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Abstract 

 Mid-infrared light (2.5 – 15µm) can be advantageously used for high-sensitivity molecular 

detection in environment, healthcare, industry and security applications. Various molecules can be 

detected at trace levels by measuring their strong absorption that is several orders of magnitude 

stronger in the mid-infrared than in the near-infrared. In recent years, there has been a high 

demand for compact mid-infrared sensors that can be equipped within cars, drones or even 

smartphones. These sensors could be realized by relying on a technology that is used in a cost-

effective micro-electronics industry. The field of photonics utilizing the complementary metal–

oxide–semiconductor technology is referred to as silicon photonics. The envisioned compact (on-

chip) mid-infrared sensor consists of a light source, sensing area, and photo-detector. The scope of 

this thesis has been to develop the first building block of this sensor, which is the mid-infrared 

supercontinuum light source on a silicon-based chip. 

 Supercontinuum (SC) light is particularly interesting for molecular spectroscopy as it allows 

for accessing multiple absorption wavelengths at once, enabling the reliable and simultaneous 

detection of many molecules. Mid-infrared supercontinua on a silicon-based chip have been 

reported in several platforms on insulating substrates, i.e. silica and sapphire. However, the 

operation wavelength ranges in these platforms are limited to 3.7 and 5.5 µm due to the absorption 

in silica and sapphire, respectively. The main goals of this thesis have been to explore a silicon-

based platform with extended wavelength range deeper in the mid-infrared and to demonstrate a 

spectrally bright supercontinuum beyond 5.5µm. Such a supercontinuum would cover the entire 

mid-infrared atmospheric absorption band from 4 to 8 µm. In addition to high brightness, ultra-fast 

and high-precision molecular spectroscopy requires high coherence of a supercontinuum. In this 

context, an additional objective has been to achieve a coherent supercontinuum generation. 

 Germanium is a well-known material in the microelectronics industry which has been 

suggested for silicon photonics in the mid-infrared owing to its wide transparency window. 

However, the lattice mismatch between germanium and silicon eventually leads to a large density 
of threading dislocations at the germanium/silicon interface, which limits the performance of 

nonlinear optical devices. Our solution to this issue has been to use a silicon germanium-on-silicon 

platform with 40% of germanium in the alloy. Silicon germanium waveguides buried in silicon, 

which were not dispersion engineered for supercontinuum, were explored in our group. In these 

waveguides, L. Carletti demonstrated a promising low loss operation and identified an optimal 

operation wavelength at around 4µm. Based on these initial results; I designed air clad waveguides 

and optimized their dispersion for supercontinuum generation.  

 The waveguides used in this thesis were fabricated using a technological process developed 

over the last two decades by our collaborators at the micro and nanotechnology research center 

CEA-Leti in Grenoble, France. The experiments were then performed at the Laser Physics Centre at 

Australian National University (ANU) in Canberra, Australia. There, we performed linear and 

nonlinear measurements using a picosecond and sub-picosecond pump at 4um in wavelength. The 

experimental results were analyzed using an in-house developed software. The measured 

supercontinuum spectra/transmission fits and coherence properties have been analyzed using a 

generalized nonlinear Schrodinger equation solver. Dispersion trimming presented in the fourth 

chapter has been investigated using a custom-built mode solver. The theory of nonlinear optics 

used in this thesis is introduced in the first chapter. 
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 The second chapter reports a spectrally bright supercontinuum spanning to 8.5µm from a 

dispersion-engineered silicon germanium-on-silicon waveguide. This is a milestone in the mid-

infrared silicon photonics since the supercontinuum reached the onset of silicon absorption at 

8.5µm. In this waveguide, we measured a propagation loss as low as 0.2 dB/cm and more than 

10mW on chip supercontinuum power. This is the lowest measured loss and the largest 

supercontinuum power reported in any silicon-based waveguide in the mid-infrared.  

 The third chapter discusses the coherence of an octave-spanning supercontinuum. 
Coherence has been numerically analyzed for an experimentally measured supercontinuum. This 

chapter shows that a high coherence can be achieved in a long waveguide pumped in the 

anomalous dispersion regime with 200fs pulses. This is possible thanks to the specific dispersion 

profile with a relatively narrow anomalous dispersion band.  

 In the last chapter, we demonstrate a simple post-fabrication dispersion trimming 

technique that can be used to optimize dispersion or to shift dispersion from anomalous to all 

normal.  

 The mid-infrared possesses the fundamental barrier for standard silicon-based platforms 

including silicon-on-insulator, silicon nitride-on-insulator, and silicon-on-sapphire. The results 

reported in this thesis clearly establish silicon germanium-on-silicon as a relevant platform for 

nonlinear silicon photonics in the mid-infrared. The octave-spanning coherent supercontinuum that 

has been demonstrated paves the way for future mid-infrared molecule sensor on a silicon chip.  
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Chapter 1.  

Introduction 

 Supercontinuum (SC) generation might be the most compelling signature of nonlinear 

optics. This is a nonlinear process that manifests as a large spectral broadening of a narrowband 

input light signal in a nonlinear and dispersive optical medium. A supercontinuum source can be 

simply described as “white-light laser”, since the generated broadband light can maintain the 

intensity, collimation, focus and coherence properties of the laser probe [1]. The spectral brightness 

of the supercontinuum light can be several orders of magnitude (a million times) brighter than 

sunlight [2]. 

 The year 2019 marks three significant anniversaries related to supercontinuum generation. 

The first is the 50th anniversary of the discovery of supercontinuum generation [1]. 

Supercontinuum light spanning over an octave has been first observed by R. Alfano and S. Shapiro 

in 1969, as a large frequency broadening – from violet to red light (400 – 700nm) – in bulk glass 

under picosecond pulse excitation [3, 4]. The second is the 20th anniversary of the first 

demonstration of supercontinuum generation in photonic-crystal fibers [5, 6]. This achievement led 

to the so called “supercontinuum revolution” – the development of this technology by industries 

and the subsequent deployment to end-users. More recently, supercontinuum has been 

investigated in integrated waveguides. The third anniversary marks the 5 years of the first octave-

spanning supercontinuum generated on a chip [7, 8]. 

 The supercontinuum revolution [6] is referred to as a radical change in the supercontinuum 

generation technology enabled by the technological development of ultra-fast laser sources and 

fiber optics – particularly by the invention of photonic-crystal fibers (PCF) [9]. PCFs provide a 

platform for engineering dispersion by changing the position and diameter of the micro-structured 

air-holes that surround the fiber core (see Figure 1a). Engineering the dispersion in PCFs enabled 

the achievement of supercontinuum using femtosecond titanium-sapphire laser operating around 

800nm. Moreover, the strong field confinement in a solid core PCF led to the supercontinuum 

generation at low power level. In 1999 J. Ranka et al reported the first  supercontinuum in PCFs 

spanning from violet to telecom wavelengths (400 – 1500nm) with nano-joule energy 100fs pulses 

[5] (Figure 1b).  

 

Figure 1: (a) Scanning electron microscope image of the core and inner cladding of a photonic crystal fiber, (b) 
supercontinuum generated in a PCF (solid curve) with 100fs input pulse (dashed curve), image – J.K. Ranka [5]    
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 Supercontinuum light enabled broadband and ultra-fast applications. The optical signal 

associated with a bright and broad supercontinuum improved broadband molecular spectroscopy, 

while ultra-short supercontinuum pulses enabled resolving ultra-fast bio-chemical processes. 

Supercontinuum sources have been used for the fundamental research in chemistry, biology and 

medicine. They also found numerous applications in optical communications [10] and frequency 

metrology [11]. This eventually resulted in the demonstration of an optical atomic clock that was 

awarded the Nobel prize in 2005 [11, 12]. 

 Over the last decade, significant progress has been made in achieving supercontinuum 

generation on a chip [7, 8, 13, 14]. Small cross-section waveguides (with a core area below 1µm2) 

realized in a planar geometry on a chip can have strong field confinement and well-defined 

polarization states lowering the threshold for supercontinuum generation [15]. Integrated 

waveguides can provide an efficient supercontinuum generation at low power levels – e.g. with 

pico-joule energy 100fs pulses [16]. Reliable and cost effective waveguide fabrication is possible 

relying on the complementary-metal-oxide-semiconductor (CMOS) technology from the 

microelectronics industry. Moreover, CMOS is the enabling technology for integration of many 

photonics components on the same chip and/or for integration of photonics with electronics 

components. The ultimate goal is to achieve compact and fully integrated supercontinuum sources. 

Such sources could be used in widespread and everyday applications. 

 For a long time, SC sources have been bound to the visible and short infrared part of the 

spectrum, due, in particular to the dominant use of silica based materials. Recently, significant 

attention has been paid on extending the emission wavelength of SC sources up to the mid-infrared 

(2.5 – 15µm), as relevant for molecular spectroscopy applications. Many molecules have 

fundamental absorption lines in the mid-infrared, allowing for high-sensitivity optical gas detection. 

In the mid-infrared, gas molecules can be detected at trace levels measured in parts per billion. The 

mid-infrared absorption spectroscopy can be used for numerous important applications such as gas 

sensing for environment monitoring, water quality control and toxic molecules detection for 

security applications. It can be used in health for non-invasive blood glucose monitoring and the 

early cancer diagnosis using exhaled breath analysis. In this context, generating a mid-infrared 

supercontinuum on a silicon chip is a first step toward the development of compact point sensors 

such as the lab-on-a-chip that can be used at the point of care (see Figure 2).   

 Nonlinear optical materials other than silica are required for the supercontinuum 

generation in the mid-infrared. Two material groups are particularly suitable: chalcogenides and 

group IV materials (e.g. silicon and germanium). Chalcogenides are non-oxide amorphous (glass) 

materials containing one or more chalcogen elements. These elements are sulfur, selenium and 

tellurium. Sulphide glasses can be used up to 12µm; selenides to around 16µm; and tellurides to 

beyond 20 µm [8]. Beyond these wavelengths, the materials are not transparent. Supercontinuum 

up to 10µm [17] and 13.3µm [18] were reported in chalcogenide step index fibers, and more 

recently on a chalcogenide chip [8, 15]. For more information about mid-infrared supercontinuum 

in chalcogenide glass fibers, the readers are referred to the review article [19]. In this thesis I 

focused, instead, on the use of group IV materials and silicon chips, so as to take advantage of the 

CMOS technology involving CMOS compatible fabrication processes. In a standard CMOS platform – 

silicon-on-insulator – the operation wavelength is limited to 3.7 µm and in the silicon-on-sapphire 

platform, up to 5.5µm, due to the absorption in the silica and sapphire substrates respectively. In 

order to extend the operation wavelength range, the use of other group IV materials has been 
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proposed. Supercontinuum in alternative group IV materials has the potential to extend the 

operation wavelength up to 15µm. 

 In this thesis the silicon germanium-on-silicon (SiGe-on-Si) platform has been chosen. The 

technological process to realize efficient devices out of this platform has been developed by our 

collaborators at Leti's Center for Research in Grenoble, France. Based on this technology, 

waveguides have been designed, optimized and realized for enabling on chip supercontinuum 

generation in the mid-infrared. One key aspect has been to achieve coherent supercontinuum 
generation.  

 

Figure 2: The molecular spectroscopy scheme on a silicon chip using mid-infrared supercontinuum light 
generated along an integrated waveguide  

 The first chapter introduces the underlying notions and concepts behind this thesis. I will 

first remind some theoretical aspects of nonlinear optics, as well as some background related to 

nonlinear silicon photonics in the mid-infrared. I will also provide some overview of 

supercontinuum generation and its related dynamics. The second chapter presents our results on 

mid-IR supercontinuum generation in silicon germanium waveguides and focuses on achieving a 

wide bandwidth. The third chapter discusses the coherence properties of the generated 

supercontinuum, by means of simulations. The fourth chapter shows how it is possible to use post-

processing techniques to trim the waveguide dispersion, which is key to generate on chip 

supercontinuum. This tool allows us to tailor the supercontinuum so that it is best suited for the 

intended application. 

 Considering the significant results achieved in this thesis – supercontinuum from 3 to 8.5µm 

– we established silicon germanium as a relevant platform for chip-based nonlinear applications in 

the mid-IR. 
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1.1 Theory of nonlinear optics  

 This section introduces the electromagnetic theory of nonlinear optics used in this thesis.  

 The theory of nonlinear optics is very rich as it covers various materials, platforms and 

effects achieved under different types of light excitation. Depending on the material crystalline 

symmetry, either second order nonlinear effects such as the electro-optic effect and second 

harmonic generation (see Figure 3a) can be observer or third-order nonlinear effects such as self-

phase modulation, four-wave mixing and supercontinuum generation (see Figure 3b). Second 

harmonic generation (SHG) is the first nonlinear optical effect that was experimentally 

demonstrated. It was first observed in a bulk material in 1961, just one year after the invention of 

lasers [20]. Since then, nonlinear effects have been explored in different platforms such as fibers in 

the 1970’s [21-24], photonic-crystal fibers in the 1990’s [5, 6, 9, 25] and more recently in 

waveguides on a chip [26, 27]. Nonlinear optics evolved together with the laser technology. Ultra-

short pulse lasers (duration less than 100fs) have been developed in the 1990’s [28, 29].  

 In this chapter I summarize the theory related to the specific aspects (material, platform 

and applications) that are directly relevant to this thesis, namely the generation of mid-infrared 

supercontinuum in silicon-based waveguides using ultra-short optical pulses. 

 

Figure 3: (a) shows an experimental setup that was used to report second harmonic generation in 1960s. The red 
light enters the nonlinear crystal and the blue light – the second harmonic – exits the crystal, image – R. W. 

Terhune, (b) shows the visible supercontinuum generation in an optical fiber. Infrared light enters the fiber at 
right and spectrum from visible to infrared is generated, image – J. M. Dudley [30] 

 Supercontinuum can be characterized by its bandwidth, brightness, spectral flatness and 
coherence. These parameters are affected by the choice of material, waveguide geometry and pulse 

duration. In this chapter, each of these items will be discussed. The section “theory of nonlinear 

photonics” is therefore divided into three parts: 

1. Optical response of bulk materials 

2. Optical response in waveguides 

3. Modeling of pulse propagation in waveguides 

The first part – Optical response of bulk materials – explains the way a bulk material responds to 

light (typically a plane-wave), inducing both linear and nonlinear effects. The second part – Optical 

response in waveguides – introduces the waveguide contribution to light propagation, which 

manifests in the waveguide dispersion and modifies the nonlinear response. This calls for the need 

to define effective parameters, which characterize light propagation in nonlinear waveguides. The 
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third part – Modeling of pulse propagation in waveguides – introduces the pulse propagation 

equation, known as the Generalized Nonlinear Schrodinger Equation (GNLSE). This equation has 

been extensively used for simulating the generation of SC in waveguide based platforms, and has 

been the main simulation tool in this thesis. Here will be discussed the dynamics of supercontinuum 

generation in more details, with the main aspects highlighted. 

 Optical pulse propagation in waveguides can be accurately modeled using Maxwell’s 

equations. These equations consist of three sets of coupled equations, which will be developed in 
the next three sub-sections (1.1.1, 1.1.2 and 1.1.3): constitutive relations, divergence equations and 

curl equations. Constitutive relations model the material response to the applied optical field. 

Divergence equations express constraints such as those imposed by the waveguide cross-section 

geometry in the plane perpendicular to the propagation direction. Curl equations, the third set of 

Maxwell’s equations, provide the nonlinear wave equation. A more detailed theoretical background 

can be found in textbooks [10, 31-34]. Readers are also referred to review articles describing the 

theory of optical pulse propagation [35], nonlinear phenomena in silicon waveguides [36] and 

supercontinuum generation [37]. 
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1.1.1 Optical response of bulk materials 

 In this section, we will discuss the linear and nonlinear response of the material to the 

optical field. We will briefly explain the microscopic origin of these effects, and introduce some 

related macroscopic description that can be readily included in Maxwell’s equations. This allows us 

to infer a wave equation, from which the different linear and nonlinear mechanisms arising in a 

bulk material can be reviewed. The third-order nonlinear response will be discussed in more 
details as this is at the origin of supercontinuum generation, while dominating the nonlinear 

response in silicon and silica, which are the main materials used in CMOS technology. 

1.1.1.1 Overview of the nonlinear effects associated with nonlinear bulk materials  
 Upon propagation in a material, light can interact with nuclei in atoms, charges in atoms or 

with free charges in the material. The interaction with nuclei, which can result in Raman and 

Brillouin effects, can be described using the light scattering theory. Through interacting with 

charges in atoms, light induces and drives the motion of electric dipoles. The response of matter to 

the electromagnetic field can thus be macroscopically described through the density of induced 

dipole momenta represented by the polarization vector 𝑃. Through interacting with free charges, 

which are electrons and holes that are not bound to nuclei, light induces a current. This is 

represented with the free charge current density 𝐽𝑓. Light-matter interaction can be described using 

quantum mechanics. However, light propagation through a medium can be accurately modeled 

using Maxwell’s equations. The polarization vector and the free charge current density, i.e. the 

material response, are introduced via the constitutive relations, which are written below in the 

frequency domain: 

 𝑫(𝒓, 𝜔) = 휀0𝑬(𝒓, 𝜔) + 𝑷(𝒓, 𝜔) (1) 

 𝑩(𝒓, 𝜔) = 𝜇0(𝑯(𝒓, 𝜔) + 𝑴(𝒓, 𝜔)) ≈ 𝜇0𝑯(𝑟, 𝜔) (2) 

 𝑱𝑓(𝒓, 𝜔) = σ𝑬(𝒓, 𝜔) (3) 

 The first equation introduces the relation between the electric displacement 𝐷 and the 

electric field 𝐸. The response of atoms to the electric field is represented by the polarization vector 

𝑃. The response to the magnetic field is introduced by the magnetic polarization 𝑀 in the second 

equation, which assumes here, a non-magnetic material (𝑀 ≈ 0). The third equation relates the 

current density associated with the motion of free-charges in the medium 𝐽𝑓 to the electric field 

through the conductivity 𝜎. The electric properties of the material subjected to an electric field are 

therefore included in the polarization vector 𝑃 and the free charge current density 𝐽𝑓. The nature of 

the material's response is determined by their relation with the electric field, 𝑃 (𝐸) and 𝐽𝑓 (𝐸). This 

relation can be, like the material response, either linear or nonlinear. In particular, the 𝐽𝑓 (𝐸) 

relation is linear under the assumption that the electric conductivity is constant. However, the 

electric conductivity may depend on the electric field, resulting in an effective nonlinear response. 

  The polarization vector defines the response of the atoms (bound electrons and 

nuclei) to the applied electric field. It can be divided into a linear polarization term 𝑃𝐿 and the 

nonlinear polarization term 𝑃𝑁𝐿. The polarization terms can be defined in the frequency domain as 

[31]: 
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 𝑷(𝒓, 𝜔) = 𝑷𝐿(𝒓, 𝜔) + 𝑷𝑁𝐿(𝒓, 𝜔) (4) 

 𝑷𝐿(𝒓, 𝜔) = 휀0𝝌(1)𝑬(𝒓, 𝜔) (5) 

 𝑷𝑁𝐿(𝒓, 𝜔) = 휀0𝝌(2) ∶ 𝑬𝑎(𝒓, 𝜔𝑎)𝑬𝑏(𝒓, 𝜔𝑏) + 휀0𝝌(3) ⋮ 𝑬𝑎(𝒓, 𝜔𝑎)𝑬𝑏(𝒓, 𝜔𝑏)𝑬𝑐(𝒓, 𝜔𝑐) + ⋯ (6) 

 The susceptibility coefficients 𝜒 model the optical properties of the material subjected to an 

electric field. The linear relation between the electric field vector and the polarization vector (i.e. 
linear response) involves the vacuum permittivity 휀0 and the linear susceptibility χ (1). In this case, 

the induced dipoles oscillate at the same frequency 𝜔 as that of the optical field. The nonlinear 

response (associated with the 𝑃𝑁𝐿 polarization vector) can allow for the interaction between 

multiple waves propagating at different frequencies. As a result, unlike linear interactions, 

nonlinear ones can induce the generation of optical fields at new frequencies. More generally, the 

frequency of the input field can be changed upon its propagation in a nonlinear medium while new 

frequency components can be generated. The nonlinear properties are modeled via the nonlinear 

susceptibility coefficients χ (2) and χ (3). In isotropic materials, the susceptibility is a scalar quantity, 

while in anisotropic crystals; the susceptibility takes the form of a tensor that relates the induced 

polarization in a particular direction to the different components of the electric field in all three 

directions. Here, the second- and third-order susceptibilities χ (2) and χ (3) are third and fourth rank 

tensors, respectively. Symbols “∶” and “⋮” in the equation represent the products between tensors 

and electric field vectors. Since all materials become nonlinear when subjected to intense input 

electric fields, they all possess a priori both a linear and nonlinear response. However, we will use 

the term “nonlinear material” for a material with a strong nonlinearity. 

 The linear response related to bound electrons can be classically described using the 

Lorentz model and that of free (conduction) electrons using the Drude model. Consequences of 

these interactions are light dispersion and absorption. Interactions with free charge carriers 

(electrons and holes) are important in semiconductors, giving rise to the free-carrier dispersion 

and absorption effects. In transparent materials, free-carriers are generated through nonlinear 

absorption in a process where a bound electron is excited by absorbing multiple photons 

simultaneously.  

 In contrast with the linear response of the material, the nonlinear optical response enables 

the interaction between multiple waves, as mediated by the material. A strong nonlinear response 

can arise from the interactions between photons and (free or bound) electrons – “photon-electron” 

interactions. A nonlinear response contribution can be also due to the “photon-phonon” interaction 

(i.e. interaction between photons and atom vibrations in a crystal) resulting in nonlinear scattering 

effects (such as Brillouin or Raman processes). We review these different mechanisms in details 

below. 

 In nonlinear interactions, energy and momentum conservation laws must be satisfied (see 

section 1.1.1.3 for further details). The nonlinear interactions with bound electrons are elastic. The 

sum of annihilated photon energies/momenta is equal to the sum of the generated photon 

energies/momenta. The nonlinear interactions with nuclei (such as stimulated Raman scattering) 

are inelastic. In these inelastic scattering processes, the energy of the photons is partially 

transferred to the nonlinear medium. The annihilated photon  generally creates a lower frequency 

photon (called Stokes wave) and a phonon with the right energy and momentum so the 

conservation laws are satisfied [10].  
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 The time-scale of the nonlinear interactions associated with bound electrons is ultra-short 

in the order of few femtoseconds. This has enabled the demultiplexing of optical signals at Tb/s 

data rate [38]. The nonlinear interactions with nuclei are characterized with two time constants. 

The first is an ultra-fast response time (~10fs) and the second one is the phonon lifetime, which is, 

in silicon, in the order of a few picoseconds (~3ps)[36]. Regarding the interaction of light with free 

carriers, the latter are generated almost instantaneously through multi-photon absorption. The 

generated free carriers then affect the propagation of the pulse that created them. By contrast, the 

radiative recombination of the free carriers is a slow process in the order of 10s of nano-seconds. 

The long free carrier life-time generally limits the performance of nonlinear and electro-optic 

applications.   

 The dominant nonlinear material response is determined by the material structure and 

crystalline symmetry [32]. In this context, materials can be divided into two groups 1) materials 

with inversion symmetry – centrosymmetric materials and 2) materials with no inversion 

symmetry – non-centrosymmetric materials. Semiconducting III-V compounds, LiNbO3 are 

examples of non-centrosymmetric materials, allowing for second-order nonlinear effects. By 

contrast, gas, liquids and amorphous materials (glass) can be considered as centrosymmetric 

materials. Moreover, the main materials used for on-chip silicon photonics such as silicon (its oxide 

and nitride), silicon germanium alloys and germanium are centrosymmetric materials [26, 27]. In 

centrosymmetric materials, the response to positive and negative optical fields is symmetrical. 

Therefore the even order nonlinear response is forbidden. The first non-zero nonlinear term is the 

third-order susceptibility χ (3) and these materials are often named χ (3) materials [33]. We will here 

discuss in more details the nonlinear response of χ (3) materials. 

 The third-order nonlinear response is the result of the interaction between three waves in 

the material that manifests as the generation of a fourth wave. This is represented by the equation: 

 𝑷𝑁𝐿(𝜔) = 휀0𝝌(3) ⋮ 𝑬𝑎(𝜔𝑎)𝑬𝑏(𝜔𝑏)𝑬𝑐(𝜔𝑐) (7) 

In the literature [26, 27], third-order nonlinear effects are introduced considering the general 

response to three waves at distinct frequencies. Here, the same approach is used. The 

superimposed monochromatic waves are given by:  

 𝑬(𝒓, 𝜔; 𝜔𝑎𝑏𝑐) = Re { ∑ 𝑬𝑛(𝒓)𝑒−𝑖𝜔𝑛𝑡

𝑛=𝑎𝑏𝑐

} = ∑
1

2
(𝑬𝑛(𝒓)𝑒−𝑖𝜔𝑛𝑡 + 𝑐. 𝑐. )

𝑛=𝑎𝑏𝑐

 (8) 

When energy and momentum conservation laws are satisfied, the interaction between the three 

waves and the associated generation of the fourth wave can become very efficient. The general 

polarization response upon the interaction of three waves at distinct frequencies contains 63 terms 

(including complex conjugate c.c.) that are not distinct in frequencies though and can be gathered 

as follows: 
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𝑷𝑁𝐿(𝒓, 𝜔; 𝜔𝑎𝑏𝑐) = 1 8⁄ 휀0𝝌(3) ⋮ [(𝑬𝑎
3 (𝒓, 𝜔𝑎)𝑒−𝑗3𝜔𝑎𝑡 THG (9) 

 +3𝑬𝑎
2(𝒓, 𝜔𝑎)𝑬𝑏(𝒓, 𝜔𝑏)𝑒−𝑗(2𝜔𝑎+𝜔𝑏)𝑡 FWM  

 +3𝑬𝑎
2(𝒓, 𝜔𝑎)𝑬𝑏

∗ (𝒓, 𝜔𝑏)𝑒−𝑗(2𝜔𝑎−𝜔𝑏)𝑡 FWM  

 +6𝑬𝑎(𝒓, 𝜔𝑎)𝑬𝑏(𝒓, 𝜔𝑏)𝑬𝑐(𝒓, 𝜔𝑐)𝑒−𝑗(𝜔𝑎+𝜔𝑏+𝜔𝑐)𝑡 FWM  

 +6𝑬𝑎(𝒓, 𝜔𝑎)𝑬𝑏(𝒓, 𝜔𝑏)𝑬𝑐
∗(𝒓, 𝜔𝑐)𝑒−𝑗(𝜔𝑎+𝜔𝑏−𝜔𝑐)𝑡 FWM  

 +6|𝑬𝑏(𝒓, 𝜔𝑏)|𝟐𝑬𝑎(𝒓, 𝜔𝑎)𝑒−𝑗𝜔𝑎𝑡 XPM  

 +3|𝑬𝑎(𝒓, 𝜔𝑎)|𝟐𝑬𝑎(𝒓, 𝜔𝑎)𝑒−𝑗𝜔𝑎𝑡) + 𝑐. 𝑐. ] + Π SPM  

Here, symbol “Π” at the end of this formula adds all possible permutations. The third-order 

nonlinear response results in third-harmonic generation (THG), four-wave mixing (FWM), self-

phase modulation (SPM) and cross-phase modulation (XPM) nonlinear effects [10]. Figure 4 shows 

the related energy diagrams that schematically present the interactions involved in the various 

third-order nonlinear effects. 

 

Figure 4: Energy diagrams for the main third-order nonlinear processes: self-phase modulation (SPM), two-
photon absorption (TPA), cross-phase modulation (XPM), third-harmonic generation (THG), four-wave mixing 

(FWM) and stimulated (and coherent anti-Stokes) Raman scattering (SRS and CRS) 

Third-harmonic generation is the fundamental third-order phenomenon where three incident 

waves at frequency 𝜔 generate a wave at frequency 3𝜔. 

Four-wave mixing is the third-order nonlinear phenomenon involving four waves. The first two 

FWM terms in the equation refer to the degenerate FWM case, where two incident photons have the 
same frequency. In this parametric process, a degenerate pump mixes with a probe signal at a 

distinct frequency to generate a signal at a symmetric frequency from the pump (respective to the 

probe), while amplifying the probe signal. The third and fourth FWM terms refer to non-degenerate 

FWM where the two pump waves are not at the same frequency. 

Cross-phase modulation and self-phase modulation are related to the index change induced by a 

pump signal and that affects the propagation of the third wave. The third wave is either at a 

different frequency (cross phase modulation) or at the same frequency (self-phases modulation). 

An optically induced index change as in the form of the self-phase modulation process will be 

discussed in more details in section 1.1.1.2 c). 
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Stimulated Raman scattering and stimulated Brillouin scattering are two important third-order 

nonlinear processes related to the vibration response of the crystal atoms. In Raman scattering, 

optical phonons are excited while in Brillouin scattering, these are acoustic phonons. In this work, 

Brillouin scattering has not been taken into account as the relative strength of Brillouin scattering, 

in our structures, is around two orders of magnitude smaller than that of Raman scattering [39]. 

Therefore, we assume in this thesis that the third-order susceptibility has two dominant 

contributions, one from bound electrons and the other – the Raman contribution – from nuclei: 

 𝝌(3) = 𝝌𝑒
(3)

+ 𝝌𝑛
(3)

 (10) 

The Raman response in silicon will be discussed in more details in sections 1.1.3.1. 

 Now that the bulk material response and the third-order nonlinear effects have been 

introduced, we will show next how the material response affects an incident electromagnetic-wave.  

1.1.1.2 The wave equation in bulk materials  
 This section discusses how the linear and the nonlinear material response affect the 

electromagnetic wave propagation. This will be discussed in a simple scenario, where a 

monochromatic plane-wave propagates in a homogenous bulk material (i.e. the response does not 

depend on the spatial coordinate axis). The free carriers and the nonlinear response are considered 

in the first approximation as small perturbations to the linear response. Under these assumptions 

the general wave equation can be simplified and analytically solved. Although this scenario is 

simple, it allows us to introduce dispersion and absorption, and to understand the origin of these 

effects.  

 In addition to the constitutive relations accounting for the material response and 

introduced in the previous section, Maxwell’s equations include divergence and curl equations. 

These equations can be written in the frequency domain: 

 𝛁 ∙ 𝑫(𝒓, 𝜔) = 𝜚𝑓 ≈ 0 (11) 

 𝛁 ∙ 𝑩(𝒓, 𝜔) = 0 (12) 

 𝛁 × 𝑬(𝒓, 𝜔) = −𝑗𝜔𝑩(𝒓, 𝜔) (13) 

 𝛁 × 𝑯(𝒓, 𝜔) = 𝑱𝑓(𝒓, 𝜔) + 𝑗𝜔𝑫(𝒓, 𝜔) (14) 

The first equation introduces the free charge carrier density 𝜚𝑓 as the source of the electric 
displacement field 𝐷. Taking into consideration that the free carriers are generated via multi-
photon absorption, electrons and holes are created (and later on annihilated) by pairs and have 
equal densities. Therefore, we can assume, as a first approximation (neglecting the distinct 
diffusion processes of electrons and holes for instance) that the total density of free charge carriers 
is equal to zero and that they do not act as sources of the electric field. However, the optical wave 
drives the motion of free electrons and holes that give rise to the free charge current density 𝐽𝑓. The 
latter cannot be neglected and thus can modify the propagating optical wave as per equations (3) 
and (14). 
 
