64 2.60 2.75 3.00 2.23 1.75 2.15 1.90 3.80 2.75 3.65 3.58 
P5 2.70 2.65 2.42 2.55 1.75 1.88 2.17 1.65 2.65 2.88 2.60 2.58 
P6 1.71 1.85 1.90 2.10 1.90 2.00 1.78 1.85 2.89 3.05 2.79 2.85 
P7 2.00 2.10 2.15 2.60 1.81 1.74 1.77 1.75 3.52 3.65 3.55 3.80 
P8 2.31 2.20 2.62 2.52 1.94 2.10 1.65 1.60 3.35 3.30 3.30 3.55 
P9 2.45 2.15 2.20 2.52 1.60 1.70 2.15 2.25 3.55 3.78 3.60 3.58 

Mean 2.34 2.30 2.42 2.47 1.87 1.93 1.91 1.89 3.40 3.42 3.50 3.58 
S.D. 0.41 0.30 0.32 0.37 0.21 0.20 0.20 0.21 0.53 0.65 0.60 0.59 

2.6 Evaluation of Foot kinaesthetic motor imagery classification 

As this study is based on synchronous mode BCI, the classical LDA was used to measure the 

classification accuracy for discrimination of left and right foot KMI [43, 44]. However, in order to 

improve the classification accuracy, linear-SVM and KNN algorithms were employed in addition to 

LDA [26].  

With each classifier model, cross validation was used to estimate the optimal parameters for a 

classifier and avoid overfitting the classifier to the training data [45]. The -fold cross validation is 

used for estimating the true performance of machine learning models used in the study. We 

partitioned the training data set into  folds of equal size, then using  part as a training set and 

checked the classification rate on the one remaining part (testing set). This is repeated for   times 

(folds). Finally the accuracy on each fold is estimated by calculating the average of  classification 

rates obtained for  testing sets [46]. Feature scaling (standardization) was performed on the 

training set that transferred over to the test set. With each model, the dataset was randomized 

thirty times and each time divided into five folds ( ). The training set for each participant 
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consisted of 190 trials, i.e. 95 trials for each KMI task. This means each test validation set consisted 

of 38 trials for each KMI task. Consequently, the weight vectors and classification accuracies of 5-

folds were averaged. The mean and standard deviation of each classifier output was determined. 

Linear SVM model used a linear kernel function [47]. The parameter , which is the regularization 

parameter for controlling trade-off between attaining a low training and a low testing error, was 

verified for a range of values using MATLAB script. An optimal setting of  for the three 

models resulted in peak classification accuracies. In case of KNN, we used the weighted KNN 

method, and took into account , where  is the number of nearest neighbors, we wish to 

take vote from in the sample data [26]. The distance metric was Euclidean and the distance weight 

was squared inverse. In order to avoid overfitting, we assessed the training and validation error rate 

respectively, using different values of  and obtained the optimized result at  with each 

model and used it for prediction accuracy. 

2.6.1 Area under receiver-operator characteristic curve 

To evaluate the performance of the classifiers, the receiver operating characteristic (ROC) curves 

were utilized, as reported in [17]. When using the ROC curve as an evaluation tool, the area under 

curve (AUC) defines the performance of the detector. It indicates how much the model is capable of 

distinguishing between classes. In ROC, along the x-axis is the sensitivity, called true positive rate 

( ), given as: 

,       (7) 

where  is the number of true positives and  is the number of false negatives. Along the y-axis is 

1-specificity, also termed the false positive rate ( ), given as:

,     (8) 

where  is the number of false positives and  is the number of true negatives. Ideally, the area 

under the ROC, i.e. the AUC =1 indicates that there is 100% chance that the model will be able to 

distinguish between classes. For each model we calculated the  and  to obtain AUC-ROC in 

percentage across participants.  

 2.6.2 False discovery rate correction 

In order to compare the performance of multiple classifier models, we used the false discovery rate 

(FDR) correction method. As each feature vector is independent, we applied the Benjamini-Hochberg 

procedure to decrease the possibility of any false discovery rate [48].   For Table 3, Equation 9, 

defines the FDR [49]. 
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Table 3: Errors in multiple testing of N hypotheses 

Hypothesis Non-significant discovery Significant discovery Total 

True null     

False null    

Total declared    

FP and FN reflect number of false positives (Type I error) and false negatives (Type II error); TP and 
TN denote numbers of correctly declared significant and non-significant discoveries. Here DP is the 
number of rejected null hypotheses (declared positives). 

        (9) 

This technique controls FDR at a pre-specified threshold, , on an average. In this study, the  

level was selected to standard  level of 5% for the purpose of comparison.  

To apply the procedure for multi-model testing correction with  models, we arrange the  values in 

ascending order,  corresponding to null hypotheses, 

 . Following this, in a step-up manner, evaluate inequality given in Equation 10, in 

reverse sequential order, beginning from the last  value ,  

               (10)

The comparison is stopped when the above inequality is true. Finally, reject all the hypotheses 

 for which   is less than or equal to   i.e., the models belonging to the rank 

 are significantly discriminant.

3. Results

All participants followed the cues and performed the tasks successfully. There was no feedback 

regarding fatigue during the experiment. 

3.1 Time-frequency map 

The TF maps were individually analysed for each participant during the trial period of -3 to 7 

seconds, i.e. 10 seconds. Figure 3 shows TF maps of the representative three participants 

(participant 1, 2, and 4). The common average reference and the most reactive two bipolar channels 

(C3-Cz and Cz-C4) were selected for comparison, as discussed in section 2.5.1. The TF map of each 

participant was used for selecting reactive bands of ERD/ERS and peak latency from cue-onset (Table 

2). Each feature pattern can be observed from Fig 3 and latencies in Table 2 (for all participants).  For 

common average reference, participant 1, reflected a strong beta ERS on average between 19-27 Hz 
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with peak latency from cue onset = 4.20-4.50 seconds ( ), during left and right KMI, 

respectively. Right KMI generated a concentrated beta ERS, compared to the left KMI. The bipolar 

method revealed a focused beta ERS at channel C3-Cz during left KMI i.e. no contralateral 

dominance. Contrary to this, channel Cz-C4 showed a prominent beta ERS during left KMI.  For both 

references, mu 2 Hz ( ) with participant 1. On average, the TF maps 

derived from both references demonstrated significant beta ERS for left and right KMI between 3.40-

3.50 and 3.42-3.58 seconds, respectively. Similarly mu ERD was visible between 2.34-2.42 and 2.30-

2.47 seconds respectively, and prominent beta ERD reflected between 1.87-1.91 and 1.93-1.89 

seconds.   

Fig 3. Time-frequency maps (participant 1, 2, and 4). Common average reference channel Cz, and 
two bipolar channels, C3-Cz and Cz-C4, are shown. The left columns show left foot dorsiflexion 
kinaesthetic motor imagery (KMI), and the right columns show right foot dorsiflexion KMI. 
Significant (p < 0.05) band-power changes are shown during the trial period of -3 to 7 s. The pink 
dotted line indicates the beginning of KMI. 

Figure 4 reflects the grand-average amplitude of statistically significant mu ERD, beta ERD, and beta 

ERS for all nine participants. For both references, each left-right feature amplitude exhibited 

differences. While mu and beta ERD, showed lower amplitude over both common average and 

bipolar references, the maximum amplitude was visible in case of beta ERS. It was also observed that 

common average reference channel Cz showed little difference in amplitude between left and right 

foot KMI. The common average channel C3 elicited strong left-right differences over the 

contralateral side for all three features, followed by C4 with relatively less strong contralateral 

dominance. Bipolar channel Cz-C4 reflected prominent contralateral difference in beta ERS 
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discriminating the left-right foot KMI ( , t-test). Maximum difference in amplitude between 

left and right KMI task is illustrated by green arrows in Fig 4. 

Fig 4. Average amplitude of significant mu ERD, beta ERD and beta ERS from all nine participants 
(N=9). The blue bars show average amplitude of each feature after left foot task whereas red bars 
represent right foot task. The error bars depict standard deviations. The significant values of 
adjusted p < 0.017 are plotted. 

3.2 Average time course of ERD/ERS 

Figure 5, represents the average time course of ERD/ERS for a representative participant (participant 

2) with reference to the cue onset. The curves are based on most reactive ERD/ERS bands selected

for each participant and peak latencies from cue onset, as reported in Table 2. The time-power

curves of all participants reflected a strong peak in power amplitude at the end of the KMI period.

The mu power attenuated with both common average and bipolar references, i.e. an ERD could be

observed as soon as the visual cue was presented, with peak latency between 0-3 seconds, Fig 5.

The low beta range also reflected an ERD from the beginning of the cue presentation window with a

peak latency of 0.5-2.5 seconds. For high beta, a similar dip was observed during KMI period window

i.e. approximately between 0-3.5 seconds, followed by a large spike i.e. an increase in power

amplitude, ERS, on average of one second duration (post-imagery period).
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Fig 5. Average time course (participant 2) for ERD and ERS of common average reference channel 
Cz and two bipolar channels C3-Cz and Cz-C4 are shown.  The left column reflects power changes in 
mu rhythm, mid column for low beta and right column for high beta. 

3.3 EEG scalp topographies 

The EEG scalp topographies of ERD/ERS from all participants with their incidence time and average 

specific reactive bands are displayed in Fig 6. We averaged the topographies over all nine 

participants. The common average reference method revealed that all three features were located 

across the vertex (Fig 6 top row). The mu ERD showed lateralized distribution during left and right 

foot KMI, whereas the beta ERS and ERD were localized centrally. Bipolar method (Fig 6 bottom row) 

demonstrated that mu ERD was contralaterally dominant during right foot KMI at Cz-C4, in 

agreement with results already obtained from Fig 3 and 4. Contrary to mu ERD, beta ERS revealed 

topographic scalp distribution with a contralateral dominance during left foot KMI at channel C3-Cz, 

whereas beta ERD remained centre-focused without lateralization. This is also in accordance with 

our established findings from previous sections.  
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Fig 6.  Average EEG topographies of ERD/ERS during foot KMI of all participants. Mu ERD is shown 
in the left column for left foot and right foot respectively, following this, beta ERD is in the mid 
column, and beta ERS is in the right column with distinguished ERS pattern. The top row illustrates 
ERD/ERS patterns for common average reference and the bottom for bipolar reference. 

3.4 Classification accuracy 

While in general, TF maps, average time-course for power, and scalp topographic analyses of the 

statistically significant EEG features revealed left-right KMI differences; there were instances (e.g. 

beta ERD amplitude graphs), where less differences exhibited. However, if a BCI user shows even a 

slight left-right difference, it is possible to enhance differences and improve the BCI control accuracy 

using machine learning techniques [50, 51]. Therefore, to enhance the left-right differences and 

confirm the cortical lateralization of features, selection of classification method is critical. 

Classification results for this research are derived from two linear i.e. LDA and SVM, and a non-linear 

model i.e. KNN.  

Table 4 and 5 show the classification accuracy of all EEG features, resulting from three models, for 

common average and bipolar references, respectively. With first reference, the highest accuracy was 

achieved by participant 1, 83.4 %, for beta ERS during LDA classification. This was followed by SVM 

and KNN, i.e. 82.0% and 81.3% respectively. Maximum average accuracy with all models was 

observed for beta ERS compared to other features, given as KNN= 74.9% ± 5.20, LDA= 68.3% ± 6.72, 

and SVM= 67.2% ± 6.70. With bipolar reference, a similar trend was observed, i.e. participant 1 

elicited highest classification accuracy of 80.4% for beta ERS using KNN. Similarly, average 

classification accuracies of beta ERS for all models was highest than the other features, i.e. KNN= 

72.8% ± 3.64, LDA= 67.3% ± 4.70, and SVM= 65.7% ± 4.10.  
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Results also reveal that the average accuracy of all features are well above the statistical chance 

level of a 2-class discrimination BCI problem which is 57.5% ( ) or 60.0% ( ) for 80 

trials, as described in [52].  

In addition to classification accuracies, Table 4 and 5 also reflect the area under ROC curve (AUC) in 

percentage, of each participant. For ideal detection AUC should be 1. Beta ERS exhibited maximum 

AUC of 86.0% with KNN using common average reference, for participant 1. Similarly, with bipolar 

reference, it showed highest AUC of 85.0% with KNN model.  Overall the average AUC was observed 

to be maximum for beta ERS using both references, i.e. KNN= 82.5% ± 2.55 and KNN= 82.0% ± 1.66, 

respectively. It can therefore be stated that beta ERS resulted in highest 2-class discrimination 

accuracy than other features, exceeding the chance level 60% at , with highest AUC. 

However, mu and beta ERD also performed above the chance level, of 2-class discrimination, as 

described earlier (  FDR adjusted). On average the KNN model outperformed LDA and SVM 

for all participants, as shown in Fig 7.  
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4.1 Common average reference and bipolar method for discrimination of left-right mu ERD, beta 

ERD, and beta ERS 

The common average reference method has been used as it is computationally simple and compliant 

to both on-chip and real-time applications. This spatial filter identifies small signal sources in very 

noisy recordings, with much higher signal-to-noise ratio than a Laplacian [55, 56]. It was used to 

detect intention of movement during imagination [57]. In contrast to a previous study on left-right 

difference of beta ERS, which did not observe any difference with common average reference [17], 

our study confirmed the difference for all three features, not only beta ERS. Mainly, the channels 

adjacent to the vertex i.e., C3 and C4 exhibited a contralateral dominance with reference to cue 

presentation. The selection of these channels was based on the studies confirming that foot KMI 

elicits ERD/ERS patterns in the sensorimotor cortex [10, 24]. The analyses indicated that unilateral 

foot KMI generated significant mu ERD ( ) and beta ERS ( ) in all participants with no 

BCI feedback training. Our results depict that foot KMI elicits broad-banded ERD (10.1 Hz ± 1) and 

narrow-banded ERS (24 Hz ± 0.8). Highest 2-class discrimination accuracy was achieved for beta ERS 

and beta ERD features with this reference.  

However, the transverse bipolar method also demonstrated statistically significant left-right 

discrimination of foot KMI with all features, maximum with beta ERS. In contrast to Laplacian, it is a 

simple spatial filter, that derives the first spatial derivative, thus enhances the differences in voltage-

gradient in a direction [56]. With multiple comparisons of left-right features between both reference 

channels, the family-wise error rate Bonferroni correction was performed. 

With foot KMI, the broad band ERD indicated the involvement of supplementary motor area (SMA) 

in the preparation and performance of imagery tasks [33, 58]. In addition to this, the foot area 

enhancement was observed with narrower beta ERS. Therefore, it can be stated that the differences 

in ERD and ERS can be observed in mu, low beta and high beta frequency bands of sensorimotor 

cortex and SMA. However, for one BCI system with multiple users, the use of all three features, as 

individual control signal, could be tricky, as the decision boundary/threshold to discriminate 

between the features (frequency band) may vary.  

4.2 Comparison of KNN with linear classifiers using false discovery rate correction 

Figure 7 depicts the results from present study (FDR adjusted p-values of 0.05) with an average 

classification accuracy of 60% ( ) for all participants that deployed mu and beta ERD/ERS 

for discrimination between classes. It is evident for all three classifiers that beta ERS exceeded 80% 

accuracy for participant 1 (Table 4). These results clearly show an improved classification accuracy 

than a similar study [17], with the difference of BCI design. Our study involved artifacts rejection 
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using ICA and a KNN as classifier model that outperformed remaining models for beta ERD and ERS, 

Fig 7. These efficient results could be due to the low dimensional feature vectors deployed in the 

study for a BCI [26].  

Significant ERD/ERS features associated with mu and beta, were evaluated using AUC-ROC for the 

binary classifier. However, since each classifier model is independent, we made multiple 

comparisons between models to evaluate the statistical significance of the models. Consequently, 

the FDR correction was applied, using the method of Benjamini-Hochberg, as described in section 

2.6.2. The threshold for controlling FDR was selected to standard  level of 5% for the purpose of 

comparison, . Table 6 reflect the FDR corrections for LDA, SVM, and KNN models. It can be 

observed that all the comparisons resulted in the rejection of null hypotheses , except for the last 

comparison, where the inequality in Equation 10 becomes true. This is due to the very close 

accuracies exhibited by KNN and SVM models, i.e. the performance efficiency of both classifiers has 

similar impact for mu ERD. These encouraging results suggest that the foot dorsiflexion KMI can 

potentially elicit left-right differences in EEG. Following this, the feedback training plays an effective 

role in enhancing the classification accuracy as suggested by [59]. Subsequently, our next aim would 

be to monitor the repetitive use of BCI training and its effects on classification accuracy. 

Fig 7. Classifiers performance accuracy in percentage, using (A) common average reference, and 
(B) bipolar reference. The error bars represent standard deviations.

Our next goal is to use the common spatial patterns (CSP) method for the same task i.e. 

discrimination of left-right foot KMI. In general, CSP has been used in BCI study for motor imagery 

(foot and hand/tongue) using only Laplacian derivation, not left and right foot KMI difference (e.g., 

[60]). However, our study reflected the enhancement of foot KMI differences using common average 

and bipolar references. The use of CSP features with the present study design, could improve the 

left-right differences of foot KMI and be used as independent control features. 
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Table 6. False discovery rate (FDR) corrections for LDA, SVM and KNN classifiers 

p-value Linear setup Adjusted-p 
 

Rejected 
H0 

Mu 
ERD 

Common average 
reference 

LDA-SVM * * 0.003 1
LDA-KNN 0.007 * 0.006 1 
KNN-SVM 0.435 * 0.008 1 

Bipolar reference 
LDA-SVM * * 0.011 1
LDA-KNN 0.004 * 0.014 1 
KNN-SVM 0.028 * 0.017 1 

Beta 
ERD 

Common average 
reference 

LDA-SVM * 0.002 0.019 1
LDA-KNN * 0.003 0.022 1
KNN-SVM * 0.004 0.025 1

Bipolar reference 
LDA-SVM 0.011 0.007 0.028 1 
LDA-KNN 0.020 0.007 0.031 1 
KNN-SVM * 0.010 0.033 1

Beta 
ERS 

Common average 
reference 

LDA-SVM 0.046 0.011 0.036 1 
LDA-KNN 0.007 0.020 0.039 1 
KNN-SVM 0.003 0.028 0.042 1 

Bipolar reference 
LDA-SVM 0.041 0.041 0.044 1 
LDA-KNN 0.010 0.046 0.048 1 
KNN-SVM 0.002 0.435 0.050 0 

* denotes the p-value less than 0.001.

5. Conclusions

The aim of this research was to decode the bilateral foot motor imageries and obtain high 

classification accuracy in order to enhance the universality of lower-limb assistive BCI. The results of 

presented investigation show the lateralization of mu and beta features in association with left-right 

foot dorsiflexion KMI. We have demonstrated that the KNN model, with common average reference 

method, can improve ERD/ERS lateralization. Our method achieved highest accuracy level of 83.4% 

using EEG signals from channels at the vertex and its adjacent C3 and C4 positions. It is therefore 

concluded that beta ERS, in addition to mu ERD, and beta ERD can be used as independent control 

features for a synchronous BCI. These features could be deployed in a 2-class BCI as control 

commands for operating bionic foot or a foot neuroprosthesis. 
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Chapter Overview

The confirmation of cortical lateralization of ERD/ERS  based on foot KMI

 in the previous chapter. Further investigations for the possibility to improve 

classification accuracy of the two foot KMI tasks  to be used in a BCI paradigm  has

been presented in this chapter. CSP and filter-bank CSP (FBCSP) feature vectors were 

explored separately. The ML models  linear discriminant analysis and logistic 

regression, both deployed CSP and FBCSP feature vectors individually, resulting in 

four combinations of models. Resulting accuracies were statistically compared for each 

combination model. In context to band-power features, CSP features resulted in lower 

classification accuracy  but stood significantly above the statistical chance level of a 2-

class BCI paradigm.

This study is accepted for publication in Biomedical Physics and Engineering

Express.

M. Tariq, P. M. Trivailo, and M. Simic. Classification of left and right foot
kinaesthetic motor imagery using common spatial pattern.
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Abstract

Background and Objectives

Brain-computer interface systems typically deploy common spatial pattern (CSP) for feature 

extraction of mu and beta rhythms based on upper limbs kinaesthetic motor imageries (KMI).

However, it has not been used to classify the left vs. right foot KMI, due to its location inside the 

mesial wall of the sensorimotor cortex, which makes it difficult to be detected. This study reports the 

novel classification of mu and beta EEG features, during left and right foot KMI cognitive task, using 

CSP, and the filter bank common spatial pattern (FBCSP) method, to optimize the subject-specific 

band selection. The study initially proposed CSP method, followed by the implementation of FBCSP 

for optimization of individual spatial patterns, wherein a set of CSP filters was learned, for each of the

time/frequency filters in a supervised way. This was followed by the log-variance feature extraction

and concatenation of all features (over all chosen spectral-filters). Subsequently, supervised machine 

learning was implemented, i.e. logistic regression (Logreg) and linear discriminant analysis (LDA), in 

order to compare the respective foot KMI classification rates. The training and testing data, used in 

the model, was validated using 10-fold cross validation. In this study four methodology paradigms

were reported, i.e. CSP LDA, CSP Logreg, and FBCSP LDA, FBCSP Logreg. All the paradigms 

resulted in an average classification accuracy rate above the statistical chance level of 60.0% (P <

0.01). On average, FBCSP- LDA outperformed remaining paradigms with a kappa score of 0.41 and 

the area under ROC curve as 0.64. Similarly, this paradigm enabled discrimination between right and 

left foot KMI cognitive task at highest accuracy rate i.e. maximum 77.5% with kappa=0.55 (in single 

trial analysis). The proposed novel paradigms, using CSP and FBCSP, established a potential to 

exploit the left vs. right foot imagery classification, in a synchronous 2-class BCI for controlling 

robotic foot, or foot neuroprosthesis.

Keywords:

Common spatial pattern (CSP), filter bank common spatial pattern (FBCSP), kinaesthetic motor 

imagery (KMI), brain-computer interface (BCI), EEG, supervised machine learning.
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1. Introduction

Brain-computer interface (BCI) is an augmented muscle-free communication channel between the 

human brain and output devices for assisting subjects with neuromotor disorders, spinal cord injuries 

(SCI) or amputated residual limbs [1-4]. It decodes a specific brain activity into computer command 

to control external device. Amongst the popularly used electroencephalography (EEG)-based brain 

activity is event-related (de)synchronization (ERD/ERS) localized in the sensorimotor cortex [5-9].

The ERD/ERS features can be quantified via band-power changes that occur during any kinaesthetic 

motor imagery (KMI) task performed by the subject, e.g. imagination of limb movement (left-right 

hand or foot) [5, 7]. Frequency bandwidths, that reflect imaginary activity in EEG, lie in the mu and 

beta oscillatory activity, i.e. between 7 to Hz.

In order to extract ERD/ERS EEG features for BCI, various methods have been introduced based on 

application requirements [1, 9-13]. According to [14], for a BCI that uses mu and beta rhythms, the 

selection of spatial filter can markedly affect its signal-to-noise ratio. The common spatial pattern 

(CSP) is one efficient method that has generally been used with oscillatory processes in the KMI 

feature extraction due to its simplicity, relatively high speed and robustness. However, literature 

reflects that this method has been used with either hand motor imagery (MI), e.g. left vs. right hand,

or left-hand vs. rest, or hand vs. basic foot, or tongue movement imageries [15-18]. There was no 

evidence of left vs. right foot discrimination task. Less literature on discrimination of lower-limbs 

compared to upper limbs is due to the location of lower-limbs representation area near the 

“mantelkante” in the sensorimotor cortex [1, 7, 8]. It is located deep inside the mesial wall (within the 

interhemispheric fissure). In contrast to upper limbs, hip, knee, foot and toes share spatial proximity 

with each other that makes it difficult to detect them. This study therefore takes into account the left 

foot vs. right foot dorsiflexion KMI tasks for establishing the basis of a 2-class BCI (that could 

generate two independent commands) to control 2 degrees of freedom (DOF) robotic foot.

As CSP finds spatial filters, which maximize the variance of the (projected) signal from one class, and

minimize it for the other class, it offers a natural approach to efficiently estimate the discriminant 

information about KMI [19]. Adaptive spatial filter uses the log-variance features over single non-

adapted frequency range (that may have multiple peaks), and in the signal, neither temporal structure 

(variations) is captured, nor the interactions between frequency bands [20]. Successful application of 

CSP mainly relies on the filter band selection (a wide filter band lies in the 8-35 Hz for KMI 

classification). However, the most effective frequency band is typically subject-specific that can 

hardly be determined manually [16]. In order to fix the filter band selection problem, the approaches 

proposed include simultaneous optimization of spectral filters within the CSP [21-23]; and selection 

of significant CSP features from multiple frequency bands [24, 25]. Filter bank common spatial 

pattern (FBCSP) was introduced for the selection of optimal filter bands, through estimation of the 

mutual information among CSP features in several fixed filter bands [25]. Consequently, we 
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implemented the FBCSP as a further study, to optimize the subject-specific frequency band for CSP 

across participants.

The FBCSP is an extension of the CSP method. A set of CSP filters is learned for each of the several 

time/frequency filters, followed by the log-variance feature extraction, the concatenation of all 

features (over the chosen spectral filters), and finally machine learning. It could be very useful when 

oscillatory processes in different frequency bands (with different spatial topographies) e.g., mu, low 

beta and high beta, are jointly active. Their concerted reaction must be taken into account for the

given prediction task [20]. In this study, since FBCSP’s feature space dimensionality was larger than 

in CSP followed by complex interactions, a more complex classifier than linear discriminant analysis 

(LDA) was additionally deployed to learn the appropriate model. However, with more flexibility 

comes a risk of overfitting, i.e. a tradeoff, therefore we compared its performance with the standard 

CSP performance. Since complex (relevant) interactions between mu and beta bands are seemingly 

rarely observed, the selection of time and frequency regions was critical.

We have focused on the optimal selection of discriminative ERD/ERS features from multiple 

frequency bands of mu and beta and the effective imagery time window using two feature selection 

algorithms, CSP and FBCSP, designed in BCILAB (MATLAB toolbox and EEGLAB plugin) [20].

The selected features were concatenated, and two machine learning models, i.e. logistic regression 

model and LDA, were trained on the selected features, in order to classify the left and right foot KMI 

tasks. The single-trial classification accuracies used in the training and testing data were validated 

using 10-fold cross validations for session-to-session transfer with all participants. After testing 

FBCSP with Logreg and LDA, the resulting accuracy rates were compared to the rates obtained from 

basic CSP algorithm with Logreg and LDA. The classification performance of each algorithm was 

statistically evaluated With the highest average percentage 

accuracy of 70.28 ± 4.23, to discriminate between left and right foot KMI, FBCSP-LDA surpassed 

remaining algorithms, yielding a mean kappa value of 0.41 across all nine participants. This was 

followed by no experience of BCI protocol in advance, by any participant.

2. Materials and Methods:

2.1 Participants

This study involved nine healthy participants, with no history of neurological disorder, or any 

impairment, aged between 21-28 years, who voluntarily participated in the experiments. The 

participants had no BCI experience either. Ethics approval for the study was granted by the CHEAN 

(College Human Ethics Advisory Network) of RMIT University, Melbourne, Australia.

Participants were seated in a comfortable chair and were directed to watch a monitor (17’’) from a

distance of approximately 1.5 m. To avoid the possibility of any proprioceptive signals due to muscle 

movement, a flat wooden sheet was placed underneath the feet of participants. Hence both legs were 
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loosely fixed, with the knees flexed at from full extension position, and ankles at neutral position. 

In the experiment, participants were directed to dorsiflex their foot approximately for 1 second, 

analogous to the normal walking gait measurements [26].

Figure 1 The temporal sequence of a trial for foot kinaesthetic motor imagery session followed in the experiment.

2.2 Cortical activity recording

The EEG signal was recorded from 19 scalp electrodes, using neurofeedback BrainMaster Discovery 

24E amplifier (BrainMaster Technologies Inc., Bedford, USA); referenced to the linked earlobes A1 

and A2 [9]. To acquire EEG signal from the motor cortex, an electrocap with mounted electrodes (C3, 

C4, Cz, F3, F4, F7, F8, Fz, FP1, FP2, O1, O2, P3, P4, Pz, T3, T4, T5, T6), positioned according to the 

international 10-20 system [27] was used. Monopolar EEG was amplified and bandpass filtered in the 

frequency range of 1-100 Hz. All channels were sampled at 256 Hz and quantised with 24-bit 

resolution with ground electrode located near the forehead of participants. Experimental protocol was 

designed using OpenViBE designer tool that comes with integrated feature boxes [28, 29].

2.3 Foot motor tasks

Four cue-based sessions were performed without feedback. Each session comprised of 40 trials, with 

20 trials for left foot and 20 trials for right foot KMI in a random order. This led to 80 repetitions for 

each foot KMI task. Prior to the four cue-based KMI sessions, a motor-task practice session, without 

imagery, was conducted for the participants, in which they dorsiflexed each foot approximately 

for 1 second (nominal walking gait) post cue. Following this, the KMI sessions were conducted.

In the experimental paradigm as shown in Fig. 1, each trial was initiated with presentation of a 

fixation cross on screen for 3 seconds, used as reference period for processing of epochs. An audio 

beep of one second, right before the visual cue display, was incorporated in the first trial only, to let 

the participant pay attention. The temporal sequence of 1 trial is given in Fig. 1. Next, the visual cues 

were displayed for 2 seconds, followed by the display of a blank screen (black), 5 seconds in length, 

for MI task performance. This made a total of 10 seconds for each trial. Following this, a random 

(pause) interval of 1.5-3.5 seconds at the end of each trial was incorporated, to prevent fatigue. The 
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visual cues in each trial reflected, either the right, or left foot dorsiflexion image with an arrow 

pointing in the respective direction. Both cues were displayed in a random order to avoid any 

adaptation. After recording, EEG signals were processed offline using MATLAB R2013b and 

BCILAB https://github.com/sccn/BCILAB .

2.4 Feature extraction using CSP and FBCSP 

The filter bank common spatial pattern (FBCSP) has four stages involved in signal processing and 

machine learning, as illustrated in Fig. 2, adapted from [30]. First, a filter bank that decomposes EEG 

into multiple frequency pass bands using Chebyshev Type II filter is used. In this case a total of 3 

bandpass filters are deployed, 8-12, 13-25, 28-32, covering ranges of mu and beta rhythms. Second 

stage involved spatial filtering using CSP algorithm. Third stage was the CSP feature selection, and 

finally the classification of these features based on the left vs. right foot KMI tasks. The CSP 

projection matrix for each filter band, discriminative CSP features, and classifier model are computed 

from the labelled training data (2-class KMI tasks). Parameters, computed from the training phase, are 

then used for the testing phase, and finally for the prediction of the single-trial KMI task.

We have initially deployed the common spatial pattern (CSP) method for 2-class discrimination of 

foot KMI tasks. Based on literature [19] it was demonstrated that, for improving the signal-to-noise 

ratio, spatial filters overall are useful in single-trial analyses. CSP algorithm transforms the observed 

EEG signal as:

(1)

where is the observed single-trial EEG signal from the bth bandpass filter (between 7-35 

Hz) of the jth trial, , where n is the number of training trials.
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Figure 2 Experimental setup reflecting the methodology of common spatial pattern (CSP) and filter bank CSP (FBCSP) 
algorithms for training, testing and prediction.

is the un-mixing matrix (CSP projection matrix) and is the recovered single-trial sources

after spatial filtering, and T denotes transpose operator. The CSP filter computes the un-mixing matrix 

in order to yield features that have optimal variances for discriminating the classes of measured 

EEG signal [15, 19, 31], in this case two classes. This is achieved by resolving the eigenvalue 

decomposition problem.

(2)

where and are the estimates of the covariance matrices of b-th bandpass filtered EEG signal 

based on two imagery tasks i.e. left and right foot movement. The diagonal matrix consists of the 

eigenvalues of , and the column vectors of are the filters for CSP projections. For best 

results, most suitable contrast is provided by filters with the highest and lowest eigenvalues. It is 

therefore common to retain eigenvectors from both ends of the eigenvalue spectrum [19]. We used 

the MATLAB toolbox BCILAB https://github.com/sccn/BCILAB for algorithm implementation. Time 

window was kept [0 4], whereas for CSP algorithm we used the finite impulse response (FIR) filter 

for a frequency window of [7 8 32 35].

The CSP filter was applied for a left vs. baseline and right vs. baseline for each band, in the time 

segment starting after the cue presentation i.e. task performance duration of 5 seconds. Furthermore 

eigenvectors from the top and from the bottom of the eigenvalue spectrum were retained. This 
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method was implemented on the pre-processed training dataset, that yielded the un-mixing 

matrix and source signals , where

is the number of sources i.e. the CSP projections, is the number of channels, the number 

of time samples is and , here is the number of trials of training sets.

When the spatial filtered signal from (1) uses from (2), it maximizes the difference in 

variance of the two classes of bandpass filtered EEG signal. The m pairs of CSP features of j-th trial 

for b-th band-pass filtered EEG signal are given by:

(3)

where ; signifies the first m and the last m columns of ; returns the diagonal 

elements of the square matrix; returns the sum of diagonal elements in the square matrix [30].

Consequently, the FBCSP feature vector for the j-th trial is formulated as:

(4)

where , ; represents the total number of trials in data.

The training data, that comprised extracted feature data, is given as (5) and the true class labels is 

denoted as (6), in order to make a difference from the testing and prediction data, 

(5)

(6)

where ; ; and ; and are the feature vector and true class label

respectively, from the j-th training trial, ; where represents the total number of trials 

in training data [30].

2.5 Performance evaluation 
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This study uses the synchronous i.e. cue-based BCI protocol, therefore a traditional linear 

discriminant analysis (LDA) was used to measure classification accuracy, as recently reported [32]

both for CSP and FBCSP features, respectively. However, in order to enhance the classification 

accuracy outcome of LDA, we deployed the logistic regression (Logreg), a supervised machine 

learning model for both features. 

We deployed the cross validation method to estimate the optimal parameters for the classifiers and 

avoid overfitting classifiers to the training data [33]. The -fold cross validation estimates the true 

performance of machine learning model. Classification with each model, for correctly discriminated 

trials, was performed with 10-fold cross-validation. For each participant data, we partitioned all motor 

imagery trials into folds of equal size, then using part as a training set and checking the 

classification rate on one remaining part (testing set) for prediction accuracy. This is repeated for

times (folds). Consequently, the weight vectors and accuracy on each fold is estimated by calculating 

the average classification rates obtained for testing sets [34]. Feature scaling (regularization) was

performed on the training and test sets. The mean and standard deviation of each classifier output was 

determined. Our proposed methodology resulted in four combinations of models, i.e. CSP-LDA, CSP-

Logreg, FBCSP-LDA, and FBCSP-Logreg.

For machine learning based studies, the performance measure of classification model is an essential 

task. We utilized the area under the receiver operator characteristic curve (AUC-ROC curve). The 

ROC curve is plotted with the true positive rate ( ) against the false positive rate ( ) at various 

threshold settings that illustrates the diagnostic ability of a binary classifier. It is a probability-curve 

and AUC signifies the degree of separability/distinguishing between classes [35]. In ROC, along x-

axis lies the sensitivity, called true positive rate ( ):

, (7)

where is the number of true positives and is the number of false negatives. Along y-axis lies 1-

specificity, also termed the false positive rate ( ):

, (8)

where is the number of false positives and is the number of true negatives. With a higher AUC, 

model is better at predicting 0s as 0s and 1s as 1s, i.e. distinguishing between left foot KMI and right 

foot KMI. Ideally, the AUC =1.

In addition to this, we statistically evaluated the performance of the classifiers, as a measure of 

distinctiveness between the two classes, by using Cohen’s kappa coefficient [36, 37]. In our study 

of 2-class problem, the evaluation of the classifier is defined by its confusion matrix H, that describes 

the relationship between the true classes and observed output of the classifier. Given H, the 

classification accuracy ACC (overall agreement) is given as:
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(9)

The chance expected agreement is given as:

, (10)

where is the number of samples, are the elements of confusion matrix H on the 

main diagonal, whereas and are the sums of each column and row, respectively. Therefore, the 

estimate of kappa coefficient is given as:

, (11)

with the chance probability [38].

2.5.1 Test-statistic and family-wise error rate correction 

In order to statistically evaluate and compare the outputs of proposed models, two independent 

samples t-test were conducted on the two groups of each feature (CSP and FBCSP), across 

participants. The p-values were used for comparisons, to direct towards the statistically significant 

features. Multiple comparison corrections were done using the Bonferroni correction, for p-values 

adjustment.

The observed p-values obtained from LDA and Logreg classifier models were corrected for CSP and 

FBCSP features, respectively as shown in the schematic below.

   LDA              LDA

CSP and      FBCSP

   Logreg                   Logreg

Results from LDA model were compared to Logreg model for CSP feature; similarly results from 

LDA were compared to those from Logreg for FBCSP. To calculate the family-wise error rate (12) is 

used, from [39].

, (12)

where is the family wise error rate, is the indicated per comparison error rate, and is the 

number of comparisons performed. In this research, , with two statistical analyses 

conducted on the same sample of data, , the Bonferroni correction is given by (13).
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(13)

Any observed p-value less than the corrected p-value of 0.025 is confirmed to be statistically 

significant.

3. Results

During the experimental trials, all participants successfully performed the tasks, as per instructions. 

There was no report from any participant about fatigue or anxiety during experiment.

3.1 Common spatial pattern scalp projections

As the anatomical properties of cortical folding between people are different [40, 41], the areas of 

maximum discrimination power for the ERD/ERS characteristic of foot movement and MI during 

experiment are not strictly located beneath electrode positions C3, Cz and C4 [17]. For this reason, the 

CSP method generates subject-specific spatial filters that are optimized for discrimination among the 

two experimental tasks. It spatially filters the raw EEG channels to smaller time-series, whose 

variances are optimized to discriminate the two classes, i.e. left foot KMI and right foot KMI. 

For each participant a 3-pair set of CSP scalp projections were generated, however to save space, the 

Fig. 3 illustrates a 3-pair set of CSP scalp projections generated for one participant, P01. Each CSP 

filter contains 2 patterns that illustrate how the signal projects to scalp through training data generated 

by FBCSP. During right and left foot KMI tasks, CSP pattern 1 reflects the time invariant EEG source 

distribution vectors i.e. the sensorimotor area activation around channel C3, this confirms the cortical 

lateralization of ERD/ERS. Similarly, the CSP pattern 3 elicits the contralateral dominance at channel 

C4, whereas, the pattern 2 is focused at the vertex (Cz). The CSP patterns 1 and 3 are concentrated in 

the contralateral hand area representation of the cortex. On the contrary CSP pattern 2 is centrally-

focused around the vertex of sensorimotor cortex which is the foot area representation, as established 

by [5].
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Figure 3 A set of common spatial patterns (CSPs) filters of participant P01, where CSPs are optimized for the discrimination 
of right and left foot kinaesthetic motor imageries with respect to reference period.

3.2 Classification accuracy and KMI task discrimination

While in general, the CSP scalp projections clearly revealed the discrimination of left-right foot 

imageries, there were cases where the projections did not exhibit strong left-right difference. 

Nevertheless, even if a slight left-right difference is shown by the BCI user, it is probable to enhance

the difference and increase the control accuracy of BCI using machine learning [10].

Table 1, illustrates the misclassification rate (mcr) for nine participants using two feature vectors, and

applying two different machine learning models on each feature vector individually. We began with 

the CSP features, in order to compare the results with FBCSP features. The CSP features were used 

for training and testing LDA model first. Following this, the Logreg was trained and tested. Both 

models resulted in prediction of misclassification rates (in percentage) for each participant.  Similar 

approach was used for the FBCSP feature vector. In all four cases, models were cross-validated using 

10-folds, for training and testing data. Majority of the participants performed above the statistical 

chance level p < 0.01 with both classifiers. Remaining performances exceeded the 

p < 0.05. Participant, P01 performed the best amongst all with the lowest 

mcr in case of FBCSP-LDA = 22.50% and in case of CSP-Logreg = 25.00%. The average mcr for 

nine participants with CSP-LDA was 33.89 ± 3.56, with CSP-Logreg it was 36.94 ± 4.81, with 

FBCSP-LDA it was 29.72 ± 4.23, and with FBCSP-Logreg came out to be 35.83 ± 3.31. This implies 

that average classification accuracies of all models are clearly well above the chance level of a 2-class 

discrimination BCI problem which  according to [42], should be 57.5% (p < 0.05) or 60.0% (p < 0.01) 

for a total of 80 trials.
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Table 1 The 10-fold cross-validation performance of misclassification rate using CSP and FBCSP with linear discriminant 
analysis (LDA) and logistic regression (Logreg) classifiers.

Participant CSP FBCSP
LDA Logreg LDA Logreg
mcr (%) mcr (%) mcr (%) mcr (%)

P01 27.50** 25.00** 22.50** 30.00**

P02 32.50** 37.50** 25.00** 32.50**

P03 35.00** 40.00** 30.00** 35.00**

P04 37.50** 40.00** 27.50** 35.00**

P05 30.00** 37.50** 30.00** 40.00**

P06 32.50** 35.00** 30.00** 37.50**

P07 37.50** 37.50** 35.00** 40.00**

P08 35.00** 40.00* 32.50** 35.00*

P09 37.50* 40.00** 35.00** 37.50*

Average 33.89 36.94 29.72 35.83
S.D. 3.56 4.81 4.23 3.31

* Over chance level of 2-class discrimination, 57.50% (p < 0.05).
** Over chance level of 2-class discrimination, 60.00% (p < 0.01).

The area under ROC curve (AUC) for each participant is shown in Fig. 4, where x-axis denotes the 

FPR and y-axis denotes the TPR. The dark blue curve represents the CSP-Logreg output, green 

represents FBCSP-Logreg, yellow-chartreuse curve reflects CSP-LDA, and maroon curve represents 

FBCSP-LDA. In all graphs the grey line signifies the 50% chance level for the binary classifier. For 

ideal detection AUC should be 1. As discussed earlier, “the chance level of a 2-class discrimination 

BCI problem should be above or equal to 57.5% (p < 0.05) or 60.0% (p < 0.01)”.   In each case it is 

evident that the participants obtained the four respective AUCs above the chance level. From Table 2, 

it can be realized that participant P01 exhibited maximum AUC of 0.74 with CSP-Logreg, followed 

by AUC=0.73 with CSP-LDA. The maximum average AUC in case of CSP was with LDA, i.e. 0.62 ± 

0.06, in case of FBCSP, it was with LDA as well, i.e. 0.64 ± 0.04. 