 The exact way the material linear and nonlinear response affect the propagation of an 

optical wave can be understood when turning to the wave equation that is derived from Maxwell’s 
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equations while taking into account the constitutive relations of the material above. The wave 

equation includes the material response and the geometry constraints such as those imposed by the 

waveguide (as will be described in the next part). The wave equation in its most general form can 

be written as [35]: 

 
𝚫𝑬(𝒓, 𝜔) − 𝛁(𝛁 ∙ 𝑬(𝒓, 𝜔)) + 𝑘0

2 (1 + 𝝌(1)(𝒓, 𝜔)) 𝑬(𝒓, 𝜔)

= −𝜇0 (𝑗𝜔𝑱𝑓(𝒓, 𝜔) + ω2𝑷𝑁𝐿(𝒓, 𝜔)) 
(15) 

In this equation, the polarization has been split between its linear and nonlinear parts. The left-

hand side of the equation contains the linear susceptibility, while the right-hand side contains the 

free carriers and the nonlinear terms.  

 In the first approximation the free carriers and the nonlinear terms can be considered as 

small perturbation to the linear response. The perturbation due to the nonlinear response is then 

described by the nonlinear polarization vector 𝑃𝑁𝐿 while the perturbation due to the free carriers 

can be defined as: 

 𝛿𝑷𝐿 = (𝑗 𝜔⁄ )𝑱𝑓 (16) 

 The wave equation can be now analytically solved assuming a homogenous bulk material. 

Solving the equation involves two steps: the equation is solved in the case of a linear response and 

then the solution is modified including the perturbation. When considering only the linear response 

from bound electrons, the right hand side of the general wave equation can be neglected. The wave 

equation can be further simplified assuming a homogenous bulk material: 

 𝚫𝑬(𝒓, 𝜔) + 𝑘0
2 (1 + 𝝌(1)(𝜔)) 𝑬(𝒓, 𝜔) = 0 (17) 

For a monochromatic plane-wave of electric field 

 𝑬(𝒓, 𝜔) = Re{𝑬0𝑒−𝑖(𝜔𝑡−𝒌𝒓)} (18) 

to be solution of the wave equation, its wave number 𝑘 (defined as the magnitude of the wave 

vector 𝑘) needs to satisfy the condition: 

 𝑘(𝜔) = 𝑘0 (1 + 𝜒(1)(𝜔))
1 2⁄

 (19) 

Here, the wave number in the bulk material is proportional to the wave number in free-space that is 

multiplied with the term containing the first order susceptibility χ (1).  

 The solutions in the presence of free charge carriers and the nonlinear response are waves 

where the linear susceptibility term is modified by the perturbation. These modifications are all 

present in our SiGe-on-Si platform. We will present them in more details in the remaining parts of 

this section. The first part discusses how the linear response affects the wave propagation through 

material dispersion and absorption effects. The second part discusses how the free-carrier 

response affects the wave propagation through free-carrier dispersion and absorption. The third 

part discusses the nonlinear response. Here will be introduced the Kerr index and two-photon 

absorption (TPA) as well as the self-phase modulation (SPM) effect. The fourth part introduces 
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high-order nonlinear absorption. Finally, we will discuss the phase matching condition, which is 

critical for nonlinear processes to occur efficiently. 

a) Material dispersion and absorption  

 The linear response from bound electrons results in dispersion and absorption processes. 

The macroscopic parameters used to describe these effects are a frequency dependent refractive 

index 𝑛 and extinction coefficient 𝜅. These coefficients are calculated from the relation between the 

complex index and the linear susceptibility: 

 �̃�2(𝜔) = 1 + 𝜒(1)(𝜔) (20) 

 �̃�(𝜔) = 𝑛(𝜔) + 𝑗𝜅(𝜔) (21) 

 In a weakly absorbing medium, for instance in spectral bands where semiconductor 

materials are almost transparent, the real and imaginary parts of the complex index can be 

calculated using a binomial approximation: 

 𝑛(𝜔) ≈ (1 + Re{𝜒(1)(𝜔)})
1 2⁄

 (22) 

 𝜅(𝜔) ≈ (2𝑛(𝜔))
−1

Im{𝜒(1)(𝜔)} (23) 

 The refractive index and extinction coefficient can be measured in bulk materials e.g. using 

ellipsometry. The real part of the complex index depends on the wave frequency according to the 

material dispersion that can be accounted for by a Sellmeier equation for transparent dielectric 

materials. Material dispersion data are available for many materials such as silicon and silica [40]. 

The imaginary part of the optical index, the extinction coefficient 𝜅, is directly related to material 

absorption. The real and imaginary parts of the complex index are related through the Kramers–

Kronig relations [32]. This relation is often used to calculate one component when the other one is 

known.  

 Following the relation between the wave number 𝑘 and the first order susceptibility given 

by the equation (19), the monochromatic plane-wave experiences a propagation constant 𝛽 and an 

absorption coefficient 𝛼: 

 𝑘(𝜔) = 𝑘0�̃�(𝜔) = 𝛽 + 𝑗𝛼 2⁄  (24) 

These simple relations are valid for plane-waves propagating across bulk materials, and should be 

modified when considering wave propagation in waveguides, as will be discussed in more details in 
the section “Optical response in waveguides” (1.1.2).  

b) Free charge carrier dispersion and absorption 

 The free-carrier response that is induced by the interaction between photon and free charge 

carriers (electrons and holes) generally modifies the refractive index and the absorption coefficient. 

In semiconductors such as silicon this complex index change must be taken into account.  

 In the wave equation, the free carrier response originates from the free charge current 

density 𝐽𝑓 vector. Upon the assumption that the free charge current density is linearly related to the 
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electric field (constant 𝜎 in the equation (3)) this response acts as an effective linear polarization 

vector: 

 𝛿𝑷𝐿 = (𝑗 𝜔⁄ )𝑱𝑓 = 휀0𝛿𝝌(1)𝑬(𝒓, 𝜔) (25) 

The contribution of free carriers can be then included as a modification of the linear susceptibility: 

 𝝌(1) ≈ 𝝌0
(1)

+ 𝛿𝝌(1) (26) 

This is equivalent to the modification of the complex index: 

 �̃�(𝜔) ≈ �̃�0(𝜔) + 𝛿�̃�(𝜔) (27) 

 𝛿�̃�(𝜔) = 𝑛𝑓𝑐(𝜔) + 𝑗𝜅𝑓𝑐(𝜔) (28) 

Free carriers induce a modification in both the real and the imaginary part of the refractive index. 

This modification can be related to the free-carrier contribution to the susceptibility as: 

 𝑛𝑓𝑐(𝜔) ≈ (2𝑛(𝜔))
−1

Re{𝛿𝜒(1)(𝜔)} (29) 

 𝜅𝑓𝑐(𝜔) ≈ (2𝑛(𝜔))
−1

Im{𝛿𝜒(1)(𝜔)} (30) 

Here, the free carrier induced index change is negative (𝑛𝑓𝑐 < 0). Its relation to the wave number 

gives free-carrier dispersion (FCD) and free-carrier absorption (FCA) coefficients, 𝛽𝑓𝑐 and 𝛼𝑓𝑐, 

respectively: 

 𝑘𝑓𝑐(𝜔) = 𝑘0𝛿�̃�(𝜔) = 𝛽𝑓𝑐 + 𝑗𝛼𝑓𝑐 2⁄  (31) 

Both coefficients depend on the free carrier (electrons and holes) densities 𝑁𝑒 and 𝑁h that are 

typically small in semiconductors at room temperature. However, considerable densities can be 

accumulated under intense pulse excitation. When operating at longer wavelengths than that 

associated with the semiconductor band-gap energy (e.g. 1.1µm in silicon at room temperature 

[40]), one photon does not have enough energy to excite electrons from the valence band to the 

conduction band. In this transparent band, free carriers can nevertheless be created in equal 

densities of electrons and holes through multi-photon absorption i.e. 𝑁𝑒 = 𝑁h = 𝑁𝑓𝑐. Relations 

between free-carrier coefficients and carrier densities are generally non-trivial and in practice 

empirical expressions are used [41, 42]. Simplified relations are often used in the literature through 

introducing free-carrier dispersion and free-carrier absorption coefficients 𝜎𝑐 and 𝑘𝑐 (or 𝜇) that 

linearly relate the real and imaginary index to the free carrier density in the material. These 

coefficients are related to the coefficients (𝛽𝑓𝑐 and 𝛼𝑓𝑐) introduced above as follows: 

 𝑘𝑓𝑐(𝜔) = 𝑘0(𝑘𝑐(𝜔) + 𝑗𝜎𝑐(𝜔) 2⁄ ) × 𝑁𝑓𝑐  (32) 

 𝑘𝑓𝑐(𝜔) = 𝑗𝜎𝑐(𝜔) 2⁄ (1 + 𝜇(𝜔)) × 𝑁𝑓𝑐  (33) 

Here, 𝜇 is a dimensionless parameter calculated as 𝜇 = 2𝑘0(𝜔)/𝜎𝑐(𝜔). 

 The free-carrier response appears here as linear considering the linear relation between the 

current density and the electric field. This is valid under the assumption that the electric 

conductivity does not depend on the electric field. However, this is no longer correct in transparent 
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dielectrics under intense optical excitation, where electrons and holes are generated via multi-

photon absorption (see next sub-section). In this case, the electric conductivity, which varies with 

electron and hole densities, depends on the electric field. Therefore, the free-carrier response is 

effectively nonlinear. 

c) Kerr index and two-photon absorption 

 This section discusses in more details the index change that is induced by the material 

third-order (or Kerr) nonlinear response associated with bound electrons. Indeed, the self-phase 

modulation (SPM) and the cross-phase modulation (XPM) effects introduced earlier cause an 

intensity dependent index change. 

 Similarly to the free carrier effects, the index change induced by the nonlinear response is 

related to a modification of the linear susceptibility, which becomes the effective susceptibility 𝜒𝑒𝑓𝑓: 

 𝝌𝑒𝑓𝑓
(1)

≈ 𝝌(1) + 𝝌𝑁𝐿 (34) 

This is equivalent to a modification of the complex index as per: 

 �̃�(𝜔) ≈ �̃�0(𝜔) + �̃�𝑁𝐿(𝜔) (35) 

 �̃�𝑁𝐿(𝜔) = 𝑛𝑁𝐿(𝜔) + 𝑗𝜅𝑁𝐿(𝜔) (36) 

The SPM induced nonlinear polarization is related to the electric field through: 

 𝑷𝑁𝐿(𝒓, 𝜔) =
3

4
휀0𝝌(3) ⋮ |𝑬(𝒓, 𝜔)|𝟐𝑬(𝒓, 𝜔) (37) 

The effective nonlinear contribution to the susceptibility can be defined as: 

 𝝌𝑁𝐿 =
3

4
𝝌(3) ⋮ |𝑬(𝒓, 𝜔)|𝟐 (38) 

By assuming that the nonlinear susceptibility is small compared to the linear susceptibility, the 

index change due the third-order nonlinearity can be calculated as: 

 𝑛𝑁𝐿(𝜔) ≈
3

8𝑛(𝜔)
Re{𝜒(3)(𝜔)}|𝑬(𝒓, 𝜔)|𝟐 (39) 

 𝜅𝑁𝐿(𝜔) ≈
3

8𝑛(𝜔)
Im{𝜒(3)(𝜔)}|𝑬(𝒓, 𝜔)|𝟐 (40) 

The index change is proportional to the square of the applied electric field, i.e. to the optical field 

intensity 𝐼, defined by: 

 𝐼 =
1

2
휀0𝑛(𝜔)𝑐|𝑬(𝒓, 𝜔)|𝟐 (41) 

 The third-order nonlinear response contributes to the phase change of the propagating 

wave by affecting the wave number. By introducing the complex index change to the wave number, 

while substituting the electric field term with the intensity, we obtain two key nonlinear 

coefficients: the Kerr coefficient 𝑛2 and the two-photon absorption coefficient 𝛼2: 
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 𝑘𝑁𝐿(𝜔) = 𝑘0�̃�𝑁𝐿(𝜔) = (𝑘0𝑛2 + 𝑗𝛼2 2⁄ )𝐼 (42) 

These two nonlinear coefficients are related to the third-order susceptibility as per [26]: 

 𝑛2 = 3 (4휀0𝑛2(𝜔)𝑐)⁄ Re{𝜒(3)(𝜔)} (43) 

 𝛼2 = − 3𝜔 (2휀0𝑛2(𝜔)𝑐2)⁄ Im{𝜒(3)(𝜔)} (44) 

The imaginary part of the complex index thus depends on the optical field intensity via the two-

photon absorption coefficient and the real part via the Kerr coefficient, which drives self-phase 

modulation. The latter is the optical equivalent of the electro-optic Kerr effect that was observed in 

the late 19th century. Here, the index change is induced by light, so that this effect is referred to as 

the optical Kerr effect. The Kerr coefficient value of a material can be measured e.g. using the z-scan 

technique. 

The 𝛼2 coefficient (i.e. related to the imaginary part of χ (3)) is responsible for to two-photon 

absorption (TPA), which involves simultaneous absorption of two photons1. Note that all multi-

photon absorption effects (e.g. three- or four-photon absorption) are odd order nonlinear 

processes. They exist in all materials, including centrosymmetric ones.  

The figure below shows the experimentally measured Kerr index and two-photon absorption 

coefficients in silicon [43]. The two-photon absorption coefficient becomes equal to zero for 

photons with energy that is less than half the silicon band-gap. In silicon this corresponds to 

wavelengths that are longer than 2.2µm.  

 

Figure 5: measured wavelength dependence of Kerr index 𝑛2 (left) and TPA coefficient (right), image – Q.Lin [43]  

A critical metric to assess the performance of third-order nonlinear materials is given by the ratio 

between 𝑛2 and 𝛼2 coefficient. This ratio is considered as a nonlinear figure of merit (FOM), which 

sets the efficiency of the χ (3) based nonlinear optical devices [26]: 

 𝐹𝑂𝑀 =
1

2𝜋

𝑘0𝑛2

𝛼2
 (45) 

A large FOM is preferable as it corresponds to a large nonlinearity and low nonlinear loss. In 

crystalline silicon, for telecom wavelengths (around 1.55µm) values of FOM are low, around 0.3. 

                                                             
1 photon energy is proportional to the square of the electric field, so it effectively implies four waves 
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However, for wavelength that reaches half the band-gap, at 2.2µm, the FOM increases to 4.4 [43], 

which considerably increases the performance of the associated nonlinear devices. 

 By taking into account the intensity dependent index change due to the Kerr effect, we get 

the following modified refractive index for the material: 

 𝑛 = 𝑛0 + 𝑛2𝐼 (46) 

As a result of this, self-phase modulation occurs and effectively generates photons at frequencies 

that lie on either side of the input signal frequency. This can be best understood through 

considering an optical pulse propagating in the medium along the 𝑧 axis. Such a pulse induces an 

instantaneous change in the refractive index according to the variation of its electric field envelope.  

The instantaneous phase of this pulse at time 𝑡 and position 𝑧 in the medium is given by: 

 𝜑(𝑧, 𝑡) = 𝜔0𝑡 − 𝑘0𝑛𝑧 + 𝜑0 (47) 

The instantaneous frequency can then be calculated by taking the time derivative of the 

instantaneous phase: 

 𝜔(𝑧, 𝑡) =
𝜕𝜑(𝑧, 𝑡)

𝜕𝑡
= 𝜔0 − 𝑘0𝑧𝑛2(𝜕𝐼 𝜕𝑡⁄ ) (48) 

This equation shows that the spectral component at each time 𝑡 is shifted in frequency according to 

the time derivative of the pulse intensity, which is proportional to the square of the electric field 

pulse envelope. This is illustrated in the Figure 6 below. 

 

Figure 6: Schematics of the self-phase modulation induced frequency-shift for an optical pulse propagating in a 
nonlinear Kerr medium. Figure on the left shows the calculated instantaneous frequency shift (with respect to 

the 𝜔0 carrier frequency of the input pulse) for a Gaussian shaped pulse. Figure on the right shows schematics of 
the pulse carrier wave before and after the SPM effect occurs  

  



17 
 

d) High order nonlinear absorption 

 Higher odd order nonlinear responses result in multi-photon absorption processes. These 

processes are weak but may be dominant in semiconductors excited at long wavelengths. Two-

photon absorption is the dominant nonlinear absorption process for photon energies lower than 

the bandgap but higher than the half-bandgap, three-photon absorption for energies less than half 

and larger than the third of the bandgap and so on. Three and four-photon absorption are fifth and 

seventh-order processes, respectively. As for the two-photon absorption, three- and four-photon 
absorption coefficients can be related to the fifth- (χ (5)) and seventh-order (χ (7)) susceptibilities, 

respectively, through: 

 𝛼3𝑃𝐴 = 𝑘0

10

42𝑛(𝜔)
Im{𝜒(5)(𝜔)} (49) 

 𝛼4𝑃𝐴 = 𝑘0

35

43𝑛(𝜔)
Im{𝜒(7)(𝜔)} (50) 

The operation in the mid-infrared wavelength range, as in this thesis, led us to take into account 

multiphoton absorption up to the 4th order for our silicon germanium-on-silicon platform. 
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1.1.1.3 Phase matching condition 
 As already alluded to, the efficiency of nonlinear effects is conditioned by the fulfillment of 

two conservation laws, namely the energy conservation and the momentum conservation or phase 

matching condition. Below, we will use degenerate four-wave mixing (DFWM) as an example to 

illustrate how the energy and momentum conservation laws translate in practice. 

 Considering that DFWM involves elastic interactions between optical waves, their energy 

and momentum must be conserved. The momentum of the optical wave (or photon) is related to 

the propagation constant and phase of the wave, while the energy of the wave (assumed here to be 

monochromatic as per equation (18)) is related to the wave frequency 𝜔 through:  

 𝐸 = ℏ𝜔 (51) 

 𝒑 = ℏ𝒌 = ℏ𝛽 (52) 

 The degenerate four-wave mixing is the third-order nonlinear process where two photons 

from the pump (at frequency 𝜔𝑝) are absorbed and one idler photon (at 𝜔𝑖) and one signal photon 

(at 𝜔𝑠) are created. The process is efficient if the momentum and energy of the interacting waves 

are conserved. This is illustrated in the energy diagram in the figure below. 

 

Figure 7: The energy diagram of the degenerate four-wave mixing process (left) and the collinear matching of the 
propagation constants (right) 

 The energy conservation simply writes in this case: 

 2𝜔𝑝 = 𝜔𝑠 + 𝜔𝑖 (53) 

 The momentum conservation condition takes the following form for this DFWM process:  

 Δ𝛽 = 2𝛽(𝜔𝑝) − 𝛽(𝜔𝑠) − 𝛽(𝜔𝑖) = 0 (54) 

This is illustrated in the Figure 7 right for collinear propagating waves. 

 If the nonlinear contribution is not taken into account, the wave number 𝛽 at each 

frequency simply depends on the material dispersion. Phase matching in bulk material is then 

possible relying on non-collinear wave propagation or can be achieved using material 

birefringence. In waveguides, phase-matching can be achieved thanks to the additional contribution 

of the waveguide dispersion. Careful dispersion engineering, which is achievable in waveguides, is 

thus critical to reach the phase matching condition. This will be discussed in more detail in the 

section 1.1.2. Similarly, the nonlinear contribution to the phase matching condition will be 

effectively taken into account in the context of nonlinear waveguides, 1.1.2.3. 
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1.1.2 Optical response in waveguides 

 This section discusses how waveguides affect the linear and the nonlinear response. This is 

important as waveguides can be used to change the dispersion and thus enhance the nonlinear 

interactions, through enabling phase matching between the different waves. In general, the 

nonlinear interactions of waves with matter can be enhanced if light is spatially and temporally 

confined. Spatial confinement can be readily achieved using small cross-section fibers or integrated 
waveguides. Temporal confinement is afforded by the use of short optical pulses. Waveguides can 

maintain or enhance the temporal confinement in some conditions, for example, by engineering the 

waveguide geometry so that it presents a very low or anomalous dispersion.  

 In standard fibers or waveguides, light is guided in a “high” index core material with a small 

cross-section surrounded by a lower index cladding. Confinement and guiding is based on the total 

internal reflection effect i.e. light is reflected back to the core from the core-cladding interface. 

Standard single-mode silica fibers (see Figure 8a) confine light at telecom wavelengths to the 8µm 

diameter core. However, the relatively small core-cladding index contrast in silica fibers (around 

0.02) limits the degree of light confinement [10]. Improvements can be achieved using a larger 

index contrast, as, for example in photonic crystal fibers (PCFs – see Figure 8b) where the solid core 

is surrounded with a cladding formed of air holes. PCFs with a solid core smaller than 2µm in 

diameter enabled the achievement of anomalous chromatic dispersion and high effective 

nonlinearities [9]. This in turn, led to the demonstration of the first supercontinuum covering the 

entire visible wavelength range [5]. In silicon-on-insulator (SOI) waveguides (Figure 8c), the spatial 

light confinement is further increased thanks to the large index contrast between the refractive 

index of the silicon (3.5 at 1.55 µm) core and the surrounding silica material (1.4 at 1.55 µm). Low-

loss waveguides with cross-section down to around 0.1µm2 can thus be achieved [44]. 

 

Figure 8: shows different light guiding platforms (a) single-mode fiber, (b) solid-core photonic crystal fiber and 
(c) on-chip ridge waveguide. Core cross-section is smaller in on-chip waveguides compared to the fibers. 

 In a dispersive medium, waves at different frequencies propagate at different velocities. 

Strong dispersion results in pulse temporal broadening that is induced by the walk-off between the 

distinct pulse frequency components. The temporal confinement of the pulse is maintained when 

operating in the low dispersion regime. Operating in the anomalous dispersion regime can enhance 

the nonlinear interactions between pulse components. Indeed, in combination with the nonlinear 

Kerr response, it can induce temporal pulse compression, i.e. an increase of the pulse peak power 

that drives the nonlinear effects. Therefore, the control of dispersion – dispersion engineering – is 
necessary to achieve efficient nonlinear interactions and provides an essential tool in nonlinear 

photonics to optimize nonlinear effects. In a bulk material, dispersion is determined by the material 

linear response, which is typically set, unless the material itself is engineered (e.g. changing the 
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content of the compound). Light guiding structures offer a more convenient and practical way to 

control dispersion. The waveguide dispersion depends on the core and cladding material 

dispersion, as well as on the distribution of light in the waveguide cross-section, i.e. on the 

waveguide geometry. Engineering the waveguide dispersion is thus possible by changing the 

material platform (core and/or cladding) but also by changing the waveguide shape and cross-

section dimensions. Photonic crystal fibers revolutionized the field of nonlinear optics due to the 

strong spatial confinement and high degree of freedom for engineering the dispersion [6]. Photonic 

crystal waveguides have been realized on a chip, showing a great potential for on-chip dispersion 

engineering that has not been yet fully explored for nonlinear optics [45]. Regarding 

supercontinuum generation, dispersion engineering enables the creation of zero dispersion 

wavelengths that can be controlled by the design, as well as the achievement of broadband 

anomalous dispersion regimes, which contribute to increasing the bandwidth of the 

supercontinuum sources.  

 The waveguide geometry affects both the overall linear and nonlinear response experienced 

by the optical wave upon propagation. This section is divided into three parts. The first part 

discusses the waveguide contribution to the linear response. The linear response is mainly affected 

by the waveguide dispersion. The second part discusses the waveguide contribution to the 

nonlinear response. The nonlinear response is predominantly affected by the effective area of the 

mode. The waveguide dispersion and the effective nonlinear parameters will be introduced. The 

third part shows how tailoring the dispersion in waveguides can be used to enhance the four-wave 

mixing process.  

1.1.2.1 Contribution of the waveguide to dispersion 
 The waveguide affects both the linear dispersion and attenuation experienced by the optical 

signal. These effects are described by introducing effective waveguide dispersion and an additional 

optical propagation loss, respectively. 

 The impact of the waveguide geometry can be accounted for in the wave equation. The 

starting point to calculate the waveguide contribution is the wave equation (15) in the absence of 

the nonlinear and free carrier effects. In the previous section where the material response has been 

discussed, we have assumed a homogenous material. In waveguides, the material is different in the 

core and the cladding, so that the material response now depends on the spatial coordinate. 

Following equation (15) the wave equation can be written as: 

 𝚫𝑬(𝒓, 𝜔) − 𝛁(𝛁 ∙ 𝑬(𝒓, 𝜔)) + 𝑘0
2휀𝑟(𝒓, 𝜔)𝑬(𝒓, 𝜔) = 0 (55) 

 휀𝑟(𝒓, 𝜔) = (1 + 𝝌(1)(𝒓, 𝜔)) (56) 

Here, 휀𝑟 is the relative permittivity that is defined in the equation (56). In the waveguide (see Figure 

9) the relative permittivity depends on the coordinate in the transverse plane 휀𝑟 (𝑟, 𝜔) = 휀𝑟 (𝑟⊥, 𝜔) 

where 𝑟⊥ = (𝑥, 𝑦). 

 Solving the wave equation in this case becomes the known boundary value problem. This 

type of mathematical problem assumes that the solution must satisfy the boundary conditions, 

which are usually simple, e.g. it can be assumed that the electric field is well confined in the 

waveguide core and is negligible in the cladding far from the waveguide. Solutions of the wave 

equation are monochromatic waves expressed as: 
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 𝑬(𝒓⊥, 𝜔, 𝑧) = Re{𝑬𝑡(𝒓⊥, 𝜔)𝑒−𝑖(𝜔𝑡−𝛽𝑧)} (57) 

 𝑬𝑡(𝒓⊥, 𝜔) = 𝐸𝑥(𝒓⊥, 𝜔)𝒊𝑥 + 𝐸𝑦(𝒓⊥, 𝜔)𝒊𝑦 (58) 

with the propagation constant 𝛽 and the field profile 𝐸𝑡 in the transverse plane. Here, the wave 
propagates along a defined direction (𝑧 axis) and we assume that the electric field vector belongs to 
the transverse plane (𝑥, 𝑦) and that its amplitude does not vary long the 𝑧 direction (i.e. no loss). 
The mode is either TE (𝐸𝑡 = 𝐸𝑦) or TM (𝐸𝑡 = 𝐸𝑥) polarized, which is strictly valid for a waveguide 
symmetric with respect to the (𝑦, 𝑧) plane crossing the mid-height of the waveguide core.  

 

Figure 9: Schematics of a ridge waveguide. The waveguide is oriented along the z-axis and does not have here a 
top cladding 

This problem is usually numerically solved using mode solver software. The wave equation can be 

simplified and decomposed into the longitudinal and transverse wave components: 

 (𝛁𝑡
2 + 𝑘0

2휀𝑟)𝑬𝑡 + 𝛁𝑡(휀𝑟
−1𝛁𝑡휀𝑟 ∙ 𝑬𝑡) = 𝛽2𝑬𝑡 (59) 

In the software, it is written in such a way that the field profile in the transverse direction 

corresponds to the eigenvector and the complex propagation constant as the eigenvalue of the 

problem. This determines a finite number of solutions, each corresponding to a distinct mode, with 

a specific electric field distribution, that can be sustained by the waveguide. 

 The waveguide modes define all the possible ways in which an optical wave can propagate 

across the waveguide. Here we focus on the fundamental mode which has the largest effective 

index. The mode propagation constant can be related to the field profile by multiplying the wave 

equation (59) by 𝐸* and integrating it across the transverse plane: 

 𝛽2 = ∬(𝛁𝑡
2 + 𝑘0

2휀𝑟)𝑬𝑡𝑬𝑡
∗ + 𝑬𝑡

∗𝜵𝒕(휀𝑟
−1𝜵𝒕휀𝑟 ∙ 𝑬𝑡)𝑑𝑥𝑑𝑦 ∬ 𝑬𝑡𝑬𝑡

∗𝑑𝑥𝑑𝑦⁄  (60) 

The effective index 𝑛𝑒𝑓𝑓 corresponding to the mode above can be defined via:  

 𝛽 = 𝑘0𝑛𝑒𝑓𝑓 (61) 

 Dispersion in the waveguide is imposed by the frequency dependence of the mode 

propagation constant 𝛽. The mode propagation constant in the waveguide is smaller than that of 

light propagating in the core material and larger than that in the cladding material. Generally, due 

to the variation in the electric field distribution in the waveguide cross-section (or confinement in 

the core) with wavelength, the mode propagation constant is close to that in the core material at 

short wavelength and to the propagation constant in the cladding material at long wavelengths. 
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Dispersion is often described by developing the mode propagation constant in a Taylor series 

around the input signal angular frequency: 

 𝛽(𝜔) = 𝛽0 + 𝛽1(𝜔 − 𝜔0) +
𝛽2

2!
(𝜔 − 𝜔0)2 +

𝛽3

3!
(𝜔 − 𝜔0)3 + ⋯ (62) 

 In the literature, the role of the first four dispersion orders is often analyzed in cases such as 

pulse spreading [46], four-wave mixing [47] or the generation of dispersive waves [48]. 

The first dispersion order (𝛽1) is the first derivative of the propagation constant 𝛽 with respect to 

the angular frequency. It is, by definition, proportional to the inverse of the group velocity (𝑣𝑔): 

 𝛽1 =
𝜕𝛽

𝜕𝜔
=

1

𝑣𝑔
 (63) 

This parameter will be used when pulse propagation in the waveguide is considered, since the 

group velocity is the speed at which the envelope of a pulse propagates.  

The second dispersion order (𝛽2) is referred to as group velocity dispersion (GVD). This parameter 

gives some information about the relative velocities of distinct spectral components contained in an 

optical pulse. If the GVD is positive (𝛽2 > 0), red components (longer wavelengths) travel faster than 

blue components (shorter wavelengths). This is called the normal dispersion regime, as it normally 
occurs in transparent bulk materials. If the GVD is negative (𝛽2 < 0), blue components travel faster 

than red components, and this is called the anomalous dispersion regime. The second dispersion 

order is often represented by the dispersion parameter 𝐷 (in units of ps/nm/km) that is calculated 

as the derivative of the first dispersion order 𝛽1 with respect to wavelength. Its sign is opposite to 

that of 𝛽2, and they are related as follows: 

 𝐷 = −
2𝜋𝑐

𝜆2
𝛽2 (64) 

The third dispersion order (𝛽3) gives the slope of the group velocity dispersion and consequently 

information about the peak of the group velocity dispersion. The third order dispersion is the 

dominant dispersion term in the vicinity of a zero group velocity dispersion [46]. The role of the 

third-order dispersion in the supercontinuum generation has been explored in [48]. 

 Since the waveguide affects both the real and imaginary part of the effective index, the 

dispersion and loss can be engineered by changing the waveguide platform or geometry.  

 Loss engineering is a critical task. Telecom and Datacom applications require minimizing 

the propagation losses, while sensing applications require a strong interaction between the optical 

field and the sensing medium, which typically induces light attenuation. For nonlinear optics it is 

essential to reduce the loss, since the nonlinear interactions accumulate across the propagation. 

Hence the longer the distance, the larger is the overall nonlinear effect. In principle, waveguide loss 

can be lowered down to the bulk material absorption loss. In this work, one of the objectives was to 

minimize the waveguide propagation losses, allowing for efficient supercontinuum generation. 

Quantitatively, the waveguide loss modifies the electric field intensity of a given mode upon its 

propagation along the waveguide, in the 𝑧 direction, through the following expression: 

 𝐼 = 𝐼0𝑒−𝛼𝑧 (65) 
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This equation is known as the Beer–Lambert law. Here the optical field intensity 𝐼 (defined in 

equation (41)) of the signal that propagates in an optical medium with a linear attenuation 

coefficient 𝛼 (defined in equation (24)), experiences an exponential decay along the propagation 

direction 𝑧. The linear attenuation coefficient 𝛼 (in units of 1/cm) can be related to the propagation 

loss 𝛼dB (in units of dB/cm) as per: 

 𝛼𝑑𝐵 = 𝛼 ∙ 10 ln 10⁄  (66) 

 Dispersion engineering is referred to as designing the waveguide (e.g. by changing the 
waveguide dimensions) with the objective to obtain the desired dispersion profile for the intended 

nonlinear application. For example, low and anomalous dispersion is required to preserve the pulse 

duration of an optical pulse and to enhance nonlinear processes such as four-wave mixing. This will 

be discussed in more details in the section 1.1.2.3. 

1.1.2.2 Modification of the nonlinearity – waveguide effective nonlinearity 
 In this section, the contribution of the waveguide to the nonlinear parameters will be 

discussed. The waveguide contribution to the nonlinear response is accounted for by defining 

effective nonlinear parameters. 

 Calculating the waveguide contribution to the nonlinear parameters requires introducing 

the nonlinear polarization response to the wave equation (55) in the waveguide, which gives: 

 𝚫𝑬(𝒓, 𝜔) − 𝛁(𝛁 ∙ 𝑬(𝒓, 𝜔)) + 𝑘0
2휀𝑟(𝒓⊥, 𝜔)𝑬(𝒓, 𝜔) = −𝜇0ω2𝑷𝑁𝐿(𝒓, 𝜔) (67) 

 As for bulk materials, the nonlinearity induces an index change in the waveguide. It 

therefore affects the propagation constant of the waveguide modes. Here, we assume that the 

nonlinear polarization can be, as a first approximation, considered as a small perturbation, which 

does not affect the waveguide mode profile. The waveguide mode profile is defined by the 

normalized electric field distribution of the mode in the plane perpendicular to the propagation 

direction. Yet, the waveguide mode intensity can be affected upon propagation, e.g. by multi-photon 

absorption. To describe this phenomenon, we include the wave component that evolves along the 

propagation direction (𝑧). This field component may present some additional slower variation 

(referred to as an envelope 𝐴), as for a light pulse with limited duration. This can be described by 

the following expression, which is solution of the wave equation: 

 𝑬(𝒓⊥, 𝜔, 𝑧) ≈ 𝐴(𝜔, 𝑧)�̅�𝑡(𝒓⊥, 𝜔)𝑒−𝑖(𝜔𝑡−𝛽𝑧) (68) 

The frequency-domain pulse envelope 𝐴 (𝜔, 𝑧) is defined as the Fourier transform of the pulse 
envelope in the time-domain. The mode field profile and the propagation constant can be calculated 

as in the previous section. Here, the field cross-section profile �̅�𝑡 is normalized according to the 

intensity integrated along the transverse plane:  

 �̅�𝑡(𝑥, 𝑦, 𝜔) = 𝑬𝑡(𝑥, 𝑦, 𝜔) (∬ 𝑬𝑡(𝑥, 𝑦, 𝜔)𝑬𝑡
∗(𝑥, 𝑦, 𝜔)𝑑𝑥𝑑𝑦)

1 2⁄

⁄  (69) 

The time-domain envelope 𝐴 (𝑡, 𝑧) of the electric field thus represents the square root of the electric 

field intensity (in units of W/m2). 
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 The effective values of the third-order nonlinear parameters can be calculated from the 

nonlinear polarization term: 

 𝑷𝑁𝐿(𝒓⊥, 𝜔, 𝑧) =
3

4
휀0𝝌(3)(𝒓⊥, 𝜔) ⋮ |𝑬(𝒓⊥, 𝜔, 𝑧)|𝟐𝑬(𝒓⊥, 𝜔, 𝑧) (70) 

After introducing the expression for the electric field into this wave equation, then removing the 

carrier wave factor and integrating the field in the transverse plane, the nonlinear polarization 

becomes: 

 𝑷𝑁𝐿(𝜔, 𝑧) ≈
3

4
휀0𝝌(3)(𝜔) ⋮ |𝐴(𝜔, 𝑧)|2𝐴(𝜔, 𝑧)

∬|𝑬𝑡(𝑥, 𝑦, 𝜔)|4𝑑𝑥𝑑𝑦

(∬|𝑬𝑡(𝑥, 𝑦, 𝜔)|2𝑑𝑥𝑑𝑦)2
 (71) 

The factor associated with the integrals defines a third-order nonlinear effective area: 

 𝐴𝑒𝑓𝑓 3(𝜔) = (∬|𝑬𝑡(𝑥, 𝑦, 𝜔)|2𝑑𝑥𝑑𝑦)
2

∬|𝑬𝑡(𝑥, 𝑦, 𝜔)|4𝑑𝑥𝑑𝑦⁄  (72) 

The mode field confinement in the core material is defined as the fraction of the electric field 

intensity in the (nonlinear) core material through:  

 Γ = ∬|𝑬𝑡(𝑥, 𝑦, 𝜔)|2𝑑𝑥𝑑𝑦

𝑐𝑜𝑟𝑒

∬|𝑬𝑡(𝑥, 𝑦, 𝜔)|2𝑑𝑥𝑑𝑦

𝑡𝑜𝑡

⁄  (73) 

This gives the following effective nonlinearity (in units of 𝑊-1𝑚-1) for the related mode propagating 

along the nonlinear waveguide: 

 𝛾 =
𝜔

𝑐

�̅�2

𝐴𝑒𝑓𝑓 3
 (74) 

Here �̅�2 is the effective nonlinear index averaged across the waveguide cross-section according to 

the field distribution in the core/ cladding material. The waveguide contribution to the 𝛾 nonlinear 

parameter thus comes from the Kerr response of the core material and that of the cladding 

material. The latter has generally a much lower nonlinear index and can be neglected. Under this 

assumption, the effective nonlinear index can be calculated as [49, 50]: 

 �̅�2 ≈ Γ ∙ 𝑛2 (75) 

where 𝑛2 is the Kerr index of the core material and 𝛤 is associated to the mode confinement in the 

core and is given in equation (73).  

 In a large waveguide, most of the pulse intensity is confined in the core and the nonlinear 

parameter 𝛾 (or �̅�2) approaches that of the core material. In a small waveguide, the nonlinear 

parameter 𝛾 is enhanced as the effective area is decreased. However, there are optimal core 

dimensions that induce a minimal effective area [50]. In a waveguide that is smaller than this 

optimum, the mode field is less confined in the core, resulting in an increased effective area as well 

as a decreased effective Kerr index of the waveguide, both effectively reducing 𝛾. 

 The waveguide nonlinear parameter 𝛾 is frequency dependent. This is referred to as the 

dispersion of nonlinearity. The waveguide contributes to the dispersion of nonlinearity through a 
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frequency dependent effective area given by the equation (72). The effective area can significantly 

vary with frequency close the mode cutoff, so the dispersion of nonlinearity must be taken into 

account accordingly. The dispersion of the nonlinearity is included via the shock term that will be 

introduced in the section 1.1.3.1. 

 Similarly to the third-order nonlinear effective area, effective areas corresponding to the 

higher odd orders of the susceptibility can be also derived as: 

 𝐴𝑒𝑓𝑓 5
2 (𝜔) = (∬|𝑬𝑡(𝑥, 𝑦, 𝜔)|2𝑑𝑥𝑑𝑦)

3

∬|𝑬𝑡(𝑥, 𝑦, 𝜔)|6𝑑𝑥𝑑𝑦⁄  (76) 

 𝐴𝑒𝑓𝑓 7
3 (𝜔) = (∬|𝑬𝑡(𝑥, 𝑦, 𝜔)|2𝑑𝑥𝑑𝑦)

4

∬|𝑬𝑡(𝑥, 𝑦, 𝜔)|8𝑑𝑥𝑑𝑦⁄  (77) 

The higher-order effective nonlinearities associated to calculated effective areas can now be simply 

calculated by dividing the higher-order nonlinearity of the core material by the associated effective 

area term – see equations (49) and (50)  in the section 1.1.1.2 d). 

  



26 
 

1.1.2.3 Phase-matching in the four-wave mixing process 
 In section 1.1.1.3, we have discussed the energy and momentum conservation laws in the 

four-wave mixing process in bulk materials. Here will be discussed how dispersion engineering in 

waveguides can be used to tailor the dispersion to satisfy the phase-matching condition and the 

consequence on the efficiency and spectral dependence of this nonlinear process.  

 The equation (54) was derived without taking into account the nonlinear contribution to 

the propagation constant. To include the nonlinear contribution it is necessary to consider how the 

phases of the waves are affected by the nonlinear response of the waveguide.  

 The phase of the degenerate pump (at frequency 𝜔𝑝), signal (𝜔𝑠) and idler (𝜔𝑖) at distance 𝑧 

and after a delay 𝑡 = 𝑧/𝑣𝑔 can be written as: 

 𝜑𝑝 = (𝛽(𝜔𝑝) − 𝜔𝑝𝑣𝑔
−1(𝜔𝑝) + 𝛾𝑃𝑝)𝑧 (78) 

 𝜑𝑠 = (𝛽(𝜔𝑠) − 𝜔𝑠𝑣𝑔
−1(𝜔𝑠) + 2𝛾𝑃𝑝)𝑧 (79) 

 𝜑𝑖 = (𝛽(𝜔𝑖) − 𝜔𝑖𝑣𝑔
−1(𝜔𝑖) + 2𝛾𝑃𝑝)𝑧 (80) 

Here 𝑃𝑝 is the peak power of the pump, and the effective nonlinearity is taken into account through 

the terms associated with 𝛾. As a result, the pump wave experiences self-phase modulation (SPM) 

and induces cross-phase modulation (XPM) on the signal and the idler waves, which is twice as 

large as the pump SPM – see equation (9) [44]. Under the assumption that the waves propagate 

with almost the same group velocities, which is correct around the zero group velocity dispersion 

wavelength, the phase matching condition becomes [44, 47]: 

 ∆𝜑 = 2𝜑𝑝 − 𝜑𝑠 − 𝜑𝑖 = 0 (81) 

 ∆𝜑 𝑧⁄ ≈ 2𝛾𝑃𝑝 − (2𝛽(𝜔𝑝) − 𝛽(𝜔𝑠) − 𝛽(𝜔𝑖)) = 0 (82) 

Since, 𝜔𝑝 , 𝜔𝑠 and 𝜔𝑖 are related to one another through the energy conservation law, the first term 

in the equation (82) is a phase mismatch due to the nonlinearity 𝛾, while the second term is the 

linear or dispersive phase-mismatch (𝛥𝛽) given by the equation (54). The dispersion terms are 

often developed into a Taylor series around the pump angular frequency (see equation (62)). This 

allows us to express the phase matching condition as: 

 ∆𝜑 𝑧⁄ ≈ 𝛾𝑃𝑝 + ∑
𝛽𝑛(𝜔𝑝)

𝑛!
𝑛=2𝑚

(𝜔𝑖 − 𝜔𝑝)
𝑛

= 0 (83) 

The equation shows that the phase-matching condition depends only on the even order dispersion 

parameters evaluated at the pump frequency [47]. Since the nonlinear term is positive, in order for 

the phase-matching condition to be satisfied the dispersion term must be negative. Far from the 

zero-GVD wavelength, the 𝛽2 dispersion term is dominant, and the dispersion term will be negative 

if the 𝛽2 coefficient is negative. For the phase-matching condition to be satisfied, the pump must 

then experience low anomalous dispersion. Near the zero-GVD wavelength, where 𝛽2 is close to 

zero, the higher-order dispersion terms (such as 𝛽4) can be dominant. The phase-matching 

condition can then be satisfied in the normal dispersion regime if the 𝛽4 dispersion term is negative 

and its absolute value is stronger than the 𝛽2 dispersion term.  
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Figure 10: (a) FWM gain coefficient (𝑔) calculated with respect to the pump frequency (at 64 THz) for 1, 2 and 4 
kW peak pump power associated with the dispersion profile of the 6.0 μm × 4.2 μm cross-section SiGe-on-Si 

waveguide presented in Figure 13, (b) FWM gain coefficient in a fiber operating in a strong anomalous dispersion 
regime where 𝛥𝛽 ≫ 𝛾𝑃𝑝 – image Agrawal [10] 

 To illustrate how critical the phase matching condition can be, we show how it impacts the 

spectral dependence of the FWM efficiency below.  

 The signal gain (𝐺𝑠) in a four-wave mixing process can be defined by the ratio between the 

output and input signal power (𝑃𝑠) through [44, 47]: 

 𝐺𝑠 = 𝑃𝑠
𝑜𝑢𝑡 𝑃𝑠

𝑖𝑛⁄ = 1 + (𝛾𝑃𝑝 𝑔⁄ )
2

sinh2(𝑔𝑙) (84) 

here 𝑙 is the waveguide length, 𝑃𝑝 is the pump power, 𝛥𝛽 is the linear dispersive phase-mismatch 

(given in equation (54))  and 𝑔 is the exponential gain coefficient defined as [44, 47]:  

 𝑔2 = (𝛾𝑃𝑝)
2

− (𝛾𝑃𝑝 − ∆𝛽 2⁄ )
2

 (85) 

Figure 10 (a) shows the calculated gain coefficient 𝑔 for the dispersion profile presented in Figure 

13 (a) and (b), which is close to the dispersion of the SiGe/Si waveguides studied in this PhD. It is 

calculated for a pump in the anomalous dispersion at the 4.7 μm (~ 64 THz) pump at different 

pump power levels (1, 2 and 4 kW). For a pump in the anomalous dispersion (𝛽2 < 0) the gain 

coefficient has two maxima symmetrically positioned in frequency on either side of the pump. The 

maxima are set to the frequencies with the maximum linear phase-mismatch (𝛥𝛽/2 equal to 3.3 cm-

1), which partially compensates for the nonlinear phase contribution beyond 2kW (𝛾𝑃𝑝 equal to 

2.25, 4.5 and 9 cm-1 to at 1, 2 and 4kW, respectively). By contrast, for a pump in the normal 

dispersion (𝛽2 > 0) the gain coefficient 𝑔 is generally equal to zero unless the 𝛽4 dispersion term is 

negative and its contribution is stronger than of the 𝛽2 dispersion term. 

 In the previous case, the group velocity dispersion at the pump wavelength is low (𝛽2 ≈ -

3×10-26 s2/m) giving a relatively small linear contribution to the phase mismatch, with respect to 

the nonlinear contribution. Therefore, the nonlinear phase mismatch can be fully compensated for 

by the (weak) linear phase mismatch only at very low pump power (𝑃𝑝 < 1kW). By contrast, when 

operating in a strong anomalous dispersion regime, the linear contribution can be stronger, so as to 

overcome the nonlinear phase shift for a wide range of pump power. In this case, the spectral 

positions of the gain maxima continuously shift in frequency further and further from the pump for 

increasing peak pump power (see an example of this case in Figure 10 b).  
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1.1.3 Third-order nonlinear pulse propagation in waveguides 

 This section presents a model for the propagation of optical pulses in nonlinear waveguides. 

This model will be used to describe the supercontinuum generation dynamics. To extend the 

bandwidth of the supercontinuum, the generation of dispersive waves is often exploited [7]. The 

last section discusses the phase-matching in the dispersive-wave generation process. 

1.1.3.1 Model for pulse propagation in waveguides 
 The evolution of the pulse envelope along the propagation distance in the nonlinear 

waveguide can be numerically calculated. The model accurately describes how the pulse 

propagation is affected by nonlinear effects, giving insight into the underlying physics of the pulse 

propagation in the nonlinear waveguide. This section presents the theory of pulse propagation in 

nonlinear optical waveguides, which is based on the Generalized Nonlinear Schrodinger Equation 

(GNLSE). The GNLSE includes all effects presented above, i.e. dispersion, loss, free-carrier and third-

order nonlinear effects including stimulated Raman scattering. This equation has been widely used 

by the optical fiber community [10] and can be applied to on-chip waveguides [36]. The modeling of 

pulse propagation was used to support experimental nonlinear measurements and largely 

contributed to better understanding nonlinear phenomena in waveguide structures. It is also a 

useful engineering tool, providing design guidelines for specific applications. 

 The starting point to derive the GNLSE is the wave equation with the free-carrier and 

nonlinear effects included. The wave equation (15) can be written in a compact form as: 

 𝚫𝑬(𝒓, 𝜔) − 𝛁(𝛁 ∙ 𝑬(𝒓, 𝜔)) + 𝑘0
2휀𝑟(𝒓, 𝜔)𝑬(𝒓, 𝜔) = −𝜇0ω2 (𝛿𝑷(1) + 𝑷𝑁𝐿(𝒓, 𝜔)) (86) 

Here, the free-carriers and nonlinear effects are introduced via the polarization terms in the right-

hand side of the equation. The wave equation can describe the temporal and spatial evolution of the 

unidirectional forward-propagating pulse along the waveguide. This light pulse can be defined as in 

the previous section by equation (68): 

 𝑬(𝒓⊥, 𝜔, 𝑧) ≈ 𝐴(𝜔, 𝑧)�̅�𝑡(𝒓⊥, 𝜔)𝑒−𝑖(𝜔𝑡−𝛽𝑧) (87) 

The pulse is modeled as a carrier wave of frequency 𝜔 propagating along the 𝑧 direction with a 

linear polarization of the electric field 𝐸𝑡 (𝑟⊥, 𝜔) in the transverse plane (associated here with the 

fundamental waveguide mode) and modulated by the pulse envelope 𝐴 (𝜔, 𝑧). The pulse and field 

profile are normalized in such a way that the absolute square value of the envelope 𝐴 (𝑡, 𝑧) 

corresponds to the pulse intensity (W/m2), while the field profile, normalized in the transverse 

plane (see section 1.1.2.2), contains information about the pulse polarization and mode area. 

 The GNLSE is derived for the input pulses starting from the wave equation above. The pulse 

model and the polarization terms are substituted in the wave equation. We chose as a reference the 

local pulse frame moving along with the pulse (at a speed equal to its group velocity) and remove 
the carrier wave from the equation. Considering the effective parameters originating from the 

presence of the waveguide, the evolution of the pulse envelope along the propagation direction can 

be calculated in the local frame. The Generalized Nonlinear Schrodinger Equation can be then 

developed under the slowly varying envelope approximation [35]. It describes the evolution of the 

electric field envelope in the presence of free-carriers and third-order nonlinear effects as per: 
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𝜕𝐴

𝜕𝑧
= −

𝛼

2
𝐴 + ∑ 𝑗𝑚+1

𝛽𝑚

𝑚!

𝜕𝑚𝐴

𝜕𝑡𝑚
−

𝜎

2
(1 + 𝑗𝜇)𝑁𝑐𝐴

+ 𝑗 (
𝜔0

𝑐

𝑛2

𝐴𝑒𝑓𝑓3

+ 𝑗
𝛼2𝑃𝐴

2𝐴𝑒𝑓𝑓3

) (1 + 𝑗𝜏𝑠ℎ

𝜕

𝜕𝑡
) (𝐴 ∫ 𝑅(𝑡′)|𝐴(𝑡 − 𝑡′)|2𝑑𝑡′

𝑡

−∞

) 
(88) 

Most of the parameters in this equation have been already introduced. The terms on the right hand 

side are related to absorption, dispersion, free-carrier (absorption and refraction) effects and third-

order nonlinear effects, respectively. The third-order nonlinear effects include the response from 

bound electrons and the Raman response from the material. The response function (𝑡) models the 

response from the bound electrons as instantaneous and the response related to the nuclei 

vibrations as delayed. Raman effects are accounted for by the Raman response function h (𝑡) that 

contributes to the overall third-order nonlinear response as dictated by the fraction 𝑓𝑅 through: 

 𝑅(𝑡) = (1 − 𝑓𝑅)𝛿(𝑡) + 𝑓𝑅ℎ𝑅(𝑡) (89) 

The analytical form of the Raman response function derives from the Raman gain spectrum that can 

be experimentally measured. The Raman gain spectrum is usually fitted by a Lorentzian shape 

function characterized by the full-width at half maximum 𝛤𝑅 and the frequency shift from the pump 

𝛺𝑅. These parameters are well known for silica [51] and silicon [52]. The Raman response function 

derives from the Raman gain spectrum in two steps. In the first step, the Raman spectral response 

𝐻𝑅 (𝛺) is calculated from the Raman gain spectrum. The imaginary part of 𝐻𝑅 (𝛺) is proportional to 

the Raman gain. The real part of 𝐻𝑅 (𝛺) is related to the Raman-induced refractive index change and 

can be obtained from the imaginary part by using the Kramers–Kronig relations. In the second step, 

the Raman response function h𝑅 (𝑡) is calculated as the inverse Fourier transform of 𝐻𝑅 (𝛺). The 

Raman response function for silicon can be written in the form [10]: 

 
ℎ𝑅(𝑡) = 0 𝑡 < 0

ℎ𝑅(𝑡) = (𝜏1
−2 + 𝜏2

−2)𝜏1𝑒−𝑡 𝜏2⁄ sin(𝑡 𝜏1⁄ ) 𝑡 > 0
 (90) 

Here, the time constants, the Raman response time 𝜏1 and the phonon lifetime 𝜏2 are reciprocal to 

the Raman frequency shift 𝛺𝑅 and the Raman gain bandwidth 𝛤𝑅 (i.e. 𝜏1 ≈ 1/𝛺𝑅 and 𝜏2 = 1/𝛤𝑅). The 

values of the constants 𝜏1, 𝛺𝑅, 𝜏2 and 𝛤𝑅 in silicon are 12.2 fs, 2π × 15.6 THz, 3 ps and π×105 GHz 

respectively [36]. The fractional contribution of the Raman response to the third-order nonlinearity 

𝑓𝑅 is found to be 0.043 [52]. The Raman gain spectrum in silicon is narrowband and 1000 times 

stronger at its maximum than the very broad gain spectrum in silica [36]. The relatively narrow and 

strong Raman gain of silicon has been used to demonstrate light amplification and laser operation 

[53-55]. However, considering pulse propagation in silicon waveguides and the spectral content 

around the input pulse spectrum, the Raman effect impact is generally low due to the large Raman 

frequency shift and the relatively short on-chip waveguide lengths (around the cm scale).  

The parameter 𝜏𝑠h in the GNLSE equation (88) is related to the shock term that accounts for the 

dispersion of the nonlinearity and thus allows for modeling ultra-short pulses (i.e. with sub 

picosecond duration). The nonlinear parameters of the optical waveguide take effective values that 

are governed by the effective mode areas defined as per equations (72), (76) and (77). Both the 

nonlinear index 𝑛2 and the effective area 𝐴𝑒𝑓𝑓 (see equation (72)) are frequency dependent. Some 

additional dispersion of the nonlinearity comes from the frequency dependence of the effective 

area 𝐴𝑒𝑓𝑓 [37]. This can be included as an additional correction to the shock term: 
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 𝜏𝑠ℎ = 𝜏0 − (𝑛𝑒𝑓𝑓
−1

𝜕𝑛𝑒𝑓𝑓

𝜕𝜔
) − (𝐴𝑒𝑓𝑓

−1
𝜕𝐴𝑒𝑓𝑓

𝜕𝜔
) (91) 

with the derivatives of the effective index and effective area calculated at the carrier frequency 𝜔0. 

Multi-photon absorption has to be included when operating at long wavelengths, like in the mid-

infrared. Three- and four-photon absorption terms can be included in the right-hand side of the 

equation as additional terms respectively given by: 

 𝑇3𝑃𝐴 = −
𝛼3𝑃𝐴

2𝐴𝑒𝑓𝑓5
3

|𝐴|6𝐴 (92) 

 𝑇4𝑃𝐴 = −
𝛼4𝑃𝐴

2𝐴𝑒𝑓𝑓7
4

|𝐴|8𝐴 (93) 

The GNSLE is coupled with an additional rate equation that governs the dynamics of free-carrier 

generation/recombination. This equation is derived starting from the continuity equation, 

assuming (in our case) that free-carriers are generated as electron/hole pairs, through multi-
photon absorption only [36]. Taking into account two-, three- and four-photon absorption effects, 

this equation can be written as:  

 
𝜕𝑁𝑐

𝜕𝑡
=

𝛼2𝑃𝐴

2ℏ𝜔0
(

|𝐴(𝑡)|2

𝐴𝑒𝑓𝑓3
)

2

+
𝛼3𝑃𝐴

3ℏ𝜔0
(

|𝐴(𝑡)|2

𝐴𝑒𝑓𝑓5
)

3

+
𝛼4𝑃𝐴

4ℏ𝜔0
(

|𝐴(𝑡)|2

𝐴𝑒𝑓𝑓7
)

4

−
𝑁𝑐

𝜏
 (94) 

The choice of the multi-photon absorption terms to be included depends on the operation 

wavelength. Two-photon absorption vanishes at long wavelengths when photon energy is less than 

half the bandgap. In this thesis, only four-photon absorption was considered as the pump 

wavelength (around 4µm) corresponds to photon energy larger than the quarter bandgap but less 

than the third of the bandgap energy (e.g. 1.1µm in silicon). The last term in this equation stands for 

free-carrier recombination with 𝜏 the free-carrier lifetime that is usually in the nanosecond range. 

 The GNLSE equation is usually numerically solved using the split-step Fourier method 

(SSFM). In this method as the first step (at distance 𝑧) the linear response is taken into account in 

the frequency domain and in the second step (at distance 𝑧 + 𝑑𝑧) the free-carrier and nonlinear 

response is calculated in the time domain. This method is efficient as it relies on the Fast Fourier 

transform calculations of the envelope between two steps. However, the accuracy of the 

approximation used here depends on the step size 𝑑𝑧 [56], so there is a trade-off between the speed 

of this numerical method and the accuracy achieved. In order to have both accurate and fast 

calculations adaptive step-size techniques have been developed. In this thesis we used the version 

of the split-step Fourier method from J. M. Dudley and J. R. Taylor [34]. 

 The solution obtained from the SSFM gives the pulse envelope in both the time-domain and 

the spectral domain calculated at each distance step along the propagation. A result example will be 

shown in the section 1.1.3.3 where the supercontinuum generation dynamics will be discussed. 

1.1.3.2 Solitons 
 As will be discussed in the next section, solitons have played a major role in the driving 

mechanisms at the origin of the generation of supercontinuum. Solitons are pulses that maintain 

their shape while propagating in a dispersive medium. They appear as analytical solutions of a 
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simplified version of the GNLSE (88) that includes only the second-order dispersion and the 

nonlinear Kerr optical response 𝛾. These particular solutions occur as a consequence of the 

interplay between self-phase modulation and second order dispersion. Self-phase modulation 

generates a positive chirp in the pulse as in Figure 6. Blue-shifted components are generated near 

the trailing edge and red-shifted components near the leading edge of the pulse [10]. In the 

anomalous dispersion regime, blue-shifted components are faster, i.e. anomalous dispersion 

introduces a negative chirp in the pulse. Therefore, the SPM induced chirp counteracts the chirp 

due to anomalous dispersion (see Figure 11). If the two effects balance each other, a fundamental 

soliton is formed, i.e. a pulse that propagates without temporal and spectral distortion. If the 

nonlinearity is stronger, a high-order soliton can be formed and eventually lead to temporal pulse 

compression.  

 

Figure 11 : schematics of the pulse carrier-wave affected by the self-phase modulation effect (SPM – top right) 
and by the anomalous group velocity dispersion (GVD – bottom right). 

The soliton order is dictated by the relative importance of dispersion and nonlinearity in a specific 

nonlinear waveguide and for given input pulse characteristics. To quantify this, typical length scales 

are generally defined, associated with the dispersion and nonlinearity, respectively. The second-

order dispersion length is defined by the equation: 

 𝐿𝐷 =
𝑇0

2

|𝛽2|
 (95) 

where 𝛵0 is the full-width at maximum of the temporal envelope of the pulse. It corresponds to the 

propagation distance over which the accumulated dispersive phase reaches 2π. This roughly 

corresponds to the distance where the pulse is broadened in time by a factor 2 (depending on the 

pulse shape).  

The nonlinear length is defined by the equation: 

 𝐿𝑁𝐿 =
1

𝛾𝑃0
 (96) 

where 𝑃0 is the peak power at the entrance of the waveguide. 
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The nonlinear length is the propagation distance over which the accumulated nonlinear phase 

reaches 2π (assuming there is no loss). When either the dispersion or nonlinear length is much 

shorter than the waveguide length, the related (dispersion or nonlinear) effect plays a significant 

role during pulse propagation. The shorter the characteristic length, the stronger is the associated 

effect. The relative values of dispersion and nonlinear lengths define the soliton order 𝑁 via: 

 𝑁2 =
𝐿𝐷

𝐿𝑁𝐿
 (97) 

A fundamental soliton corresponds to the situation where 𝐿𝑑 is equal to 𝐿𝑁𝐿, both being close to the 

physical length of the waveguide. Figure 12 (a) shows the evolution of the pulse in the time and 

spectral domain under these conditions, as it propagates along the 𝑧 direction: the pulse remains 

undistorted upon propagation. 

 

Figure 12: Calculated time (top) and spectral evolution (bottom) of (a) a fundamental, (b) a second order and (c) 
a third order soliton. Simulations are performed taking into account 𝛽2 = -5.14×10-24 s2/m, and 1, 4 and 9 kW 
pump peak power, 210 fs hyperbolic secant pulse centered at 4.71 μm (64 THz). Dispersion length (𝐿𝐷) is equal to 
0.28 cm while nonlinear lengths (𝐿𝑁𝐿) are equal to 0.28, 0.07 and 0.03 cm, respectively. 