Figure 4 Receiver operator characteristics curves reflecting area under the curves for all participants.
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FBCSP overall exhibited maximum average AUC amongst the four deployed models, although the 

average AUC difference amongst all the models was not much.

Table 2 also projects the kappa statistic scores. During study, it is observed that all kappa scores are 

above chance level ( ). The average scores range between fair and moderate performance, based 

on the study from [43]. This implies that in the 0.21-0.40 range, the strength of agreement between the 

predicted and true class is fair, whereas between 0.41-0.60 it is moderate.

Importantly there is not much difference between average scores of CSP-Logreg and FBCSP-Logreg,

given as 0.26, and 0.28, respectively. The maximum score was obtained for participant P01, using

FBCSP-LDA i.e. 0.55. Similarly, FBCSP-LDA score surpassed remaining models with the maximum 

average score of 0.41 in discriminating between the two classes.

Table 2 The 10-fold cross-validation performance in terms of maximum kappa value and the Area under ROC Curve (AUC) 
using CSP and FBCSP with Linear discriminant analysis (LDA) and logistic regression (Logreg) models.

Participant CSP FBCSP
LDA Logreg LDA Logreg
AUC AUC AUC AUC

P01 0.73 0.45 0.74 0.50 0.70 0.55 0.65 0.40
P02 0.65 0.35 0.67 0.25 0.63 0.50 0.56 0.35
P03 0.65 0.30 0.61 0.20 0.61 0.40 0.61 0.30
P04 0.59 0.25 0.57 0.20 0.64 0.45 0.67 0.30
P05 0.61 0.40 0.62 0.25 0.67 0.40 0.64 0.20
P06 0.62 0.35 0.60 0.30 0.68 0.40 0.70 0.25
P07 0.60 0.25 0.59 0.25 0.61 0.30 0.55 0.20
P08 0.56 0.30 0.55 0.20 0.65 0.35 0.56 0.30
P09 0.55 0.25 0.57 0.20 0.56 0.30 0.55 0.25
Average 0.62 0.32 0.61 0.26 0.64 0.41 0.61 0.28
S.D. 0.06 0.07 0.06 0.10 0.04 0.09 0.06 0.07

We therefore can clearly state that FBCSP feature with LDA gave the best 2-class discrimination 

accuracy than the other feature models exceeding the chance level 60% at p < 0.01, with highest AUC 

and as shown in Fig. 5. On average LDA classifier outperformed Logreg with FBCSP, but in case 

of CSP feature vector, both models resulted in a close average accuracy with a difference of 

approximately 3%. From Fig. 6, individual participant performance can be viewed for each model; it 

can be observed that P01 exhibited minimum mcr comparatively.
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Figure 6 Resulting misclassification rate (in percentage) of CSP-LDA, CSP-Logreg, FBCSP-LDA, and FBCSP-Logreg 
algorithms for individual participant (N=9). The error bars represent standard deviations.

4. Discussion

In the research reported here, we have analysed mu and beta EEG features, using the CSP and FBCSP 

feature extraction methods, following machine learning to classify the left foot and right foot KMI.

The proposed models deployed LDA and Logreg algorithms for discrimination of left and right foot 

KMI tasks. We used the CSP filter patterns for analysis of time invariant EEG source distribution 

vectors, that elicit upon visual cues i.e. cue-based synchronous BCI (Graz BCI protocol). Overall the 
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CSP patterns implicated the cortical lateralization of ERD/ERS during the left and right foot 

dorsiflexion KMI. The first pair of CSP pattern, exhibited a focal time invariant EEG source 

distribution (ERD/surround ERS) induced by KMI at channel Cz and C3 prominent over the 

contralateral side than the ipsilateral side [44]. Similarly, the third pair also reflected the time 

invariant EEG source distribution at C4 over the contralateral side than ipsilateral. In contrast to these, 

the second pair showed a centrally focal ERD/surround ERS at the vertex channel Cz. From [5], it is a 

well-established fact that “hand motor imagery activates neural networks in the cortical hand 

representation area which is manifested as blocking or desynchronization of the hand area mu rhythm 

(mu ERD)”. Also less is known about the activation of the foot area in the sensorimotor cortex during 

foot KMI, because it is located in the mesial wall which makes it difficult to detect it [1]. However, in 

recent studies that used the foot KMI, on average a mid-central mu ERD followed by beta ERS has 

been reported in majority, and an enhancement in the hand area mu rhythm (mu ERS) [7, 9, 10]. Our 

results are in accordance with the recent developed studies that used the foot KMI. To our knowledge, 

this study provides the first example that exploits FBCSP feature vector for discrimination of left-

right foot KMI. This could be exploited by an EEG-based BCI and serve as a contribution to the field. 

4.1 FBCSP-LDA model 

A previous study [10] underscored that the CSP method could be used in EEG-based classification of 

left and right foot MI. We therefore experimented with CSP method to improve the performance of 

our 2-class foot KMI. Initially classical LDA was deployed, that ensued in a classification accuracy of

66.11 ± 3.56 with a kappa score of 0.32, but for the improvement, Logreg algorithm was tested and 

that resulted in an accuracy of 63.06 ± 4.81 with kappa score of 0.26. This pointed to a difference of 

approximately 3% in the results of both models, as illustrated in Fig. 5. The average classification 

accuracy of both models resulted in above the chance level of 60.0% (p < 0.01) for 80 trials, as

described by [42], with 10-fold cross validation. However, compared to the band-power method, the

accuracy was low [10]. The study therefore took into account the FBCSP procedure to further 

improve results obtained by CSP method. FBCSP, in conjunction with LDA and Logreg, resulted in 

average accuracies of 70.28 ± 4.23 and 64.17 ± 3.31, respectively with average kappa scores of 0.41

and 0.28, respectively. This implied that the maximum 2-class accuracy for left-right foot KMI was 

with FBCSP-LDA, using 10-fold cross validation as shown in Fig. 5. For the same model, participant 

P01 scored the highest kappa of 0.55, following maximum classification accuracy of 77.5% among 

other participants, as reflected in Fig. 6.

With the proposed FBCSP model, the selection of time and frequency regions was critical, because 

there are complex interactions between mu and beta bands which are seemingly rarely observed.

Therefore, the frequency regions are defined elaborately in FBCSP method that results in large space 

dimensionality. Since FBCSP’s feature space dimensionality is larger than CSP’s, there is a tradeoff 

between more flexibility and the risk of overfitting. We therefore compared the performance of 
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FBCSP with the standard CSP [16] and used the family-wise error rate. For multiple comparison 

corrections, the Bonferroni correction was deployed. Consequently, adjusted p-values are used in the 

study. According to [45], larger number of training trials and longer length of the experimental trial 

could prevent overfitting. Following this, it is overall observed that a tradeoff also exists between the 

classifier models and feature vector strategy, i.e. if FBCSP-LDA performs high, CSP-LDA performs 

lower, and similarly if FBCSP-Logreg performs better, CSP-Logreg elicited a lower performance.

Some closely related methods for EEG feature optimization and classification based on MI have 

recently been reported. Zhichao Jin, et al. [46] proposed a sparse Bayesian extreme learning machine 

(SBELM)-based algorithm to improve the classification performance of MI based BCI. The method 

“automatically controls the model complexity and excludes redundant hidden neurons by combining 

advantages of both ELM and sparse Bayesian learning”. In another recent review [47],  authors 

compared the traditional classification methods with deep learning techniques. With a comprehensive 

analysis they concluded that “deep learning not only enables to learn high-level features automatically 

from BCI signals, but also depends less on manual-crafted features and domain knowledge”. For 

EEG-based BCI studies that deploy MI, discriminative models such as, multi-layer perceptron (MLP), 

recurrent neural networks (RNN), or convolutional neural networks (CNN), overall elicit highest 

classification accuracies in BCI applications.

Further useful methods include a sparse group representation model (SGRM) for increasing the 

efficiency of MI-based BCI, presented lately [48]. Using CSP features, a dictionary matrix is 

constructed with training samples from both the target and other subjects. The optimal representation 

of a test sample of the target subject is estimated as a linear combination of columns in the dictionary 

matrix, by exploiting within-group and group-wise sparse constraints. Consequently, classification is 

done by calculating the class-specific representation based on the significant training samples 

corresponding to the nonzero representation coefficients. This effectively reduces the required 

training samples from target subject because of auxiliary data available from other subjects. Using left 

vs. right hand MI, their study depicted a kappa score of 0.57 and 0.55 for two datasets respectively.

Recently, a novel algorithm, temporally constrained sparse group spatial pattern (TSGSP) has been 

presented [49]. It concurrently optimizes filter bands and time-windows within CSP in order to 

enhance EEG based MI classification. Their classification results were 88.5%, 83.3%, and 84.3%, for 

4-class MI left hand, right hand, feet, tongue, for 2-class MI left vs. right hand, and for 4-class MI left 

hand, right hand, foot, tongue, respectively.

4.2 Band-power feature for classification

The band power or time-frequency method has successfully been used in numerous (offline) BCI 

studies based on MI [5, 7, 9, 10, 50]. This study is based on foot KMI. We therefore followed the 

same experimental paradigm as in the earlier studies [7, 9, 10, 13], i.e. with no prior feedback 

training. Contradictory to [10], the CSP method did not improve the performance of the left-right foot 
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KMI BCI system, however the FBCSP-LDA model improved the average performance for nine 

participants. Although both CSP and FBCSP resulted in classification accuracies above the statistical 

chance level of 60.00% , it was less than the maximum accuracy of 81.6% in single trial 

analysis [10], i.e. a maximum accuracy of 77.5% was attained in our case. However, the average 

accuracy of band power method using LDA was 69.3% ± 6.1 [10], whereas our study resulted in

improved accuracy of 70.28 ± 4.23. The maximum average kappa statistic for this study is in the 

0.41<0.60 range i.e. the strength of agreement between classes is moderate [43]. Participant P01 

outperformed with a kappa statistic of 0.55 which is also in the moderate range. The strength of 

agreement between classes needs to be more substantial, which is not in case of CSP-Logreg and 

FBCSP-Logreg method. This was followed by no practice (no feedback training) of BCI in advance,

that could mark a difference in results [51]. As suggested by [45], larger number of training trials 

could also prevent overfitting and improve results.

Based on our experimental outcomes, we would suggest an alteration in the experimental protocol, i.e. 

it could be modified by the inclusion of feedback training, since training without feedback might be 

inclusive of irrelevant imageries. In future we aim at increasing the practice sessions as well. 

Furthermore, the suggested methodology procedures from our study could potentially be deployed by

BCI systems run by multiple users, as its decoding technique could allow for the selection of optimal 

feature bands suitable for multiple users. The FBCSP could be exploited in combination with neural 

networks to investigate for an enhancement in the classification accuracy of foot KMI.

5. Conclusions

In this study, we proposed the novel approach to incorporate CSP and FBCSP in conjunction with 

LDA and Logreg model for the selection of significant filter bands, to improve the left-right foot KMI 

classification accuracy. FBCSP feature with LDA resulted in highest discrimination accuracy than the 

other feature models exceeding the chance level 60% at p < 0.01 with 10-fold cross validation and the 

. These results encourage the classification of left-right foot KMI and can be 

exploited as control commands in a bionic foot-BCI operation or a foot neuroprosthesis. The left-right 

foot KMI discrimination results are encouraging in view of the covert anatomical representation area 

of foot in the human sensorimotor cortex compared to that of the hand. We next aim to monitor the 

repetitive use of neurofeedback training and its effects on classification accuracy.
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Chapter 7

Analysis and classification of EEG event-related 
(de)synchronization induced by left-right knee 
motor imagery for BCI applications

7.1 Introduction

7.2 Methods

7.3 Results

7.4 Discussion

7.5 Conclusion

7.6 References

Chapter Overview

In addition to foot KMI, the knee KMI is inevitable in context to LL as one entity. 

Recent literature reveal limited studies on exploiting the left and right foot KMI as 

input to a BCI, and does not reflect the adoption of knee KMI as a separate cognitive 

task. This chapter proposes a novel cognitive task deployable in a BCI. The effect of

cortical lateralization of ERD/ERS upon left and right foot KMI have been discussed 

in chapter 5 and 6. The aim of this chapter is to analyse the effect of cortical 

lateralization of ERD/ERS and measure the intensity of beta ERS at the end of 

imagination and mu ERD during imagination of left and right knee using the common 

average reference. The ML KNN model depicts classification accuracies adequate for 

practical implementation, i.e. 81.04% for a participant and confirms the cortical 

lateralization of ERD/ERS. No new area in the sensorimotor cortex was activated, 

except for the foot area. This provides the basis of utilization of left and right knee 

KMI as cognitive inputs that could be exploited as two unilateral commands for 

navigation control in a BCI-controlled bionic knee. Results infer the possibility to 

deploy the novel knee KMI as a cognitive task in a BCI paradigm.
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Abstract

This research is based on the investigation of deploying left and right knee kinaesthetic motor 

imagery (KMI) in a synchronous BCI, and to evaluate the possibility of cortical lateralization 

of event-related (de)synchronization (ERD/ERS). o comprehensive study in 

literature shows the utilization of knee KMI in a BCI, the lower-limbs (LL) share a 

close spatial proximity in the sensorimotor cortex of human. This study explicitly analysed 

the beta ERS and mu ERD features, whose frequency bandwidth is in the range of 7-35 Hz, 

using the time-frequency maps, and scalp topographies. The feature vector was then 

classified  for 2-class classification  using machine learning models (ML). Linear SVM and 

weighted KNN were used, followed by the 5-fold cross validation. Each ML model was 

evaluated for significant outputs through area under receiver-operator characteristics (AUC-

ROC) curve. Subsequently, for comparison and estimation of truly observed (statistically 

significant) classification accuracies from both models, the Mann-Whitney U-test was 

deployed. Resulting reflected a maximum accuracy of 81.04% and an AUC of 

0.84, with one participant  that provides a platform for further evaluation of beta and mu

ERD/ERS features  to be used as individual control signals in a BCI. It could be used as 

control signals for actuating a LL  or knee BCI.

7.1 Introduction

Dysfunction of lower-limb(s) (LL) can halt human walking gait. This could possibly be due 

to the neuromotor disorder  such as spinal cord injury (SCI)  or cognitive impairment, or LL 

amputation such as transfemoral or transtibial amputation [1]. In each of the aforementioned 

causes, the generation of input signal from its source i.e. brain, to compensate for the halt in a 

seamless manner is inevitable. Electroencephalography (EEG) is one of the most popular 

non-invasive modality to record electrical activity from the motor cortex (brain) in context to 

the control of limbs movement [2]. EEG is one of the electrophysiological signals used as 

input in a non-invasive brain-computer interface (BCI). The BCI is a state-of-the-art 

communication channel that connects the brain to an external (robotic) device for control 

purposes [3-6]. Non-invasive BCIs could either be dependent or independent. Visually 

evoked potentials are dependent BCIs, for they depend on the muscular control of gaze 

direction [7]. On the other hand, slow cortical potentials (SCP), P300 event-related potentials 

(ERPs), and oscillatory rhythms (mu and beta rhythms) are independent BCIs [3, 7]. Wh
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deploying oscillatory rhythms in a BCI, they could either serve as input to a synchronous  or 

asynchronous BCI; where synchronous BCI is cue-based and asynchronous BCI is self-paced

i.e. independent of cue onset [8]. The synchronous BCI requires a cue followed by an

imagination of the cue, usually limb motor activity [9].

In context to LL, literature reflects few studies that focus on the discrimination of left and 

right foot motor imageries. However, investigation on motor imagery of the knee extension 

deployed as a distinct cognitive task has not been reported. his chapter is

based on  band-power (BP) features in the mu and beta rhythms, elicited upon

and after left and right knee kinaesthetic motor imagery (KMI), respectively. KMI is a 

stealthy cognitive process which is based on the imagination of the subject’s own limb 

movement  without any muscular intervention [10]. With oscillatory rhythms, these cognitive 

tasks arise in the mu (8-12 Hz) and beta (13-35 Hz) rhythms.

Consequent to the KMI task performance, BP features are elicited in the sensorimotor cortex. 

Patterns that characterise an imagined limb movement in the BP features are defined as 

event-related desynchronization (ERD) and event-related synchronization (ERS) [11]. The

decrease or blocking response is referred to as ERD, whereas an increase in amplitude is 

referred to as ERS [12-14]. However, as the left and right LL areas in the sensorimotor cortex 

share close spatial proximity compared to upper limbs [15-17], it becomes difficult to 

discriminate between them. This is an impending reason for less literature on LL imagery 

tasks in BCI. Henceforth, no study on the classification of left-right knee extension KMI for 

subjects with lost knee function or any evidence of cortical lateralization is available [18-21].  

Following the methodology paradigm of BP features from left and right foot KMI, this study 

exploits the mu ERD and beta ERS (post task completion) as possible EEG features for 

classification [12, 19, 22-24], using the common average reference. The ERD/ERS patterns 

corresponding to the limb movements generate in the vertex of the cortex [12]. Subsequent to 

the signal pre-processing and feature extraction, machine learning (ML) was instigated on the 

selected feature vectors. The study deployed two ML models for the 2-class classification 

problem based on the size and dimensions of the feature vector. Linear support vector 

machine (SVM) and weighted k-nearest neighbors (KNN) algorithms were taken into account

[25]. KNN can prove to be efficient for BCIs that employ low dimensional feature vectors 

[26]. Two ML models were considered to estimate the best classification accuracy for 

discriminating between left and right knee KMI tasks. The k-fold cross validation was applied 



for the single-trial classification accuracies. For statistical evaluation of ML models, the area 

under the receiver operator characteristic curve, (AUC-ROC) curve was used. In order to 

draw a comparison between the performances of ML paradigms the Mann-Whitney U test

also termed Wilcoxon rank-sum test [27, 28] was employed, which ensured that the 

accuracies occurred by true observation and not by chance.

Overall, the classification of both features resulted in an accuracy above the statistical chance 

level of 60.0% ( ) for 80 trials [29], in case of SVM and KNN model respectively. 

Beta ERS post task, produced maximum individual accuracy of 81.04% and AUC of 0.84 for 

participant 5 using KNN model, similarly, the maximum average accuracy of mu ERD was 

obtained using KNN for all participants, 74.59 ± 5.1% and AUC = 0.64. This study did not 

include BCI practice in advance by any participant. These results are encouraging for the 

proposed novel cognitive task of knee KMI. It confirms the cortical lateralization of 

ERD/ERS during left right knee tasks, and provides basis for establishing a 2-class BCI to

control a bionic knee using left-right knee KMI.

7.2 Methods

The methodology followed for this study is already explained in Chapter 3, section 3.2, 3.3, 

3.4.1, 3.4.2, 3.5.2, 3.5.3, 3.6.1, 3.6.2, 3.6.5, and 3.6.8, respectively.

7.3 Results

This research is based on experiments carried out on five participants, who volunteered for 

the study. None of the participant gave feedback concerning fatigue during the experiments. 

All participants followed the synchronous BCI protocol, i.e. visual cues and executed the

KMI tasks successfully. 

7.3.1 Time-frequency map

The time-frequency (TF) maps resulting from BP feature vector are displayed in figure 7.1.

For each participant the TF maps were individually analysed, to determine the peak latencies 

from cue-onset for significant/most reactive mu ERD and beta ERS features. The common 

average reference channel Cz was selected, as it accounts for the unilateral limb activity in 

the sensorimotor motor [12, 23, 30, 31]. Figure 7.1 represents all significant ERS in red, ERD 

in blue, whereas no change is represented in green colour. The time window is shown for one 

trial, from -3 to 7 seconds. Pink dotted line reflects the beginning of visual cue. During left 

and right knee KMI, significant mu ERD ( ) starts eliciting at the end of cue-onset 
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and extends till beginning of task performance session approximately 4 seconds, with an 

average peak latency of 2.5 seconds from cue-onset. The frequency range of its occurrence is 

approximately from 7 Hz to Hz. At the end of KMI, strong beta ERS exhibited on 

average between 27 Hz to 32 Hz with average peak latency from cue onset = 4.24 seconds, 

( ). In all five participants, prominent mu and beta features were observed. Table 

7.1 depicts the individual peak latencies of participants from cue-onset as shown in figure 

7.1, for selection of statistically significant ERD/ERS features in the reactive 7-35 Hz bands.

Figure 7.2 shows the grand-average amplitude of mu ERD and beta ERS, for all five

participants at central channels C3, C4, and the vertex Cz. Statistically significant features 

were evaluated using Bootstrap-t statistical method ( ) as explained in chapter 3, 

section 3.4.1 and 3.6.1. Both EEG feature amplitudes exhibited left-right differences. Beta 

ERS reflected strong left-right amplitude difference at channel C4, followed by C3 and Cz, 

respectively. Similarly, for mu ERD, channel C4 exhibited maximum left-right amplitude 

difference, compared to C3 and Cz. In case of both features, contralateral dominance is 

visible at channels C3 and C4. However, little difference was observed in the left-right KMI 

amplitude at channel Cz. 

Table 7.1 Individual peak latencies from cue-onset for significant mu ERD and beta ERS.