Figure 12 (b) and (c) show the evolution for a soliton of orders 2 and 3. A periodic beating in the 

time and spectral domain can be observed along the 𝑧 direction in these cases. The spatial period 

can be calculated as per [10]:  

 𝑧0 =
𝜋

2
𝐿𝐷 (98) 

The Figures 12 (b) and (c) are plotted for more than two periods (2𝑧0 = 0.87 cm). The propagation 

of the high-order solitons (2nd and 3rd order) shows how the pulse is periodically compressed in 

time, which is accompanied by the pulse spectral broadening. At the length equal to the half of the 

soliton period we can observe the pulse splitting to spectral components after which the pulse 

recovers its initial pulse shape.  

We show in the next section how this has been used to generate supercontinuum.  
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1.1.3.3 Supercontinuum generation dynamics 
 This section will present key concepts and parameters necessary to understand the 

dynamics of supercontinuum generation relying on soliton fission and dispersive wave generation 

processes. For more details about the supercontinuum generation dynamics, the readers are 

referred to J.M. Dudley et al. [37]. 

 To illustrate the dynamics of supercontinuum generation, we will follow how an intense 

mid-infrared 210 fs ultra-short pulse evolves temporally and spectrally as it propagates in a silicon 

germanium (SiGe) dispersion-engineered waveguide on a silicon substrate. We chose this platform 

and this wavelength range since this case is close to the experiments that will be reported in this 

manuscript. However, this example might not exhibit all the typical features associated with 

supercontinuum generation in standard silica fibers (such as Raman self-frequency shift).  We will 

describe the different physical processes as they arise and the associated key parameters and 

length scales.  

 The waveguide dispersion presented in the Figure 13 (a) and (b) is calculated for a 6.0 × 

4.2µm2 cross-section Si0.6Ge0.4/Si ridge waveguide. The SiGe/Si waveguide of nonlinearity 𝛾 = 0.36 

(𝑊-1𝑚-1) is pumped at 4.7 µm wavelength in the anomalous dispersion regime close to the first zero 

dispersion wavelength located at 4.6 µm (see Figure 13b). High-order dispersion coefficients at the 

pump wavelength are calculated to be 𝛽2 = -2.93×10-26 s2/m and 𝛽3 = 3.02×10-39 s3/m. The input 

pulse is a Fourier-transform limited 210 fs ultra-short optical Gaussian pulse with 2 kW peak 

power. The numerical model includes the Raman effect and takes it as equal to that of crystalline 

silicon.  

Table 1: Summary of parameters used in the simulation of supercontinuum generation of Figure 13 

Parameter Value Dispersion 
Value calc. at  

𝜆0 = 4.7 µm (TM) 

𝜆0 (μm) 4.7 𝛽 (1/m) 4.70 × 106 

𝑇FWHM (fs) 210 𝛽1 (s/m) 1.21 × 10-8 

𝑃𝑝 (W) 2000 𝛽2 (s2/m) -2.93 × 10-26 

  𝛽3 (s3/m) 3.02 × 10-39 

𝐴𝑒𝑓𝑓 (μm2) 14.74 𝛽4 (s4/m) -3.24 × 10-54 

𝐿 (cm) 5 𝛽5 (s5/m) 2.14 × 10-68 

𝛼 (dB/cm) 0.38 𝛽6 (s6/m) 1.99 × 10-81 

𝑛2 (cm2/W) 4.0 × 10-14 𝛽7 (s7/m) -3.56 × 10-94 

  𝛽8 (s8/m) 1.83 × 10-107 

  𝛽9 (s9/m) -5.14 × 10-121 

  𝛽10 (s10/m) 8.67 × 10-135 

  𝛽11 (s11/m) -8.41 × 10-149 

  𝛽12 (s12/m) 3.66 × 10-163 

 In this example, multi-photon absorption and free-carrier effects are neglected, and the long 

wavelength loss and cutoff have not been taken into account. Under these assumptions, and starting 

from the equation (88) , the GNLSE used in our simulations takes the following form: 
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) (99) 

The values of the parameters used in the simulations are summarized in Table 1. The pulse 

evolution (temporally and spectrally) along the 5cm long waveguide is shown in Figure 13 (c) and 

(d) respectively.  

 In addition to the dispersion length and nonlinear length defined as per equations (95) and 

(96)  in the previous section, the dispersion length associated with the third-order dispersion term 

is often used to compare the relative importance of the 𝛽2 and 𝛽3 terms [10]. It is defined by: 

 𝐿𝐷
′ =

𝑇0
3

|𝛽3|
 (100) 

The additional terms in the GNLSE (e.g. the higher order dispersion, SRS or even noise) with respect 

to those included in the simplified version of the NLSE (section 1.1.3.2) perturb the ideal soliton 

evolution that was described in the previous section. In particular, the periodic beating is typically 

not observed and soliton fission occurs after a characteristic soliton fission length equals to: 

 𝐿𝑓𝑖𝑠𝑠 =
𝐿𝐷

𝑁
 (101) 

Soliton fission manifests as a breakup of the higher-order soliton into its constituent fundamental 

solitons due to perturbations by the higher-order effects  [10]. 

 

Figure 13: Calculated group velocity 𝑣𝑔 (a) and group velocity dispersion 𝐷 versus wavelength, (b) Calculated 
evolution of the pulse envelope (normalized power in dB scale) over time (c) and wavelength (d) along  the 

propagation distance L The simulations parameters used here are summarized in Table 1 
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The soliton fission length corresponds to the distance at which the higher order soliton (of order 𝑁) 

attains its maximum bandwidth and its maximum temporal pulse compression. For our waveguide 

example above, the characteristic lengths are: 𝐿𝐷 = 55 cm, 𝐿’𝐷 = 67 cm, 𝐿𝑁𝐿 = 0.14 cm and 𝐿𝑓𝑖𝑠𝑠 = 2.74 

cm and the soliton order 𝑁 = 19. 

 The supercontinuum generation dynamics can thus be divided into several stages. The first 

stage can be characterized by the pulse compression triggered by the higher-order soliton 

formation. This is followed by the soliton fission and dispersive wave generation. In the third stage, 
four-wave mixing and scattering effects (such as SRS) define the final spectrum shape. 

 The initial pulse compression stage occurs at a distance shorter than the fission length. The 

time-domain pulse compression is driven by self-phase modulation (SPM) over-balancing 

anomalous group velocity dispersion (GVD). SPM manifests in the initial symmetric spectral 

broadening (see spectrum in Figure 13d at 1cm distance). The pulse compression can be generally 

seen in the time-domain, however in our case it is not significant due to the low dispersion that is 

associated with a nearly flat group velocity curve and long dispersion lengths (the dispersion length 

is much longer than the waveguide length).  

 Soliton fission occurs here at around 2 cm, which is slightly shorter that the soliton fission 

length given by equation (101). This difference can be attributed to the strong third-order 

dispersion.  

 The soliton fission process is followed by subsequent dispersive wave radiation, which will 

be explained in the next section. The Figure 13 (c) shows, in the time domain, the dispersive wave 

radiation at around 2 cm propagation distances. It manifests here (considering the group velocity 

curve) as a radiation at long wavelengths (𝜆 ~ 10 µm) which is thus faster than the solitons in the 

central region of the spectrum (around 𝜆 = 6 µm) according to the group velocity curve. The 

dispersive wave wavelength can be obtained from the phase-matching conditions that will be 

introduced below and depends on the soliton peak power and frequency.  

 In the last stage, four-wave mixing and scattering effects (such as SRS) determine the final 

spectrum shape. After a propagating distance long enough, the pulse components disperse and do 

not overlap in time so the supercontinuum generation spectrum no longer evolves and is only 

affected by the linear loss. 

 We detail in the next section the underlying mechanisms associated with dispersive wave 

generation, which has been extensively exploited as a way to extend the bandwidth of 

supercontinuum. Specific conditions, governed by phase matching, allow us to accurately predict 

the wavelength associated with this useful radiation.  
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1.1.3.4 Phase-matching in the dispersive-wave generation process 
 Dispersive waves (DWs) are closely related to supercontinuum generation and they provide 

a way to extend the supercontinuum bandwidth at the extreme parts of the spectrum. Dispersive 

waves have been exploited to achieve an octave-spanning supercontinuum generation in the 

silicon-on-insulator platform [7, 13, 14]. This section discusses the phase matching condition 

required for the dispersive-wave generation process, which typically appears as a radiation leakage 

associated with a soliton [57]. 

 The phase of the soliton at frequency (𝜔𝑠) and of a dispersive-wave at frequency (𝜔𝑑) can be 

written as: 

 𝜑𝑠 = (𝛽(𝜔𝑠) − 𝜔𝑠𝑣𝑔
−1(𝜔𝑠) +

1

2
𝛾𝑃𝑠) 𝑧 (102) 

 𝜑𝑑 = (𝛽(𝜔𝑑) − 𝜔𝑑𝑣𝑔
−1(𝜔𝑑)) 𝑧 (103) 

Here, the nonlinear contribution to the phase of the soliton is calculated for the fundamental soliton 

assuming the condition 𝐿𝐷 = 𝐿𝑁𝐿 [10]. Under the assumption that the waves propagate with the 

same group velocity, the phase-matching condition between the soliton and dispersive wave 

becomes: 

 ∆𝜑 = 𝜑𝑠 − 𝜑𝑑 = 0 (104) 

 ∆𝜑 𝑧⁄ ≈ 𝛽(𝜔𝑠) + 𝛽1(𝜔𝑠)(𝜔𝑑 − 𝜔𝑠) +
1

2
𝛾𝑃𝑠 − 𝛽(𝜔𝑑) = 0 (105) 

The dispersion terms in the equation are often developed into a Taylor series around the soliton 

frequency (𝜔𝑠) giving: 

 ∆𝜑 𝑧⁄ ≈
1

2
𝛾𝑃𝑠 − ∑

𝛽𝑛(𝜔𝑠)

𝑛!
𝑛≥2

(𝜔𝑑 − 𝜔𝑠)𝑛 = 0 (106) 

The resulting phase-matching condition in the dispersive wave generation process is quite different 

from the one associated with four-wave mixing processes given by the equation (83). The equation 

above shows that the phase-matching is affected by all dispersion orders (even and odd). Here the 

second-order dispersion term 𝛽2 calculated at the frequency 𝜔s must be negative assuming that the 

soliton can be maintained only in the anomalous dispersion regime. Therefore, the phase-matching 

condition cannot be satisfied by taking into account only the 𝛽2 dispersion term, making it 

necessary to consider higher-order dispersion terms.  

 The third-order dispersion term 𝛽3 is the most important term when considering the DW 

generation process. In the case when only the second and third-order dispersion terms are taken 

into account, to satisfy the phase-matching condition between a soliton and a blue-side dispersive 

wave (where 𝜔𝑑 > 𝜔𝑠) the 𝛽3 term must be positive, and between a soliton and a red-side dispersive 

wave the 𝛽3 term must be negative. Roy S. et al. showed that the dispersion strength of the 

dispersive wave depends on the third-order dispersion [48].   
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Figure 14 : (a) Group-velocity dispersion (black) with the superimposed spectrum from Figure 13 calculated at 
2cm distance (blue), DW is generated at a wavelength around 10μm, (b) calculated phase-matched dispersive 

wave wavelength for different soliton wavelengths (𝑦-label) and 1, 2 and 4 kW soliton peak-powers. 

 In the case when the dispersion terms up to the fourth-order are taken into account, 

dispersive-waves can be generated at both sides of the pulse spectrum. Figure 14a) shows the 

dispersive-wave at around 10μm wavelength that is generated in the normal dispersion region on 

the other side of the second zero-GVD wavelength (𝜆 > 7μm) with respect to a soliton in the 

anomalous dispersion region. Figure 14b) shows phase-matching calculated using the equation 

(106) for different soliton wavelengths and peak-powers. The phase-matching is satisfied for the 

soliton positioned at a wavelength between 5 and 5.5μm. Regarding dispersive-waves at the blue 

side of the spectrum, in this particular case, it is difficult to identify them as they overlap with the 

part of the spectrum that is transferred to the normal dispersion due to SPM and FWM in the initial 

phase of the pulse propagation (see Figure 13). The phase-matching condition shows that 

dispersive-waves at the blue-side should be generated, in principle, in a band between 3 and 4 μm, 

i.e. on the short wavelength side of the first zero-GVD wavelength.  

 The generation of the blue-shifted components associated with the short wavelength 

dispersive wave creates photons that carry more energy than the photons associated with the 

initial soliton at longer wavelengths. This indicates that the dispersive wave generation process 

must be a nonlinear process that most likely involves the interaction of multiple photons. 

Dispersive waves were initially interpreted as the FWM process between the Stokes and anti-Stokes 

waves, but their frequencies do not satisfy the FWM condition. Besides, this seems to be 

contradicted by the fact that dispersive waves can be observed in numerical simulations when 
neglecting the Raman effect [10]. More recently, significant effort has been done to interpret the 

dispersive wave generation as FWM or cascaded FWM process between SPM generated 

components and/or solitons [58, 59].  

 After having presented the theoretical background and simulation tools that will be used to 

analyze and understand our experimental results on the generation of supercontinuum in SiGe/Si 

waveguides in the mid-IR, we present next the state of the art of supercontinuum in chip-based 

platforms. 
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1.2 Silicon photonics 

 CMOS (complementary metal–oxide–semiconductor) technology is one of the most 

sophisticated technologies today. Several generations of researchers and engineers contributed in 

achieving a density of 100 million transistors per square millimeter on a chip [60]. The integration 

of high transistor density is possible in a mature and fully automated fabrication process. This 

process is highly reliable, as it results in a very small number of defects per number of produced 

devices. The CMOS technology relies on an abundant and cheap material – silicon – and this is one 

of the key factors enabling large scale “mass” production resulting in compact, cheap and abundant 

electronic devices. Initially exclusively used by the electronics industry, CMOS technologies have 
been feeding for more than 15 years the field of integrated photonics leading to the recent 

development of silicon photonics [61, 62]. 

 Over the last decade, silicon photonics has attracted significant attention for sensing and 

spectroscopy applications in the mid-infrared wavelength range [63-66]. In this context, achieving 

mid-infrared supercontinuum generation in a silicon chip is highly desirable. The main objective of 

this thesis is to explore silicon-based platform – silicon germanium-on-silicon – for mid-infrared 

supercontinuum generation on a silicon chip. We give here an introductory overview on the recent 

development aspects that are relevant to this topic, and organized in three parts: 

1. Silicon photonics in the near-infrared 

2. Silicon photonics in the mid-infrared 

3. Supercontinuum generation on silicon chip 

The first part – silicon photonics in the near-infrared – briefly introduces the fields of silicon 

photonics and nonlinear silicon photonics that have been primarily explored in the near-infrared 

around telecom wavelengths. The second part – silicon photonics in the mid-infrared – discusses 

applications in the mid-infrared wavelength range and germanium based CMOS compatible 

platforms for the mid-IR. The silicon germanium-on-silicon platform and associated advantages for 

the envisaged applications will be introduced. The third part – supercontinuum generation on a 

silicon chip – reviews the literature on supercontinuum in silicon based waveguides and discusses 

the objectives of this thesis in more details. 
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1.2.1 Silicon photonics in the near-infrared 

 Silicon and its native oxide, silica – the two main materials in the CMOS technology – are 

good photonics materials for optical data transmission. Silica fibers are one of the key elements in 

the photonics industry. They are used in fiber lasers and amplifiers, fiber-optic sensors, and thanks 

to their extremely low loss (a fraction of a dB/km) at telecom wavelengths in transmission links for 

long-distance optical communications. Fiber optics has played a major role in the information and 
communication revolution enabling the rapid growth of the Internet. Very high aggregated data 

rates can be achieved by multiplexing information over multiple wavelengths (WDM). In addition, 

optical fibers allow for techniques such as polarization division multiplexing (PDM) and quadrature 

amplitude modulation (QAM) to increase the data throughput even further. In 2018, a record of 

~160Tb/s total data-rate over a single, 1000km long, fiber has been reported [67].  

 Photonics technologies could play also a major role in interconnects. In electronics, data are 

processed and transferred electrically. Transistors are very efficient in performing logic operations. 

However, electrons carry information with significant losses and heat dissipation even across short 

distance metallic wires. These losses are the main source of high power consumption in modern 

data-centers. Counter intuitively, high power dissipation in data-centers comes from transmitting 

data and not from high-performance computing. In addition, these losses are significantly limiting 

the clock rate, i.e. the computing performance, leading to the so called “interconnect bottleneck” 

[68]. A solution envisioned to this problem is to develop chip-to-chip optical data transfer, i.e. to 

replace, at least partially, electrical wires by optical interconnects (see Figure 15 left). Introducing 

photonics on a silicon chip (silicon photonics) could have a tremendous impact in reducing the huge 

power consumption of modern data centers.  

 While fiber optics relies on silica, silicon photonics uses silicon to guide light. The large 

refractive index of silicon (around 3.5 at 1.55 µm) compared to silica (around 1.4) provides a large 

core – cladding index contrast. This, in turn, results in strong light confinement and an order of 

magnitude smaller waveguide cross-section than in silica fibers (see the section 1.1.2). 

Nanotechnology used for photonics allows for advanced photonics device engineering in the form 

of photonic crystal or nanoscale slot waveguides that can improve the degree of light confinement 

and the control of light properties [66]. Silicon photonics holds therefore a great potential for 

integrating various photonic components such as waveguides, grating-couplers, splitters, 

interferometers, rings and race-track resonators on a single chip [69] and the possibility of 

developing hybrid photonics/electronics platform [69]. However, fully integrated photonic systems 

require an integrated laser which still remains a challenge on a silicon chip [70]. Silicon is a good 

material to transfer light, but due to its indirect bandgap, the silicon radiative efficiency is very low, 

forbidding the realization of lasers from this material [71]. Nevertheless, until an efficient 

monolithic solution (e.g. Ge-on-Si [72] or GeSn [73]) is reached, the hybrid integration of III-V lasers 

(e.g. indium phosphide) on a silicon chip shows promising results (Figure 15 right) [74]. 
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Figure 15: (left) Intel’s concept of a terabit optical transmitter integrated on a silicon chip, image – Intel, (right) 
hybrid integration of the indium phosphide (InP) laser on a silicon photonics chip, image – B. Song et al. [74]   

 Nonlinear silicon photonics [26], allowing for frequency conversion as well as the 

generation of new  frequencies, has emerged with the main objective to process ultra-fast optical 

data signals and to bridge the gap between optics and electronics [68]. Silicon has a 2 to 3 orders of 

magnitude stronger nonlinearity than silica. The third-order nonlinear response in silicon is ultra-

fast, of the order of few femtoseconds, allowing for Tb/s applications. Broadband and ultra-fast 

nonlinear applications are possible due to the strong silicon nonlinearity enhanced in a small cross-

section silicon waveguide [27]. Several critical nonlinear photonic functions for ultrafast optical 

signal processing have been reported, such as modulators, multiplexers/demultiplexers and 

wavelength convertors among others [38].   

 Electro-optical modulators in silicon are based on free-carrier effects. The phase of an 

optical signal can be changed by injecting free carriers using metal-oxide-semiconductor 

transistors, PN or PIN diodes. Figure 15 left shows Intel’s approach to achieve 1Tb/s optical 

communication between optical chips. Here, the signals emitted, in parallel, by a series of on-chip 

lasers are electro-optically modulated before multiplexing to a single optical fiber. In 2015, an 

optical communication link between a memory unit on one chip and a processing unit on the other 

chip has been demonstrated by a US consortium involving IBM [75]. This demonstration relied on 

the co-integration of photonics and microelectronic devices using fully CMOS manufacturing 

approaches. In this work an optical modulator based on a PN junction has been used to modulate 

light from an external laser. The on-off keying modulation speed relying on the fast free carrier 

effects in PIN diodes can be as high as 70Gb/s [38]. Data throughput can be further increased using 

PDM-16-QAM modulation scheme up to 320 Gb/s [76].  

 Four-wave mixing in silicon waveguide has been exploited to all-optically de-multiplex 10 

Gb/s signal, that can be processed in the electrical domain, from high data rate signal at 160 Gb/s 

[77] and 1.28 Tb/s [78]. In this scenario sub-picosecond pulses at 10 GHz repetition rate, used as a 

pump, have been synchronized with 1.28 Tb/s signal to generate de-multiplexed 10 Gb/s idler data. 

In principle, using this method, 1.28 Tb/s signal can be de-multiplexed to 128 channels at 10 Gb/s. 

 These promising results led to the concept of all-optical signal processing on a chip that 

could be used in all-optical networks to transfer data “on the fly” without conversion to the 

electronic domain [79]. Together with these advances, significant results such as third harmonic 

generation [45], ultra-fast optical monitoring [80] and efficient correlated photon pair generation 

[81] have been achieved, expanding the opportunities offered by nonlinear integrated optics. 
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However, the significant two-photon absorption (TPA) of crystalline silicon (c-Si) at telecom 

wavelengths is such that its nonlinear figure of merit (see equation (45)) is in the range of FOM = 

0.3 to 0.5 (see section 1.1.1.2 c) – much less than what is ideal for nonlinear optics applications. 

This has significantly limited the efficiency of the reported nonlinear devices [82]. This low FOM of 

c-Si in the telecom band is a fundamental material property that cannot be improved. If we want to 

operate in the telecom band, which has now become a standard in the telecommunications field, the 

search for a new platform with a better FOM is necessary to overcome the limits of c-Si. Some of the 

proposed solutions include silicon nitride (Si3N4)[83] and hydrogenated amorphous silicon (a-

Si:H)[84] and even silicon carbide (SiC). On the other hand, if we allow ourselves to change the 

operation wavelength, crystalline silicon and its derived alloys (such as SiGe) remain relevant 

because they have a higher FOM at longer wavelength (typically at short mid-infrared wavelengths 

around 2.5 μm). In the context of this thesis, we have explored the non-linear properties of silicon 

germanium in the mid-infrared range. 
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1.2.2 Silicon photonics in the mid-infrared 

 Nonlinear silicon devices operating beyond the TPA absorption limit in silicon at 2.2µm 

shows a great potential for communications applications. In this wavelength range, compact and 

efficient silicon modulators have been demonstrated [85, 86]. However, as optical communication 

applications are mainly conducted at telecom wavelengths where silica fibers have low 

transmission loss, the main interest in the mid-infrared lies in the possibility to perform high-
sensitivity molecule sensing and, more generally, in spectroscopy applications. It is well 

acknowledged that silicon photonics applications in the mid-infrared will be different from data 

and telecom applications in the near-infrared [64]. 

 Mid-infrared radiation is important for numerous applications in fundamental research, 

life-science [87], healthcare, industry, environment and security [88]. The boundary between the 

near-infrared and mid-infrared can vary in the scientific literature depending on the field of 

research [66]. Throughout this manuscript, I consider that near-infrared (near-IR) spans from 0.7 

to 2.5μm, mid-infrared (mid-IR) from 2.5 to 15μm and far-infrared (far-IR) from 15μm to 1mm. A 

simple distinction can be made between near- and mid-IR radiations. Earth atmosphere is 

transmitting near-IR and absorbing mid-IR radiation. Therefore, the main photonics applications in 

the near-IR are related to optical communications – free space and fiber optic – while the main 

applications in the mid-IR are based on molecular sensing and spectroscopy. 

 

Figure 16: shows transparency of Earth’s atmosphere. Molecules have strong absorption in windows located 
around 3µm, 4µm and from 5 to 8µm. Atmospheric windows from 3 to 5µm can be used for the secure free-space 

communications. 

 Each molecule has distinct spectral absorption lines corresponding to its rotational and 

vibrational transitions. Most of the molecules have their fundamental lines called “molecular 

fingerprints” in the mid-infrared (Figure 16). These spectral lines are narrow and strong compared 

to broad and weak overtones in the near-infrared. Detecting molecules and their concentration in a 

low volume sample is possible by measuring the absorption spectrum of a relatively broad light. 

This method is termed as the molecular absorption spectroscopy. 

 Molecules can be detected in a gas or liquid phase. Sensing of greenhouse gasses (e.g. 

carbon-dioxide or methane) and toxic gasses at trace levels can be utilized for environmental 

monitoring and security applications. Detecting carbon-dioxide can be also useful for the control of 

industrial processes as the carbon-dioxide is commonly a byproduct. In healthcare, analyzing the 

molecular content of exhaled breath has been explored for early cancer detection. The absorption 

spectroscopy of molecules in liquid phase is important for water quality control, biological and 
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chemical sensing. An important application is the non-invasive monitoring of the glucose level in 

blood, considering the increasing population with diagnosed diabetes [89, 90].  

 One of the main objectives of silicon photonics in the mid-infrared is to develop low cost 

sensing devices. This point sensor (or lab-on-a-chip) consists of a light source, a sensing area such 

as an evanescent waveguide and a detector. 

 This thesis is focused on the development of a broadband mid-IR source, which is an 

important building block to realize the on-a-chip mid-infrared sensing system (see schematics in 

Figure 2) [90]. A pulsed pump laser is required to achieve a supercontinuum source. In this work, as 

a pump, we used a state-of-the-art turnkey mid-infrared femtosecond source. Such pump lasers are 

generally high-priced and bulky. For commercial use, low-cost and compact pulsed lasers are 

required. Until a suitable pulsed laser is achieved on-a-chip, all-fiber mode-locked lasers, which are 

operating around 3 μm, are the best solution in terms of price and size. In 2016, researches had 

developed holmium doped ZBLAN fiber laser emitting 180 fs pulses at 2.9 μm wavelength outside 

the water vapor absorption band [91, 92]. More recently, emission of 80 fs pulses has been 

reported at 2.9 μm from a Germania glass (GeO2) fiber laser [93]. 

 Molecules can be detected on-a-chip by measuring the attenuation transmission through 

the interaction of the evanescent field of a waveguide mode with its surrounding environment. This 

method is referred to as evanescent field spectroscopy [94]. The attenuation caused by absorption 

then depends on the waveguide length as well as on the field extension into the surrounding 

analytes. In order to increase the interaction length across a small footprint, compact spiral 

waveguides can be used [90]. To increase the evanescent field interaction with the sample, slot 

waveguides where the significant part of the mode is confined in a central air-gap containing some 

bio-molecules to detect might be a good solution [69, 95]. How much the field extends into the 

surrounding environment depends on the waveguide geometry but also on the mode polarization. 

The interaction with molecules in a liquid phase can be controlled with microfluidic systems on a 

chip.  

 The spectra altered by the molecular resonances can be analyzed using a spectrometer. Two 

schemes for the detection of the mid-infrared spectra are the most significant: Fourier transform-

based and dual-comb spectroscopy [96]. Significant and promising results have recently been 

achieved in this field. In 2018 Qiankun L. et al. realized an integrated multi-aperture spatial 

heterodyne Fourier-transform spectrometer (SHFTS) for operation beyond 5 μm wavelength [97]. 

At the same time, on-chip supercontinuum has been used in a dual-comb spectroscopy scheme for 

carbonyl sulfide detection [98]. 

 Most of the mid-infrared was inaccessible to conventional lasers until the invention of 
quantum-cascade lasers (QCLs) in 1990s [99-101]. At the same time, mid-IR fiber lasers have been 

developed [102]. The gain medium in fiber lasers is a mid-IR transparent fiber doped with rare-

earth elements such as thulium, erbium, ytterbium or dysprosium. In this technology, the dopant 

choice determines the laser emission wavelength [88]. In the context of accessing a broad part of 

the mid-infrared spectrum at once, for molecule sensing, nonlinear photonics is particularly 

relevant as it enables frequency conversion and parametric amplification. This allows for achieving 

tunable or broadband sources operating in the mid-IR. 
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 On-chip broadband sources such as those enabled by supercontinuum generation are 

particularly important for spectroscopy, owing to their large bandwidth and high brightness. The 

supercontinuum source allows for accessing multiple wavelengths altogether. This permits reliable 

and parallel detection of multiple molecules. High spectral brightness when operating in the mid-IR 

can enable high sensitivity molecule detection. Molecules can be detected at trace levels measured 

as ppb (parts per billion) [103]. The coherence of the supercontinuum can further improve 

sensitivity, enabling label-free and ultra-fast molecular detection [104].  

 Optical materials for mid-IR spectroscopy on silicon-based chips should exhibit a wider 

transparence spectral window as compared to traditional silicon photonic materials used for 

telecom applications. Silicon-on-insulator is the dominant CMOS compatible platform for both 

electronics and silicon photonics in the near-IR. However, the transmission window of this platform 

is limited up to around 3.5µm due to the absorption in the silica substrate [65]. Several material 

platforms have been proposed for on-chip operation in the mid-IR (see the transparence of 

materials in Figure 17). The first solution is to use advanced designs such as suspended or pillar 

silicon waveguides in the SOI platform so as to remove silica [105, 106]. The second option is to use 

amorphous materials such as chalcogenide glasses [15, 107]. The third solution is to explore on 

other CMOS compatible materials (group IV materials). We discuss below these group IV materials 

and their applications for mid-IR nonlinear integrated photonics. 

 

Figure 17: Transparence window of several CMOS compatible semiconductor materials that are listed on the left 
[64, 66, 108]. The related bandgap and the wavelength limit beyond which two-photon absorption disappears are 
indicated by the first and second vertical line from the left, respectively. The transparency window (denoted by 
the white areas) is defined as the bend where the absorption loss is below 2dB/cm.  

1.2.2.1 Group IV materials 
 The detrimental effects of TPA in silicon can be mitigated when operating at wavelengths 

longer than 2.2µm – beyond the two-photon absorption limit. In addition to low nonlinear loss, 

silicon has a wide transparence band up to 9µm. However, when employed in standard CMOS 

platforms – silicon-on-insulator (SOI) [109] – transmission is limited to 3.7µm [108] due to the 

onset of absorption in the silica substrate (Figure 17). To address this issue, the use of group IV 

(group 14 in the periodic table of elements) elements and especially germanium has been 

proposed. Germanium has been long considered as an important photonic material due to its strong 

nonlinearity and its wide mid-IR transparency [110]. The use of germanium for nonlinear 

applications is closely related to the development of mid-infrared photonics, since germanium is 

not transparent in the near-infrared at telecom wavelengths [111, 112].  
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 Mid-infrared operation brings to silicon photonics several important technological 

advantages. The scaling of the waveguide size with wavelength improves the coupling efficiency 

from fibers as compared with that related to (small cross-section) waveguides operating in the 

near-infrared. Conventional CMOS mass manufacturing processes, in particular ultraviolet 

lithography, are compatible with typical mid-IR device dimensions. Finally, scattering loss is 

intrinsically less at longer wavelengths, resulting in a reduced impact of the surface roughness [66]. 

The larger cross section typically improves the field confinement in the nonlinear core material, but 

this comes to the detriment of the mode effective area, which equally increases. The latter reduces, 

in turn, the nonlinear parameter 𝛾. In this thesis I will study the potential trade-off related to the 

pros and cons of this platform for nonlinear optics.   

 Optical properties of silicon [113], germanium [114] and silicon-germanium compounds 

[115] have been studied in the 1950s. The refractive index of silicon and germanium over the entire 

transparency windows has been accurately measured as early as 1957 [116]. Raman scattering in 

silicon and germanium have been reported in 1967 [117]. The refractive index of germanium is 

larger than that of silicon (4.02 of germanium compared to 3.42 of silicon at 4 μm wavelength), 

allowing for the realization of germanium waveguides on silicon substrates. 

1.2.2.2 Germanium 
 Before germanium was discovered, its existence was predicted and this element was 

labeled as “eka-Silicon”. Germanium is the first element below silicon in the same group of the 

periodic table. While silicon is one the most abundant elements in Earth's crust, germanium is a 

fairly rare element. Like silicon, germanium is a semiconductor that conducts electricity when 

doped with phosphorus (n type semiconductor) or with boron (p type semiconductor). In the form 

of p – n junctions, germanium can be used as diodes or photodetectors. The first transistor was 

made of germanium [118]. It is therefore a part of the microelectronics industry since its 

beginnings. Germanium photodetectors are sensitive to light at near-infrared wavelengths. 

Germanium is used also in scintillators to detect gamma radiation. Today, it is mostly used in fiber-

optics, where the fiber core is doped with Germania (GeO2) to increase the core-cladding index 

contrast. Due to the germanium’s transparency in the mid-infrared, it is used to create bulk optics 

for mid-IR lenses [119]. 

 In the context of integrated photonics, germanium is used for integrated photodetectors 

that is now a mature technology. Germanium photodetectors are indeed a key technology in 

receivers for Datacom applications [120]. The small energy difference between the direct and 

indirect bandgap transitions makes germanium a suitable candidate for integrated lasers. 

Germanium alloys such as silicon-germanium-tin (SiGeSn) and germanium-tin (GeSn) are good 

candidates for hetero-structure lasers [64]. More recently, germanium has been envisioned as the 

material of choice for mid-infrared nonlinear photonics on-a-chip owing to its wide transparency 

up to 15µm, large refractive index and strong nonlinearity [111]. The third-order nonlinearity χ (3) 

in germanium [121] is stronger than that of crystalline silicon (see Figure 18) [43, 108, 122]. 
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Figure 18: Experimentally extracted χ(3) nonlinearity in silicon (a) and germanium (b), img. – N. K. Hon et al. [108] 

 Figure 18 presents an overview of the different nonlinear χ (3) values that have been 

reported in silicon and germanium. Based on experimentally measured values, Hon N. K. [108] et al. 

plotted an average curve predicting the silicon and germanium nonlinearities over a wide 

wavelength ranges, i.e. from 1 to 7 μm in silicon (green curve) and from 2 to 15 μm in germanium 

(red solid curve). The Kerr index (𝑛2) in the mid-IR (at 4.26 μm) for germanium is 25.5 (m2/V2), 

which is much stronger than the maximum 3.26 (m2/V2) value for silicon at 2 μm. 

The germanium-on-silicon (Ge-on-Si or GOS) platform has attracted significant research interest as 

it has the potential to operate well beyond the silica absorption limit [112]. In this platform, the 

propagation loss has been characterized over a wide wavelength range. Starting from the 

germanium bandgap (around 2μm), a constant loss around 3dB/cm has been measured in (1.2 μm 

× 2.25 μm cross-section) Ge-on-Si rib waveguides in the range from 2 to 4µm [112]. A low record 

loss of 0.6dB/cm has been reported at 3.8µm wavelength (1.7 μm × 2.7 μm cross-section) [123, 

124]. In the wavelength region where the silicon substrate starts to absorb, from 7µm, low 2.5 

dB/cm losses have been reported around 7.5 µm [125]. In addition to loss characterization, free-

carrier electro-absorption [42] and two-photon absorption have been investigated in this platform 

[112, 126]. Although the GOS platform had been anticipated to be of interest for nonlinear 

applications in the mid-IR at the beginning of this PhD, nonlinear applications based on third-order 

nonlinear effects in this platform had been only theoretically investigated [127-130].  

 The germanium-on-SOI platform enables the use of standard CMOS manufacturing 

processes for realizing germanium components. As in electronics, where silica is used to electrically 

isolate electric components and as a thermal conductor, in photonics the underlying silica layer can 

be also used to efficiently remove heat from components. Hence, thermo-optic phase-shifters have 

been realized in germanium-on-SOI [131]. However, as already mentioned, silica absorbs light 

beyond 3.7µm, which limits the operation range of potential nonlinear photonic devices. Despite 

this fact, efficient fiber-to-chip grating couplers and Vernier tunable racetrack resonator filters 

operating at 5µm have been reported [132, 133]. Table 2 shows summarized the results reported in 

Ge-on-Si and Ge-on-SOI platforms.  

 For more details about germanium waveguide platforms, the readers are referred to the 

review article [111]. 
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Table 2: a survey of demonstrators achieved in Germanium based integrated platforms. SiGe1 and SiGe2 refer to 
high and low germanium content silicon-germanium alloys, respectively. The schematics of these platforms are 
shown on Table 3. 

 

  

Platforms and references Loss  
(dB/cm) 

Wavelength  
(μm) 

Devices demonstrated 

Ge-on-Si platform    
Chang, Y.-C. et al. (2012) [134]  2.5 5.8 ridge waveguide (WG) 
Malik, A. et al. (2013) [135] 2.5 – 3.5 5.1 – 5.4 arrayed waveguide grating 
Roelkens, G. et al (2013) [136] ~ 2 2.6 Mach-Zehnder interferometer 
Malik, A. et al. (2014) [131] - ~ 5 thermo-optic  modulator (phase shifter) 
Nedeljković, M. et al. (2015) [123] 0.6 3.8 multimode interferometers (MMI) 
Shen, L. et al. (2015) [126] - ~ 2 cross-absorption modulator 
Alonso-Ramos, C. et al. (2016) [124] - 3.8 grating coupler 
Mašanović, G. Z. et al (2017) [112] 3/3±0.8 2 – 4/7.5 MMI and grating coupler 
Nedeljković, M. et al. (2017) [125] ≥ 2.5 7.5 – 8.5 multimode interferometers 
Gallacher, K. et al. (2018) [137] 1 – 5 7.5 – 11 rib waveguide 
Ge-on-SOI platform    
Malik, A. et al. (2014) [131] - ~5 thermo-optic modulator 
Radosavljević, S. et al. (2017) [132] - ~5 grating couplers 
Radosavljević, S. et al. (2018) [133] - ~5 Vernier racetrack resonator tunable filter 
SiGe1-on-Si platform    
Ramirez, J. M. et al. (2016) [138] 1.5±0.5 4.6 rib waveguide on graded index substrate 
Ramirez, J. M. et al. (2018) [139] 2 – 3 5.5 – 8.5 graded index rib straight/spiral waveguide 
Serna, S. et al. (2017) [140] 6±1.5 1.58 rib waveguide (𝑛2 and 𝛼2 at 1.58 μm) 
Vakarin, V. et al. (2017) [141] < 5 5.5 – 8.5 Mach-Zehnder interferometer and MMI 
Liu, Q. et al. (2018) [97] < 2.5 5.5 – 8.5 Fourier-transform-based spectrometer 
SiGe2-on-SOI platform    
Hammani, K. et al. (2014) [142] ~ 2 2.12 FWM-based wavelength conversion 
Ettabib, M. A. et al. (2015) [143, 144] 2 2.4 supercontinuum generation 
SiGe2-on-Si platform    
Brun, M. et al. (2014) [145, 146] 1/2 4.5/7.4 waveguides, Y-junctions, crossings, couplers 
Hammani, K. et al. (2013) [147, 148] 0.43 – 4.77 1.55 SiGe buried-in Si WGs (𝑛2 and 𝛼2 at 1.55 μm) 
Ettabib, M. A. et al. (2013) [149] 1.4 1.55 FWM-based wavelength conversion 
Ettabib, M. A. et al. (2016) [150] - 1.56 FWM-based wavelength conversion 
Carletti, L. et al. (2015) [151, 152] 0.5 – 1.5 3.25 – 4.75 SiGe buried-in Si WGs (𝑛2 and 𝛼2 at ~ 4 μm) 
Sinobad, M. et al. (2018) [153] 0.23 4.15 supercontinuum generation 
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Table 3: A comparison of Germanium based integrated platforms with the main material parameters. Schematics 
of the different waveguide geometry are presented for each platform. SiGe1 and SiGe2 refer to high and low 
germanium content silicon-germanium alloys, respectively.  

Platform Ge-on-Si Ge-on-SOI SiGe1-on-Si 

𝛼 (dB/cm) 0.6 (at 3.8 μm) [123] N/A 1.5±0.5 (at 4.6 μm) [138] 

𝑛2 (cm2/W) N/A N/A 23±2.3 × 10-14 (at 1.58 μm)  [140] 

𝛾 (W · m)-1 N/A N/A 0.36 (at 1.58 μm)   

 

   
    

Platform SiGe2-on-SOI SiGe2-on-Si SiGe2-on-Si 

𝛼 (dB/cm) 2.0 (at 2.4 μm) [143] 0.5 – 1.5 (3.25 – 4.75μm) [151] 0.23 (at 4.15 μm) [153] 

𝑛2 (cm2/W) 11× 10-14 (at 2.4 μm) [143] 0.7 – 2  × 10-14 (3.25 – 4.75μm) 2.55 × 10-14 (at 4 μm) 

𝛾 (W · m)-1 24.2 0.3 – 0.2 (3.25 – 4.75μm) 0.63 (at 4 μm) 

 

   
 

Table 3 shows the typical cross-section schematics of waveguides realized in the different 

platforms that have been included in Table 2. The main material parameters are indicated for 

comparison.  

 Although germanium based platforms have been foreseen as platforms of choice for 

nonlinear mid-IR photonics, germanium has not been yet successfully applied for nonlinear 

applications in the mid-infrared. This is mainly due to the high losses that originate from defects at 

the germanium-silicon interface [64, 154]. This is however thought to be a technical issue that can 

be addressed. One approach to minimize these defects is to use silicon-germanium alloys on silicon, 

as will be discussed in the next section. 

1.2.2.3 Silicon-Germanium 
 Silicon germanium is an alloy of silicon and germanium noted as Si1-xGex where x is the 

germanium content. The content of germanium can be varied to tune the refractive index and the 

third order nonlinearity in a range between that of bulk silicon and that of germanium (larger 

values). This additional degree of freedom can be exploited in dispersion engineering. It has been 

theoretically predicted that SiGe alloys behave as “silicon-like” when the germanium content is less 

than 80% and as “germanium-like” when the content is more than 80% [108]. For “silicon-like”, 

silicon germanium χ (3) nonlinearity is comparable to that of silicon, while for “germanium-like”, the 

χ (3) nonlinearity is expected to be comparable to that of germanium.  
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a) High germanium content silicon-germanium alloys ( SiGe1) 

 Germanium-rich silicon germanium is a “germanium-like” alloy with a small energy 

difference between direct and indirect bandgap transitions. Waveguides realized on the 

germanium-rich silicon germanium-on-silicon platform have the potential to extend the operation 

wavelength range up to 15µm. More than this, this platform can enable the realization of the long 

desired lasers on a silicon chip. In this purpose, silicon germanium with different germanium 

contents can be realized in the form of multiple quantum well hetero-structures. Silicon germanium 
hetero-structures can be also used within a photodetector [155].    

 As already alluded to, in the germanium-on-silicon (GOS) platform, the loss induced by the 

interaction of the optical field with the interface dislocations has been recognized as one of the 

main issues [125]. These threading dislocations are the consequence of the large lattice mismatch 

between silicon and germanium (lattice constants of Ge and Si are 5.7 and 5.4 A, respectively). To 

address this issue “the interface-free waveguide” solution has been proposed. Such graded index 

waveguides are formed by gradually changing the germanium content in the Si1-xGex from 0% 

(silicon) to 100% (germanium). Significant progress has been achieved on this platform [138-141].  

 Results have been recently reported in the Ge-rich SiGe-on-Si platform demonstrating low 

loss, strong nonlinearity and the realization of devices that can potentially be used in future on-chip 

spectrometers. A low measured loss of 1.5±0.5 dB/cm has been reported in a Si0.2Ge0.8/Si 

waveguide at 4.6 µm wavelength [138]. At longer wavelengths, from 5.5 to 8.5 µm, the reported loss 

is nearly constant loss between 2 and 3 dB/cm [139]. The Kerr index and two-photon absorption 

have been measured in the proximity of the band edge at 1.58 μm using a novel single beam 

technique referred to as “D-scan”. Values have been reported for 70, 80 and 90% germanium 

content SiGe alloys. Results showed that the measured Kerr index agrees well with theory around 

1.6μm wavelength [140].  

 Toward the objective of achieving photonic integrated circuits operating in the mid-

infrared, several photonics devices have been demonstrated. In the last few years, multimode 

interference couplers, broadband Mach–Zehnder interferometers [141] and integrated Fourier-

transform spectrometer [97] have been realized (see an overview of key results in Table 2). 

b) Low germanium content silicon-germanium alloys (SiGe2) 

 Low germanium content silicon germanium-on-silicon emerged as an alternative to silicon-

on-insulator and silicon-on-sapphire platforms to extend the operation wavelength range deeper in 

the mid-infrared. At the same time this platform addresses the issue of treading dislocations 

existing in germanium-on-silicon platform caused by the lattice mismatch between silicon and 

germanium. Initially, graded index profile has been used providing “the interface-free waveguide”. 

The reported results showed silicon germanium core with graded index from 0% in the cladding to 

40% in the middle of the core. The refractive index of the alloy has been measured at 2.15µm for 

different germanium content [146]. This was followed by the work reporting low measured losses 

of 1dB/cm at 4.5µm and 2dB/cm at 7.4µm in these waveguides [145]. In addition to this, the same 

article reported the demonstration of several basic wave-guiding devices such as Y-junctions, S-

bend waveguides, X-crossings and evanescent couplers. 
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 Low germanium content silicon-germanium waveguides have been first explored for 

nonlinear applications in the near-infrared at telecom wavelengths. The linear and nonlinear 

responses of silicon germanium waveguides buried in silicon have been studied [147, 148]. The 

Kerr index extracted in 1.4µm thick waveguides showed an enhancement of nonlinearity when 

increasing germanium content from 10 to 30% [147, 148]. The articles reported an increase of FOM 

from 0.3 of silicon to 0.5 in silicon germanium [43] at 1.55μm wavelength. The same group then 

used silicon germanium waveguides for wavelength conversion via four-wave mixing process. First, 

wavelength conversions of 40 Gb/s high-data rate signal have been demonstrated at telecom 

wavelengths [149, 150]. Second, signal from the short-wave infrared has been converted to the 

near-infrared [142]. This was followed by broadband supercontinuum generation covering 

wavelength range from 1.5 to almost 3.0µm [143, 144] (see an overview of the associated results in 

Table 2). 

 In our group, we have studied Si0.6Ge0.4 alloys in the actual mid-infrared extending up to 

8.5µm where absorption in silicon starts to be significant. Luca Carletti during his PhD at INL 

explored the linear and nonlinear response of such silicon germanium waveguides. Low 

propagation losses of only 0.5 dB/cm at 4.75 µm wavelength were measured [151] although these 

waveguides were not optimized to achieve low losses as in Ge/Si waveguides, for instance [123]. 

The optical field confinement in the core of these waveguides is calculated to be around 60% at 4 

μm, therefore, resulting in a strong interaction between the field and SiGe/Si interfaces. The 

nonlinear response has been explored in the picosecond [151] and femto-second regime in the 3 – 5 

μm and 3 – 4 μm bands, respectively [152]. The extracted nonlinear parameters were in line with 

the theoretical predictions and comparable to those in silicon. 

 In this thesis, I built on these preliminary and promising results to exploit Si0.6Ge0.4/Si 

waveguides for achieving broadband and coherent mid-IR supercontinuum generation. With 

respect to the prior results achieved during L. Carletti’s PhD, one key aspect to reach this goal has 

been have been to engineer the waveguide geometry so as to achieve low loss and anomalous 

dispersion regimes. 
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1.2.3 Supercontinuum generation on a silicon chip 

 This section presents the state of the art of mid-infrared supercontinuum generation on a 

silicon-based chip, which has been the primary focus of this PhD. The specific objectives pursued in 

this work, related to the intended operation wavelength, bandwidth (octave span) and coherence of 

the supercontinuum will be then clarified. For more details and a comprehensive study of 

supercontinuum generation in different pulse regimes, detailed numerical modeling studies and a 
full discussion on the supercontinuum coherence properties, readers are referred to [37] from J. M. 

Dudley et al. 

 Following astonishing results achieved in PCFs, supercontinuum technologies have been 

commercialized at least for use in academia and laboratory environments. Recent work has focused 

on achieving supercontinuum on a compact, reliable and low-cost chip-based platform. This could 

significantly expand the commercial use of supercontinuum and potentially impact our everyday 

life. 

Supercontinuum generation on a silicon chip has been theoretically investigated in 2007 [52]. The 

same year, the experimental demonstration of supercontinuum in a silicon-on-insulator waveguide 

spanning 350 nm in the near-infrared has been reported [156]. In [157] a silicon waveguide was 

pumped with 100 fs pulses at telecom wavelengths in the normal dispersion regime and a limited 

bandwidth was achieved despite the use of high pump intensities. This was attributed to two-

photon absorption and the subsequently generated free carriers [157]. In contrast to [157], a 

supercontinuum spanning from 1.5 to 2.5µm could be achieved [13] by pumping silicon waveguides 

with picosecond pulses in the anomalous dispersion regime close to the two-photon absorption 

limit in silicon (around 2.2µm). An octave-spanning supercontinuum in the short wavelength 

infrared (from 1.5 to 3.6μm)  on a silicon chip was reported a few years later in 2014 [7]. In this 

paper, the Si nanowire was pumped in the anomalous dispersion regime near 2.5 μm with 300 fs 

pulses. Dispersive waves at the extreme parts of the spectrum were exploited to extend the 

continuum span. Shortly after, supercontinuum from 1.45 to 2.8µm was reported in the silicon 

germanium-on-SOI platform [143, 144]. 

 The first supercontinuum generation on a silicon-based chip in the actual mid-infrared 

range (up to 5.5 µm) was reported in 2015 [14, 158]. To extend the operation wavelength range to 

the mid-infrared, beyond the absorption limit of silica at 3.7µm, silicon-on-sapphire waveguides 

were used. Relatively small cross-section waveguides (2.40 µm × 0.48 µm) were pumped at 3.75µm 

with 320fs pulses and supercontinuum from 1.9 to 5.5µm was achieved. The reported 

supercontinuum was limited by the absorption in the sapphire substrate though (see the 

transparence of CMOS materials in the Figure 17). More recently, mid-IR supercontinuum has been 

reported in suspended silicon waveguides in the SOI platform [106, 159]. Despite the 4μm long-

wavelength pump used in this case, the supercontinuum only extended up to 5µm [106]. 

 The main objective of this thesis was to exploit the silicon germanium-on-silicon platform 

for generating mid-infrared supercontinuum beyond 5µm. Such a supercontinuum source should 

span at least up to the silicon absorption limit at 8.5µm, so as to cover the entire mid-infrared 

absorption window that includes the main absorption lines of relevant molecules. Beyond this 

bandwidth requirement, we detail below the different characteristics (brightness, spectral span and 

coherence properties) that are targeted for this source to be used for future on-chip spectroscopy 

applications. We also provide some benchmarks for these properties extracted from the literature.  
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1.2.3.1 An octave span  
 Reaching an octave span (the interval between two frequencies having a ratio of 2 to 1) for 

the supercontinuum is important because it enables the measurement of comb-line frequencies 

using the 𝑓 and 2𝑓 waves in the supercontinuum [1]. A supercontinuum spectrum consists of many 

discrete spectral lines (comb lines) separated by the repetition frequency (𝑓𝑟𝑒𝑝) of the pump laser. If 

the comb line frequencies are known, supercontinuum can be used as an “optical frequency ruler” 

to measure the absolute optical frequency of an optical source.  

 If the carrier and envelope in a pulse train are in phase, e.g. the peak of the envelope 

coincides in the time-domain with a maximum of the carrier, then the frequency of the 𝑛-th comb 

line is simply 𝑛 𝑓𝑟𝑒𝑝. Both 𝑛 and 𝑓𝑟𝑒𝑝 are relatively easy to determine. However, in real situations, in 

a laser delivering identical pulses, there is a constant phase-shift between the peak of the envelope 

and the closest peak of the carrier wave, named the carrier–envelope offset phase (𝜑𝑐𝑒𝑜), see Figure 

19. In the frequency domain, the accumulated phase shift between subsequent pulses, translates 

into the carrier–envelope offset frequency (𝑓𝑐𝑒𝑜). The resulting frequency of a comb line is then 

shifted by this frequency offset and trying to measure absolute optical frequencies ends up in 

measuring the carrier–envelope offset frequency. This offset can be detected using heterodyne 

beating between the doubled low-frequency component and the high-frequency component that 

are separated by an octave. The offset frequency is the difference between the two signals:  

 𝑓𝑐𝑒𝑜 = 2(𝑛𝑓 + 𝑓𝑐𝑒𝑜) − (2𝑛𝑓 + 𝑓𝑐𝑒𝑜) (107) 

 

 

Figure 19: a pulse train with an evolving carrier-envelope phase (bottom) and corresponding spectrum (top). 
The carrier wave is presented by the solid blue curve, the pulse envelope by the dotted blue curve 

 This method, which is referred to as the interferometric 𝑓 to 2𝑓 self-referencing scheme, is 

quite practical since the frequency components belong to the same signal [160]. Furthermore, the 

detection of the carrier envelope offset frequency can be used to control the phase of the carrier 

wave in order to stabilize the supercontinuum source. This can be used to improve the spectral 

coherence of the supercontinuum, which is important for maintaining the accuracy of frequency 

combs for an optical atomic clock and metrology applications.  
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1.2.3.2 Coherence  
 In the context of a supercontinuum, coherence is related to spectrum fluctuations 

(amplitude and phase of its spectral components) from pulse to pulse. A coherent supercontinuum 

thus exhibits high shot-to-shot spectrum stability. This is very important from a practical 

standpoint as a coherent supercontinuum allows for ultra-fast (single-shot) time-resolved 

measurements. Low spectral fluctuations enable high-precision measurements that are useful for 

frequency metrology, high-precision spectroscopy or optical communications. Coherence and 

flatness of the supercontinuum are more desirable for wavelength-division multiplexing (WDM) 

than an ultra-large bandwidth [10]. Recently, coherence has become increasingly important in 

optical communications as advanced modulation formats combined with coherent detection have 

been employed to increase the data-rate. Furthermore, a coherent supercontinuum can be used for 
measurements where coherence is directly used as in optical coherence tomography (OCT) and 

coherent anti-stokes Raman spectroscopy (CARS). 

 Fluctuations of the SC spectra are consequences of noise and nonlinear dynamics. In 

practical situations, there are many sources of noise. However, most of them are technical and in 

principle they could be avoided [161, 162]. When numerically investigating the coherence of a 

supercontinuum, only the fundamental (intrinsic) noise sources are generally taken into account. 

These include the quantum limited shot-noise of an input pulse and the noise due to spontaneous 

Raman fluctuations in a waveguide [37]. These may affect the resulting supercontinuum coherence. 

 Superimposed coherent supercontinuum pulses exhibit interference effects, which can be 

exploited for applications. Actually, interference techniques have been used to experimentally 

measure the coherence of a supercontinuum. The demonstration of an interference pattern from 

two independently generated supercontinua, in a modified Young’s double-slit experiment, 

provided the experimental proof of the supercontinuum coherence [163]. An improved 

experimental setup to demonstrate the supercontinuum coherence uses an asymmetric Michelson 

interferometer where one supercontinuum pulse is delayed in a longer arm so as to interfere with 

subsequent pulses from the same pulse train. The interference creates a pattern with distinct 

fringes across the spectrum, and coherence has been linked to the visibility of the fringes [37]. In 

addition to this method, another technique can be used to measure the intensity fluctuations in a 

spectrum. Relative intensity noise (RIN) can be measured in the radio-frequency domain (MHz 

range). The information about coherence can be then extracted by comparing the RIN of the pump 

with that of the narrow-band part of the SC spectra centered at a defined frequency/wavelength. 

The optical signal is coherent if the measured intensity noise (RIN) of the signal closely follows that 

of the pump [98]. 

 In addition to a direct measurement of the supercontinuum coherence, the latter can be 

numerically modeled so as to theoretically investigate the coherence properties of an 

experimentally measured supercontinuum. This is particularly useful in the mid-IR where the 

technical difficulties of coherence measurements are strongly increased with respect to that in the 

near-IR, having made it impossible to date. Coherence is calculated as the absolute value of the 

complex degree of the first-order coherence, defined as: 

 |𝑔12
(1)(𝜆)| = |

〈𝐸1(𝜆)𝐸2
∗(𝜆)〉

√〈|𝐸1(𝜆)|2〉〈|𝐸2(𝜆)|2〉
| (108) 
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 It has been shown that this mathematical expression corresponds to the maximal fringe 

visibility in the previously mentioned interference experiment [37]. Angle brackets here denote an 

averaging over an ensemble of independently simulated spectra associated with different (and 

randomly defined) noise scenarios. In contrast to experiments where only subsequent pulses 

interfere, in simulations averaging can be performed over all simulated pairs. In this case, each 

simulation is performed with different noise seeds. Quantum shot noise is included by adding one 

photon per mode (comb-line) with random phase to the input pulse. This is done in the frequency 

domain. Practically, since the spectral discretization bin does not necessarily correspond to the 

separation between comb-lines, several photons might be added per bin to model one noise photon 

per mode. To more fairly reproduce the result of an experiment, noise related to intensity 

fluctuations of the pump pulse can be also included by randomly varying the input pulse intensity 

for each supercontinuum simulation scenario. 

 It has been experimentally demonstrated that the pump coherence can be transferred to the 

supercontinuum when pumping with short pulses in low all-normal dispersion regimes [164, 165]. 

By contrast, an incoherent supercontinuum would be almost certainly generated by pumping a 

nonlinear waveguide with long pulses in the anomalous dispersion. Mechanisms responsible for de-

coherence have been studied in intermediate regimes, for short pump pulses launched in the 

anomalous dispersion [37] as well as for long pump pulses launched in the all normal dispersion 

regime [166]. Supercontinuum is coherent in these two cases within certain limitations. The main 

source for de-coherence in the supercontinuum dynamics associated with anomalous dispersion is 

modulation instability (MI). Through amplifying noise, this process tends to produce large 

fluctuations in power of the solitons formed after the soliton fission process [37]. 

 Coherent supercontinuum generation has been reported in CMOS-compatible platforms. 

Leo et al. have reported the generation of a coherent SC spanning 500 nm around a pump at 1.55 

μm in a silicon-on-insulator (SOI) waveguide, showing that coherence is preserved if the effective 

soliton fission length is short enough to suppress modulation instability [167]. More than an 

octave-spanning coherent SC has been reported in a 7.5 mm silicon nitride-on-insulator waveguide 

when pumping waveguide in the anomalous dispersion at 1μm with sub-100 fs pulses [16]. In 

subsequent works, the trend was to shift the generated spectrum toward the mid-IR. First, an 

octave-spanning coherent SC has been reported in a silicon-on-insulator waveguide, designed to be 

pumped at 1.9 μm aiming to generate dispersive waves close to the silicon edge (≈1.1 μm) [168]. 

More recently, coherent SC has been reported in the actual mid-IR in silicon-on-sapphire 

waveguides [98]. 

1.2.3.3 Brightness 
 Supercontinuum source can be simply defined as a high brightness broadband light source 

[169]. While having a spectrum as broad as that of lamps and thermal sources, it possesses a high 

brightness, for laser sources.  

 Brightness (or more precisely radiance) of a light source, is a radiometric quantity defined 

as an optical power emitted from the source per unit of surface area per unit of solid angle (in units 

W/m2/sr) [170]. Thanks to the high directionality of a laser beam, they typically produce several 

orders of magnitude brighter light than that of the brightest conventional sources, which is a useful 

characteristics for many applications [170]. In the context of supercontinuum, it is also useful to 

define the spectral brightness (or spectral radiance) either as the radiance per unit of frequency 

(Hz) or per unit of wavelength (nm). Provided that high directivity of the laser beam with a small 
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diameter can be achieved (as in a small cross section waveguide), achieving high brightness ends 

up in achieving high output-power of a supercontinuum.  

 Record high output-power levels, greater than 10W, from the supercontinuum operating in 

the mid-infrared (limited up to 4.5 μm) were reported in a heavy metal fluoride glass (ZBLAN) 

optical fibers [171-173]. The power level in this platform is limited by the damage threshold due to 

the low thermal stability at the glass transition temperature. More recently, fluorotellurite glass 

fibers, with higher transition temperature, were developed, providing ~ 16 W output power for 0.9 
– 3.9 μm spanning supercontinuum [174]. 

 On a silicon based chip, the largest output power reported to date, was achieved in the 

silicon-on-sapphire platform reaching around 1 mW for a supercontinuum covering the 1.9 – 5.5 

μm band [14]. The power reported there was limited by the multi-photon absorption, which 

reduced the power conversion efficiency. In this PhD thesis, our approach was to design a low-loss 

waveguide, while operating beyond the three-photon absorption limit of silicon, so as to reach large 

optical power conversion efficiency.  

Figure 20 presents a summary of the reported supercontinuum demonstrations on a silicon chip in 

different platforms and across different wavelength ranges in the near- and mid-IR. These provide 

some benchmarks in terms of the achieved bandwidth and spectral span covered by the different 

demonstrations of supercontinuum. To anticipate on our results that will be presented in the next 

chapter, we can note that the supercontinuum achieved in our SiGe on Si platform (red solid line at 

the bottom) compares favorably. It exhibits a very broad spectrum, shifted up to longer 

wavelengths than what has been achieved so far on chip-based supercontinuum in Group IV 

materials. 
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Figure 20: A survey of the reported supercontinuum demonstrations on a silicon chip in the near- and mid-IR 
range. Each result is represented by a horizontal bar that indicates the SC spectral span and whether it was 
coherent (dashed line) or not (solid line). The colors refer to the different platforms that were exploited, while 
the pump wavelength and pulse regime is denoted by a (full, for picosecond, or empty, for femtosecond) circle.  
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1.3 Conclusion 

 This chapter introduced some theoretical background related to third-order nonlinear 

effects and described the state of the art of relevant nonlinear integrated platforms, with a primary 

focus on supercontinuum generation and nonlinear applications of silicon photonics in the mid-

infrared. 