Participant Mu ERD (7-12 Hz) Beta ERS (13-35 Hz)
Latency from 
left- cue (s)

Latency from 
right- cue (s)

Latency from 
left- cue (s)

Latency from 
right- cue (s)

P1 1.92 3.05 3.95 4.20
P2 1.75 1.75 3.80 3.50
P3 2.65 2.20 3.20 4.50
P4 2.32 3.15 4.80 5.00
P5 2.50 3.25 4.50 4.90

Mean 2.23 2.68 4.05 4.42
S.D. 0.38 0.67 0.62 0.61
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Figure 7.1 Time-frequency maps reflecting ERD/ERS of all participants. Left column shows 

left knee extension kinaesthetic motor imagery (KMI), and right column shows right knee 

extension KMI. Significant (P < 0.05) band-power changes are shown during the trial period 

of -3 to 7 s. The pink dotted line indicates the beginning of the visual cue.
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Figure 7.2 Average amplitude of beta ERS and mu ERD from five participants (N=5). Blue 

bars show average amplitude of respective feature after left knee task, and red bars represent 

right knee task. Error bars depicts the standard deviations.

7.3.2 EEG topographies

EEG topographies of mu ERD and beta ERS from participant-specific reactive bands and the 

time of occurrence are displayed to show the distribution on the scalp, as shown in figure 7.3.

The topographies were averaged for all five participants and top view of the scalp is shown in 

figure 7.3. It can be seen that mu ERD features are located across the vertex. During right 

knee KMI task, mu ERD is prominent at channel C3, which confirms the contralateral 

dominance and in agreement with results obtained from section 7.3.1. During left KMI, both 

channels C3 and C4 reflect a mu ERD, i.e. lateralized distribution with no unilateral 

dominance. Beta, on the contrary elicits ERS which is localized centrally at the vertex, with 

no left-right discrimination, in accordance with the established findings from figure 7.2 and 

[12, 22, 23]. During left knee KMI, a strong ERS can be viewed at channel Cz, whereas 

during right task, less strong ERS is localized at Cz (the vertex).

7.3.3 Classification accuracy

The mu and beta feature vectors resulting from previous sections, were next classified to 

confirm the possibility of discriminating left and right knee KMI tasks for using them as 

unilateral control commands. For classification, ML models were used. Initially the classical 

linear SVM model was deployed, however, to improve the classification accuracy, weighted 

KNN model with 10 nearest neighbors, was also used [25, 32]. Each model’s performance 

after data standardization was evaluated using -fold cross validation method for training and 

testing phases [33, 34], for .
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Figure 7.3 Average EEG topographies of ERD/ERS during knee KMI of all participants. 

Beta ERS is shown in the top row for left and right knee respectively, and mu ERD is in the 

bottom row.

Table 7.2 gives the average binary classification accuracies and standard deviations of beta

ERS and mu ERD using SVM and KNN ML models, respectively to discriminate between 

left and right knee KMI tasks. For beta ERS, participant 5 showed the highest accuracy 

percentage of 81.04% using KNN model, compared to SVM which is 67.47% elicited by 

participant 2. The average accuracy of beta ERS is 71.88% ± 7.5 using KNN model, followed 

by 63.13% ± 3.3 with SVM model. For mu ERD, the participant 5 again exhibited maximum 

classification accuracy of 80.00% using KNN, and maximum accuracy of 74.40% using 

SVM. The average accuracy of mu ERD using KNN is 74.59% ± 5.1 and 68.09% ± 4.6 using 

SVM model. Results reveal that on average each feature’s accuracy, for SVM and KNN 

model, is above the statistical chance level of 60.0% ( ). For a 2-class BCI 

discrimination problem, the statistical chance level should be greater than  or equal to 57.5%

( ) or 60.0% ( ) for 80 trials, as given in [29].

It can clearly be stated that overall, the KNN model outperformed SVM in case of both 

features. Figure 7.4 reflects the average of each classifier model for beta ERS and mu ERD.

Both ML models resulted in average classification accuracy above the statistical chance level 
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of 60.0% ( ). The maximum average accuracy was obtained with mu ERD with a 

difference of 2.71% from beta ERS. However, individual maximum accuracy for 

discriminating between left and right knee KMI task was achieved with beta ERS.

Table 7.2 The 5-fold cross-validation classification accuracy and AUC-ROC values of left-
right knee KMI using beta ERS and mu ERD

Participant Beta ERS Mu ERD
SVM
(%)

AUC-
ROC

KNN
(%)

AUC-
ROC

SVM
(%)

AUC-
ROC

KNN
(%)

AUC-
ROC

P1 65.82 0.70 61.19 0.57 64.08 0.63 74.68 0.61
P2 67.47 0.60 68.71 0.72 65.14 0.61 75.67 0.63
P3 61.14 0.52 75.61 0.79 65.37 0.58 66.17 0.54
P4 60.42 0.64 72.85 0.80 71.46 0.71 76.45 0.62
P5 60.81 0.56 81.04 0.84 74.40 0.83 80.00 0.79

Mean 63.13 0.60 71.88 0.75 68.09 0.67 74.59 0.64
S.D. 3.3 0.07 7.5 0.11 4.6 0.10 5.1 0.09

Figure 7.4 Average classifier models performance in percentage, using common average 

reference. The error bars represent standard deviations.

Figure 7.5 depicts the individual prediction accuracies for discriminating between left and 

right knee KMI tasks for , where is the total number of participants. It can be 

observed that participant 5 exhibited highest prediction accuracy for beta ERS followed by 

mu ERD feature with KNN model. Participants 3, 4, and 5 performed lowest for beta ERS
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using SVM model. This indicates a tradeoff exists between the model performances, i.e. it 

can be deduced that when KNN outperforms, SVM performs the least.

Figure 7.5 Individual participant prediction accuracies in percentage for N=5.

In addition to classification accuracy, table 7.2 also shows the normalized AUC-ROC curve 

values of each participant for SVM and KNN models. The ROC curve is deployed as an 

evaluation tool, and the AUC determines the performance of the detector, i.e. truly observed 

classification and not by chance. In case of ideal detection, as described in Chapter 3, section 

3.6.5, the true positive rate (TPR) should be 100%, and the false positive rate (FPR) should 

be 0%, whereas the AUC should be 100% [35]. From table 7.2, it can be seen that participant 

5 elicited highest AUC-ROC of 0.84 for beta ERS feature using KNN, and a maximum 

AUC-ROC = 0.83 for mu ERD, using SVM. Ideally AUC-ROC = 1, after normalization. 

With beta ERS feature, the maximum average AUC was 0.75 ± 0.11 using KNN, and with 

mu ERD, the highest average AUC was 0.67 ± 0.10 using SVM. However, with KNN, mu

feature showed a closer AUC value of 0.64 ± 0.09 using KNN, with a difference of 3% only. 

The average AUC values are satisfying for both features, in context to [23, 28, 35]. It can

therefore be stated that beta ERS reflected the best AUC value for 2-class discrimination BCI

that enables its utilization as a control command in a BCI operation. 

Figure 7.6 displays the AUC-ROC plots with maximum values for both features using their 

corresponding ML model. Along the x-axis is the FPR, and along the y-axis is the TPR, 

where both axes are normalized. The plots displayed in figure 7.6 are from participant 5’s 

AUC-ROC values. The left graphs represent AUC-ROC curves plotted against class 1, i.e. 
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left knee KMI and the right column against class 2, i.e. right knee KMI task, respectively. 

The top row shows AUC-ROC of beta ERS and the bottom row exhibits that of mu ERD. For 

carrying out the statistical comparison of SVM and KNN classifier models, the Mann-

Whitney U test was used; details are presented in Discussion section 7.4.2.

Figure 7.6 AUC-ROC plots with maximum AUC values for beta ERS using KNN model and 

mu ERD using SVM model, during classification of left vs. right knee KMI.



7.4 Discussion

This research study analysed and classified EEG features elicited upon novel cognitive KMI 

task of left and right knee. As the study is novel, for the beginning, less number of 

participants  involved; the future directions in  deployment of more participants for

further analysis on large population. The analysis of beta ERS and mu ERD was done 

based on EEG topography and TF maps using common average reference method. 

Significant beta ERS were observed at the end of the left  or right knee imagery  which was 

consistent with studies on LL i.e. left-right foot imagery [23, 24, 36]. This implies that knee 

and foot areas are closely located to each other in the somatosensory cortex, which is in 

context to the established finding [15]. The distribution of beta ERS was localized at the 

vertex during both left and right KMI tasks, as displayed in the EEG scalp topography. 

However, mu ERD was distributed on contralateral sides that made the left-right differences 

evident. This work offers the first example of analysing left-right differences in beta ERS and 

mu ERD based on unilateral knee KMI in EEG.

7.4.1 Detection of left vs. right ERD/ERS features using bipolar method

Studies on left-right difference using LL motor imagery commonly deployed the bipolar, 

Laplacian, or common average reference methods [11, 12, 18, 19, 22, 23]. Majority of these 

studies followed the foot motor imagery. An initial study related to this chapter, in Appendix 

A, on the analysis of mu ERD/ERS based on knee KMI, used the common average reference 

method to extract BP ERD/ERS features from mu rhythm. Consequently, as a continuation to 

it, this chapter is elaborated and covers a wider range of analyses including another feature  as 

well as  more participants. The reference technique for recording and evaluating EEG features 

therefore remains the same i.e. the common average reference method. This reference is 

computationally simple and compliant to both on-chip and real-time applications, therefore 

was the first choice. It identifies small signal sources in noisy recordings, with a higher 

signal-to-noise ratio compared to Laplacian filter [7, 37]. It has successfully been used to

detect the intention of motion during imagery [38]. Current study confirmed the left-right 

difference in both mu and beta ERD/ERS features using common average reference, 

supported by ML models results, that exceed the 2-class chance level of 60% ( ).

From previous studies on left-right discrimination using foot imagery, the bipolar reference 

has been successfully deployed for analysis of EEG features [22, 23]. This provides a source 

of analysing the BP features, from this study, using bipolar method. The use of this method 

15  
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could possibly increase the classification accuracy for knee KMI based BCI studies. In 

addition to this, given results from this study are not based on experiments including 

neurofeedback training. This factor could add value to the resulting classification accuracies 

of both features.

7.4.2 Performance comparison of KNN and SVM using Mann-Whitney U test

To statistically compare the performance of the proposed linear SVM and weighted KNN ML 

models, Mann-Whitney U test  also termed Wilcoxon rank-sum test  was used. It is 

a nonparametric test of the null hypothesis . For each feature the -value was separately 

calculated  result  in the acceptance  or rejection  of the null hypothesis, i.e. 

or , respectively. Table 7.3 shows the individual -values for each feature and their 

respective hypothesis values. It is clear that with both features, the null hypothesis was 

rejected, that validates the classification of EEG features. This proves that the resulting 

classification accuracy, from both models, truly occurred and not by any random chance.

Table 7.3 Mann-Whitney U test for SVM and KNN machine learning models

SVM vs. KNN P-value
Mu ERD 
Beta ERS

Results show that knee KMI elicits broad-banded ERD (observed in both mu and beta

rhythms) and narrow-banded ERS (post task). An enhancement in the foot area of the cortex

was observed with concentrated beta ERS, which indicates no enhancement in a new area of 

the cortex and confirms the spatial proximity of LL [19]. ERD/ERS differences, can be 

observed in the mu and high beta frequency bands. 

The next goal is to deploy the common spatial pattern feature vector for the proposed left vs. 

right knee KMI cognitive task. Chapter 8 is based on findings from analysis of CSP and filter 

bank CSP (FBCSP) features.

In conclusion, this study revealed the cortical lateralization of ERD/ERS in association with 

the proposed novel knee imagery cognitive tasks. This indicates that they can be deployed as 

separate unilateral control commands in a BCI. In synchronous mode, these results achieved 

the same level of accuracy as that of hand and foot motor imagery-based BCI, using EEG 
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signals recorded via three channels on the vertex. The influence of neurofeedback training on 

the classification accuracy is required further.
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Chapter 8

Classification of left and right knee extension 
motor imagery using common spatial pattern for 
BCI applications

8.1. Introduction

8.2. Methodology

8.3. Results

8.4. Discussion and conclusion

8.5. References

Chapter Overview

The possibility of deploying novel knee KMI  for confirming the cortical 

lateralization of ERD/ERS  using BP feature vector in a BCI paradigm

ed in detail in chapter. This chapter further investigates and 

quantifies the ERD/ERS features in the mu and beta frequency band of 7-35 Hz,

using CSP and FBCSP feature vectors, to be used as independent unilateral control 

commands in a 2 degree of freedom BCI paradigm. In order to distinguish between 

left and right knee KMI tasks, two ML models are employed for determining the 

highest classification accuracy and were statistically compared. Results successfully 

differentiated between both knee tasks, and confirmed the cortical lateralization. 

However, the classification accuracy from this study was lower than the previous 

study, but above the statistical chance level of 2-class imagery based-BCI. This infers 

that BP features and proposed ML models work better than the CSP feature and ML 

model  in this chapter.

This study has been published in International Journal of Knowledge-Based and 

Intelligent Engineering Systems:  Procedia Computer Science.

M. Tariq, P. M. Trivailo, M. Simic. Classification of left and right knee extension
motor imagery using common spatial pattern for BCI applications. International
Journal of Knowledge-Based and Intelligent Engineering Systems: Procedia Computer
Science, 159, 2598-2606, 2019.



Available online at www.sciencedirect.com 

ScienceDirect
Procedia Computer Science 00 (2019) 000–000 

www.elsevier.com/locate/procedia 

1877-0509 © 2019 The Author(s). Published by Elsevier B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of KES International.  

23rd International Conference on Knowledge-Based and Intelligent Information & Engineering 
Systems 

Classification of left and right knee extension motor imagery using 
common spatial pattern for BCI applications 

Madiha Tariq*, Pavel M. Trivailo, Milan Simic 
School of Engineering, RMIT University, Bundoora Plenty Road, Victoria 3083, Australia 

Abstract 

Research on the deployment of various cognitive tasks in the experimental paradigm of a human brain-computer interface (BCI) 
is on-going in particular upper-limb tasks. Less has been investigated on the lower-limbs, due to its somatotopic arrangement in 
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task in a BCI for the control of lower-limbs, primarily for people with neurodegenerative disorders, spinal cord injury or lower-
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pattern (FBCSP) algorithm for the optimization of individual spatial patterns. This was followed by supervised machine learning 
using logistic regression (Logreg) and linear discriminant analysis (LDA) for classification of tasks. The paradigms resulted in 
four combinations/methods for discriminating between left and right knee tasks. The FBCSP-Logreg outperformed remaining 
paradigms with a maximum accuracy of 70.00% ± 2.85 and kappa=0.40. The results elicit the possibility to deploy left vs. right 
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1. Introduction

Brain-Computer Interface (BCI) is an emerging research field that establishes a real-time bidirectional connection
between the human brain and a computer/output device. It serves as a communication tool for patients with 
neuromotor disorder, spinal cord injuries, or amputation [1, 2].  Amongst its diverse applications, neurorehabilitation 
to deliver sensory feedback and brain controlled biomedical devices, are most popular. Gait rehabilitation is the 
therapeutic aim for enhancement of motor control functions by actuating neuroplasticity [3].  This can be discerned 
by distinguishing brain signals corresponding to the movement imagination of the affected limb and translating it 
into an output command [4].  Subsequently the user can re-establish the lost motor control by getting feedback on 
the output command affecting his/her brain activity [3, 5].  

The kinesthetic motor imagery (KMI) is a covert cognitive process based on the imagination of user’s own limb 
movement without muscular intervention [6].   These cognitive tasks ensue in the mu (8-12 Hz) and beta (13-35 Hz) 
oscillatory rhythms. Patterns that reflect an imagined limb movement are characterized by event-related 
desynchronization (ERD) and event-related synchronization (ERS) and are localized in the sensorimotor cortex. A 
decrease, or blocking response is referred to ERD, while an enhancement in amplitude is ERS. However, due to the 
somatotopic organization of the motor cortex [7], the left and right lower-limb areas are closely located to each other 
compared to upper limbs e.g., hands [8].  This is a potential reason for less reported literature on lower-limb imagery 
tasks in BCI. To our knowledge there is no study on classification of left-right knee extension KMI for people with 
lost knee function. With merely one study on feature extraction as recently presented in [3], this study is therefore 
novel.  

With common spatial pattern (CSP) algorithm being commonly used in feature extraction process of motor 
imagery based BCIs, it has been observed that none of the reported studies deployed knee extension as a KMI task. 
Most studies were based on upper limb imageries, e.g. left hand vs. right hand [9].   This study is a contribution to 
discrimination of left vs. right knee KMI using CSP in order to provide two unilateral control commands to a BCI 
system. The CSP is a relatively simple algorithm with high processing speed. It finds spatial filters that maximize the 
variance of (projected) signal from one class (left knee KMI) and minimize it for the other class (right knee KMI), 
and vice versa to get maximum discrimination evidence [10]. As motor imageries reflect in the mu-beta range, this 
implies that a broad frequency range of 8 to 35 Hz is expected to be considered. Therefore, the filter band selection 
is a very crucial step for producing effective results. However according to [11], the most effective frequency band is 
subject-specific which can barely be determined manually. Our study therefore incorporates the filter bank common 
spatial pattern (FBCSP) algorithm as an enhancement in the study across participants. The FBCSP is an extension of 
CSP method for the selection of optimal filter-bands. It estimates the mutual information among CSP features 
present in several fixed filter-bands [12, 13].  It is very useful for oscillatory processes occurring in different 
frequency bands (having different spatial topographies) [14], for instance mu and beta can jointly be active during 
task.  

Following signal pre-processing and feature extraction, machine learning was implemented on the selected 
feature vectors. The study deployed two classification algorithms classical linear discriminant analysis (LDA) and 
the supervised logistic regression (Logreg). This resulted in four different combinations of proposed methodology 
paradigms, i.e. CSP-LDA, CSP-Logreg, FBCSP-LDA, and FBCSP-Logreg. It was done to draw a comparison 
between the paradigms and be able to configure the best features that resulted in maximum discrimination accuracy 
between the left and right knee KMI tasks.  

We used the 5 x 5-fold cross validations for the single-trial classification accuracies resulting from the training 
and testing phases with all participants. For statistical evaluation of classification performance, we used the Cohen’s 
kappa coefficient  Results reflected that FBCSP-Logreg outperformed the remaining paradigms with highest 
accuracy percentage of 66.0 ± 2.85 with a mean kappa of 0.32. In addition to kappa scores, the area under 
the receiver operator characteristic curve, (AUC-ROC) curve was also included in the study as a measure of 
statistical evaluation. Following similar pattern FBCSP-Logreg produced highest average AUC-ROC of 65% for all 
participants. This study was not inclusive of BCI practice in advance by participants. These results are encouraging 
and provide a basis for establishing a 2-class BCI based on knee KMI for controlling a robotic knee system or knee 
neuroprosthesis. 
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2. Methodology

2.1. Experimental paradigm and EEG recording 

Based on the required BCI application, study involves left/right knee extension KMI tasks. Since this 
investigation was not conducted before, we engaged five participants in an initial phase. All participants were 
healthy, aged between 21-28 years, with no medical history, and no experience of BCI beforehand. They took part in 
the experiment voluntarily. Ethical consent to conduct experiment was granted by the CHEAN (College Human 
Ethics Advisory Network), RMIT University, Melbourne, Australia.  

Experimental setup comprised of a comfortable seat facing monitor screen (17”), placed at about 1.5 m distance 
from the participants. They were asked to sit and pay attention to visual cues presented on the monitor. To ensure 
that no proprioception artefact (caused by muscles) occurs in the feedback, we placed a flat wooden sheet, as a 
stable platform under participant feet. This way the legs were loosely fixed and allowed the knees to flex at 60o from 
full extension during rest position. Participants were instructed to perform kinaesthetic imagination of full knee 
extension following cue presentation. This task corresponds to the normal human walking gait.  

For recording electrical activity from the scalp, we deployed non-invasive electroencephalography (EEG) 
modality. Signals were recorded using the 19 channel electrocap (C3, C4, Cz, F3, F4, F7, F8, Fz, FP1, FP2, O1, O2, 
P3, P4, Pz, T3, T4, T5, T6) positioned in the international 10-20 system [15], referenced to the linked earlobes A1 
and A2 [16] interfaced with neurofeedback BrainMaster Discovery 24E amplifier (BrainMaster Technologies Inc., 
Bedford, USA. All channels were sampled at 256 Hz and digitized with 24-bit resolution. Ground electrode 
was located near the forehead position. Our study is based on synchronous (cue paced) BCI, therefore the temporal 
sequence of visual cues was designed using Graz BCI protocol, a feature of OpenViBE® that 
comes along integrated feature boxes [17, 18]. 

Fig. 1. Temporal sequence of one trial of knee kinaesthetic motor imagery followed in the experiment. 

The temporal sequence of one trial is shown in Fig. 1. It begins with a 3 seconds long fixation cross, which is 
used as reference period for processing of epochs. During the last second of fixation cross, an audio beep of 1 
second is incorporated for the first trial only, to alert the participant. This was followed by left or right knee 
extension visual cue, for 2 seconds (displayed randomly). Next, a blank screen appeared for 5 seconds for the 
kinaesthetic imagery of task. The total length of each trial was 10 seconds. At the end, a pause interval of 1.5-3.5 
seconds (randomly selected) was used, to avoid fatigue. Recorded signals were processed using 
BCILAB https://github.com/sccn/BCILAB.  

The experiment included four sessions without feedback, with each session encompassing 40 trials; 20 trials for 
left knee and 20 trials for right knee KMI. This resulted in 80 trials of each knee task.  