 Among the nonlinear integrated platform candidates that were presented in this chapter for 

mid-infrared photonics based on Group IV materials, we chose the silicon germanium-on-silicon 

(SiGe-on-Si) platform. Silicon germanium alloys with 40% germanium content (Si0.6Ge0.4) have a 

larger refractive index than silicon (Si), allowing for efficient light guiding in SiGe core waveguides 

on a Si substrate. Moreover, the previous work in our group in collaboration with Leti's Center for 

Research showed that low loss waveguides could be realized in the SiGe-on-Si platform. In 

particular, the lattice mismatch between Si0.6Ge0.4 and Si is sufficiently low as well as the density of 

treading dislocations at the core/cladding interface, which were recognized as the main loss 

contribution in Ge-on-Si waveguides. The operation wavelength in the SiGe-on-Si platform is bound 

to silicon absorption at long wavelengths (~ 8.5µm); beyond which silicon becomes opaque 

(absorption is more than 2dB/cm). However, this limit is related to any Si based platform unless 

sophisticated designs (e.g. suspended waveguides) are used. Hence, this platform allows, in 

principle, for harnessing the full potential of silicon photonics in the mid-infrared. The Si0.6Ge0.4 

material was discussed, in this chapter, to be a relevant nonlinear material: its nonlinearity is 

theoretically anticipated to be stronger than that of Si [108], while its low nonlinear loss is expected 

to be low when operating beyond the two-photon absorption limit (in Si at 2.2µm).  

 The main objective of this thesis has been to generate a supercontinuum in the mid-infrared 
using this platform. In this context, this chapter introduced the main aspects of the dynamics of 

supercontinuum generation as well as the model and simulation tools to numerically investigate 

them. SiGe and Si materials are third-order (χ (3)) nonlinear optical materials. All kinds of third-

order nonlinear effects such as self-phase modulation (SPM), cross-phase modulation (XPM), four-

wave mixing (FWM) and stimulated Raman scattering (SRS) play a significant role in the dynamics 

of supercontinuum generation. Higher odd-order nonlinear absorption effects also have a non-

negligible impact. Multi-photon absorption causes nonlinear losses while generating free charge 

carriers, which potentially limit the related nonlinear device performance. Our model takes into 

account all these different effects, accordingly. 

 Following a state of the art review of chip-based supercontinuum, I clarified our objectives 

in terms of the targeted supercontinuum bandwidth, coherence and brightness. I also showed how 

waveguides could be used to enhance the underlying material nonlinearity and the associated 

nonlinear processes that lead to supercontinuum generation. In particular, tight light confinement 

and dispersion engineering provide useful tools for the design of waveguides that are capable of 

generating supercontinuum with the intended characteristics. 

 After presenting our platform, objectives and simulation tools, the next chapter deals with 

the experimental demonstration of a bright and broadband mid-IR supercontinuum using SiGe-on-

Si waveguides. Thanks to a careful optimization of the waveguide design, and dispersion 

engineering, we reported a supercontinuum that spans up to the onset of the silicon absorption at 

8.5µm. The third chapter discusses the coherence properties of such a supercontinuum, which is 

generated in a waveguide with a relatively narrow anomalous dispersion band enclosed by two 
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zero dispersion wavelengths. We use simulations to clarify these coherence properties as well as 

their origin. The fourth chapter shows how all-normal dispersion regime can be reached using a 

post-processing step that consists of depositing a chalcogenide top cladding on top of SiGe-on-Si 

waveguides. Because dispersion engineering lies at the core of the supercontinuum characteristics, 

this tool provides us with an additional and flexible degree of freedom that can be used to adapt the 

waveguide for the intended application. 
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Chapter 2.  

Mid-infrared octave-spanning supercontinuum 

generation to 8.5 μm in silicon-germanium waveguides 

 This chapter deals with the experimental demonstration of a mid-IR bright and broadband 

supercontinuum out of our SiGe-on-Si waveguide platform. This supercontinuum spans up to the 

onset of the silicon absorption at 8.5µm. 

 As discussed in Chapter 1, silicon-based platforms such as silicon-on-insulator, silicon 

nitride-on-insulator, and silicon germanium-on-insulator are restricted to 3.7µm due to the 

absorption in a silica substrate. This limit was extended to 5.5µm by exploiting the wider 

transparency of sapphire in the silicon-on-sapphire platform [14]. As reported in this chapter, we 

investigated the silicon germanium-on-silicon platform with the potential to cover the entire mid-

IR atmospheric absorption band (4 – 8µm).  

 In order to show the full potential of the silicon germanium-on-silicon platform for the mid-

infrared silicon photonics, we present and discuss here our results on supercontinuum generation, 

which intended to achieve a very large bandwidth. We study two engineered waveguide devices: 1) 

a small cross-section waveguide with a relatively high nonlinearity that was designed for providing 

single-mode operation and an anomalous dispersion regime at 4µm and 2) a large cross-section 

waveguide designed for extending the supercontinuum span up to the silicon absorption limit at 

8.5µm.  

 This chapter corresponds to the article entitled “Mid-infrared octave-spanning 

supercontinuum generation to 8.5um in silicon-germanium waveguides” published in “Optica” in 

mid-2018. The article is organized into five sections, which present the device design/fabrication, 

the linear and nonlinear experimental results, and the numerical analysis using the modeling tools 

introduced in Chapter 1. Additional technical details are included in the supplementary material. To 

expand on the results published in this paper, we start by presenting our design work that allowed 

us to harness the full potential of the SiGe/ Si waveguide platform. In particular, we had to take into 

account several factors so as to increase the nonlinear response through tight mode confinement, 

while reaching a suitable dispersion profile for supercontinuum generation. This background 

dispersion engineering prior to the device fabrication was key in achieving the results presented in 

the paper. 



59 
 

Dispersion engineering 

 Both the linear and nonlinear response of the waveguide are intrinsically related to the 

linear and nonlinear parameters of the core and cladding materials. Yet, in section 1.1.2.1 we 

showed that by changing the waveguide geometry (i.e. the cross-section dimensions), we could 

impact the optical mode field distribution and therefore the waveguide dispersion as per equation 

(60). This is referred to as dispersion engineering. As already alluded to in chapter 1, dispersion 

engineering is necessary to achieve efficient nonlinear interactions. In particular, the efficient 

generation of broadband supercontinuum generally requires a low anomalous dispersion spanning 

across a large bandwidth. 

 In this thesis, we exploited the Si0.6Ge0.4 on Si platform, which was developed at Leti's Center 

for Research in Grenoble, France [178]. This platform takes advantage of the low lattice mismatch 

between Si0.6Ge0.4 and Si to resolve the issue of treading dislocations existing in the germanium-on-

silicon (GOS) platform. In addition, in this platform the operation wavelength range can be, in 

principle, extended deeper into the mid-infrared, compared to the silicon-on-insulator and silicon-

on-sapphire platforms. 

 In our group, Luca Carletti, during his Ph.D. (2011-2015), explored buried-in waveguides 

fabricated in this platform, where the silicon germanium core was buried in a silicon cladding  

[179]. In his work, he measured linear loss in the 3 – 5 μm band, achieving values as low as 0.5 

dB/cm at 4.75 μm [151]. At the same time, he determined the optimal operational wavelength to be 

around 4 μm wavelength, due to some trade-off between the material nonlinear response and low 

values of the three- and four-photon absorption [152]. The buried in waveguides he used exhibited 

1.9 μm × 1.4 μm, 2.0 μm × 1.4 μm and 3.0 μm × 2.7 μm cross-section dimensions, so that they 
presented a strong normal dispersion. At the beginning of my PhD, I showed, by simulations, that it 

was actually not possible to design a buried-in SiGe-on-Si waveguide operating in a single-mode 

anomalous dispersion regime around 4 μm. 

 Based on these initial results, I designed top air cladding waveguides, which were 

dispersion engineered for supercontinuum generation. Figure 21 shows the group-velocity 

dispersion calculated at 4.5 μm for different air clad Si0.6Ge0.4/ Si waveguide widths and heights. 

This figure shows that waveguides of height greater than 2.5 μm can operate in the anomalous 

dispersion regime (see the zero GVD white solid line), both in the TE and TM polarization. However, 

a top air cladding geometry breaks the symmetry of the waveguide with respect to the vertical 

plane, which induces a mode cutoff at long wavelengths, eventually precluding light propagation 

beyond a certain wavelength. In addition, the top air cladding enables the mode field to interact 

with its (top) environment, thereby potentially increasing the waveguide loss and, degrading, in 

turn, its performance, especially when operating in the mid-infrared. We therefore took all these 

aspects into account for our waveguide design optimization work. 
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GVD calculated at 4.5 μm for TE mode  GVD calculated at 4.5 μm for TM mode 

  
Figure 21: Group-velocity dispersion (GVD in units ps/nm/km) calculated for top air-clad Si0.6Ge0.4-on-Si 
waveguides (see cross-section in the inset) at 4.5μm for TE (left) and TM (right) modes for different waveguide 
widths (x-axis) and heights (y-axis). The green dashed lines indicate the mode effective area calculated as per 
equation (72) in μm2. The white solid line highlights the achievement of a zero-GVD.  

 Our main objective was to achieve waveguides with a low anomalous dispersion while 

maintaining a low propagation loss. In order to achieve this objective, waveguide should be 

designed so that the optical mode field is well confined into the waveguide core. The degree of 

confinement (factor 𝛤 in equation (73)) increases with the waveguide height, being more than 0.9 

for a waveguide height greater than 2.5 μm, calculated for waveguide widths between 3 and 6 μm. 

However, increasing the waveguide thickness increases the effective area, which potentially 

reduces the nonlinear parameter 𝛾 (see equation (74)). 

 In the Optica paper, we decided to explore two dispersion engineered waveguide designs, 

one with an optimized nonlinear 𝛾 parameter, which presents a small mode cross-section and 

operates in the single-mode regime at 4 μm and another one with an optimized bandwidth due to 

the shift of the cutoff wavelength beyond the silicon absorption limit at 8.5 μm. The second one 

turns out to present a larger cross-section and operates in the multi-mode regime around the 4 μm 

wavelength. 

 The waveguide 1 of cross-section 3.75 μm × 2.70 μm satisfies our conditions for a single-

mode operation in a low anomalous dispersion at 4 μm with a minimized effective area (~6.5 μm2). 

However, this waveguide has a cutoff wavelength at around 6 μm (see Figure 22). In order to shift 

the cutoff wavelength beyond 8.5 μm the larger waveguide cross-section is required. This is 

achieved in the waveguide 2 of cross-section 6.0 μm × 4.2 μm. This waveguide is operating in the 

multi-mode regime at a low normal dispersion at 4 μm wavelength that is close to the first zero-

GVD wavelength at around 4.5 μm (see Figure 22). We note that an anomalous dispersion regime 

exists in this waveguide and covers large bandwidth from 4.5 to 7.7 μm enabling us to fully exploit 

this platform. 
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3.75 μm × 2.70 μm waveguide 6.0 μm × 4.2 μm waveguide 

  
Figure 22: Calculated group-velocity dispersion (solid curves) and mode confinement in the core (dashed curves) 
versus wavelength for quasi-TE (blue) and quasi-TM modes (blue) for the top air-clad Si0.6Ge0.4/Si waveguide 1 
(left) and waveguide 2 (right)   

These designed waveguides proved to be relatively robust against deviations from the nominal 

dimensions, allowing for high fabrication tolerance. In the article [153] (see the supplementary 

material) we showed that changes in the waveguide thickness and width do not have a large impact 

on dispersion parameters. By changing the width of the waveguide 1 by ± 100nm, we calculated a 

shift in the zero-GVD wavelength of less than 50nm. Changes in the thickness by ± 100nm 

increased the first zero-GVD wavelength by only 20 nm and the second zero-GVD by less than 

100nm. 

In the following of the chapter, we present the experimental results achieved on these two 

waveguide designs. 
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1. INTRODUCTION

Molecule or bio-agent detection has a large number of applica-
tions in medicine, the food industry, environmental monitoring,
and security [1,2]. If implemented in the form of low-cost, dis-
posable on-chip sensors, it could lead to applications in early
cancer diagnosis, real-time pollution detection, and food quality
control [3]. To achieve high sensitivity, the molecules must be
identified by measuring their fundamental rotational and vibra-
tion transitions that have strong characteristic “fingerprints” in the
mid-infrared (mid-IR, between 3 μm and 20 μm) [4]. Mid-IR
light sources with high spectral brightness are key enablers for
such technologies. Various approaches have been used to achieve
spectrally bright mid-IR sources, such as stand-alone quantum
cascade lasers (QCLs) or tunable optical parametric amplifiers
(OPAs) [5,6]. In this context, supercontinuum generation
(SCG) operating via the nonlinear Kerr effect is particularly im-
portant. Indeed, this type of broad spectrum enables reliable mol-
ecule detection with high throughput by measuring, in parallel,
the multiple and spectrally distinct absorption lines of a given
molecule [7]. Demonstrations of such supercontinua with wide
mid-IR bandwidth and high-power spectral density have already

been reported in fibers [8–13] and recently in compact chalco-
genide chip-based platforms [14]. The challenge is, however,
to obtain an efficient and broadband mid-IR light source on a
CMOS-compatible platform to leverage a mature and reliable fab-
rication technology and provide a path toward mass production.

High-performance linear and nonlinear photonic devices have
been developed for telecom wavelengths, i.e., in the near-infrared,
on the silicon-on-insulator (SOI) standard CMOS platform. A
350 nm spanning supercontinuum was achieved by pumping a
low-loss SOI waveguide at 1.3 μm [15]. Despite the relatively
large nonlinear gamma parameter (γ) in silicon at this wavelength,
enabled by the combination of a large Kerr nonlinearity and small
effective area, the nonlinear loss caused by two-photon absorption
(TPA) significantly limited the bandwidth of the generated light
[16]. By pumping at 2.1 μm, near the 2.2 μm TPA cutoff in sil-
icon, a broader spectrum exceeding 990 nm in bandwidth could
be generated [17], followed more recently by the demonstration
of SCG up to 3.6 μm [18]. As an alternative to silicon, another
group IV alloy, SixGe1−x , which is also CMOS compatible, has
proven to be an attractive nonlinear material for mid-IR applica-
tions [19–21]. The transparency window of SiGe expands more
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deeply into the mid-IR (potentially up to 15 μm—well beyond
the Si absorption limit—by employing Ge [22] or Ge-rich SiGe
waveguides [23]), as compared to other CMOS-compatible plat-
forms considered for operation in this wavelength region, such as
silicon nitride [24] and Hydex [25,26]. In particular, a supercon-
tinuum covering almost an octave (1.45–2.79 μm) in the short-
wave infrared (SWIR) band was achieved in the SiGe-on-silica
platform [27]. However, in addition to the nonlinear loss of the
pump in the waveguide core, the silica cladding transparency even-
tually limits the SCG bandwidth up to 3.5 μm. Therefore,
the SCG bandwidth generated on a SOI platform or its kin
(SiGe∕SiO2) is bound at the short wavelength end by absorption
and nonlinear loss in the core material and, at long wavelengths, by
substrate absorption. Sophisticated SOI waveguide designs were
proposed to overcome the latter limit [28]. By replacing silica with
sapphire in the silicon-on-sapphire (SOS) platform, a supercontin-
uum covering more than an octave in the mid-infrared was
demonstrated for the first time on any CMOS-compatible plat-
form [29]. The spectrum was then limited to 6 μm by absorption
in the sapphire substrate. This result represents the longest wave-
length generated in a CMOS-compatible chip to date. Finally, the
highest average power that has been generated via supercontinuum
in the mid-IR to date is still less than 1mW [29], largely because of
linear and nonlinear losses in the waveguides.

Here, we demonstrate an octave-spanning, CMOS-
compatible supercontinuum source in the mid-IR with high spec-
tral brightness. We believe this is the first CMOS-compatible
chip to exceed 6 μm, in fact reaching an unprecedented
8.5 μm. Our low-loss (<0.4 dB∕cm) SiGe-on-Si waveguide plat-
form enables high on-chip power of more than 10 mW—almost
two orders of magnitude greater than previous demonstrations in
SiGe [20]. By choosing a geometry for the SiGe waveguides pat-
terned on a Si substrate with air as the upper cladding, we are able
to appropriately engineer the waveguide dispersion while achiev-
ing a suitable trade-off between tight mode confinement and low
effective area. The transparency of the silicon substrate from 1.1
to 8.5 μm [2,30] enables us to achieve a supercontinuum spec-
trum covering the entire 4 to 8 μm spectral band, where many
atmospheric molecules have strong “fingerprints.”

2. DEVICE DESIGN AND FABRICATION

Supercontinuum generated through soliton fission requires
waveguides operating in a low and relatively flat anomalous
dispersion regime [31,32]. Achieving low anomalous dispersion
in waveguides with a low index contrast, such as those with a
Si0.6Ge0.4 core and Si cladding (∼0.16) [21], is challenging.
Thus, we investigated SiGe/Si waveguides with a top air-cladding
(see Fig. 1 inset). However, this vertically asymmetric waveguide
geometry introduces additional constraints. First, it introduces a
cutoff for the fundamental mode at long wavelengths. Second, the
interaction between the evanescent field of the mode and the air
cladding makes it more sensitive to the ambient environment and
surface contamination, which might induce additional propaga-
tion losses. The main objectives of our design were to achieve low
anomalous dispersion over a large bandwidth while strongly con-
fining light in the waveguide core to minimize propagation losses.
We also targeted a low effective area (Aeff ) to achieve as high a
nonlinear parameter (γ � ω0n2∕cAeff ) as possible. Our wave-
guides were designed to be pumped around 4 μm, which we
previously identified as providing a good trade-off between

high nonlinearity and low nonlinear losses (figure of merit—
FOM) [21].

Here, we used air/SiGe/Si ridge waveguides with a slightly
larger cross-sectional area than previously employed [21]. Because
of the trade-off between effective area minimization (single-mode
operation and maximized nonlinear parameter γ) and cutoff
wavelength extension (low loss and strong mode confinement),
we studied two designs: waveguide (1) with a 3.75 μm × 2.70 μm
cross-section and waveguide (2) with a 6.0 μm × 4.2 μm cross-
section. The key parameters of the two waveguides were calcu-
lated by a finite difference mode solver and are summarized in
Table 1.

In essence, waveguide (1) yielded transverse-electric (TE)
single-mode operation in the low anomalous dispersion regime,
with a minimal effective area at 4 μm. Despite its relatively small
effective area, we reached amode confinement greater than 95% in
the highly nonlinear SiGe core (Fig. 1). This, in turn, should im-
prove the nonlinear parameter, and hence the conversion efficiency
for SCG. The drawback of this design is the relatively short
(∼6 μm) cutoff wavelength for the fundamental TE waveguide
mode that intrinsically limits the SC spectrum at long wavelengths.
In contrast, waveguide (2) had a larger cross-sectional area and was
designed to shift the cutoff wavelength of the fundamental trans-
verse-magnetic (TM) mode beyond 8.5 μm (9.3 μm), enabling
us to exploit, in principle, the full transparency window of the

Fig. 1. Calculated group velocity dispersion (GVD) (solid lines) and
mode confinement (dashed lines) of waveguide (1) in the TE mode (blue)
and waveguide (2) in the TMmode (red). The arrows indicate the related
cutoff wavelengths.

Table 1. Summary of the Waveguide Parameters for the
Two Designsa

Parameter
Waveguide (1) at

4 μm in TE
Waveguide (2) at
4.15 μm in TM

w �μm� × h �μm� 3.75 × 2.70 6.0 × 4.2
γ �W−1 m−1� 0.63 0.30
β2 �ps∕m2� −5.1 × 10−2 1.1 × 10−1
Aeff �μm2� 6.25 14.0
Mode conf. (%) 95 98
1st ZDW (μm) 3.84 4.5
2nd ZDW (μm) 4.96 7.7
Cutoff λ (μm) 6.0 9.3

aFrom top to bottom: waveguide cross section, nonlinear parameter γ, second-
order dispersion β2, mode effective area Aeff , ratio of the mode energy
in the waveguide core, 1st and 2nd zero dispersion wavelength (ZDW), and
mode cutoff wavelength.
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SiGe/Si platform. However, we note that this larger waveguide is
multimode at the pump wavelength (4.15 μm), and the effective
area is double that of waveguide (1), which is expected to decrease
the nonlinear conversion efficiency. The light confinement in the
waveguide core was 98% and, most importantly, the dispersion of
the TM fundamental mode was low and anomalous across a wider
spectral range than for waveguide (1) (Fig. 1), which helped to
maximize the bandwidth of the SC.

The two waveguides were fabricated on a 200 mm CMOS
pilot line, using regular processes. First, 2.7 μm and 4.2 μm thick
SiGe (40% Ge) layers were grown by epitaxy on top of Si sub-
strates and encapsulated by 550 nm thick Si layers. Chemical-
mechanical polishing was performed to remove the so-called
surface cross-hatch, leaving a 50 nm thick Si layer. The wave-
guides were then patterned using deep ultraviolet photolithogra-
phy followed by a deep reactive ion etching process (see Fig. 2
inset). More details about the fabrication procedure are included
in Supplement 1.

3. EXPERIMENTAL RESULTS

We performed linear and nonlinear measurements on these two
types of waveguides. By probing waveguides with three different
lengths each (from 2 to 7 cm) under relatively low average powers
(<1 mW), we measured the propagation losses using the cutback
method. Measurements were performed using a tunable OPA
delivering 7.5 ps long pulses at a 1.5 MHz repetition rate across
a tunable wavelength range between approximately 3–5 μm. For
waveguide (1), the propagation loss (Fig. 2) decreased from 1.2 to
0.5 dB/cm between 3 and 3.8 μm. We attribute the larger loss in
the short wavelength range to absorption by the O–H bonds
adsorbed on the waveguide surface and to the interaction of
the higher-order modes with the waveguide sidewalls. Beyond
3.8 μm, where waveguide (1) was single mode, the measured
propagation loss was relatively constant at 0.35–0.5 dB/cm.
For waveguide (2), the measured propagation loss was equally flat
versus wavelength (independent of the polarization, and not
shown here), and reached a value as low as 0.23 dB/cm around
4.75 μm consistent with the larger cross-section area and tighter
mode confinement (Fig. 2). To the best of our knowledge, this is
the lowest propagation loss measured to date in any Si-based
waveguides on a chip in the mid-IR. It is comparable to the
recently inferred loss propagation in an Si microring [28].

Next, we probed the waveguides in the nonlinear regime by
pumping them with sub-picosecond pulses using the experimen-
tal setup illustrated in Fig. 3. The 200 mW tunable OPA laser
source (MIROPA-fs, Hotlight Systems) delivered ∼200 fs pulses
centered at either 4 μm [for waveguide (1)] or 4.15 μm [for wave-
guide (2)] at a 63 MHz repetition rate. We selected two different
pump wavelengths to slightly adjust the pump to the two wave-
guide dispersions to operate as close as possible to the zero-
dispersion wavelength (ZDW) for each waveguide, while avoiding
the 4.15–4.30 μm CO2 absorption wavelength band. Power
and polarization-controlled optical pulses were coupled to the
waveguide using a set of chalcogenide lenses. The generated
SC spectrum was recorded using a liquid-nitrogen-cooled
MCT (HgCdTe) photodetector positioned at the output of
the spectrometer. In our setup, the impact of thermal noise
was minimized using a lock-in detection technique. This setup
was used in [14,20,21,29].

By pumping waveguide (1) with a 7 cm length at 4 μm in the
anomalous dispersion regime close to the ZDW, more than an
octave-spanning supercontinuum was achieved through the
soliton fission process.

As illustrated in Fig. 4(a), which shows the different spectra
measured for increasing coupled average power up to 16 mW,
the SC extends between 2.63 and 6.18 μm, with a 3.55 μm band-
width at −30 dB. The coupled power was estimated from the total
chip transmission of −12.5 dBmeasured at low power, taking into
account the chip propagation loss of −2.7 dB and assuming that
the coupling loss was the same (−4.9 dB) at the input and output
end facet of the waveguide.

Figure 5 shows the power contained in this broad supercon-
tinuum (blue squares) at the end of our SiGe waveguides (which
we refer to as “on-chip” SC power). It reached a value greater than
8 mW for 32 mW of coupled average power.

As can be seen in Fig. 4(a), the SC bandwidth achieved for
waveguide (1) was limited by the fundamental mode cutoff at
6 μm. Next, we performed measurements on waveguide (2),
which was designed to shift the cutoff wavelength up to
9.3 μm [i.e., beyond the silicon absorption limit at 8.5 μm
(see Fig. 6—dashed red curve)]. Waveguide (2) was pumped
at 4.15 μm, which is close to the first ZDW. We achieved a
1.4 octave-wide supercontinuum from 3 up to 8.3 μm (see
Fig. 6), fully covering the 4–8 μm molecular fingerprint band.
The generated spectrum was relatively flat across the whole wave-
length range, as evidenced by the large −10 dB bandwidth of
4.9 μm (covering the 3.1–8 μm band), a value almost as wide

Fig. 2. Measured propagation loss for the TE mode of waveguide
(1) (blue) and the TM mode of waveguide (2) (red). Inset: 3D scanning
electron microscopy image of a cleaved SiGe 40%/Si waveguide.

Fig. 3. Experimental setup used in SCG measurements. Elements are
(1) tunable OPA, (2) optical waveplate and polarizers, (3) chopper con-
nected to the lock-in amplifier, (4) sample and ChG lenses, (5) an optical
spectrum analyzer (OSA), and (6) the MCT photodetector.
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as the −30 dB bandwidth of 5.3 μm. The long wavelength boun-
dary at −35 dB lies at 8.56 μm, limited by absorption in Si sub-
strate, with an associated signal well above the noise level. The
role of Si absorption is clearly seen with a drop of the generated
SC spectrum intensity starting at ∼7 μm (see the green curve
in Fig. 6).

As for waveguide (1), the SC signal is also spectrally bright,
with a 3.85 mW power measured on the detector for 25 mW

coupled average power, corresponding to 12.5 mW SC on-chip
power (taking into account the ∼ − 5 dB coupling loss at the
input/output facet).

4. NUMERICAL MODELING AND DISCUSSION

To better understand our findings and clarify the enabling and
limiting factors in these SCG results, we compared our experi-
mental results to numerical modeling. Sub-picosecond pulse
propagation in a SiGe waveguide can be described by the non-
linear Schrödinger equation (NLSE), which was solved numeri-
cally using the split-step Fourier method (SSFM). In our model,
we included the linear loss, high- order dispersion (up to β8), the
nonlinear effect (Kerr and four-photon absorption), free-carrier
absorption and dispersion, self-steepening, and Raman effects
(see Supplement 1). Our model reproduced the experimental
SC spectral signatures relatively well, as illustrated by the good
agreement between the simulated [Fig. 4(b)] and measured
[Fig. 4(a)] spectra of waveguide (1).

For waveguide (1), a 45% power conversion efficiency was
achieved at 16 mW coupled average power. We similarly achieved
reasonably good agreement between the simulated SC on-chip
power generated at the end of the waveguide and the experimental
data of Fig. 5. The best fit to the spectrum and SC on-chip
power measurements of waveguide (1) were obtained for a γ
of 0.63 W−1 m−1 and a four-photon absorption coefficient
α4PA of 1.16 × 10−6 cm5∕GW3. The inferred effective nonlinear-
ity n2 � 2.5 × 10−14 cm2∕W is in good agreement with the value
reported earlier by our group [20]. Note that our estimate for the
effective nonlinear absorption coefficient is more than an order
of magnitude lower than that reported in c-Si [33]. This reem-
phasizes the potential of the SiGe platform for nonlinear optics in
the mid-IR.

We simulated the propagation of 205 fs long, 2.35 kW
coupled peak power (16 mW coupled average power) input pulses
at a wavelength of 4 μm across the 7 cm long propagation
distance (Fig. 7).

Fig. 4. (a) Spectra measured out of the 7 cm long waveguide (1) for
increasing the coupled average power (quoted in regular font) and cor-
responding peak power (italic font). (b) Related spectra simulated by the
split-step Fourier method for this waveguide geometry using the same
peak power (italic font) as in (a). The arrows indicate the −30 dB band-
width of the SC.

Fig. 5. On-chip SC power versus coupled average power measured for
the 7 cm long waveguide (1) in TE at 4.0 μm (blue squares), simulated
results for the 7 cm waveguide (blue line) and simulated results for a
2 cm long similar waveguide (red line).

Fig. 6. Spectra measured out of the 7 cm long waveguide (2) pumped
in TM at 4.15 μm for increasing coupled average power (indicated in
regular font on the right side of each spectrum) and corresponding peak
power (italic font). The dashed red curve highlights the absorption of
crystalline silicon extracted from [30]. The two black arrows on the left
highlight the −10 dB bandwidth and −30 dB bandwidth of 4.9 μm and
5.3 μm, respectively.
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As described in [29], the spectral broadening shown in Fig. 7 is
governed by higher-order soliton propagation in waveguide (1)
pumped in the anomalous dispersion regime. This effect broadens
the spectrum around the pump wavelength via the soliton fission
process [31], while at the same time generating phase-matched
dispersive waves in the normal dispersion region below 3.8 μm
and beyond 5.0 μm. The calculated soliton number is 20 at a
peak power of 2.35 kW giving a soliton fission length of
1.39 cm, which is in good agreement with Fig. 7. From these
simulations, the spectrum appears completely broadened after

a propagation distance of only 2 cm. The associated on-chip
SC power calculated for a 2 cm long waveguide is plotted in
Fig. 5, showing that we should be able to achieve an even higher
14 mW SC power (at 30 mW) with a high power conversion
efficiency of 67% at 15 mW pump power in a shorter waveguide.

When comparing the results achieved in waveguides (1) and
(2), we can see the impact of the γ parameter being twice as large
in waveguide (1), as shown in Table 2. This effect is illustrated in
Fig. 8, which shows the −30 dB bandwidth of the supercontin-
uum generated by the two waveguides versus coupled peak power.
The SC bandwidth is higher for waveguide (1) at low pump
power (<1 kW) while waveguide (2) performs better for higher
pump powers, allowing us to achieve a much wider SC spectrum.
This highlights the trade-offs of each design, depending on
whether power consumption or bandwidth (particularly for
applications requiring an octave span for self-referencing [34])
is most critical. We also found our design to be highly fabrication
tolerant, with the dispersion remaining relatively constant when
changing the waveguide width by 50 nm (see Supplement 1).
This is well within the fabrication tolerance of the 200 mm pilot
line and is significantly more robust than the previously reported
silicon-on-sapphire approach [29].

When comparing with other Si based platforms used for the
mid-IR (Table 2), the combination of dispersion engineering and
low (linear and nonlinear) losses in our SiGe waveguides allowed
us to achieve spectrally brighter SC signal.

The SC on-chip power of 12.5 mW at the end of our wave-
guide is indeed almost two orders of magnitude larger than that
reported in previous work on SiGe waveguides [27] and an order
of magnitude higher than for silicon-on-sapphire waveguides
[29]. In particular, the low nonlinear loss allowed us to maintain
high power conversion efficiency (the ratio of on-chip SC power
Pout to coupled average power Pin was estimated at 0.5 compared
to approximately 0.1 and 0.16 for silicon-on-sapphire and SiGe
on silica, respectively [27,29]), even with high peak pump power,
resulting in a spectrally bright SC signal.

Although we used slightly longer waveguides, our simulations
pointed out that an even spectrally brighter (and similarly broad)
SC on-chip signal could be achieved in a 2 cm long waveguide
(i.e., a length comparable to previous work). We also achieved
what we believe is the longest wavelength—8.56 μm—generated
by any Si-based platform. Our results are competitive even with
ChG waveguides, where spectrally bright (power conversion effi-
ciency ∼0.6) and broad mid-IR SC were generated. However,

Fig. 7. Simulation of the pulse propagation along the 7 cm long
waveguide (1) under 16 mW (2.35 kW) coupled (peak) average power
at 4 μm.

Fig. 8. Bandwidth at −30 dB versus coupled peak power experimen-
tally measured for the waveguide (1) (blue) and waveguide (2) (red). The
dashed curves are guides for the eye.

Table 2. Comparison of Current Results with Literature Data on Si-based Platforms Used for the Mid-IR and Results
Achieved with the On-chip ChG Platforma

Platform α (dB/cm) l (cm) γ �Wm�−1 P0∕Pout SCG Bandwidth

Our waveguides
SiGe/Si (wg 1) 0.377 (4 μm) 7 0.63 2.35 kW/7.25 mW 2.6–6.2 μm
SiGe/Si (wg 2) 0.275 (4.15 μm) 7 0.30 3.5 kW/12.5 mW 3.0–8.3 μm
CMOS Compatible Platforms
Si∕Al2O3 [29] 1� 0.3 (3.7 μm) 1.6 8.2 1.82 kW/∼1 mW 1.9–5.5 μm
SiGe∕SiO2 [27] 2 (2.4 μm) 3 24.7 120 W/0.15 mW 1.4–2.8 μm
Si∕SiO2 [18] N/A 2 ∼50 15 W/−N/A 1.5–3.7 μm
Si∕SiO2 [17] 2.5 (2.12 μm) 2 150 12.7 W/−N/A 1.5–2.5 μm
On-Chip Chalcogenide Glass Platform
GeAsSe/GeAsS [14] 0.6 (4.2 μm) 1.8 0.2 4.5 kW/20 mW 2.2–10.2 μm

aFrom left to right: propagation loss, waveguide length, extracted gamma parameter, coupled peak power �P0�∕on-chip SC power (Pout), and SC-generated −30 dB

bandwidth. N/A stands for not available.
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SiGe waveguides are fully CMOS compatible in terms of fabri-
cation and yield a higher gamma parameter. Finally, in terms of
power consumption, all of our results were achieved using a
coupled peak power (P0) comparable to that used to generate
SC in the mid-IR (pumped around 4 μm) with SOS [29] and
ChG [14], while being lower than in ChG fibers with similar
cross sections [9,13].

5. CONCLUSION

We have demonstrated, in a CMOS-compatible waveguide plat-
form, supercontinuum generation across a broad mid-IR wave-
length range, spanning the entire 4–8 μm molecular fingerprint
range. We used SiGe/Si dispersion engineered waveguides in the
mid-IR to achieve a 1.4 octave wide spectrum, thanks to a careful
design and tight mode confinement in the waveguide core, which
yielded a propagation loss as low as 0.23 dB/cm. The low pro-
pagation loss combined with a low nonlinear loss allowed us to
harness nonlinear effects in longer waveguides, resulting in a spec-
trally bright SC signal with more than 10 mW on-chip power
corresponding to ∼50% power conversion efficiency. The broad
anomalous dispersion profile of our waveguides yielded supercon-
tinuum spectra extending to what we believe is the longest wave-
length reported to date in any Si-based platform, reaching the c-Si
absorption limit at 8.5 μm. Our results clearly establish silicon
germanium‐on-silicon as a promising platform for integrated
nonlinear photonics in the mid-IR with the ability to operate
at least up to 8.5 μm.
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1. Waveguide fabrication
A Si0.6Ge0.4 alloy concentration was chosen as it provides a

suitable trade-off between high nonlinear properties [1], 
transparency window and low propagation loss when grown on Si 
(low misfit dislocation) [2]. Si0.6Ge0.4 material refractive index (real 
and imaginary part) was obtained by ellipsometry measurement 
between 1700 nm and 9000 nm.  

The Si0.6Ge0.4 layers and the Si caps were grown at 850°C, 20 
Torr in a 200mm Applied Materials Epi Centura 5200 tool. Given 
the large thicknesses targeted, a chlorinated chemistry, with a 
mixture of SiH2Cl2 + GeH4 (pure SiH2Cl2) in high purity H2 was used 
to grow the SiGe layers (the Si caps) and avoid chamber quartz 
wall clogging (and flaking). Ref. [3] data points were called upon to 
select the right SiH2Cl2 and GeH4 mass-flow to have 40% of Ge 
inside the SiGe layers. Most of the sacrificial Si cap was removed 
during the CMP steps used to get rid of the surface cross-hatch (i.e. 
undulations along the <110> directions) inherent to such thick, 
nearly 100% plastically relaxed layers. A smooth, featureless 
surface was recovered (i.e. with a root mean square roughness 
typically around 1-2 Å in Atomic Force Microscopy) [4]. The 
threading dislocations density inside such high Ge content SiGe 
layers grown directly on Si(001) is typically around 109 cm-2, as 
detailed in Ref. [5]. 

2. Tolerance in waveguide fabrication
We studied the fabrication tolerance of our dispersion

engineered air-clad SiGe/ Si waveguides, taking the example of the 
3.75µm x 2.70µm cross-section waveguide 1). The deviations we 
consider for the waveguide width and thickness were ±100nm 
and ±50nm, respectively, which are well above the accuracy of the 
lithography and epitaxy processes used during fabrication. Figure 
S 1 shows the dispersion of the waveguide fundamental TE mode 
when varying either the width (a) for a fixed thickness or the 
thickness (b) for a fixed waveguide width. When the waveguide 
width increases, we observe an increase of the mode effective area 
(Aeff) and a slight red-shift of the two zero dispersion wavelengths 
(ZDW) along with the cut-off wavelength (Fig S1a). We also 
observe a slight decrease in the maximum group velocity 
dispersion (max GVD). In contrast, an increase of the waveguide 
thickness leads to a slight increase of both the second ZDW and of 
the max GVD. These variations (ZDW, cut-off wavelength) are low, 
in the 1% to 3% range, typically. Our design is thus robust against 
waveguide width or thickness changes, as summarized in Table S 
1.  

We note that the impact on the maximum GVD value is larger. 
We can however take advantage of the opposite effects of 
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increasing the waveguide width and thickness with regards to this 
parameter to maintain a low GVD value across a wide band, while 
shifting the mode cut-off towards longer wavelengths, through an 
increase of both geometrical parameters simultaneously. By 
increasing the waveguide size (thickness and width), the 
difference between the two ZDW increases, resulting in a wider 
band in the anomalous dispersion regime. 

Figure S 1 Calculated group velocity dispersion (GVD) of the 2.7µm 
thick waveguide when varying the waveguide width (top) and GVD of 
the 3.75µm width waveguide when varying the thickness (bottom) 

Table S 1 Comparison of the waveguide parameters when 
changing the width and height of the waveguide 

Waveguide 
cross-section 

1st ZDW 
(µm) 

2nd ZDW 
(µm) 

λ cutoff 
(µm) 

max GVD 
(ps/nm/km) 

Aeff at 4µm 
(µm2) 

Increasing width for a fixed thickness a) 
3.65x2.70µm2 3.79 4.92 5.87 15.4 6.09 
3.75x2.70µm2 3.84 4.96 5.97 14.0 6.25 
3.85x2.70µm2 3.89 5.0 6.06 12.6 6.40 

Increasing thickness for a fixed width b) 
3.75x2.65µm2 3.86 4.88 5.93 11.5 6.17 
3.75x2.70µm2 3.84 4.96 5.97 14.0 6.25 
3.75x2.75µm2 3.82 5.04 6.00 16.2 6.33 

3. Extraction of the propagation loss
The method used to extract the waveguide propagation loss is

based on a linear fit of the total loss (insertion loss) versus 
waveguide length. We estimate the propagation loss as the slope of 
this linear dependence, as fitted by the method of least squares. 
The error bars were then estimated as the standard deviation (i.e. 
uncertainty) of the slope value using this linear regression. 

4. Numerical modeling and simulations
We simulate the propagation of 4µm femtosecond pulses across 

the air/SiGe/Si waveguides by using the nonlinear Schrödinger 

equation (NLSE), which is numerically solved using the split-step 
Fourier method (SSFM) [6, 7]. Basically, the electric field amplitude 
of the pulse envelope A(z,t) spatially varies along the propagation 
direction (z) according to the following NLSE equation: 
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This equation includes several (linear and nonlinear) 
phenomena in the right–hand term: the propagation loss 
(attenuation coefficient α), the high order dispersion (polynomial 
Taylor expansion βm), the nonlinear Kerr effect (governed by the 
nonlinear parameter γ), the nonlinear absorption (restricted here 
to four-photon absorption, with a coefficient α4PA), self-steepening, 
Raman effect, and free carrier induced absorption and dispersion. 
Based on the effective nonlinearity extracted for silicon 
germanium [1, 2] and crystalline silicon [8] we assume that the 
dispersion of n2 is negligible in the mid-IR. In this equation, the 
constant values of both the nonlinearity n2 and the effective area of 
the waveguide mode Aeff are taken at the central frequency ω0 of 
the pulse. In addition, only the propagation loss measured at the 
pump wavelength is included considering the very low 
propagation loss variation reported between 3.5µm and 5µm. The 
parameters used for self-steepening and Raman are those of 
crystalline silicon [9]. The high-order dispersion includes βm 
values, up to the 8th order, to properly reproduce the waveguide 
mode dispersion between 2.5µm and 5.5µm (see Table S 2). 

Table S 2 Extracted dispersion coefficients at 4µm used in 
simulations 

β2 (ps2/m) -5.37 × 10-2 β6 (ps6/m) 3.95 × 10-8 
β3 (ps3/m) 1.99 × 10-3 β7 (ps7/m) -1.46 × 10-9 
β4 (ps4/m) 2.71 × 10-5 β8 (ps8/m) 1.93 × 10-11 
β5 (ps5/m) -6.62 × 10-7 β9 (ps9/m) 

The impact of free-carriers present in the waveguide with a 
density Nc(z,t) is modeled by including both the free-career 
absorption cross-section σ and µ=2kck0/σ with the dispersion 
parameter kc coming from [1]. Since we rule out linear, two-
photon and three-photon absorption in SiGe at 4µm, we assume 
that free-carriers are generated via four-photon absorption only 
and recombine within a lifetime τ. We model the temporal 
variation of their density at a given position along the waveguide 
by the following rate equation: 
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which complements the NLSE to compute the free carrier density 
at each step. The last term on the right hand side was neglected, 
since reported values for τ in Si based waveguides are much longer 
than our pulse duration (~200fs) and shorter than the time period 
between two subsequent pulses (63MHz repetition rate) [9]. Table 
S 3 summarizes the numerical values of the parameters used in 
our simulations. 
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Table S 3 Numerical values of the parameters (at 4µm) used in 
the model 

TFWHM (fs) 205 α (dB/cm) 0.38 
P0 (W) 75 – 2350 n2 (cm2/W) 2.55 × 10-14 
L (cm) 7 α4PA (cm5/GW3) 1.16 × 10-6  

Αeff (µm2) 6.25 σ (cm2) 1.45 × 10-17 × (4/1.55)2 
α (dB/cm) 0.38 kc (cm3) -5.0 × 10-21 × (4/1.55)2 

A comparison of the experiments and simulations using this 
model is presented in the main text of the article. Figure 4 shows 
the spectra at the output of the waveguide for different pump 
powers. We observe a relatively good agreement between the 
simulation and the experiment, with slight differences at short 
(<3µm) and long wavelengths (> 5.5µm). The signal at short 
wavelengths is slightly stronger in simulations compared with 
experiments. This can be attributed to the higher propagation loss 
and the non-negligible three photon absorption around 3µm, 
which are not included in our model. On the long wavelength side, 
the intensity of the simulated spectrum is also slightly higher than 
in the experiment. We attribute this to the fact that the 
experimental dispersion is not well reproduced by our 8th order 
polynomial near the cut-off wavelength of the waveguide. Note 
that the small difference between the simulated and experimental 
pump spectrum is a result of the experimental “pump” spectrum 
being measured at the output of the waveguide at very low 
coupled peak power and not directly from the pump laser itself, 
while the pump spectrum was calculated at the input of the 
waveguide. Regarding the on-chip supercontinuum power 
presented in Figure 5, the simulated and experimental results are 
in good agreement, with a low Root Mean Square deviation value 
of only 0.37mW (i.e. 4% of the maximum signal). 

Supercontinuum in the larger cross-section waveguide 2) has 
not been simulated since our model does not include wavelength 
dependence of the effective area, silicon material loss and modal 
overlap with silicon substrate, which directly affect linear loss 
towards longer wavelengths. Taking this into account could help 
reproduce the SC at long wavelengths, especially beyond 7 µm. 
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Conclusion 

 In this second chapter, we presented the generation of bright and broadband supercontinua 

in silicon germanium-on-silicon waveguides. For this purpose, two waveguides were used. The first 

one was a single-mode waveguide with optimized nonlinearity and the second was a multi-mode 

waveguide designed to extend supercontinuum up to the mid-infrared absorption limit of silicon. 

 We first presented the linear and nonlinear characterization of these waveguides in the 

mid-infrared and we then demonstrated supercontinuum generation across a broad mid-IR 

wavelength range. We measured the propagation loss in a wavelength range from 3 to 5 μm using 

low power picosecond pulses (i.e. less than 1 mW power 7.5 ps long pulses). Constant and low loss 

between 0.2 and 0.3 dB/cm has been measured at wavelengths from 4 to 5 μm. Transmission 

measurements were then performed using sub-picosecond pulses (~ 200 fs long pulses) centered 

around 4 μm wavelength at different pulse power levels. This allowed us to extract low nonlinear 

loss using a numerical model. Finally, we performed spectra measurements recording bright 

supercontinua spanning from 2.6 to 6.2 μm in the waveguide with optimized nonlinearity and from 

3.0 to 8.3 μm in the multimode waveguide optimized to achieve a large bandwidth.  

 The propagation loss reported in this work has been the lowest loss reported to date in 

germanium based waveguides (see Table 2 of the Optica paper). Such a low propagation loss 

combined with the low nonlinear losses of the waveguide materials enabled us to achieve bright 

supercontinuum with more than 10 mW on-chip power at the output. This is more than an order of 

magnitude higher power than that of the previously reported supercontinuum in silicon-on-

sapphire waveguides spanning up to 5.5 μm (for similar input power). Dispersion engineering of 

our waveguides allowed us to achieve supercontinuum spectra extending to the longest wavelength 
reported to date in any Si-based platform, reaching the c-Si absorption limit at 8.5µm. 

 Bright supercontinuum covering the entire mid-IR atmospheric absorption band (4 – 8µm) 

is desired for molecular spectroscopy. However, in practice, fluctuations of the supercontinuum 

spectra from pulse to pulse severely limit the sensitivity of molecule detection using these sources. 

Therefore, high coherence of supercontinuum is required for these applications. The next chapter 

discusses the coherence properties of the mid-infrared supercontinuum that has been presented in 

this chapter. 
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Chapter 3.  

High coherence at f and 2f of mid-infrared 

supercontinuum generation in silicon germanium 

waveguides 

 This chapter discusses the coherence properties as numerically calculated by simulations 

(see section 1.2.3.2 of chapter 1) for the supercontinuum spectrum that was experimentally 

demonstrated in chapter 2. 

 High coherence of a mid-infrared supercontinuum is required for high-sensitivity and ultra-

fast molecular spectroscopy. It is also required for applications directly relying on coherence such 

as coherent anti-Stokes Raman spectroscopy (CARS) and optical coherence tomography (OCT). 

However, until this work, coherent mid-infrared supercontinuum in the silicon chip-based platform 

had not been reported, even by simulations. Only recently though, a coherent mid-infrared 

supercontinuum was demonstrated in silicon-on-sapphire waveguides [98]. 

 We numerically analyze the coherence properties of one of the supercontinuum presented 

in chapter 2. High coherence is calculated for a mid-infrared supercontinuum generated in a 7 cm 

long SiGe/Si waveguide pumped with 200fs long input pulses centered at 4µm. To support our 

findings, and explain why such coherence was preserved, we studied the specific dynamics 

associated with this supercontinuum generation. We found, in particular, the role played by the 

engineered dispersion profile and the anomalous dispersion band enclosed by two zero GVD 

wavelengths. 

 This chapter corresponds to the article entitled “High coherence at f and 2f of mid-infrared 

supercontinuum generation in silicon germanium waveguides” submitted to IEEE JSTQE journal 

(Journal of Selected Topics in Quantum Electronics) and still under review. The article is organized 

into four sections, which present the numerical model, the experimental and numerical results and 

the analysis of the supercontinuum generation dynamics. 

  



IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 26, NO. 2, MARCH/APRIL 2020 8201008

High Coherence at f and 2f of Mid-Infrared
Supercontinuum Generation in Silicon

Germanium Waveguides
Milan Sinobad , Alberto Della Torre, Remi Armand, Barry Luther-Davies, Pan Ma, Stephen Madden,

Arnan Mitchell , David J. Moss , Jean-Michel Hartmann, Jean-Marc Fédéli ,
Christelle Monat, and Christian Grillet

Abstract—Absorption spectroscopy based on supercontinuum
generation in the mid-infrared is a powerful technique to analyze
the chemical composition of samples. Furthermore, phase-coherent
supercontinuum sources can enable fast data acquisition with
coherent, stable pulses that allow single-shot measurements. We
report here a numerical study of the coherence of an octave-
spanning mid-infrared supercontinuum source that was experi-
mentally obtained in an air-clad SiGe/Si waveguide. We show that
engineering two closely spaced zero-dispersion wavelengths that
enclose an anomalous dispersion band centered around a fixed
pump wavelength can produce supercontinuum pulses with high
spectral density and full coherence at the extreme ends of the
spectrum. This work is important for absorption spectroscopy,
on-chip optical frequency metrology, and f-to-2f interferometry
applications.

Index Terms—Optical waveguides, silicon germanium, silicon
photonics, supercontinuum (SC) generation.

I. INTRODUCTION

SUPERCONTINUUM (SC) sources are of great interest
because of their high spectral brightness over a large spec-

tral bandwidth. In particular, mid-infrared (mid-IR, 3–20 μm)
sources, due to the strong molecular fingerprint in this spec-
tral region [1], are well suited for environmental and toxic
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vapors sensing in atmospheric, security and industrial appli-
cations [2]. Broadband integrated sources can achieve sensing
with high throughput thanks to the parallel detection of several
species [3]. Their integration in a complementary metal-oxide-
semiconductor (CMOS) compatible integrated platform would
lead to high volume, low cost sensing technology. Mid-IR SC
was first demonstrated in fibers [4]–[7], in a chalcogenide based
platform [8] and recently in CMOS compatible platforms [9],
[10]. Among the different CMOS compatible platforms that have
been proposed for mid-IR SC generation, silicon germanium-
on-silicon waveguides are very promising thanks to the wide
transparency window up to 8.5 μm [11]–[13] and good nonlin-
ear properties [14]–[16], with the recent demonstration of SC
generation from 3 to 8.5 μm [17].

The SC bandwidth is maximal when pumping the nonlinear
waveguide structure in the anomalous dispersion regime [18].
For many applications however, a wide bandwidth is not the
only requirement. High coherence across the spectrum is also
needed. Locking of the fundamental and second harmonic of
coherent broadband sources spanning more than one octave
(termed f-to-2f self-frequency referencing) has played a major
role in the fields of frequency metrology and optical clocks [19]–
[21]. Coherent SC sources have also been used for precision
spectroscopy, high resolution optical tomography [22], [23] and
Raman spectroscopy [24]. In the anomalous dispersion regime,
however, the mechanism underlying SC generation is generally
dominated by soliton fission triggered by noise-seeded modu-
lation instability leading to shot-to-shot fluctuations and degra-
dation of coherence [18]. To effectively transfer the coherence
properties of the pump to the generated SC, several strategies
have been used. F. Leo et al. demonstrated that coherence could
be enforced by a high level of two-photon absorption (TPA).
This effectively reduces the soliton number in the waveguide. A
high coherence was reported in a 1 cm long silicon-on-insulator
waveguide pumped at 1.6 μm with 150 fs pulses [25]. However,
this approach typically restricts the SC bandwidth at the output.
More frequently, coherence is preserved by using a waveguide
only slightly longer than the soliton fission length to alleviate
coherence degradation due to modulation instability. Using this
approach, A. R. Johnson et al. demonstrated coherent SC when
pumping silicon-nitride waveguides at 1 μm [26]. Alternatively,
extremely short pump pulses can be used, in order to increase the
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Fig. 1. (a) Waveguide schematics and scanning electron microscope (SEM)
image with the superimposed TE fundamental mode electric field profile.
(b) β1 (black, left y-scale) and β2 (blue, right y-scale) dispersion curves. The
grey area indicates the anomalous dispersion regime. The dispersion length
(LD) is calculated for the minimal value of β2 represented by the blue dashed
vertical line.

soliton fission length. For instance, N. Singh et al. generated a
SC with a coherence higher than 90%, on average, by pump-
ing a silicon-on-insulator waveguide with sub-100 fs pulses
in the short wave infrared (SWIR). This approach is however
constraining from the technological point of view [27]. These
strategies were recently used to numerically demonstrate high
coherence of the supercontinuum in mid-IR generated from the
germanium-on-silicon waveguide [28].

Here, we numerically study the coherence properties of a
mid-IR supercontinuum (extending from 2.63 to 6.18 μm) that
was experimentally generated in a 3.75 μm × 2.70 μm cross-
section, 7 cm long silicon germanium-on-silicon (Si0.6Ge0.4/Si)
waveguide pumped by∼200 fs pulses at λ= 4μm [17]. We show
that a broad and highly coherent SC can be obtained by pumping
the waveguide at a wavelength enclosed in a narrow anomalous
dispersion band. Through analysis of the spectrograms and the
coherence properties of the SC generated at different locations
along the waveguide, we study the dynamics of the underlying
mechanism generating the SC in this particular regime. We show
that, with this approach, it is possible to achieve a broadband SC
with a high degree of coherence irrespectively of the waveguide
length and without the need for sub-100 fs pump-pulses or
multi-photon absorption.

II. WAVEGUIDE DESIGN AND NUMERICAL MODEL

Our device consists of a 7 cm long Si0.6Ge0.4 on Si (001)
air-clad waveguide with a 3.75 μm × 2.70 μm cross-section
[see Fig. 1(a)]. We demonstrated in [17] that by pumping
such a waveguide with ∼200 fs pulses at 4 μm wavelength,

TABLE I
NUMERICAL VALUES OF THE PARAMETERS USED IN THE MODEL

we were able to generate high intensity SC signal across a wide
bandwidth, with extreme wavelengths (at 2.63 μm and 6.18 μm)
separated by an octave. SC is limited by mode cutoff at long
wavelengths (λ ∼ 6 μm) which is induced by the asymmetry
of the waveguide with respect to the vertical plane. The first
and second order dispersions of the waveguide, calculated by a
finite-difference mode solver, are shown in Fig. 1(b) as a func-
tion of the optical wavelength. The waveguide dispersion thus
exhibits two zero-dispersion wavelengths (ZDW) at 3.84μm and
4.96 μm, respectively, which enclose an anomalous dispersion
band highlighted in grey in Fig. 1(b).

The propagation of short optical pulses in a waveguide can
be described by the generalized nonlinear Schrodinger equation
(GNLSE) under the slowly varying envelope approximation:

∂A

∂z
= − α

2
A+

∑
im+1βm

m!

∂mA

∂tm
+ iγ (ω0)

(
1 +

i

ω

∂

t

)
A

×
∫ t

−∞
R (t− t′) |A|2dt′ − α4PA

2A3
eff

|A|6A

− σ

2
(1− iμ)NcA (1)

where A(z, t) is the electric field envelope, α is the attenuation
coefficient, βm is the m-th order derivative of the propagation
constant with respect to the angular frequency, γ(ω0) is the
nonlinear parameter at the central frequency of the pulse, R(t
– t′) is a function that takes into account Raman contributions,
α4PA is the four-photon absorption coefficient, Aeff is the
effective area at the central frequency of the pulse,Nc is the free-
carrier density in the waveguide, σ is the free-carrier absorption
cross-section and μ = 2kck0/σ is a dimensionless parameter
that encompasses the impact of free-carrier dispersion, with
k0 being the wavenumber and kc the free-carrier dispersion
parameter [16]. High-order dispersions βm are included up to
β10 (see Table I). Here, we consider that the propagation loss is
constant and equal to 0.38 dB/cm, as measured at 4μm [17]. The
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nonlinear Raman response function (t) is taken equal to that of
crystalline silicon [29]. The fractional contribution of the Raman
response to the third-order nonlinearity fR, the Raman response
time τ1 and the phonon lifetime τ2 are given in Table I.

The temporal variation of the free-carrier density in the wave-
guide is modeled by the following rate equation:

∂Nc

∂t
=

α4PA

4�ω

(
|A|2
Aeff

)4

(2)

The recombination lifetime is neglected in (2), as the reported
value in silicon based waveguides (∼10 ns) [30] is (i) much
longer than our pulse duration (TFWHM = 205 fs) and (ii) much
shorter than the time period between subsequent pulses. The
nonlinear parameter and effective area of our waveguide are γ
= 0.63 (W·m)−1 and Aeff = 6.25μm2, respectively [17]. The
GNLSE was numerically solved using the split-step Fourier
method. The numerical values of the parameters used in the
model are summarized in Table I.

The degree of first-order coherence g(1)
12 of the generated

supercontinuum is calculated from the following formula [18]:

g
(1)
12 (λ) =

∣∣∣∣∣∣∣∣

〈E∗
1 (λ)E2 (λ)〉√〈

|E1 (λ)|2
〉〈

|E2 (λ)|2
〉

∣∣∣∣∣∣∣∣
(3)

where the angle brackets denote an ensemble average over forty
independently generated pairs of supercontinua E1,2(λ) with
random input noise. Noise was modelled by adding one photon
per mode (according to our pump repetition rate fr = 63 MHz)
with a Gaussian distribution of both amplitude and phase of
variance 2σ equal to hν/2 and π, respectively [31]. A similar
approach has been used to model noise in SC generated in
silicon-on-insulator [27] and silicon-on-sapphire platforms [10].

III. RESULTS AND DISCUSSION

A. Experimental Supercontinuum Generation and
Calculated Coherence

The waveguide was pumped in the Transverse Electrical (TE)
polarization by a 200 mW tunable OPA laser (MIROPA-fs,
Hotlight Systems) delivering 205 fs pulses centered at 4 μm
(75 THz frequency) with a repetition rate of 63 MHz [17].

Fig. 2 (bottom) shows the measured (blue curve) and sim-
ulated (black curve) spectra resulting after propagation of a
pulse with a 2.35 kW coupled peak power. The experimentally
generated SC spans over more than one octave, from 2.63 up
to 6.18 μm, with a 3.55 μm bandwidth at −30 dB. The on-chip
power spectral density at λ = 5.8 μm (f) is −52 dBm·nm−1. At
λ = 2.9 μm (2f), it is greater than −37 dBm·nm−1.

The overall bandwidth of the simulated SC agrees relatively
well with that measured experimentally. One striking difference
though is that the signals generated by simulations at both f
and 2f exhibit greater power than the average one (−32.6 dBm)
calculated over the -30 dB bandwidth. This lower power spectral
density on the long wavelength side for the experimental SC is
most likely due to water vapor absorption at around 5.5–6 μm
[32], which takes place along the free-space path from the

Fig. 2. Calculated coherence at the output of the waveguide (top), experimen-
tal (blue) and simulated (black) spectra (bottom) for λp = 4μm, TFWHM =
205 fs and Pp = 2.35 kW. The spectrum is simulated with added noise, i.e one
photon per mode with random phase and amplitude.

chip output to the spectrometer. The lower signal measured
at short wavelengths comes from an increase of the measured
propagation loss (below λ = 3.5 μm) that is not considered in
our simulations. Fig. 2 (top) shows the calculated coherence,
which remains high at the extreme parts of the spectrum. The
apparent loss of coherence in the central part of the spectrum,
where the signal is lower, is due to the low signal to noise ratio.

Fig. 3 shows the evolution of the pulse, as calculated from
simulations, in the time domain (a), the spectrum (b) and the
coherence (c) as a function of the propagation distance up to
7 cm.

After a few centimeters of propagation along the waveguide,
the central part of the spectrum, close to the pump wavelength
appears to be depleted relative to the normal dispersion bands
towards the high and low wavelengths [Fig. 3(b)]. Full coher-
ence is achieved at the extreme parts of the SC spectrum at
all propagation distances [Fig. 3(c)]. Moreover, by choosing
the waveguide length slightly shorter (∼2 cm), it is possible
to maintain high coherence across the entire spectrum without
affecting the spectral bandwidth, as the spectrum is already fully
broadened [see red line in Fig. 3(c)]. In contrast to the strategies
that have been pursued in references [25], [27], the coherence
is not degraded here by the use of a pump pulse duration longer
than 100 fs nor by the low multi-photon absorption. Finally, we
do not observe on Fig. 3(a) the temporal pulse compression
that typically governs the dynamics of SC in the anomalous
dispersion regime and leads to soliton fission. We investigate
the origin of these features in the next section.

B. Supercontinuum Generation Dynamics

In this section, we numerically investigate the dynamics of SC
generation in our waveguide pumped in an anomalous dispersion
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Fig. 3. Evolution of the simulated pulse in the (a) time domain, (b) spectrum,
and (c) coherence at different propagation distances for λp = 4μm, TFWHM

= 205 fs, and Pp = 2.35 kW.

band surrounded by two closely spaced ZDWs (here, at 3.84
and 4.96 μm). The dynamics of SC generation when pumping
in a narrow anomalous dispersion band has been explored in
optical fibers [33]–[35]. Different explanations have been raised,
discussing the interplay of self-phase modulation (SPM) and
four-wave mixing (FWM) as well as the formation of solitons,
soliton annihilation and the generation of dispersive waves.
The bandwidth of the central anomalous dispersion window
with respect to the pump characteristics critically governs the
mechanisms that drive the SC dynamics. Furthermore, although
the potential for pulse recompression was numerically shown
in [33], none of these papers explicitly studied the coherence
properties of the spectra.

To get more insights into the underlying phenomena that
dominate the generation of our mid-IR SC, we simulate the
pulse evolution in both the spectral and time-domain at in-
termediate distances along our waveguide length. Considering
our waveguide dispersion and pump characteristics, the soliton
fission length given by Lfiss = T0/(γP0|β2|)1/2 is equal to
Lfiss = 1.38 cm and the input soliton order is N = 20. Fig. 4
shows the spectrum, time-domain and spectrogram of the SC
signal generated at 8 intermediate steps along the 7 cm long
waveguide due to a pump pulse with a peak power equal to
2.35 kW at 4μm (75 THz frequency). The spectrogram provides
simultaneous information about the temporal and spectral profile

Fig. 4. Calculated spectrogram with superimposed group delay (white curve),
pulse in time domain, spectrum (black curve) and coherence (blue curve) at
(a) 2 mm, (b) 6 mm, (c) 8 mm, (d) 1 cm, (e) 1.2 cm, (f) 1.6 cm, (g) 2 cm and
(h) 7 cm length. The frequency shift is calculated with respect to the input pump
frequency (75 THz). The white dashed lines in (d) to (g) present the boundaries
of the anomalous dispersion band.

of the pulse, and its related chirp. It is mathematically described
as:

Σ(ω, τ) =

∣∣∣∣
∫ ∞

−∞
E (t) g (t− τ) e−iωtdt

∣∣∣∣
2

(4)

with g(t – τ ) being a variable-delay Gaussian shape gate function
with ∼130 fs duration [18].