2.2. Common spatial pattern and filter bank common spatial pattern for feature extraction 

From recorded EEG signal the feature extraction for classifying left vs. right knee KMI was carried out using the 
common spatial pattern (CSP) method. It is effective in constructing optimal spatial filters for the discrimination of 
2-class KMI EEG data in a BCI [10]. For effective results we specified the frequency for band-pass filtering as 7-35



Madiha Tariq et al./ Procedia Computer Science 00 (2019) 000–000 

Hz, the time interval of the signal taken relative to the cue (3 seconds prior to cue), and 3 subsets of CSP filters were 
used. However, the performance of CSP algorithm is subject-specific due to individual characteristics of brain; 
therefore, it can be enhanced using individual parameters [19].  We therefore exploited the filter bank common 
spatial pattern (FBCSP) that was first introduced by [12]. Feature vectors resulting from CSP and FBCSP were 
individually used for machine learning.  

The four stages of FBCSP that are followed in this study were adapted from [13]. as shown in Fig. 2.  It 
comprises of a filter bank that fragments the EEG signal into three frequency pass bands, 7-12, 13-25, and 28-32 
Hz using Chebyshev Type II filter. Those frequency pass bands cover the mu and beta oscillatory rhythms. In the 
second stage, spatial filtering is done using CSP algorithm. It is reported by [20], that the CSP algorithm is very 
effective in calculating spatial filters for the detection of ERD/ERS. CSP transforms the observed signal as shown:  = , (1) 

where E  is the observed single-trial EEG signal from pass band (7- 35 Hz) of j-th trial, j = 1 … n, where n is the 
number of training trials. ×   is the un-mixing matrix and ×   is the recovered single-trial source after 
spatial filtering, where = 2 × × 3 (  ) × 2( ) is the number of sources i.e. the CSP 
projections,  is number of channels, and the number of time samples is . Filter computes the un-mixing matrix  
to yield features with optimal variances for discriminating the two classes of measured EEG [9, 19]. This is realized 
by determining the eigenvalue decomposition problem. W = ( + )WD,  (2) 

where  and  are the estimates of the covariance matrices of EEG signal based on two imagery tasks i.e. left 
and right knee extension. Diagonal matrix D comprises of the eigenvalues of , whereas the column vectors of W  
are the filters for CSP projections. For producing best results, the suitable most contrast is delivered by filters with 
the highest and lowest eigenvalues. Hence it is common to retain e eigenvectors via both ends of the eigenvalue 
spectrum [10], in this case, = 2. The CSP filter was individually applied for right vs. baseline and left vs. baseline 
for each band, during the task performance time segment, i.e. the time starting after the cue presentation of 5 
seconds. We selected a time window of [0 4]. 

Third stage is the CSP feature selection, where the difference in variance of the two classes of pass band EEG is 
maximized, using  from (2) and substituting in the spatial filtered signal  from (1). The m pairs of CSP features 
of j-th trial for pass band EEG are given by: = log  (3) 

where v ;  indicate the first m and last m columns of ; diag(. ) returns diagonal elements of the square 
matrix. Sum of the diagonal elements in the square matrix is returned by tr[. ] [13]. The FBCSP feature vector for j-
th trial is subsequently formulated as: 

 v = v , , v , , … , v , ,  (4) 

where v ×( ), j = 1,2, … , n; n is the total number of trials in the data. 
Finally, the classification of these features elicited upon left and right knee KMI tasks is performed. The classifier 

model is computed from the labelled training data (2-class KMI). Parameters that are computed from the training 
phase are employed for the testing phase, consequently for predicting the single-trial knee KMI task. We deployed 
the classical LDA and Logreg to measure the classification accuracy [21] and draw a comparison between classifier 
performances. For implementation of the above defined algorithm, we used the MATLAB (R2013b) toolbox 
BCILAB https://github.com/sccn/BCILAB. 
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Fig. 2. Paradigm of common spatial pattern (CSP) and filter bank CSP (FBCSP) algorithms for training, testing and prediction phases, adapted 
from [13]. 

2.3. Classifier evaluation 

Proposed methodology resulted in four paradigms, i.e. CSP-LDA, CSP-Logreg, FBCSP-LDA, and FBCSP-
Logreg. In each case the classification was done with a 5x5 fold cross-validation. The trials were partitioned into 
five equal sub-datasets. Classifiers were individually trained on four of the sub-datasets and tested the model for 
accurate discrimination of trials from the remaining sub-dataset (validation). This resulted in individual prediction 
accuracies. Weight vectors and classification accuracies were averaged from 5-folds. We determined the mean and 
standard deviation of each classifier, as well as, individual participant performance, as shown in Fig. 3. 

Fig. 3. (a) Classification accuracies in percentage across participants where blue line shows average on and above chance level (p<0.01).   
(b) Individual misclassification rate in percentage (for N=5) of CSP-LDA, CSP-Logreg, FBCSP-LDA, and FBCSP-Logreg algorithms. 

Since our study is based on machine learning, we took into account the AUC-ROC curve, as a performance 
measure of the classifiers. ROC is a probability-curve plotted between the true positive rate (TPR) (y-axis) and the 
false positive rate (FPR) (x-axis) at various threshold values to diagnose the ability of binary classifier. The AUC 
reflect the degree of separability between 2-classes [22], i.e. left and right knee tasks. Higher the AUC in the range 0 
to 1, the better the prediction range between none to perfect.  

(a)  (b) 
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Another important evaluation criterion for assessing the performance of the classifiers is the coefficient  
[23].  For the 2-class problem, the classifier evaluation is defined by its confusion matrix H, which defines the 
correlation between the true classes and observed output of the classifier. The estimate of kappa coefficient  is 
given by: =  ,  (5) 

where  is the overall observed agreement, and  is the chance expected agreement for N number of samples. For 
more detailed explanation refer to [24]. 

3. Results

Sensorimotor rhythms underlie in the central cortical areas located at channels C3, Cz, and C4  [25]. However,
due to intra-humans varying anatomical properties of cortical folding, the areas discriminating ERD/ERS power 
characteristic against knee imagery are not exactly located underneath channels C3, Cz, and C4 during the 
experiment.  

The CSP method produces subject-specific spatial filters which are optimized for discriminating right vs. left 
knee tasks. BCILAB spatially filters raw EEG channels into smaller time-series. Their variances are optimized to 
distinguish between the two classes. We developed a 3-pair set of CSP scalp projections for each 
participant. Figure 4 demonstrates the 3-pair set of CSP scalp projections for participant P01. During right and 
left knee imageries, CSP pattern 1 shows the ERD/ERS activation of electrode positions C3 and C4, that is the hand 
representation area in the cortex [26]. In contrast, CSP pattern 3 elicits the mid central ERS at the vertex, Cz, 
enhancing the foot area beta ERS. Pattern 2 reflects a contralateral dominance enhancing mu ERD and beta ERS at 
channels Cz and C4 respectively. 

Fig. 4. A set of common spatial patterns (CSPs) filters of participant P01. The CSPs are optimized for the discrimination of right and left knee 
kinaesthetic motor imageries from the reference period. 
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The misclassification rate (mcr) elicited by each participant is reported in Table 1, with a 5-fold cross validation. 
For each combination of methods, accuracies are calculated in percentage and the respective average and standard 
deviations are reported. For CSP feature extraction method, Logreg showed lower mcr of 37.00% ±4.81, whereas 
with LDA reflected the mcr was not much different i.e. 38.00% ± 4.12. The FBCSP method with Logreg performed 
better than with LDA, as it produced a mcr of 34.00% ± 2.85, with LDA mcr was highest i.e. 39.50% ± 2.74. 
Overall the average classification accuracy with all four paradigms was above the chance level of 60.00% for p < 
0.01 for 2-class BCI (with 80 trials), as explained by [27]. In only 3 cases participant 4 and 5 performed above the 
chance level of 57.50% for p < 0.05. FBCSP-Logreg outperformed the remaining paradigms, where P01 performed 
the best with classification accuracy of 70.00% ± 2.85, as shown in Fig. 3. 

Table 1. Misclassification rate using CSP and FBCSP with linear discriminant analysis (LDA) and logistic regression 
(Logreg) classifiers with 5x5-fold of cross-validation. 

Participant CSP FBCSP 
LDA Logreg LDA Logreg 
mcr (%) mcr (%) mcr (%) mcr (%) 

P1 32.50** 30.00** 40.00** 30.00** 
P2 35.00** 35.00** 40.00** 32.50** 
P3 40.00** 37.50** 35.00** 37.50** 
P4 42.50* 40.00** 42.50* 35.00** 
P5 40.00** 42.50* 40.00** 35.00** 
Average 38.00 37.00 39.50 34.00 
S.D. 4.12 4.81 2.74 2.85 
* Over chance level of 2-class discrimination, 57.50% (p < 0.05).
** Over chance level of 2-class discrimination, 60.00% (p < 0.01).

Figure 5 illustrates the AUC-ROC curves, along the x-axis is FPR and along y-axis lays the TPR. In all plots, the 
diagonal grey line represents 50% chance level for the binary classifier. Ideally AUC should be 1 (exact 90° angle) 
for 100% accuracy. In each case, the participants produced an AUC-ROC above chance level, with P01 performing 
with a maximum AUC in case of FBCSP-Logreg, as shown in Table 2. The colour legend for each curve is given as, 
blue: CSP-Logreg, green: FBCSP Logreg, yellow-chartreuse: CSP-LDA, and maroon: FBCSP-LDA. 

Fig. 5. Receiver operator characteristics curves depicting area under the curves for all participants. 
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Table 2. Area under (ROC) curve (AUC) and kappa scores using CSP and FBCSP with linear discriminant analysis (LDA) 
and logistic regression (Logreg) classifiers. 

Participant CSP FBCSP 
LDA Logreg LDA Logreg 
AUC  AUC  AUC  AUC  

P1 0.73 0.35 0.73 0.40 0.71 0.20 0.78 0.40 
P2 0.69 0.30 0.75 0.30 0.55 0.20 0.62 0.35 
P3 0.56 0.20 0.58 0.25 0.59 0.30 0.61 0.25 
P4 0.55 0.15 0.59 0.20 0.58 0.15 0.60 0.30 
P5 0.57 0.20 0.55 0.15 0.60 0.20 0.62 0.30 
Average 0.62 0.24 0.64 0.26 0.61 0.21 0.65 0.32 

Table 2 also highlight the kappa scores with each paradigm. The maximum kappa was scored by P01 with 
FBCSP-Logreg and CSP-Logreg. Overall the maximum kappa was obtained with FBCSP-Logreg with an average 
score of 0.32. According to [28], the strength of agreement between predicted and true class for 0.21-0.40 is 
fair. Thus, for the maximum obtained score, the strength of agreement is fair. 

4. Discussion and conclusion

This study presents a novel finding on knee kinaesthetic motor imagery employed as cognitive task for a 2-class
BCI. We proposed 4 methodology paradigms for analyzing and discriminating the left vs. right knee KMI feature 
vectors, i.e. CSP-LDA, CSP-Logreg, FBCSP-LDA, and FBCSP-Logreg. Each of the proposed paradigms 
demonstrated classification accuracy above the chance level of a 2-class BCI, i.e. 60.00% (p < 0.01) with a 5-fold 
cross validation for training and testing phases. The CSP pair patterns exhibited an enhancement in the hand 
and foot area mu and beta rhythm. This implicates that the knee KMI does not enhance a new area in the cortex, 
possibly due to the location of knee representation area in the mesial wall of the cortex. The results, however, are 
overall encouraging as the average kappa score for each paradigm lies in the fair range of agreement between 
predicted and true class, with maximum score of 0.40. Generally, FBCSP-Logreg produced a maximum individual 
classification accuracy rate of 70% and an average accuracy rate of 64%. These results are encouraging and provide 
the basis to exploit left vs. right knee KMI to be used as individual control signals in a 2-class BCI for operating a 
knee neuroprosthesis, or robotic knee for lower-limb amputees. We aim at engaging more participants and provide 
feedback training for the future investigation. 
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Chapter 9

Conclusions and future work

9.1 Conclusions

9.2 Suggestions for future studies

Chapter Overview

The goal of this chapter is to summarise general conclusions on the feature 

extraction and classification of left-right foot  and left-right knee KMI  and how

the current work’s findings can be helpful to develop a LL KMI based real-time 

BCI.  recommendations for future work are presented.
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9.1 Conclusions

Research on seamless control of LL assistive devices for navigation  or gait assistance  has 

emerged as a promising area in the field of rehabilitation. For people with lost motor, e.g. SCI 

or amputation, but intact sensory control, the origination of control signals from the source,

i.e. electrophysiological signals, is indispensable for control of assistive devices. With

established literature, it is well known that motion intentions primarily arise in the cortical

areas of brain. When opting for portable non-invasive modality to record motion intentions,

EEG is . EEG signals applicable independent BCIs that have successfully

been used with assistive technology  are the oscillatory rhythms/SMR and ERP. ERP

paradigm accounts for a setup to provide stimulus to the user  during operation

of the assistive device. In contrast, the oscillatory rhythms do not necessitate large

setup for stimulating cortical activity; instead it relies on the motor imagery

produced synchronously  or asynchronously by the user. This motor imagery  or KMI  is

produced after rigorous training trials. Commonly deployed cognitive tasks include limb

motor tasks, yet there is no consensus on standardised methods  or selection of cognitive

tasks  during performance in a BCI paradigm. Selection of cognitive task  to produce

detectable feature vector  that correlate to the user’s intent  is one key factor to improve the

performance of a BCI.

Motor imageries associated to limbs predominantly remain with the upper-limbs, due to the 

anatomical placement of LL representation areas in the sensorimotor cortex. The contralateral

hemispheres of the cortex share close spatial proximity and are placed inside the 

interhemispheric fissure of the sensorimotor cortex. These two factors account for difficulty 

in the detection of EEG features elicited upon imagination of LL. Therefore, a deep 

understanding and investigation of the ERD/ERS in frequency band of mu and beta

oscillatory rhythms, during left and right LL KMI in humans  is an important area for

research.  Solution to these issues is important for the development of robust controllers in 

asynchronous BCI paradigms, to control LL assistive devices seamlessly. However, it is a

challenging area in which different research groups have conflicting opinions  whether the 

cortical lateralization of LL using EEG features is possible  for practical implementation  in a 

BCI paradigm  or not. ocus of the present study was to investigate the cortical 

lateralization of ERD/ERS  based on KMI of foot dorsiflexion and knee extension 

individually, using BP and CSP feature vector. The study deployed synchronous BCI 

paradigm, to ensure that the users elicit oscillatory rhythms upon motor imagery of LL for the 

possibility of practically implementing a control system in a BCI. esults obtained from 



16  

these studies have been discussed in detail and reported in Chapters 4 to 8. This chapter 

underscores the main conclusions that are drawn from th  research.

Since cortical EEG signals are non-stationary,  offers arduous challenges, from data analysis 

viewpoint. It is characterized by trial-to-trial and participant-to-participant variability

followed by, the low signal-to-noise ratio, which is not favourable. Cortical signals are high-

dimensional with relatively few samples that are available for fitting models to the data. Due

to these factors, machine learning (ML) methods ed into the tool of choice for 

online analysis of single-trial EEG data. In comparison to this, the classical 

neurophysiological analysis methods use averaging methods for e.g. taking grand averages 

over trials, participants  and sessions  to discard various sources of variability. Therefore, the 

selection of suitable ML model is another challenging area  for the accurate and statistically 

true detection of the class of KMI. 

To increase the dimensionality of control signals  in a BCI paradigm  for restoration of 

locomotion function in LL assistive devices, an analysis of BP features, based on foot and 

knee KMI within the same LL was done in Chapter 4. Conclusions from this study are as 

follows:

1. Despite a small LL sensorimotor area representation in the homunculus, the foot and

knee KMI elicited event-related changes respectively, in the mu (7-12 Hz) band

within the same limb. Based on the spectral power plots, an increase in the mid-

central ERD was observed with all the participants. Mu ERD was mainly observed in

the cortical foot area representation, with small shift towards parietal lobe.

2. In contrast to foot, the left-right knee KMI tasks did not exhibit prominent

contralateral dominance of ERD, except for one participant. This could possibly be

due to less number of participants and the spatial proximity of left-right LL and its

placement in the interhemispheric fissure of the mesial wall in the sensorimotor

cortex. Results suggested that intra-subject cognitive-state variability exists during the

reactivity of mu components. This makes it difficult to draw a clear difference

between both LL tasks within the same limb. However, clear results with one

participant; indicate the possibility of discriminating different movements within the

same LL.

While ERD successfully exhibited in the mu band, analysis of beta ERD/ERS in the BP 

feature with more participants was important for investigation. The next study was based on 
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the possibility to deploy the mu ERD and beta ERD/ERS features  as independent 

control features in a BCI paradigm  based on foot KMI. It  discussed in Chapter 5.

The analysis was done for common average and bipolar reference methods respectively. In 

order to evaluate this possibility, implementation of suitable ML model was essential. 

The key conclusions from this study are as follows:

Confirmation of cortical lateralization of ERD/ERS during left and right foot KMI

was done in the mu (7-12 Hz), low beta (13-24 Hz) and high beta (25-35 Hz)

frequency bandwidth . This was obtained from the three channels at the vertex i.e.

C3, Cz, and C4 using common average and bipolar reference methods.

The k-nearest neighbors (KNN) model outperformed LDA and SVM models with the

highest classification accuracy of 83.4% ± 6.72 with an AUC-ROC of 0.85, using

common average reference in comparison with bipolar reference. Results from this

study produced an enhancement in the beta ERS classification accuracy in

comparison to another similar study from literature that used different methodology.

The trade-off between attaining a low training and a low testing error during

classification was controlled with the optimal regularization parameter from a range

of values, for all three ML models, using the -fold cross validation.

Classification accuracies of the three features, mu ERD, beta ERD, and beta ERS,

based on left-right foot KMI  suggest the possibility of using them  a single BCI

paradigm with 6 degrees of freedom (DOF) commands; or as unilateral control

features in a synchronous 2-class BCI for operating bionic or neuro-prosthetic foot.

BP feature vector was employed for classification of left and right foot KMI using two 

references for comparison, followed by three ML models, to confirm the cortical 

lateralization. The next goal was to improve the classification accuracy by adopting common 

spatial pattern (CSP) feature vector and analysing it for LDA and logistic regression (Logreg) 

ML models, respectively. In addition to CSP, the study encompasses filter-bank CSP 

(FBCSP) for optimization of individual spatial patterns of participants. The low-cut and high-

cut frequency bands of optimal filters were 8-12 Hz, 13-25 Hz, and 28-32 Hz that encompass 

the mu and beta range.  Results from this have been reported in Chapter 6. The key 

conclusions from this study are as follows:

1. Bilateral foot KMI resulted in the discrimination of left and right foot tasks using the

CSP and FBCSP feature vectors. Since FBCSP’s feature space dimensionality is
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larger than that of CSP, with more flexibility  a risk of overfitting is associated, i.e. 

a tradeoff between overfitting and estimation of optimal parameters. This necessitated

a comparison of FBCSP feature with the standard CSP. 

2. The selection of time and frequency regions is critical, as the complex (relevant)

interactions between mu and beta bands are seemingly rarely observed. It could be

very useful when oscillatory processes in different frequency bands (with different

spatial topographies) e.g., mu, low beta and high beta, are jointly active. Their

concerted reaction must be taken into account for the given prediction task.

3. The FBCSP with LDA model resulted in highest classification accuracy of 77.5% ±

4.23 compared to other models with an AUC-ROC of 0.70. The CSP and FBCSP

features with Logreg performed above the statistical chance level of 60% (

as per a 2-class BCI problem. However, the highest classification accuracy of this

study could not exceed the single trial analysis classification accuracy from the

previous study (Chapter 5).

4. The maximum kappa score was 0.55 and the maximum average kappa statistic was

also in the 0.41<0.60 range, i.e. the strength of agreement between classes was

moderate. A 10-fold cross validation method was used to estimate the optimal

parameters for the classifiers and avoid overfitting classifiers to the training data. It

predicted the true performance of ML models. Given results stipulate the utilization of

mu and beta as independent control features for discrimination of bilateral foot KMI

in a BCI.

After detailed analysis of left and right foot KMI, the next direction was to implement similar 

strategies as those inferred in Chapters 5 and 6 respectively, to the left and right knee KMI. 

Chapter 7 and 8 exploit the knee KMI using BP and CSP feature vectors respectively, in

order to predict the cortical lateralization of ERD/ERS in the mu and beta (7-35 Hz) 

frequency bandwidth followed by the excitability of new cortical regions. Since the knee 

KMI has never been exploited before, these studies novel therefore  as a pilot study  only 

five participants were involved in the experiments. Conclusions from Chapter 7 and 8 are

given as:

1. Using BP features, the left and right knee KMI showed cortical lateralization at the

three vertex channels i.e., C3, Cz, and C4, using common average reference method,

as concluded in Chapter 5 for better performance. The maximum classification

accuracy was 81.04% ± 7.5 and AUC-ROC = 0.84, using KNN classifier model for
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beta ERS feature in comparison to SVM model. However, the maximum overall 

average accuracy was obtained in case of mu ERD, 74.59% ± 5.1, again with KNN.

These results are very encouraging in view of the covert anatomical representation 

area of left and right knee  in the human sensorimotor cortex  compared to that of upper 

limbs/hands. Following this, all proposed ML models performed above the statistical 

chance level of 60% ( as per a 2-class BCI problem.

With CSP and FBCSP feature vectors, the left-right knee discrimination was also

successful, ( . The

maximum accuracy was achieved with FBCSP-Logreg model of 70.00% ± 2.85, a

kappa statistic of 0.40, and an AUC-ROC of 0.78 in comparison to LDA model.

Albeit the strength of agreement between the two classes is fairly good but not

substantial. Therefore  engagement of more participants could ensure

better understanding and visualization of deploying the CSP and FBCSP feature

vectors in a BCI based on knee KMI.

No excitability of a new area in the sensorimotor cortex was detected, for knee KMI

tasks. ERD/ERS was only observed in the vicinity of the vertex and in the foot area

representation of the cortex.

The results from ERD/ERS in the BP feature vector however provide the basis for

utilization of left and right knee KMI as cognitive inputs that could be exploited as

two unilateral commands for navigation control in a BCI-controlled bionic knee.

Results from Chapter 7 infer the possibility to deploy the novel knee KMI as a

cognitive task in a BCI paradigm.

9.2 Suggestions for future studies

The inferences drawn out of this study have been acquired from somewhat less number of 

participants, due to constraints of time and resources. Engagement of more participants for 

further studies is required to extend the contribution of this thesis for establishing a better 

understanding of the area. Some suggestions and recommendations for future research to 

expand our knowledge of the various EEG pre-processing and feature extraction methods, 

and classification algorithms, as well as the real-time implementation of the analysed 

cognitive tasks addressed in this thesis, are outlined in this section. Recommendations to 

study these factors are given as follows:



Testing of the proposed methods in all four studies on a larger population could

endorse and emphasize on the drawn conclusions from the studies presented in this

thesis. This should particularly be in the case of left-right knee KMI, as the suggested

cognitive task is novel and the study conducted was pilot. With left-right foot KMI,

albeit the number of participants was nine, which is good enough to draw a conclusion

as per references he involvement of more participants could ensure the viability

of utilizing two independent control commands based on left-right foot KMI in real-

time BCI. This could also be imperative in case of commercialization of the

results for real-time BCI applications.

In all four studies presented in this thesis, the number of training trials was kept to a

standard of 80 trials  per class per session (with total of 160 trials per session). It

would be interesting to know the effects of larger number of training trials and longer

length of the experimental trial on the prevention of overfitting, i.e. possibility of a

tradeoff between number of training trials and overfitting.

The feedback training plays an effective role in enhancing the classification accuracy

of a motor imagery based BCI paradigm. In the four conducted studies from this

thesis, none of them involved neurofeedback training during practicing of the

experimental synchronous BCI protocol. Therefore, further studies with more time

allocated to the BCI neurofeedback training for participants are required, to determine

its effects on the classification accuracy.

Further studies are required to discriminate between four independent cognitive tasks,

e. left foot, left knee, right foot, and right knee, within the same limb, that could

increase the dimensionality of control signals, as a cognitive entity in a BCI paradigm.

This could help develop a 4 DOF cognitive tool to actuate four aspects of an assistive

device in a single BCI controller. Although one aspect of this study attempted to

improve the classification accuracy of left-right foot KMI, further experimentation

with more non-linear ML models . For instance, neural-networks could

be used to improve the knowledge about discrimination of foot KMI tasks, and its

effects on the cortical lateralization of ERD/ERS and atency in real-

time BCI.

Since the primary aim of the four studies was to visualize the possibility of deploying

left-right foot and left-right knee KMI in a real-time BCI, all methods and

analyses revolved around the attempt to attain maximum classification accuracy,

satisfying the test-statistics. The future aim directs towards testing the developed

methodologies and ML models from the four studies in real-time, i.e. implement 1
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designed methods on a real-time BCI paradigm and interface it with LL assistive 

hardware. This could be instigated by using lab-streaming layer (LSL) 

allows synchronization of streaming data across devices. Alternatively, EEG 

signals could be transferred to the BCI operator via communication protocol that 

further directs them to the actuator ransmission ontrol

/ nternet rotocol (TCP/IP), a suite of communication protocols 

to interconnect network devices on the internet, or

(EMG) sensors with EEG in the experimental setup

for monitoring the muscle activity during performance of imagery tasks could indicate

the prevalence of accidental EMG activity. The EMG sensors could be fixed on the

left and right tibialis anterior muscles over the muscle belly. Effects of recorded EMG

activity on the lateralized brain activity could be checked.

Wireless EEG for portable assistance (BCI assistive device) is necessary because

ideally the independent BCI based on oscillatory rhythm works asynchronously, for

instance portable exoskeleton, orthosis, prosthesis, or wheelchair for gait assistance

necessitates a wireless portable controller. Synchronous BCI paradigms that result in

sufficient classification accuracy for real-time BCI could be used as a practice for

asynchronous BCI, in order to improve the data transfer rate from BCI controller to

output device. Further, since in a cue-based synchronous BCI controller, the decision

time is relatively slow for real-time applications, such as walking, where a seamless

execution of command from the assistive-device is essential, the self-paced

asynchronous BCI is the solution. An asynchronous BCI fully paced by user intent,

could result in a seamless walking gait with assistive device, be less tiring, and could

provide a source of comfort to the user.
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Appendix A.

Event-related changes detection in sensorimotor 
rhythm

1.1 Introduction

1.2 Materials and methods

1.3 Results and discussion

1.4 Conclusion

1.5 References 

Chapter Overview

The aim of this study is to investigate the sensorimotor rhythms (SMR) that exhibit 

upon left and right leg imagery for locomotion task. From SMR, the mu rhythm was 

observed for possibility of any contralateral dominance in the topographic maps. The 

experiments were based on motor execution (ME) and motor imagery (MI) tasks to 

validate the notion that for the same task, the MI should excite same cortical areas as 

those during ME. The notion was validated, however, there was no significant 

cortical lateralization observed.

This work has been published in International Robotics & Automation Journal.

M. Tariq, P. M. Trivailo, M. Simic. Event-related changes detection in sensorimotor
rhythm. International Robotics & Automation Journal, 4(2) 119-120, 2018.
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Abbreviations: EEG, Electroencephalography; BCI, brain-
computer interface; ME, motor execution; MI, motor imagery; ERD, 
event-related desynchronization; ERS, event-related synchronization, 
SMR, sensorimotor rhythms 

Introduction
Human walking gait is disrupted by the spinal cord injury (SCI) 

or amputation.1 Gait rehabilitation involves improvement of the 
motor control functions by the activation of neuro-plasticity. It can 
be achieved by deciphering and translation of brain signals that 
correspond to the execution, or action imagery, of the affected limb, 
into output commands. BCI could be used to build new communication 
channel between the brain and output devices. EEG features, generated 
against motor execution or imagery tasks, comprise of sensorimotor 
rhythms generated in the primary and sensory motor cortex. SMR 
are usually concentrated in the mu (8-11Hz) or beta (12-32Hz) 
frequency bands.2 SMR changes against each task are unique and can 

highlights the changes in mu rhythm against the ME and MI of leg 
mu

related desynchronization and event-related synchronization. ERD 
is associated with the proportional power decrease in concentration, 
while ERS with the proportional power increase in the signal. SMR 
ERD is linked with MI, as well as, with actual movement.3 Studies 
on tasks related to lower limbs are presented here.4,5 Investigations 
are required of SMR on leg tasks, both for ME and MI, to be used 

sensory and motor cortices, enables cortical localization of ERD 
patterns. Lower limbs area representation is located deep within the 

hard to detect ERD patterns.6

Materials and methods
Study involved three healthy participants, 25-27 years old. Ethics 

approval was granted by the University ethics committee. Experiments 
were based on the Graz BCI protocol for ME/MI tasks and consisted 
of 6 runs, 3 for each task. Standard 10-20 Electro-cap was used to 
acquire brain signals from the motor cortex. EEG system includes 
20 channels sampled at 256Hz with 24-bit resolution. Statistical 
EEGLAB package (http://www.sccn.ucsd.edu/eeglab/ ) was used to 

between 8 to 11Hz which is the required frequency bandwidth range 
of mu rhythm followed by epoching of the trials (10seconds in length). 
Extracted and analyzed trials included period of 3seconds prior to cue 

method, the independent component analysis (ICA).7
of mu ERD/ERS patterns was done following method proposed by 
Kalcher et al.8 Proportional power decrease or increase, compared 
to the reference interval, is usually in the period of several seconds 
before the event onset. A 3 second interval, prior to visual cue onset, 
was selected as reference. 

Results and discussion
Experiments involved execution and imagination of left and right 

imagery and execution of left leg movement are presented in Figure 
1. Color bar indicates the spectral power concentration over the scalp
for all channels in the mu frequency range. Power spectral density
is represented in logarithmic scale. For participant 1 it was observed
that a high spectral power concentration was in the central regions.

mu rhythm concentrated in the foot
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Abstract

Brain activities initiate motion in the human body. In our research we try to detect brain 
electrical activities and generate control signals for robotic devices like prosthetic 
legs. Human legs are associated with a small representation area in the sensorimotor 
(SMR) cortex, which is located deep inside the inter hemispheric fissure. It is difficult 
to observe any electroencephalographic activity related to the legs. Detection of 
sensorimotor signals, based on leg imagery, could potentially be useful in medical 
applications, i.e. for systems that are using brain-computer interface for lower limbs 
assistance. We investigate reactivity of sensorimotor rhythm i.e., mu rhythm, as a 
result of given tasks, such as, motor execution (ME) and motor imagery (MI) of the 
leg. Resulting SMR was analyzed, for each task state and evaluated in terms of event-
related de synchronization and event-related synchronization patterns. Higher power 
concentration was observed in the foot representation and peripheral areas, during 
both ME and MI tasks. No contralateral dominance was detected during left or right 
discrimination tasks. Results provide a foundation for leg imagery based, interfacing 

in a lower limb wearable rehabilitation system. Spinal cord injury patients could, also, 
be potential users of this type of biomechanical systems. 

Keywords: electroencephalography, brain-computer interface, motor execution, 
motor imagery, event-related desynchronization, event-related synchronization
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Similarly with MI task, the ERD was centrally localized and edged 
towards right parietal region, which could be an indication of 
contralateral dominance at 8 and 11Hz frequencies. However, this was 
not the case with remaining participants. After experiments with all 
participants, we have collected large amount of data that we analyze 
and try to decipher. 

Figure 1 Participant 1 topographical scalp maps during left leg ME and MI 

sessions, at 8Hz and 11Hz.

Conclusion

can prove to be potential control signals in the BCI application for 
assistive technologies, useful for SCI patients or amputees with intact 

cortical areas to be high in power concentration during leg imagery 
and execution tasks. Motor execution tasks activate same cortical 
areas as imagery tasks. In all cases, at the beginning of the visual cue 
onset a desynchronization in the leg mu area was visible followed by 

with the established results from the spectral power distribution maps. 
Further study is needed for a comprehensive mapping of our thoughts 
to robotics control signals, but obtained results are promising. 
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Motor imagery based EEG features visualization 
for BCI applications

2.1 Introduction

2.2 Methods

2.3 Results 

2.4 Discussion and conclusion

2.5 References

Chapter Overview

The use of EEG-based BCIs in medical and non-medical applications has augmented 

the quality of life. For medical applications, the availability of real-time data 

processing platforms for BCI to control robotic devices is limited to few.  This study 

assesses the possibility to analyse and visualize EEG mu and beta features using the 

OpenViBE acquisition platform in offline mode, albeit it’s real-time processing 

capability. Aim was to discover the tools/options available for processing the data in 

offline mode. Using OpenViBE, EEG signals were acquired, pre-processed, and 

features were extracted for quantification of event-related (de)synchronization 

(ERD/ERS) by developing scenarios using the designer toolbox. Since the 

experimental study involved foot kinaesthetic motor imagery (KMI), the acquired 

data was recorded using the standard built-in Graz BCI protocol. Results showed that 

OpenViBE is a streaming tool that supports processing and analysis of EEG online, 

contrary to visualization of data in global mode. It is one potential tool for real-time 

control of assistive technologies using BCI paradigm.

This work has been published in International Journal of Knowledge-Based and 

Intelligent Engineering Systems: Procedia Computer Science.

M. Tariq, P.M. Trivailo, and M. Simic. Motor imagery based EEG features
visualization for BCI applications. International Journal of Knowledge-Based and
Intelligent Engineering Systems: Procedia Computer Science 126, 1936-1944, 2018.
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Abstract 

Over recent years, electroencephalography’s (EEG) use in the state-of-the-art brain-computer interface (BCI) technology has 
broadened to augment the quality of life, both with medical and non-medical applications. For medical applications, the 
availability of real-time data for processing, which could be used as command signals to control robotic devices, is limited to
specific platforms. This paper focuses on the possibility to analyse and visualize EEG signal features using OpenViBE 
acquisition platform in offline mode apart from its default real-time processing capability, and the options available for 
processing of data in offline mode. We employed OpenViBE platform to acquire EEG signals, pre-process it and extract features 
for a BCI system. For testing purposes, we analysed and tried to visualize EEG data offline, by developing scenarios, using 
method for quantification of event-related (de)synchronization ERD/ERS patterns, as well as, built in signal processing 
algorithms available in OpenViBE-designer toolbox. Acquired data was based on deployment of standard Graz BCI experimental 
protocol, used for foot kinaesthetic motor imagery (KMI). Results clearly reflect that the platform OpenViBE is a streaming tool
that encourages processing and analysis of EEG data online, contrary to analysis, or visualization of data in offline, or global
mode. For offline analysis and visualization of data, other relevant platforms are discussed. In online execution of BCI, 
OpenViBE is a potential tool for the control of wearable lower-limb devices, robotic vehicles and rehabilitation equipment. Other
applications include remote control of mechatronic devices, or driving of passenger cars by human thoughts. 
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1. Introduction

In recent years, new attributes to human computer interaction have revolutionized various fields of application,
e.g. medicine, entertainment, etc. Predominantly, these technologies are of the key interest to researchers in the areas
of health and rehabilitation, e.g. upper or lower-limb wearable robot control such as prosthetic, exoskeleton, or
orthosis devices [1]. The state of the art brain-computer interface (BCI) has enabled real-time monitoring of the
brain activities, and allows the brain signals to control external devices, like neuroprosthesis, without the
involvement of any muscular activity [2-5]. It also functions as a bridge to bring sensory input into the brain,
bypassing damages sight, listening or sensing abilities. A BCI system commonly deploys input signals that are
elicited upon execution of motor imagery tasks, i.e. kinaesthetic imagination of a limb movement; these could be
hand, foot or tongue movements.

The application areas of BCI range from wheelchair control to security system [6]. BCI has been used to control 
vehicles in 3D environment recently, as already presented in [7-15]. Various types of BCI system applications are 
shown in Fig. 1. In the near future, we hope to see a new revolutionary application of the BCI control of human 
limbs, in the cases when patients have spinal cord injuries. Driving a virtual car in a simulated and in realistic city 
using EEG is already presented [12]. System is based on P300 wave signal acquisition, which is analysed, 
recognised and converted into control commands. Virtual car is controlled in 3D environment. The P300 is an event 
related potential associated to brain activities in decision making. Vehicle control, in a car racing game, which is 
based on EEG signals that correspond to the driver’s right hand, left hand and both hands imaginary movements is 
also investigated and reported here [10].  

In order to analyse and visualize acquired EEG signals, the approach could be offline, or online. Offline analysis 
enables better understanding of brain functions and building the knowledge based on acquired data, it provides 
options of various processing tools needed to analyse data and visualize it graphically (in form of plots or graphs). 
However, it does not allow real-time execution of commands that could be used to control output devices in real-
time. On the contrary, online processing is suitable for real-time control of output devices; however, the limitations 
lie with the data analysis and realization of actions. Online processing of EEG data is apt for experts in the field who 
can visualize the quality of data. To analyse or process data, various tools are available, both for online and offline 
mode, and both open source and non-open source, such as, OpenViBE, BioSig, BCI2000, BCI++, MATLAB 
toolboxes EEGLAB, BCILAB (plug-in of EEGLAB) [16-20]. OpenViBE is open source software, popular and easy 
to access. It provides a platform for designing, testing and using the BCI in real-time and in virtual-time 
environments [21]. 

Fig. 1. BCI system’s structure for various applications 
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The OpenViBE platform comprises of a set of software modules dedicated to:  Data Acquisition, Data Pre-
processing, Data Processing, and Cortical Data Visualization. It also includes the module for interaction with virtual 
reality (VR) displays. OpenViBE is designed based on the concept of a box, i.e. a fundamental component 
controlling a fraction of the whole processing pipeline. This enables to develop reusable components, decreases 
development time and allows for quick extend of functionalities. The platform enables users to add new software 
modules based on their customized needs [21].  

This paper focuses on the testing of OpenViBE platform for the possibility to analyse KMI-based EEG signals in 
offline or global mode and visualize resulting features in form of output plots. For materializing this, we formulated 
our band power feature method in the designer window of OpenViBE. To select features of interest, from the 
recorded mu (8-11 Hz) and beta (12-30 Hz) rhythms, event-related desynchronization (ERD) and event-related 
synchronization (ERS) were quantified using standard methods [22, 23]. This paper will provide readers an insight 
of the possibilities to use OpenViBE for visualization of data in offline mode. 

2. Methods

2.1. Experimental paradigm and data collection

We started our investigation by concentrating on the BCI controlled robotic foot movement i.e. one of the 
rehabilitation applications, as shown in Fig.1. This was based on the detection and decoding of EEG signals that 
could be used for the control of a robotic foot. Once reliable signal detection and decoding via pre-processing and 
feature extraction methods is achieved, the next step simply requires conversion, or translation of the feature vector 
that could be applied to any application. We should highlight here that robotic foots or hands, as well as locomotive 
equipment, vehicles, or mechatronics devices are intelligent systems. Following that, there is no need for detailed, 
step by step control of the applications. This approach simplifies the requirements of BCI system, which could use 
different data acquisition (DAQ) systems. We have concentrated on electrophysiological signals, EEG, as input 
signals, since it is based on non-invasive methods to record brain activity, and provides reliable output.  

The study involved the evaluation of raw EEG data collected from four healthy participants, with no history of 
neurological disorder and no BCI experience. All were aged between 24-27 years. Ethics approval was granted by 
the College of Human Ethics Advisory Network (CHEAN) Committee of RMIT University, Melbourne, Australia. 
EEG neurofeedback (24-channel) BrainMaster Discovery 24E was used to record EEG signals from the brain. The 
experiment was based on performance of foot kinesthetic motor imagery. In order to set experimental protocol, the 
Graz motor imagery BCI stimulator box was used from OpenViBE acquisition platform, as shown in Fig. 2. Each 
trial consisted of a 3 sec reference period for the processing of epochs. An audio beep of 1 sec was incorporated in 
the beginning of the trial to alert the subject, see Table 1. Each trial was in total 10 sec long. That included 2 sec for 
cues display and 5 sec for performing motor imagery task, i.e. left or right foot movement. In total, one run 
consisted of 40 trials, including 20 for left foot and 20 for right foot, displayed randomly to overcome any 
adaptation. As the task involved kinesthetic motor imagery (KMI), therefore the mu and beta rhythms were analyzed 
[2, 3].  
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Relax 

Fig. 2. Established hardware-software connection between Discovery 24E amplifier and OpenViBE acquisition software (adapted from [2, 3]) 

     Table 1. Motor imagery protocol for each cue in OpenViBE 

Cues Visuals Action 
Fixation cross Prepare for experiment to 

start 

Audio beep Get alert to start 

Visual cue 

Performance task Imagine Moving Foot Left or 
Right 

Rest Relax or rest 
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2.2. Data processing using OpenViBE 

  Using the designer tool of OpenViBE, we created a scenario by incorporating modules from the tool panel, see 
Fig 3. The ERD/ERS quantification was based on method suggested by [22, 23]. 

   (1) 

    (2) 

In equation 1,   is the j-th sample of the i-th trial of the bandpass filtered data,  is the mean of the j-th sample 
averaged over all bandpass filtered trials, and  is the power of the j-th sample. In equation 2,  is the average 
power in the reference interval .

In order to quantify ERD and ERS patterns from oscillatory rhythms, the channel selector box was used to 
specify channels C3, Cz, and C4, i.e. effective electrode positions from the primary motor cortex, for analysis of mu
and beta rhythms. Each of the mu and beta rhythms were bandpass filtered using 5th order Butterworth filter with 
low cut frequency of 8 Hz and high cut frequency of 11 Hz for mu, and a low cut frequency of  12 Hz and high cut 
frequency of  30 Hz for beta.  This was done using the temporal filter box. Next, simulation based epoching was 
done for each rhythm against each task, i.e. left foot and right foot KMI. Following that, simple Digital Signal 
Processing (DSP) block was used to square each signal respectively. For each trial (20 for left and 20 for right foot 
KMI) epoch averaging was done. Averaging over sample points was done using time based epoching feature box.  

However, calculating the ERD/ERS using equation 3: 

      (3) 

was not possible, as the whole data epoch was not accessible at the same time. Following that, the mean of one 
epoch could not be subtracted from equation 1. Because only small chunks of the signal were available on time, 
averaging over sample points resulted in a shorter output signal. Therefore data needed to be loaded into another 
platform for further processing. 

Alternate approach was the utilization of spectral analysis box based on Fast Fourier Transform (FFT), however 
in that case, pre-processing of data was only possible using a combination of temporal filtering and time based 
epoching in contrast to stimulation based epoching. In that case, selection of independent epochs related to left and 
right event markers was not possible and data would have been treated as a complete trial without segmentation 
displaying the real-time power spectrum for each chunk of data being analysed. 
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Fig. 3. Schematic organisation of boxes used to pre-process acquired data using OpenViBE designer 

3. Results

Fundamental procedures to calculate ERD/ERS for analysis of data in one step could not be implemented using
OpenViBE platform due to availability of data in small chunks at a time, as already explained. Resulting plots could 
only be achieved for run time, nor overall analysis. Following equation 1, for signals elicited from foot 
representation area, i.e. electrode position C3, Cz, and C4, the run-time resulting epochs for filtered mu and beta
rhythm are shown in figure 4. Figure 5 and 6 reflect the run-time squared signal epochs followed by averaged 
epoched signals over trials for mu and beta frequency range, respectively. While epoching the signal based on 
stimulation for distinguishing between left vs. right task cue, it was observed that stimulation marker did not match 
the time that was set during experimental protocol, as after epoching the stream does not remain continuous 
anymore.  

Since the proposed study was based on extraction of band power features as suggested in equation 3, alternate 
sensorimotor features (of interest), elicited upon KMI, such as common spatial patterns (CSP) or time-frequency 
features, could be used.  In OpenViBE designer toolbox there are options as, spectral analysis to display the power 
spectrum in real-time, and CSP method. 
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Fig. 4.  Chunk of signal in run-time of OpenViBE designer at electrode positions C3, C4 and Cz (green pointer indicates run-time of each epoch). 
(A) acquired raw signal display with stimulations; (B) pre-processing part signal display following temporal filtering in the mu frequency range 

between 8Hz to 11 Hz and the beta frequency range 12Hz to 30 Hz with stimulations 

Fig. 5.  Epoched signal in run-time of OpenViBE designer at electrode positions C3, C4 and Cz (green pointer indicates run-time of each epoch). 
(A) pre-processing part signal display following squaring (simple DSP block) of left and right epoch, respectively in mu range; (B) processing 

part signal display following averaging over trials of epoched data in the mu frequency range 

A

B

A

B
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Fig. 6.  Epoched signal in run-time of OpenViBE designer at electrode positions C3, C4 and Cz (green pointer indicates run-time of each epoch). 
(A) pre-processing part signal display following squaring (simple DSP block) of left and right epoch, respectively in mu range; (B) processing 

part signal display following averaging over trials of epoched data in the mu frequency range. 

4. Discussion and Conclusion

For different applications, such as controlling various local output devices in the real-time, based on BCI, or
online control of mechatronic devices, both in real and virtual environments, OpenViBE is probably one of the most 
viable platform. However, it is not suitable for analysing command signals offline, nor it allows for visualization in 
form of plots or graphical outputs that could be saved for later use. OpenViBE is originally designed as a streaming 
tool for 'online' BCI experiments. Its operating philosophy is built on the logic of boxes processing small chunks of 
streamed signal at a time. It is contrary to MATLAB plugins, such as BCILAB, EEGLAB, or R/scipy etc. that 
provide access to analysis of data offline, where all the data (or epoch) is available at once in the form of big 
matrices or tensors. Although that one very large epoch can be formed in OpenViBE with available tool boxes to do 
the required analysis using a buffer box, clearly the platform is not designed for analysis or exploration of data 
offline. For analysis and visualization of data offline or in global sense, the data needs to be exported to a classical 
statistical package, as mentioned above. OpenViBE is best suitable for real-time control of output devices or 
systems driven by cortical signals in real or virtual environments.  

Results from our research presented here suggest that OpenViBE could, potentially be a tool for the control of 
robotic foot controlled via KMI signals in real-time. The same imaginary actions could be used to control passenger 
cars through acceleration and brake pedals control, with the right foot and steering with the left foot. It is certain that 
such vehicles should include high level of automations, known as function specific, as defined in [24], i.e. 
applications like GPS navigation, collision avoidance, electronic stability control, emergency braking, parking 
assistance and others. These vehicles are not completely autonomous; therefore the driver could still have a sense of 
control, using his/her thoughts. Investigation on BCI control of various other applications that include all kind of 
virtual and real vehicles and mechatronic systems are subject to associated research projects.  

The future prospects of this project involve the actuation of robotic foot model via KMI using OpenViBE.  Smart 
robotic foot investigation and model design are subjects of an associated project conducted concurrently to our EEG 
BCI project.  Model design, reliable data acquisition and decoding, using BCI methods, are the key steps in all these 

A

B
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novel and exciting applications.  
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C4 using the common average reference method. As the foot ME and MI reflect 
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translation is one of the basic challenge for application as control signals in BCI to 

restore motor function. Initial results enabled a good platform for left-right foot 

ME/MI discrimination based BCI applications.
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Abstract—Viable usage of Brain-Computer Interface (BCI) in 
real-time applications significantly relies on the pre-processing 
techniques applied on the detected electroencephalography 
(EEG) signals. In EEG, sensorimotor (SMR)/oscillatory signals, 
such as mu and beta rhythm based BCIs, can be used to restore 
motor function by neuro-plasticity applied to re-establish normal 
brain function. This study is based on the evaluation of the foot 
motor execution (ME) and motor imagery (MI), in order to 
design a BCI neurorehabilitation system. Because foot ME and 
MI reflect the user’s physical and imagination state of foot 
movement respectively, in order to be used as control signals, 
their appropriate translation is the basic challenge. This paper 
mainly focuses on the quantification and investigation of mu-beta 
event-related desynchronization (ERD) and event-related 
synchronization (ERS), for inter and intra-subject variability, 
making use of the available design tools in open-source platforms 
such as the OpenViBE software. Results show that the frequency 
of the most reactive components for mu was 8.8±0.5 Hz and 
21.3±0.4 Hz for beta. Interestingly a contralateral dominance was 
visible at electrode position C3 during right foot ME/MI tasks. 
The results have enabled the implementation of a good platform 
for left-right foot ME/MI discrimination based BCI applications. 

Keywords—Brain-Computer Interface (BCI); 
electroencephalography (EEG); neuro-plasticity; event-related 
desynchronization (ERD); event-related synchronization (ERS); 
Graz-BCI protocol 

I. INTRODUCTION

Neurodegeneration, spinal cord injury (SCI) or stroke 
causing paralysis can affect the lower limbs (LL) of a human 
body in addition to amputation, ending up in gait impairment. 
The primary therapeutic goal of such people is the 
rehabilitation of gait, or development of assistive technologies 
[1] for people with non-standard cognitive characteristics [2]
to re-gain the dorsiflexion of foot drop. The rehabilitation of
gait intents to ameliorate the motor control functions by
inducing neuro-plasticity. This could be achieved by detecting
and translating particular brain features, which correspond to
the ME or MI of the affected limb, such as foot, into an output
control command. A feedback on this output command can be
sent to the user that in turn can affect the brain activity of the

user, and re-establish the motor control. One apt tool that 
could be employed to turn this problem into real-time 
application is the BCI technology. 

 BCIs based on particular EEG features used to decipher 
user intent are of different types; one being the 
SMR/oscillatory rhythms. SMR generate in the somatic 
sensorimotor areas and are concentrated in the alpha, or mu 
(8-12 Hz) and beta (12-32 Hz) frequency bands, but also 
include gamma (35-200 Hz) frequency bands [3]. SMR have 
been deployed by researchers in order to identify any changes 
in them relating to any ME or MI task. Such changes in 
rhythms are detected based on feature extraction and 
classification. The execution, or imagination of body part 
movements, e.g. foot, creates a unique pattern in the SMR. 

 These patterns in the SMR are reflected in form of, a 
power decrease called ERD, or a power increase called ERS, 
in the EEG signal. Each of the ERD/ERS is associated to an 
internal or external event. An ERD pattern exhibits an actual 
or imagined movement of a limb, characterized by localized 
cortical topography and frequency specificity. On the contrary 
the ERS relates to the rest, or relaxation period [4, 5]. 

ERD patterns are useful in determining the correlation of 
brain activity during the task with actual performance, or as an 
estimator of brain activity related to an event. This can be 
achieved by quantifying the ERD/ERS patterns using tools 
such as topographic, or time-frequency maps. Topographic 
maps represent the spatial distribution of ERD/ERS for a 
specific frequency, where they can be studied as a function of 
space. The time-frequency maps are used to detect the 
transient event-related spectral perturbation (ERSP) or event-
related shifts in the power spectrum and inter-trial coherence 
(ITC) events in the signal. Amongst the available tools for 
data evaluation, EEGLAB, a MATLAB toolbox for processing 
EEG signals was used in this study.  

The cortical localization of ERD patterns is due to the 
somatotopic arrangement of the sensory and motor cortices. 
This arrangement has the hand area representation on the 
mantle of the cortex, followed by lateralizion the reason why 
ERD patterns of the left and right hand can be easily 
discriminated spatially in EEG. Whereas the foot’s motor area 
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is deep within the interhemispheric fissure of the cortex which 
makes it difficult to detect ERD patterns through EEG [6]. 

Although there is literature about the detection of lower 
limbs (LL) tasks [7], the detection of distinct left and right 
foot tasks for applications as brain controlled robotic foot is 
limited. This study therefore focuses on the quantification of 
ERD/ERS patterns for foot ME-MI tasks in order to expand 
the limited knowledge about the discrimination of left-right 
foot tasks to be used as a CogInfo Communication [8] tool for 
neurorehabilitation in controlling BCI based robot applications 
[9] for LL.

II. MATERIALS AND METHODS

A. Subjects and Experimental Paradigm
Three female subjects with no BCI experience and no

history of any neurological disorder (age range 22-32 years) 
voluntary participated in this study.  Ethics approval was 
granted by the CHEAN (College Human Ethics Advisory 
Network) of RMIT University, Melbourne, Australia. 

Each subject was instructed to sit comfortably in front of a 
monitor screen (17’’) at a distance of about 1.5 m from the 
screen. At the beginning of each run a blank screen was 
presented for 30 seconds. This period was used as baseline and 
the participant was asked to relax and become ready for 
experiment. After the baseline measurement, each trial started 
with the presentation of a fixation cross for 3 seconds 
followed by 2 seconds of visual cue display and 5 seconds of 
performing the task (execution/ imagery), making a total of 10 
seconds for one trial. The visual cues reflected right and left 
foot dorsiflexion-plantarflexion. Subjects were asked to 
dorsiflex and planterflex their foot only once during each task 
performance period in each trial. Visual cues were displayed 
in random order to ensure no adaptation took place. Each trial 
was followed by a random pause interval between 1.5 seconds 
to 3.5 seconds where the subject was asked to relax/rest. Each 
session/run consisted of 40 trials, ensuring a total of 20 trials 
for each task. Furthermore, the experiment was divided into 4 
sessions/runs, 2 for motor execution (ME) and 2 for motor 
imagery (MI) tasks. A schematic overview of protocol timing 
can be seen in Fig. 1, left. For the first trial only an audio 
stimulus (beep) of 1 second before the visual cue display was 
incorporated to alert the subject that the experiment was about 
to begin. 

B. Data Acquisition
For data acquisition the 24 channel EEG neurofeedback

BrainMaster Discovery 24E amplifier (BrainMaster 
Technologies Inc., Bedford, USA) was interfaced with the 
acquisition server of the open source software OpenViBE 
(http://openvibe.inria.fr/downloads/). An electrode cap (10-20 
Electro-cap) with incorporated 20 electrodes was placed over 
the scalp of different brain areas following the international 
10–20 [10]. Channels were referenced to linked earlobes (LE) 
derived from the electrodes A1 and A2 (see Fig. 1, right). 
Data was sampled with 256 Hz on all channels, with a 
resolution of 24-bit and amplifier bandwidth from 0 Hz to 
100 Hz and EEG channel bandwidth of 0.43 to 80 Hz.  

Fig. 1. Experimental protocol reflecting timing of cue including ‘beep’, for 
the first trial only, at the beginning of each session (left) and electrode channel 
locations (right) 

Experimental protocol was set using the OpenViBE 
designer tool with its integrated feature boxes presented in 
Fig. 2. To allow for different onset visual cue timing, the 
default settings and the .lua script inside the Graz-Stimulator 
box were modified. Synchronization of the BrainMaster 
Discovery software with OpenViBE was achieved by setting 
the acquisition server properties and connecting the modules 
appropriately ensuring establishment of data connection via 
TCP/IP connection as shown in Fig. 3. To gather and visualize 
all the cues in recorded EEG data different trigger points were 
sent as stimulations, in real time, to the visual cue display box 
inside the OpenViBE designer via TCP/IP protocol. All data 
was saved using the edf and gdf writer boxes to store signals 
and stimulations together in .edf and .gdf file format, 
respectively.  

C. Data Processing
As OpenViBE is a streaming tool for online/real-time BCI

experiments and not for data analysis and data exploration, the 
classical statistical free package EEGLAB 
(http://www.sccn.ucsd.edu/eeglab/) was used for offline 
processing of the acquired data.  

To get topographic maps of the scalp, EEG segments 
(trials) of 10 seconds’ length with 3 seconds prior to cue onset 
were extracted and analysed. Data was band pass filtered 
between 5 Hz and 40 Hz. Artefact removal was carried out 
using independent component analysis (ICA) [11] alongside 
visual inspection ( and other artefact rejection) tools integrated 
in EEGLAB toolbox. 

Fig. 2. OpenViBE Designer graphical user interface. Schematic overview of 
boxes used for experimental protocol 
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Fig. 3. Flow diagram of the established hardware-software connection 
between BrainMaster and OpenViBE with the user 

Time-frequency maps were obtained with frequency range 
of 5 to 40 Hz with a step of 1 Hz. They were then used for 
selecting mu and beta bands with the most significant band 
power decrease or increase during the ME and MI tasks at the 
central electrode positions C3, Cz, and C4. 

ERD/ERS quantification was conducted following the 
methods proposed by [12]. The ERD/ERS is defined as the 
proportional power decrease (ERD) or power increase (ERS) 
relative to the reference interval, that is usually several seconds 
before the event onset [4].  For this study the interval 
containing 3 seconds prior to visual cue onset was selected. 
Samples were squared and labelled as yij after subtracting the 
mean of the band pass filtered data for each sample to 
overcome masking of induced activities by the evoked 
potentials (Equation 1). Furthermore, samples were averaged 
over trials and over sample points (Equation 2-4) [4, 13]. 

   (1) 

  (2) 

  (3) 

    (4) 

where N is the total number of trials, xij is the jth sample of 
the ith trial of the bandpass filtered data, and  is the mean of 
the jth sample averaged over all bandpass filtered trials. Pj  is 

the power or inter-trial variance of the jth sample and R is the 
average power in the reference interval (r0, r0+k)  [5]. 

III. RESULTS

As subject 3 (S3) could not participate in all training 
sessions, she did not show any significant output results, 
therefore only the results of subject 1 (S1) and subject 2 (S2) 
have been reported. Fig. 4 and Fig. 5 show the topographical 
scalp maps of S1 and S2, left and right foot ME and MI tasks. 
The color bar indicates the spectral power concentration over 
the scalp for all channels 

A. Topographical Scalp Maps
Motor execution task:

S1: At the mu frequency range, corresponding to 
frequencies between 8-11 Hz, during right foot ME a high 
power concentration was reflected near the center lobe or mid 
central mu ERD which is the activation of the foot 
representation area. At frequencies between 16-30Hz, 
corresponding to beta rhythm, a shift towards the central 
region occurred. Especially the right side was more active at 
electrode position C4 than the left side at electrode position 
C3. This contralateral power distribution was however only 
dominant for left foot movement, shown in Fig. 4. At the 
central electrode position Cz the power concentration was 
decreased during higher frequencies. S2: At the mu frequency 
range the power is concentrated over the frontal and central 
region probably because of the proprioceptive induced due to 
movement of the foot (ME task). For the beta frequency range 
this trend was again visible in the frontal area followed by an 
interesting enhancement in the hand area beta rhythm 
representation power decrease (beta ERS). Furthermore, the 
central region showed a decrease in spectral power with 
increasing frequency. Left foot ME resulted in lower a power 
concentration than right foot motor execution.   

 

Fig. 4. Topographical scalp maps showing mean power spectral distribution 
for right-left foot ME (top rows) and MI (bottom rows) for all channels 

Log PSD (10log10( V
2/Hz) 

S2 S1 

Right foot 
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Motor imagery task: 

S1: At the mu frequency range, spectral power was 
concentrated in the central region. The left foot MI 
interestingly enhanced the hand area mu rhythm (mu ERD). 
At the beta frequency range a shift from the central region 
occurred. C4 and F4 showed higher power concentration 
during left foot imagery and at frequencies higher than 24 Hz. 
S2: At the mu frequency range the power is concentrated over 
the frontal and central region with increased power values for 
the right side of the cortex for both right and left foot MI. For 
the beta frequency range there was a decrease in power 
concentration in the central region, followed by an 
enhancement in the hand area beta rhythm (beta ERS) 
representation visible for lateralization of ERS i.e. right foot 
MI enhanced left side beta ERS. But this trend was not 
followed in the case of left foot MI, Fig. 4. 

In general ME and MI scalp maps showed relatively same 
power distribution pattern for intra subject. In contrast, 
prominent inter subject differences were obtained regarding 
decreased spectral power at higher frequencies at the central 
region.  

B. Time Frequency Maps
Fig. 5 show the time-frequency maps of the most reactive

ERD/ERS at electrode positions C3 and Cz for S2 during left 
and right foot motor tasks obtained from EEGLAB. Because 
only most reactive ERD/ERS have been reported, we did not 
include C4 as it did not reflect prominent ERD/ERS patterns. 
Only significant values ( =0.05) are displayed in color: red 
indicates ERD and blue indicates ERS. Non- significant values 
are displayed in green. The colour bar indicates the ERSP in 
decibel. 

The right foot ME (Fig. 5 (a)) resulted in a significant 
ERD at electrode position C3 during the end of visual cue 
display at second 2 between 8-35 Hz for a period till execution 
of task ends. Similarly for Cz ERD was visible from the 
beginning of visual cue between low mu 8 Hz and beta 22 Hz 
frequency till the subject finished performing the task at 
second 4-5. An ERS at the end of the execution period over 
approximately whole frequency range (8-30 Hz) was evident 
at Cz but little ERS was seen at position C3 after task 
completion.  The ERS was visible from aprroximately 4 
seconds because the subject only performed the task once 
(dorsiflexion-planterflexion of foot) which is no longer than 
1.5 to 2 seconds. It is therefore justified that ERD gets visible 
right from the beginning when the subject prepares for the 
presentation of visual cue till performance of task is done, 
followed by an ERS (blue) reflecting a relaxation period. In 
Fig. 5 (b) the left foot ME resulted in a significant ERD at 
electode position C3 right from start of visual cue display at 
approxmiately all frequencies between 8-40 Hz. ERS was not 
very significant and occurred near the completion of the task 
at 3.5 seconds. At position Cz ERD was prominent starting 
from visual cue onset at frequencies between 5-25 Hz and a 
dominant ERS was visible at near 5 seconds upon finishing of 
task and relaxing from 24 to 37 Hz. Fig. 5 (c) reflected the 
time frequency maps during the right foot MI task at position 
C3 and Cz. At C3 a very dominant ERD pattern was visible 

from 8 to 32 Hz during the cue onset till execution of task. 
Prominent ERS occurred at 4 till 5.5 seconds indicating the 
ending of task and initialization of rest. The map at electrode 
position Cz for the right foot MI didn’t show a clear ERD 
pattern. It rather reflected scattered ERD powers in low mu 
and high beta ranges followed by a dominant ERS occuring 
during the imagery task between 9 to 20 Hz. 

In general, not all electrode positions depicted explicitly 
clear ERD/ERS patterns; however in few conditions the 
electrodes reflected good results. 

 

 

Fig. 5. Time-frequency maps displaying significant ERD (red) and ERS 
(blue) for subject S2 for electrode position C3 and Cz (a) right foot ME, (b) 
left foot ME, and (c) right foot MI 

C. ERD/ERS Quantification
Table 1 presents results of band power changes (ERD and

ERS) of the most reactive mu and beta components in Hz for 
the electrode positions C3, Cz and C4 for the two ME (left 
foot, right foot) and two MI (left foot, right foot) tasks. For the 
mu frequency range, most reactive components ranged 
between 8 and 11 Hz for the ME/MI tasks. For the beta 
frequency range, most reactive components ranged between 
12 to 29 Hz for the ME/MI tasks. Both mu and beta reactive 
frequency components were found at all central electrode 
positions. 

The maximum ERD occurred at electrode position 
corresponding to Cz for left foot ME/MI in beta frequency 
range. For the right foot ME/MI maximum ERD was 
witnessed at position C3 in beta frequency range. Whereas 
maximum ERS for left foot ME/MI was visible at electrode 

b

c 

a  C3         Cz

 C3         Cz

 C3         Cz
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position Cz corresponding to beta frequency range. For the 
right foot ME/MI the maximum ERS was visible at electrode 
position C3 in beta frequency range. Hence it can be clearly 
extracted that for the left foot ME/MI tasks ERD and ERS are 
maximum at electrode position Cz, which correlate to the 
already established findings reported in the literature [14]. For 
the right foot ME/MI the maximum ERD and ERS occur at 
electrode position C3 reflecting a contralateral dominance. 

IV. DISCUSSION

In general both the ERD and ERS were visible for S1 and 
S2 as shown in Fig. 6 to Fig. 8. Fig. 6 shows an exemplary 
ERD/ERS time curve at 8 Hz mu rhythm for S1 performing 
left foot ME at electrode position C3. An ERD is prominent 
around 300 milliseconds after the visual cue display. About 1 
second after the subject stopped executing an ERS can be seen 
at second 5.7.  

Fig. 6. ERD/ERS time curve obtained from left foot ME task for S1 at 
electrode position C3 for 8 Hz mu rhythm. Shaded area indicates cue display 

Fig. 7 shows an exemplary ERD/ERS time curve at 14 Hz 
beta rhythm for S1 performing right foot MI at electrode 
position Cz. An ERD starts shortly before the end of visual 
cue display and continues until 800ms after the cue. An ERS 
is prominent around second 3-4 and at the end of the trial at 
second 6. 

Fig. 7. ERD/ERS time curve obtained from right foot MI task for S1 at 
electrode position Cz for 14 Hz beta rhythm 

Fig. 8 shows the exemplary ERD/ERS time curve at 
electrode position C3 averaged over two runs for S2 at 9 Hz. 
Averaging was conducted over two runs of ME and two runs 
of MI for the left foot. A prominent ERS at the end of the trial 
was obtained. A small ERD was obtained starting around 400 
milliseconds after the cue display.  

Based on the results it can be drawn that left and right foot 
discrimination task based BCI is valid both for ME as well as 
MI. Both subjects showed a percentage power increase and
decrease for ERD and ERS respectively. This enables the
implementation of a brain controlled bionic foot which is an
interdisciplinary research area of socio-technical

neurorehabilitation systems and addresses research questions 
in the field of intelligent robots and rehabilitation systems, and 
cognitive modeling of user adaptability. These questions are in 
accordance to some of the research areas addressed by 
CogInfoCom [15] as the augmented social intelligence, 
cognitive info-communication channels and industrial 
engineering aided by CogInfoCom. 

Fig. 8. ERD/ERS time curve obtained from left foot averaged over 2 runs for 
ME and MI task for S2 at electrode position C3 for 9 Hz mu rhythm 

V. CONCLUSIONS

According to literature the MI/ME at electrode position Cz 
should enhance the foot area mu or beta rhythm respectively. 
However due to lack of literature available about the left and 
right foot tasks discrimination this study was based on 
distinguishing the left and right foot ME and MI tasks. 
Following that several results could be concluded. Our results 
overall suggest that, a BCI based on left and right foot ME/MI 
discrimination can be developed, despite the location of foot’s 
motor area representation which is deep within the 
interhemispheric fissure of the cortex. The topographic maps 
reflected an interesting enhancement in the hand area high 
beta rhythm (beta ERS) representation during the individual 
left and right foot ME tasks. And a similar pattern was 
observed during low mu ERD and high beta ERS rhythms for 
right and left foot MI tasks individually followed by a 
contralateral dominance of the cortex for ERS patterns at 
position C3 during right foot MI task. The mean percentage of 
most reactive bands for ERD were not as high as expected, 
because of limited training sessions and less participants 
involved in the study. The main contribution of the conducted 
research, presented here, is the introduction and the trial of the 
new BCI concept for enabling the control of a robotic foot. In 
the future we aim to proceed this work by incorporating more 
subjects and classifying the left and right foot tasks for both 
ME and MI sessions to be used as a CogInfo Communication 
tool establishing a platform for neurorehabilitation in 
controlling BCI based robot applications for LL. 
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Chapter Overview

Cognitive/mental tasks affiliated to lower-limbs (LL) in BCI paradigms mainly use

foot movements. However, when designing assistive technologies for gait assistance 

or locomotion rehabilitation, other joints such as the knee, needs to be taken into 

account. This study presents a novel LL motor cognitive task, i.e. left-right knee 

motor imagery (MI). Quantification of event-related desynchronization (ERD) and 

synchronization (ERS) is performed for both motor execution (ME) and MI tasks in 

the mu frequency range, to ensure the correlation between ME and MI that enhance 

same cortical areas. Analysis was based on EEG signals recorded from the vertex and 

adjacent channels C3, Cz, and C4 using the common average reference method.

Preliminary results depicted a contralateral dominance of mu ERD that provides the 

possibility to use the left-right knee tasks for BCI rehabilitation applications.

This work has been published in 11th IEEE Asian Control Conference.
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Abstract This study underscores the reactivity of 

sensorimotor rhythms (SMR) in EEG such as mu rhythm in 

connection with the imagination and voluntary movement of left 

and right knee extension with able-bodied subjects using the 

standard Graz brain-computer interface (BCI) paradigm. As the 

knee motor execution (ME) and motor imagery (MI) reflect the 

us

extension respectively, they have been analyzed in order to be 

used as control signals to restore motor function with neuro-

plasticity for BCI applications. This reactivity has been 

evaluated using the quantification of event-related 

desynchronization (ERD) and event-related synchronization 

(ERS) patterns. Investigations on the cortical lateralization of 

ERD/ERS during the left and right knee MI and ME for the 

extension task was done. During left and right knee MI, the foot 

area mu rhythm was desynchronized in all subjects, whereas no 

enhancement of the hand area mu rhythm was observed during 

any task. The frequency of the most reactive components for mu 

rhythm was 8.8±0.5 Hz. Interestingly a contralateral dominance 

was visible at a central electrode position, during left knee 

extension MI task. This lead to the establishment of an 

understanding of the left-right knee MI and its associated 

cognitive behavior. 

I. INTRODUCTION

One of the constituent building blocks of human activity 
is his/her walking gait. The walking gait can be affected by 
any lower limbs (LL) disorder including knee, ankle  and 
foot [1]. The usual cause of disorder could be the spinal cord 
injury (SCI), stroke, amputation or neurodegeneration 
disorder.  The rehabilitation of gait is the therapeutic aim in 
order to enhance the motor control functions by inducing 
neuro-plasticity. This could be realized by the identification 
and translation of brain signals which correspond to the 
respective imagination or voluntary movement of the affected 
limb, such as knee, into an output command [2]. 
Consequently the user can get a feedback on this output 
command that can affect his/her brain activity, and re-
establish the lost motor control. To transform this logic into 
real-time application, the state of the art BCI technology 
could be a potential tool used as the mode of interface 
between human brain and computer based on EEG. 

For lost knee function little is reported explicitly about 
the knee MI and ME tasks that lead us to the investigation 
and research of this study. Early clinical studies show that 
SMR ERD is associated with motor imagery as well as actual 
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movement [3]. In general BCIs are based on particular EEG 
features that encode cortical activity in association to user 
intent for a particular task, e.g. the knee, create a unique 
pattern in the SMR. The mu rhythm being one of the SMR 
generates in the somatic sensorimotor areas and is 
concentrated in 8-12 Hz frequency band [2]. Mu rhythm has 
been exploited by researchers to identify any variation, such 
as a power decrease called ERD or a power increase called 
ERS relating to any MI task. However, evaluation of knee 
imagery and its effectiveness on mu rhythm lacks 
comprehensive details which keeps it open for investigation 
and research [4, 5]. 

The ERD/ERS pattern is related to internal or external 
event. The ERD pattern reflects an imagined or voluntary 
movement of a limb characterized by frequency specificity 
and localized cortical topography. An ERS in contrast is 
linked to relaxation period or idling [6, 7]. ERD pattern can 
be a source estimator of brain activity associated to an event. 
To quantify ERD/ERS patterns the topographic maps were 
used, that show the spatial distribution of ERD/ERS for a 
specific frequency, alongside the time-frequency maps, that 
detect the transient event-related spectral perturbation 
(ERSP) or shifts in the power spectrum and inter-trial 
coherence (ITC) events in the signal [8]. 

The somatotopic arrangement of the sensory and motor 
cortices results in the cortical localization of ERD patterns. 
Unlike the hand area representation, the knee motor area 
representation is situated deep within the c
interhemispheric fissure which challenges the detection of 
ERD patterns [9]. This study therefore aims at developing an 
understanding on the cortical lateralization of knee area 
representation (discrimination of left and right knee tasks) 
followed by its effects on the foot and hand area 
representation of the cortex for neurorehabilitation 
applications based on BCI. 

II. METHODOLOGY

A. Experimental Design

Three healthy subjects (2 females and 1 male) with no
history of neurological disorder, or any impairment, aged 
between 25-35 years, voluntary participated in this study. The 
participants had no BCI experience either. For this study an 
ethics approval was granted by the CHEAN (College Human 
Ethics Advisory Network) of RMIT University, Melbourne, 
Australia. 

The subjects were directed to sit on a comfortable seat in 
fro  a distance of about 
1.5 m. The experimental paradigm was based on the standard 
Graz BCI protocol. Each run initiated with a blank screen 
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that lasted for 30 seconds, called the baseline. During 
baseline period, the participant was asked to relax and get 
ready for the experiment. Baseline was followed by the 
initiation of each trial. The trial began with the presentation 
of a fixation cross on screen for 3 seconds (used as reference) 
followed by 2 seconds of visual cue display and 5 seconds of 
related task performance (imagery or execution), making 10 
seconds in total for one trial. The visual cues reflected the left 
and right knee extension. Subjects were instructed to extend 
their knee only once during each task performance period. To 
ensure no adaptation is taking place the visual cues were 
displayed in a random order. Each trial was followed by a 
random pause interval of 1.5 to 3.5 seconds during which 
subjects were asked to relax. Each session/run consisted of 
40 trials, with a total of 20 trials for each task. The 
experiment was divided into 5 sessions/runs, 1 for ME and 4 
for MI task respectively. Fig. 1 (left) presents the schematic 
overview of protocol timing for the experiment. An audio 
stimulus, as an 1 second beep, right before the visual cue 
display, was incorporated in the first trial only, to alert the 
subject that the experiment was about to begin. 

B. Data Acquisition

EEG neurofeedback BrainMaster Discovery 24E
amplifier (BrainMaster Technologies Inc., Bedford, USA) 
was used in the experiment; it was interfaced with the 
acquisition server of OpenViBE software 
(http://openvibe.inria.fr/downloads/). The standard 10-20 
Electro-cap was used to acquire brain signals from the motor 
cortex [10]. And channels were referenced to 
linked earlobes (LE) derived from the electrodes A1, A2 and 
a ground (Fig. 1, right). Remaining channels provided for 
monitoring other electrophysiological signals were not used. 
All channels were sampled using 256 Hz sampling frequency, 
with a 24-bit resolution. Amplifier bandwidth was from 0 to 
100 Hz and EEG channel bandwidth was from 0.43 to 80 Hz.  

Fig. 1 Knee extension task experimental protocol showing timing of cue 
with beep , assigned to the first trial in the beginning of each run (left) and 

electrode channel locations (right) 

Fig. 2 Flow diagram of the established hardware-software connection 
between BrainMaster amplifier and OpenViBE acquisition software 

In order to set the experimental protocol, the OpenViBE 
designer tool that comes along integrated feature boxes was 
used. Inside OpenViBE designer window the .lua script and 
the default settings were customized for using the Graz-
Stimulator box to allow for the onset of different visual cue 
timings. The BrainMaster Discovery and OpenViBE software 
were synchronized by setting the acquisition server properties 
of OpenViBE and connecting the required modules as 
presented in Fig. 2. The recordings were made using the edf 
and gdf writer boxes of OpenViBE that lead to the storage of 
both signals and the corresponding stimulations, respectively. 

C. Signal Processing

For the data processing and analysis, the statistical
EEGLAB package (http://www.sccn.ucsd.edu/eeglab/) was 
used. The EEG signals were bandpass filtered for the 
required frequency bandwidth range of mu rhythm followed 
by epoching of the trials (10 seconds in length). The trials 
extracted and analyzed included the period of 3 seconds prior 
to cue onset used as reference period. 

The independent component analysis (ICA) was 
performed for the artifact removal [11]. ICA component 
rejection was done using EEGLAB toolbox. 

Resulting topographic maps of the scalp were plotted and 
analyzed followed by plotting of time-frequency maps for 
required bandwidth (8-30 Hz) with a step of 1 Hz. The mu 
band with the most significant band power decrease, or 
increase, during the knee MI and ME tasks at the central 
electrode positions C3, Cz, and C4 were recorded and 
investigated. 

For quantifying the ERD/ERS patterns from obtained 
signal, method proposed by [12] was followed. The 
ERD/ERS is the proportional power decrease, or power 
increase, respectively compared to the reference interval, 
which is usually the period of several seconds before the 
event onset [6].  In this study the 3 seconds interval prior to 
visual cue onset was selected as reference. The samples were 
squared after subtracting the mean of the band pass filtered 
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data, for each sample, to overcome masking of induced 
activities by the evoked potentials. This was followed by the 
averaging of samples over trials and over sample points as in 
(1) [6, 13]. Given Pj is the power or inter-trial variance of the
j-th sample and R is the average power in the reference
interval (r0, r0+k) [7].

 (1) 

III. RESULTS

This section presents the results acquired from participant 
subjects S1, S2 and S3. 

A. Channel Spectra Topographical maps

The resulting topographical scalp maps against the left
and right MI and ME of knee extension task for subject 1 
(S1), subject 2 (S2) and subject 3 (S3) have been reported in 
this section in Fig. 3. In Fig. 3, the color bar indicates the 
spectral power concentration over the scalp for all channels. 

Knee extension MI: 

Results for S1 and S3 reflected a high spectral power 
concentration broadly spread over the central and frontal 
regions. The left knee MI exhibited a contralateral mu ERD 
for the right hand area and enhanced the mu ERD for foot 
area representation. However, this contralateral dominance 
was not visible in case of the right knee MI task for both S1 
and S3; instead a decrease in power concentration levels was 
observed in S1 followed by frontal region activation. For S2 
on the other hand a dominant spectral power concentration 
was visible strictly in the central region. During left knee MI 
the foot area representation mu ERD was evident. Similarly 
for the right knee MI mu ERD for foot area were observed 
for S2 and S3 followed by an increase in power concentration 
compared to the left knee task. However S2 did not show any 
hand area mu ERD or ERS for the knee MI task. 

Knee extension ME: 

For knee ME the results were unexpectedly different for 
all subjects, resulting in intra subject variability. This could 
potentially be due to the proprioceptive feedback due to the 
voluntary task movement. For S1 and S3 an increase in 
spectral power concentration was evident over the central, as 
well as, areas near the parietal lobe. During the left knee ME, 
the mu ERD was visible at the central cortex, accompanied 
by an ERD of the 8-12 Hz visual alpha rhythm recorded over 
the parieto-occipital (visual) cortex. For S1 the right knee 
ME did not exhibit any significant ERD/ERS pattern 
however, the visible pattern was concentric over foot area. 
The results of S2 were contrary to those of S1 and S3 for left 
knee extension, although the spectral power was centered in 
the middle of the cortex. Its concentration was lower for the 
left knee ME. For the right knee ME, both S2 and S3 
reflected a high concentration of the spectral power, which 
was observed in the central region, including areas of the 
parietal cortex. For both the left and right knee ME tasks mu 
ERD for foot area was noted. No signs of ERD/ERS were 
present in the hand area during knee ME task for any subject. 

Fig. 3 Topographical scalp maps showing mean power spectral 
distribution for left-right knee extension imagery and execution for 24 

channels at 8 Hz 

B. Time-frequency Maps

Results of the time-frequency maps for subject S1 are
discussed in this section. Fig. 4 presents the time-frequency 
maps of the most reactive ERD/ERS patterns at electrode 
positions C3, Cz and C4 against the left and right knee 
extension imagery task obtained from EEGLAB. Only 
significant : red 
indicates ERD and blue indicates ERS. Non- significant 
values are displayed in green. The colour bar indicates the 
ERSP in decibel. 

For the knee extension imagery, the subject was directed 
to imagine extending the knee one time right after the onset 
visual cue finishes. It was expected to observe a dominant 
ERD during the performance of the task, however 
unexpectedly the subject exhibited dominant ERD right from 
the moment the onset cue was presented. These results 
support the concept based on literature that ERD starts over 
the relevant motor area several seconds prior to movement 
i.e. during the task preparation [2].

During left knee extension imagery, a dominant ERD at
all three electrode positions C3, Cz and C4 is evident. It 
begins at the end of visual cue display at around second 2 and 
ends at around 5 to 6 seconds for the period till the task ends. 
To be precise more concentration is reflected in the 2.5 to 5 
seconds duration which validates the real-time observance as 
the subject took around 2 seconds to finish the knee 
extension task. This dominance was visible for all 
frequencies between 8-30 Hz. During the presentation of 
fixation cross and the beginning of visual cue ERS has been 
observed specifically at electrode position Cz and more 
explicitly at position C4. 
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Fig. 4 Time-frequency maps displaying significant (de)synchronization 
(ERD in red and ERS in blue) patterns of subject S1 for electrode position 
C3, Cz and C4 against imagery tasks of left knee extension (top) and right 

knee extension (bottom) respectively 

Results for the right knee extension somehow offered 
same trend throughout the electrode positions C3, Cz and C4. 
Like in case of left knee imagery, for this task the prominent 
ERD were observed starting at the position where the visual 
cue end, and last till the end of execution session. However 
the span for ERD, in this case, was prolonged to 6 seconds. 
ERS was not very dominant, since it lasted from -1 to around 
1 seconds, i.e. for a small period before and after onset visual 
cue presentation. 

C. ERD/ERS Quantification

The results of the most reactive mu components band
power changes (ERD and ERS) at central electrode positions 
C3, Cz and C4 for the left and right knee extension MI and 
ME tasks have been reported in Table 1. The most reactive 
components ranged between 8 and 12 Hz.  

For left knee MI/ME the highest value of ERD occurred 
at electrode position C4 that supports the contralateral 
dominance of mu hand area. During the right knee MI/ME 
most dominant ERD was observed at position Cz which 
correlate to the established findings about the mu ERD foot 
area enhancement reported in [14].  The highest values of 
ERS for both tasks during MI/ME were detected at electrode 
position Cz. 

IV. DISCUSSION

The ERD and ERS in general were noticeable for all 
subjects during knee imagery and execution tasks. The time-
power outputs against only right knee MI (at 8 Hz) for 
subject S2 at electrode position C3, Cz and C4 are depicted 
in Fig. 5 as exemplary ERD/ERS time curves. In Fig. 5 the 
duration of onset visual cue has been highlighted by a blue 
rectangular window for a clear understanding. The time curve 
for C3 illustrates a prominent ERD at around 3,000 
milliseconds after the end period of visual cue display. After 
around 0.5 seconds of ERD a prominent ERS is visible at 
around 3,500 milliseconds. For Cz a dominant ERD is visible 
during cue display at around 1,500 milliseconds. The ERS 
was dominant at around 3,500 milliseconds as in case of C3. 

The time curve for C4 showed a similar trend, as in case of 
Cz i.e. during cue onset ERD was observed at around 1,700 
milliseconds followed by a relatively prominent ERS at 
around 3,500 milliseconds. 

Fig. 5 (de)synchronization (ERD/ERS) time curve obtained from right knee 

extension imagery of subject S2 at electrode positions C3, Cz and C4 

respectively (red arrow indicates most prominent ERD pattern), the blue 

rectangular window depicts onset visual cue period 

V. CONCLUSIONS

This study was based on the detection of knee MI from 
mu rhythm and analyzing its effects on related cortical areas 
of brain. The resulting mu ERD-ERS presented satisfactory 
results to enable an understanding of the knee imagery 
behavior despite a small knee area representation on the 
cortical homunculus. The topographical scalp maps reflected 
an evident mu ERD foot area representation for all subjects 
during both MI and ME tasks. Though contralateral 
dominance during left knee imagery, for subjects 1 and 3, 
was observed, that could suggest the knee MI has potential to 
elicit left-right discrimination in EEG, it was not the case 
with right knee imagery. Furthermore no ERS or ERD 
enhancement for hand area was visible in any subject. The 
results suggest that a BCI, using the unilateral knee imagery, 
could be used to control a knee neuroprosthesis. We aim at 
advancing this research work by including more participants 
and classifying the left and right knee tasks. The key 
contribution of this study is the introduction and the testing of 
the new BCI concept. This study offers a potential platform 
for initiation of knee MI based BCIs for neurorehabilitation 
application. 
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TABLE I. TABLE FOR MU RHYTHM AND BAND POWER CHANGES OF THE MOST REACTIVE BANDS DISPLAYING ERD-ERS FOR KNEE EXTENSION MI AND 

ME TASKS CALCULATED WITH EEGLAB BOOTSTRAP ( =0.05) 
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Left knee 

C3 Cz C4 

MI Hz % 

(ERD) 

% 

(ERS) 

Hz % 

(ERD) 

% 

(ERS) 

Hz % (ERD) % 

(ERS) 

S1 9 -40 54 9 -39 62 12 -43 63 

S2 12 -42 53 12 -38 63 12 -39 56 

S3 9 -39 51 11 -40 62 11 -41 60 

ME 

S1 8 -42 56 10 -38 60 10 -46 60 

S2 11 -36 63 12 -42 59 8 -43 49 

S2 12 -40 61 12 -37 61 10 -47 60 

Mean 10.2 -40 56.3 11 -39 61.2 11 -43 58 

SD 1.7 2.2 4.7 1.3 1.8 1.5 1.5 3 5 

Right knee 

C3 Cz C4 

MI Hz % 

(ERD) 

% 

(ERS) 

Hz % 

(ERD) 

% 

(ERS) 

Hz % (ERD) % 

(ERS) 

S1 11 -38 56 10 -44 52 10 -38 61 

S2 12 -43 57 8 -39 54 12 -42 57 

S3 11 -42 54 9 -42 52 10 -39 61 

ME 

S1 12 -44 62 12 -52 82 10 -40 63 

S2 9 -38 54 10 -37 53 9 -37 52 

S3 9 -39 58 12 -49 56 10 -41 59 

Mean 10.7 -40.7 56.8 10.2 -43.8 58.2 10.2 -40 59 

SD 1.4 2.7 3 1.6 5.8 11.8 1 1.9 4 
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