Up to 0.6 cm distance propagation, the spectrum shows the
typical features of SPM, with 3 lobes that are roughly sym-
metric around the pump wavelength and a positive linear chirp
[see Fig. 4(b)]. The effect of dispersion in the vicinity of the
pump wavelength is indeed negligible after this short distance
(LD = 27.6 cm for our 205 fs pulses). This is indicated by the
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Fig. 5. (a) Linear phase mismatch for degenerate four-wave mixing around
the pump frequency vp. The black dotted line represents the frequencies corre-
sponding to a zero linear phase mismatch. The dashed blue and green lines point
out the frequencies with the maximum negative phase mismatch for a pump at
75 and 70 THz frequency (vp) respectively. (b) Phase matched frequencies to
a soliton of frequency varied across the anomalous dispersion band for 1 kW
(red) and 2.35 kW (black) of soliton peak power. The dashed green lines point
out the frequencies that are phase matched to a soliton of 1 kW peak power at
70 THz.

group delay, close to zero around the pump, represented by the
white solid curve superimposed to the spectrogram. At the same
time, some signal appears from noise in frequency bands at
±16 THz from the input frequency, corresponding to 3.3 and
5.1 μm wavelengths [see Fig. 4(a) and (b)].

To better clarify the origin of these sidebands, we calculated
the spectral dependence of the linear phase mismatch asso-
ciated with degenerate four-wave mixing (FWM) pumped at
the angular frequency ωp and given by the following equation
[36], [37]:

Δβ = 2β (ωp)− β (ωs)− β (ωi) (5)

where ωs and ωi are the angular frequencies of the signal and
the idler respectively. The result associated with our wave-
guide dispersion is plotted on Fig. 5(a) as a function of the
FWM pump frequency νp (bottom axis), and the frequency
shift (top axis) with respect to the 75 THz (input) frequency.
For νp = 75 THz, this curve exhibits two minimum (negative)
linear phase mismatch values equal to −3.4 cm−1. They are
reached for symmetric frequencies νs at ±16 THz from the
75 THz pump (blue dashed line). The value of the nonlinear
phase mismatch 2γPp, which counterbalances the linear one, is
equal to 15 cm−1 close to the entrance of the waveguide. Hence,
the spontaneous generation of a probe and an idler signal by

degenerate FWM of the pump signal will be more effective
at the two frequencies (±16 THz), for which the total (linear
and nonlinear) phase mismatch is closer to zero. We therefore
attribute the symmetrically positioned side bands observed in
the SC spectrum close to the entrance of the waveguide to noise
seeded spontaneous FWM. As expected, this signal is not fully
coherent (g12 < 0.8) [see blue curve in Fig. 4(a)] and exhibits
a relatively broad bandwidth.

Between 0.8 cm and 1.2 cm along the waveguide length,
dispersion starts being substantial (see the negative group delay
presented with white curve in Fig. 4(c) and (d) around the
pump wavelength). Yet, due to continued SPM and the limited
bandwidth of the central anomalous dispersion window, a sig-
nificant amount of power has been already pushed outside of the
anomalous dispersion band [see Fig. 4(d) and (e)]. The depletion
of the anomalous dispersion region results in an apparent loss of
coherence in the central part of the spectrum, which is however
only a consequence of the low signal to noise ratio. From the
spectrograms, two high energy pulses appear and split in the
spectral (and time-) domain, lying very close to the two ZDWs.
The pulse on the low wavelength trailing edge, in particular,
strongly overlaps with the normal dispersion regime (L = 1 and
1.2 cm) and seems to undergo some SPM on its own with a
positive linear chirp growing between 1.2 and 2 cm, generating,
in turn, more side lobes in this part of the spectrum. These new
components generated by SPM in a normal dispersion regime
are highly coherent, as seen in Fig. 4(f)–(g).

At around 1 cm, some part of the pump energy, which is
redshifted by around −5 THz from the input frequency, remains
in the middle of the anomalous dispersion band. Subsequent
transfer of energy occurs from this band to both sides of the
spectrum [Fig. 4(e)–(g)]. The oscillations occurring in the
temporal domain at the leading edge of the pulse [for L = 1.2
and 1.6 cm in Fig. 4(e) and (f)], having a period of ∼50 fs, can
be seen as the result of the beating between frequencies with a
20 THz distance. At the low level, the observed energy transfer
might be attributed to degenerate FWM between the remaining
redshifted signal in the anomalous dispersion band (which could
act as a pump) and the tail of the low energy peak at ∼−20 THz
(which could act as an idler), leading to the generation of a
signal at higher frequencies and to an enhancement of the idler
[38]. This interpretation roughly agrees with the frequencies
at which the calculated FWM linear phase mismatch is mini-
mum [Fig. 5(a), green dashed lines]. For a pump at 70 THz
(i.e., −5 THz from the input frequency), these correspond to
an idler at around −20 THz and a signal at around 10 THz
from the input frequency. Indeed, the estimated nonlinear phase
mismatch induced by the pump signal in the anomalous band
(estimation 6 cm−1) compensates for the maximum negative
linear phase mismatch values afforded by the waveguide dis-
persion (−6 cm−1), leading to more effective FWM at fre-
quencies corresponding to the minimum (negative) linear phase
mismatch.

As an alternative interpretation, the energy transfer around
the two ZDWs between 1 cm and 2 cm could be understood
as dispersive wave generation seeded by a soliton at −5 THz.
The corresponding phase matching condition is given by the
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following equation [37]:

β (ωsol) + β1 (ωsol) (ωd − ωsol) +
1

2
γPsol − β (ωd) = 0

(6)
where ωd and ωsol are the dispersive wave and soliton angular
frequencies, respectively, and Psol is the soliton peak power.
Fig. 5(b) plots the frequencies that are phase matched with the
soliton as a function of its frequency. As a rough approximation,
this calculation considers that the duration of the soliton is that
of the pump (TFWHM = 205 fs) and that its peak power is either
1 kW or 2.35 kW. The 1 kW peak power would correspond to a
soliton carrying 40% of the input pulse power [estimated from
the spectrogram on Fig. 4(d)] which would not experience pulse
compression. In this case, dispersive waves are expected to be
generated at around−24 and+25 THz from the input frequency
(i.e., about −20 and +30 THz from the redshifted signal in the
anomalous band). It is difficult to unambiguously attribute the
redshifted signal at−5 THz to a soliton. However, this dispersive
wave mechanism could explain part of the signal that is trans-
ferred spectrally further from the pump than the aforementioned
FWM mechanism at 1.6 and 2 cm [Fig. 4(f)–(g)]. In addition,
the ∼50 fs time-domain oscillation at the leading edge of the
pulse could be explained by the beating between the −5 THz
red-shifted signal and the low energy (−24 THz) dispersive
wave.

Considering the relatively broad generated features in the
spectrum though, we cannot rule out either of the two mecha-
nisms. We note that the high frequency band is slightly broader,
which might be due to the distinct frequencies that are created
in this range by each process (10 THz and 25 THz for FWM
and dispersive wave, respectively). We therefore conclude that
the observed spectrum is most likely the result of the interplay
between SPM, FWM and dispersive wave generation. Most
importantly, all these processes preserve coherence.

At 2 cm [Fig. 4(g)], following this energy transfer, the two
sidebands in the normal regime carry most of the power. Further
propagation [Fig. 4(h)] results in the attenuation of the pulse
around the pump wavelength due to linear and nonlinear loss
and in the temporal separation of the two side bands according
to the distinct group delay in these two bands (see white group
delay curve in Fig. 4)

From this analysis, we can understand the high degree of
coherence obtained for our supercontinuum. Its generation is
dominated by mechanisms that all preserve coherence, namely
SPM and energy transfer through FWM and/or dispersive wave
generation. We stress that, due to the high amount of energy
pushed out of the anomalous dispersion window in the early
stages of the propagation, the effective soliton number is prob-
ably less than 20, therefore limiting the detrimental impact of
soliton fission on coherence. As a result of its limited bandwidth,
the anomalous dispersion band cannot accommodate the entire
spectrally broadened spectrum before soliton fission occurs. We
thus do not observe the typical temporal pulse compression
leading to soliton fission nor clear evidence of soliton fission
in the time domain. Finally, we note that although the absolute
bandwidth of the anomalous dispersion region is relatively wide

in our case, i.e., 1160 nm compared to 165 nm in [33], the
bandwidth to pump wavelength ratio is comparable, as we pump
in the mid-IR region. We thus observe a similar dynamics to that
observed for fibers with a narrow anomalous dispersion band in
the near-IR [33]. This leads to high coherence over most of the
spectrum, in particular at frequencies distanced by one octave.

The high power spectral density and high degree of coherence
at the extreme parts of the octave spanning SC makes this
spectrum particularly interesting for f-to-2f interferometry [39].
A f-to-2f interferometer based technique has been proposed
in 1999 by H. R. Telle et al. [19] to measure and stabilize
the carrier-envelope offset of two-cycle lasers, a fundamental
requirement for high-harmonic generation applications [40].
Moreover, measuring the radio-frequency beats that can be
generated via f-to-2f self-frequency referencing using broadband
laser sources spanning over one octave can be used to stabilize
pulse for high precision spectroscopy and frequency metrology
applications. The coherence of dispersive waves at f and 2f is
not affected by the low multi-photon absorption, allowing us
to take full advantage of the extremely low nonlinear losses to
maximize SC bandwidth and output power. Furthermore, the
generated SC covers a great part of the molecular fingerprint
region, with potential applications for on-chip spectroscopy.

IV. CONCLUSION

We have shown that an on-chip mid-IR octave spanning
supercontinuum generated in an anomalous dispersion regime
surrounded by two closely spaced ZDWs maintained a high de-
gree of coherence at its extreme parts. The interplay between the
different mechanisms driven by this specific dispersion profile
ensures that coherence is achieved without requiring high TPA,
specific waveguide length, nor being constrained by the use of
sub-100 fs input pulses. Since the spectrum covers the molecular
fingerprint region, the reported SC is well suited for on-chip
sensing applications. Moreover, the high power spectral density
and the high coherence of the octave-distanced signals make
this supercontinuum source promising for f-to-2f interferometry,
with potential applications for high-precision spectroscopy and
frequency metrology.
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Conclusion  

 In this chapter, we numerically analyzed the coherence of an octave-spanning mid-infrared 

supercontinuum, as was experimentally generated in silicon germanium-on-silicon waveguides. 

The numerical analysis was conducted on the results associated with the waveguide (referred to as 

waveguide 1 in Chapter 2) that was designed to operate in a single-mode regime at the 4 μm pump 

wavelength, and for which we performed extensive linear and nonlinear measurements. To give 

additional insights into the underlying physics that preserved coherence for this supercontinuum, 

we provided a detailed analysis of the supercontinuum generation dynamics along the propagation 

distance. 

 We reported here a high coherence for the supercontinuum spanning from 2.6 to 6.2 μm in 

the mid-infrared. The degree of the first-order coherence is larger than 90% across almost the 

entire spectrum and it is more than 99% at the extreme parts of the spectrum that are separated by 

an octave. The analysis of the supercontinuum generation dynamics reveals that the high coherence 

is maintained thanks to the specific dispersion profile, i.e. the 4 μm pump in the anomalous 

dispersion band is enclosed with two relatively closely spaced zero group velocity dispersion (GVD) 

wavelengths. The interplay between the different mechanisms driven by this specific dispersion 

profile ensures that coherence is achieved without requiring high two-photon absorption, specific 

waveguide length, or being constrained by the use of sub-100 fs input pulses. 

 The reported supercontinuum covering the molecular fingerprint spectral region thus turns 

out to be well suited for on-chip sensing application. The high power spectral density and the high 

coherence of the octave-distanced signals make this spectrum promising for 𝑓-to-2𝑓 

interferometry, with potential applications for high-precision spectroscopy and frequency 
metrology. 

 We note that it has been long acknowledged that a highly coherent supercontinuum, with 

coherence equal to the unity over the entire spectrum, could be achieved when using waveguides 

operating in the all-normal dispersion regime. This reemphasizes that dispersion is key to the 

generated supercontinuum characteristics and the underlying device performance. The next 

chapter discusses how the dispersion can be shifted from anomalous to all normal using a simple 

post-fabrication dispersion trimming technique. 
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Chapter 4.  

Dispersion trimming for mid-infrared supercontinuum 

generation in a hybrid chalcogenide/silicon-germanium 

waveguide 

 This chapter discusses dispersion trimming using a simple post-fabrication technique. 

 The dispersion profile of the fabricated structures can deviate from the nominal parameters 

defined at the design stage due to fabrication inaccuracies. Dispersion trimming can turn out to be 

useful when it is required to compensate for the dispersion deviation and/or to optimize the 

dispersion profile of a fabricated waveguide. The deposition of a chalcogenide cladding on top of 

our air-clad SiGe/Si waveguides can be used for dispersion trimming owing to the wide mid-

infrared transparency of the chalcogenide material and its lower refractive index than that of the 

silicon germanium alloy.  

 This chapter shows how the dispersion of a SiGe/Si waveguide (corresponding to the so-

called waveguide 1 design of chapter 2) can be shifted from anomalous to all normal when coat the 

waveguide with a 1.26µm thick chalcogenide layer. Supercontinua are measured for both the 

initially air clad and chalcogenide-clad silicon germanium-on-silicon waveguides, showing specific 

features associated with the two distinct dispersion regimes. In addition, we studied how the 

dispersion profile of these waveguides can be trimmed by adjusting the chalcogenide top cladding 

layer thickness. This provides an additional degree of freedom to control the dispersion profile of 

mid-IR waveguides, at the core of supercontinuum generation. 

 This chapter corresponds to the article entitled “Dispersion trimming for mid-infrared 

supercontinuum generation in a hybrid chalcogenide/silicon-germanium waveguide” published in 

“JOSA B” in early 2019. The article is organized into five sections, which present the device 

design/fabrication, the experimental results and the numerical analysis of dispersion trimming. 
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We report a simple post-process technique that harnesses a hybrid chalcogenide/silicon-germanium system for the
control of waveguide dispersion. By adding a chalcogenide top cladding to a SiGe/Si waveguide, we can substan-
tially change the dispersive properties, which underpin the generation of a supercontinuum. In our particular
example, we experimentally show that a shift from anomalous to normal dispersion takes place. We numerically
study the dispersion dependence on the chalcogenide thickness and show how to use this additional degree of
freedom to control the position of the zero dispersion wavelengths and hence the spectral span of the supercon-
tinuum. Finally, we compare our approach with more traditional techniques that use geometry for dispersion
tailoring. © 2019 Optical Society of America
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1. INTRODUCTION

Broadband supercontinuum sources can be used advanta-
geously in a wide variety of fields, from high-bit-rate commu-
nications and wavelength multiplexing [1] to biophotonics [2].
The mid-infrared (mid-IR) spectral region (covering the
3–20 μm wavelength range) is of great interest because of
the large number of potential applications from biomedical im-
aging and medical and environmental sensors to food quality
analysis and security [3–9]. Indeed, many chemical compounds
have strong spectral fingerprints in this region due to their res-
onant frequencies associated with the vibrational and rotational
modes of molecules. In this context, on-chip broadband mid-
IR light sources, like supercontinua, are key for the develop-
ment of efficient compact mid-IR spectroscopic platforms.

Mid-IR supercontinuum generation has already been
demonstrated using different integrated platforms, e.g., chalco-
genide [10], silicon-on-insulator waveguides [11,12], and
silicon-on-sapphire waveguides [13,14]. Recently, the (theoreti-
cally foreseen) strong nonlinear properties [15], wide transpar-
ency window from 3 to 15 μm, and CMOS compatibility of
germanium [6,16,17] have generated increasing interest in
germanium-based platforms. Generally, SiGe alloys are used

to combine the superior nonlinear properties of germanium
with an additional design parameter (the germanium content
of the alloy) for a better control of the nonlinear properties of
the waveguide (nonlinear index, multiphoton absorption, and
dispersion) and to limit the waveguide/substrate lattice mis-
match. The first demonstration of nonlinear effects in a SiGe
waveguide was reported by Hammani et al. in 2014, showing
mid-to-near-infrared conversion by four-wave mixing in a
graded-index SiGe on a silicon waveguide [18], followed by
the demonstration of supercontinuum generation from 1.45
to 2.79 μm on the same platform [19]. Low propagation losses
have been reported in graded-index SiGe waveguides [20,21],
and a complete characterization of the nonlinear optical
response of step-index Si0.6Ge0.4 on Si waveguides was per-
formed by Carletti et al. in 2015 [22,23]. The latter work
eventually led to our recent demonstration of the first super-
continuum generated across more than one octave (from 3
up to 8.5 μm) in SiGe waveguides [24]. In that work, an
air cladding was used to achieve low anomalous dispersion
in spite of the low index contrast between the SiGe core and
the Si substrate. Controlling the waveguide dispersion is key to
governing the nonlinear dynamics and hence the properties
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(bandwidth, coherence etc.,) of the generated supercontinuum.
Sophisticated waveguide geometries have been proposed to that
end. For instance, Bao et al. numerically studied a double-slot
waveguide to obtain a flat and low dispersion [25] and a notch
waveguide enabled Nader et al. to tune the zero-dispersion
wavelength (ZDW) [14]. In all these demonstrations, however,
the dispersive properties are set at the design stage and cannot
be adjusted once the device has been fabricated [11–14,24,25].
Hence, they are subject to fabrication inaccuracies, surface
contamination, and the presence of defects. Post-process
tuning mechanisms are therefore of great interest to adjust
or correct a posteriori the waveguide dispersion to match the
target value.

Here we show that it is possible to fine-tune the dispersion
profile a posteriori by adding a chalcogenide cladding layer on
top of a highly nonlinear SiGe waveguide, introducing a simple
post-processing tool to control the supercontinuum dynamics
and its properties.

Several approaches have been proposed for post-process tun-
ing of optical properties in optical fibers [26,27] and photonic
crystals [28–31]. However, the restricted number of design
parameters makes post-process dispersion control of wave-
guides trickier. In this regard, the addition of a chalcogenide
top cladding appears as a simple and elegant tool for post-
trimming the dispersion, depending on the actual structure
produced by fabrication. Chalcogenide glasses have been used
for post-tuning distributed feedback lasers [32], quantum
cascade lasers [33], photonic crystal cavities [34–36], and pho-
tonic crystal waveguides [37]. Here we report a proof of con-
cept demonstration in which the deposition of a chalcogenide
top cladding on nonlinear SiGe/Si waveguides enables us to
tune the group velocity dispersion of the fundamental mode.
In our example, the group velocity dispersion changes from
anomalous to normal at the pump wavelength, enabling us
to observe supercontinuum generation from 3.1 up to
5.5 μm in the normal dispersion regime. This demonstrates
that the heterogeneous integration of materials can be used
as a post-processing technique to tune the waveguide dispersive
properties and therefore control supercontinuum generation.
We numerically show that the dispersion can be further

adjusted by setting the thickness of the deposited chalcogenide
layer within a reasonable 100 nm resolution tolerance. The
related effect on dispersion is equivalent to enlarging the
waveguide by about 15% but without degrading the waveguide
nonlinear response.

2. DESIGN AND FABRICATION

A 3.75 × 2.7 μm2 cross section, 5 cm long Si0.6Ge0.4 on a
Si waveguide (see [24] for details on the fabrication process)
was coated with a 1.26 μm thick layer of a chalcogenide
Ge11.5As24Se64.5, deposited by thermal evaporation [38].
The chalcogenide refractive index is considered constant and
equal to 2.6 [39]. The waveguide is operated as a trans-
verse-electric (TE) single-mode structure at the pump
wavelength of 4.15 μm. Figure 1(a) shows scanning electron
microscope (SEM) and atomic force microscope (AFM) images
(top and bottom, respectively) of the waveguide surrounded by
the chalcogenide layer. The top parts of Figs. 1(b) and 1(c)
show the schematic of the waveguide before and after the dep-
osition of the chalcogenide, respectively, while the correspond-
ing simulated mode profiles (log scale) at 4.15 μm are shown in
the bottom parts. Table 1 summarizes the key parameters of the
waveguide, with and without the chalcogenide top cladding,
simulated by a finite-difference mode solver. Due to the low
refractive index difference between the core and top cladding,
the effective area of the mode slightly increases by ∼10% when
the chalcogenide cladding is added; however, the mode confine-
ment in the core of the waveguide remains unaffected and
high (∼94%). In principle, this allows us to maintain a high
nonlinear efficiency, as dictated by the strong light interaction
with the nonlinear SiGe core material.

Even though the influence of the cladding on the linear
optical properties of the waveguide was not experimentally
investigated, the relatively low mode energy overlap with the
chalcogenide top cladding (0.52% at 4.15 μm, see Table 1)
suggests that the impact of the chalcogenide surface roughness
[Fig. 1(a)] on optical losses is limited. Scattering losses are dom-
inant in high-index contrast waveguides and have less impact in
the mid-infrared as they scale as λ−4 [7]. Indeed, numerical

Fig. 1. (a) SEM (top) and AFM (bottom) images of the waveguide after the deposition of chalcogenide. Schematic (top) and simulated mode
profile at 4.15 μm for the waveguide before (b) the deposition of chalcogenide and for the (c) chalcogenide-clad waveguide. Simulations were
performed using Lumerical and are represented with a logarithmic scale.
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simulations, taking into account the roughness measured
by AFM [rms � 15 nm, see Fig. 1(a) bottom] at both the
core/chalcogenide cladding and top chalcogenide interfaces,
show that the impact of scattering is negligible (∼0.2 dB∕cm
of extra loss).

Figure 2(a) shows the spectral dependence of the effective
area and the mode confinement factor in the core of the wave-
guide with and without the chalcogenide layer. The dispersion
profile and the effective index are shown in Fig. 2(b).
Considering the initial dimensions of the air-clad waveguide,
the related anomalous dispersion at the pump wavelength
shifts from anomalous to normal when the chalcogenide clad-
ding is added. At the same time, the waveguide cutoff wave-
length, which is characteristic of these vertically asymmetric
waveguides [24], is slightly increased from 6 to 6.52 μm.

3. SUPERCONTINUUM GENERATION

We used the same setup, as described in Ref. [24], to couple
light into the waveguide and collect the output spectra. The
waveguide was pumped at 4.15 μm with ∼200 fs pulses deliv-
ered by a 200 mW tunable OPA laser source (MIROPA-fs,
Hotlight Systems) with a repetition rate of 63 MHz. Optical
waveplates and polarizers were used to control the power and
polarization of the optical pulses, which were coupled to the
waveguide with a set of chalcogenide lenses. The coupling loss
was assumed to be the same at each facet and equal to those
inferred in Ref. [24] (−4.9 dB). The output spectrum was
recorded by a liquid-nitrogen-cooled MCT (HgCdTe) photo-
detector positioned at the output of the spectrometer. A lock-in
detection technique was used to minimize the impact of
thermal noise.

Figure 3 shows the experimental output spectra for increas-
ing coupled peak power between 50 and 2.35 kW (correspond-
ing to up to 50 mW of laser average power) obtained by
pumping an air-clad waveguide [Fig. 3(a)] or a chalcoge-
nide-clad waveguide [Fig. 3(b)], with the same SiGe core cross-
section dimensions. The air-clad waveguide is slightly longer
(7 cm) than the one with the chalcogenide cladding (5 cm).
In both cases, a relatively broad supercontinuum was generated,
spanning from 2.63 up to 6.18 μm (with a −30 dB bandwidth
of 3.55 μm) and from 3.1 to 5.5 μm (with a −30 dB bandwidth
of 2.4 μm) for the air cladding and chalcogenide cladding
case, respectively. Some differences can be observed, which
illustrate the changes to the dispersion caused by the addition
of the chalcogenide top cladding. First, the spectrum is broader
for the air-clad case as compared to the chalcogenide-clad
case. This is expected for supercontinuum generated in the

Table 1. Cutoff Wavelength, Group Velocity Dispersion,
Effective Area, Mode Energy Confinement, and Effective
Index at the Pumping Wavelength (4.15 μm) of the 3.75 ×
2.7 μm2 Cross-Section Waveguide with an Air-Clad or a
1.26 μm Thick Chalcogenide-Top Cladding

Parameter Air Clad
Chalcogenide

Clad

Cutoff wavelength (μm) 6 6.52
GVD (ps/nm/km) at 4.15 μm 11.6 (anomalous) −12.1 (normal)
Aeff (μm2) at 4.15 μm 6.35 6.9
Mode confinement (%) in the
SiGe core at 4.15 μm

94.3 94.4

Mode confinement (%) in the
top cladding at 4.15 μm

0.0032 0.52

Effective index at 4.15 μm 3.496 3.504

Fig. 2. (a) Calculated effective area (continuous lines) and mode confinement (dashed lines) for the air-clad (black) and chalcogenide-clad (blue)
waveguide. (b) Calculated group velocity dispersion (continuous lines) and effective area of the mode (dashed lines) for the air-clad (black) and
chalcogenide-clad (blue) waveguide. The red dashed line indicates the pump wavelength (4.15 μm).

Fig. 3. Spectra measured out of the (a) 7 cm long air-cladded and (b) 5 cm long chalcogenide-cladded SiGe/Si waveguide with the same 3.75 ×
2.7 μm2 SiGe core cross-section dimensions for increasing coupled peak power.
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anomalous dispersion rather than in the normal dispersion
regime. Second, the supercontinuum amplitude is quite uneven
in the long wavelength regime for the air-clad case, while the
longer wavelength region of the supercontinuum spectrum
generated by the chalcogenide top cladding device appears
comparatively more regular.

This contrast in the long wavelength spectral signature is
also a characteristic difference between the supercontinuum
generation primarily in the anomalous dispersion regime
(driven by soliton fission) and the normal dispersion regime
(driven by self-phase modulation and optical wave breaking).
We stress that the 2 cm difference in waveguide length should
not be the cause of the observed differences between the super-
continua, as the spectrum of the air-clad anomalous dispersion
case does not evolve much beyond the soliton fission length
(∼1.4 cm), as was investigated in Ref. [24].

The supercontinuum generation process was simulated
for both waveguides by numerically solving the nonlinear
Schrödinger equation using the split-step Fourier method
(see supplement in the Ref. [24] for more information). The
Taylor expansion coefficients of the propagation constant were
considered up to the tenth order. As a reasonable approxima-
tion, we used the same parameters for the linear loss, the non-
linear effects (Kerr and four photon absorption), the free-carrier
absorption and dispersion, self-steepening, and the Raman
effects as those used in Ref. [24] for the simulation of the
air-clad waveguide pumped at 4.15 μm. Indeed, the chalcoge-
nide compound is transparent deep into the mid-infrared,
and its nonlinear contribution was neglected, as only 0.5%
of the mode field energy overlaps with the chalcogenide clad-
ding (see Table 1).

The experimental results of Fig. 3 are in good agreement
with the simulations shown in Fig. 4; the bandwidth in par-
ticular is relatively well reproduced by the simulations. Some
of the discrepancies, like the lobes at shorter wavelengths in
the measured spectra on Fig. 3(b), are likely due to the coupling
of light with higher-order modes and absorption to CO2
(around 4.2 μm) and hydrocarbons (around 3.2 μm) that
are not taken into account in our simulation. These effects
indeed equally affect the short wavelength spectral signature
for both waveguides.

4. RESULTS AND DISCUSSION

A. Dispersion Tailoring

We have shown experimentally that by adding a chalcogenide
layer on top of a SiGe/Si waveguide, a change in the dispersion
occurs, shifting, in this particular example, from an anomalous
to normal dispersion at the pump wavelength. To expand on
our findings, we performed a numerical analysis of the impact
of the chalcogenide layer thickness on the group velocity
dispersion [see Fig. 5(a)]. As the chalcogenide thickness in-
creases, the overall dispersion gradually decreases, shifting
towards normal values when depositing more than 500 nm
of chalcogenide. This change is accompanied by a variation
in the ZDWs and the flattening of the dispersion profile. The
last trend is better observed in Fig. 5(b), which plots the
corresponding third-order dispersion (β3). The third-order
dispersion becomes smaller as the chalcogenide thickness
increases, decreasing by more than a half (from 21.4 to
9.8 × 10−10 ps3∕μm) from the air-clad case to the 1.26 μm
thick chalcogenide-clad case, indicating that a flatter profile

Fig. 4. Simulated spectra out of the (a) 7 cm long air-cladded and (b) 5 cm long chalcogenide-cladded waveguide for increasing coupled peak
power.

Fig. 5. (a) Calculated group velocity dispersion (GVD) for different thicknesses of the chalcogenide layer. (b) Corresponding third-order
dispersion. The inset shows a schematic of the SiGe waveguide with chalcogenide cladding.
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of the group velocity dispersion is obtained. Moreover, the
dispersion profile converges as the chalcogenide thickness
approaches 1 μm, in agreement with the confinement of the
mode in the waveguide core. As a flat profile of the dispersion
is generally targeted for supercontinuum generation, both in
the anomalous and in the normal dispersion regime, the pos-
sibility of controlling the dispersion profile and the position of
the ZDWs by simply changing the thickness of the chalcoge-
nide layer is a convenient post-process dispersion engineering
tool. When supercontinuum generation in the anomalous
dispersion regime is targeted, the position of the ZDWs deter-
mines the spectral location of the dispersive waves, which are
located at the extreme parts of the spectrum. Therefore, the
dispersive waves and thus the supercontinuum bandwidth
and center wavelength can be selectively tuned by changing
the thickness of the chalcogenide cladding.

The most common technique to tailor the dispersion profile
of a waveguide with a given thickness is to change its width at
the design stage. Figure 6 shows the group velocity dispersion
of an air-clad 2.7 μm thick SiGe/Si waveguide for different
widths. By increasing the width, we observe, similarly to the
hybrid case, that the group velocity dispersion decreases, while
the ZDWs are pushed toward longer wavelengths. However,
the dispersion profile is less sensitive to the change of the wave-
guide width than to the thickness of the additional chalcoge-
nide layer. For instance, a wide waveguide (∼25% larger)
is needed in order to substantially flatten the dispersion.
Increasing the waveguide width could lead to a multi-mode re-
gime and significantly increases the effective area, which may
negatively impact the strength of nonlinearities, expressed
through the factor γ � 2πn2∕λAeff , where n2 is the nonlinear
index and Aeff is the effective area. By contrast, we have shown
that the additional chalcogenide layer only moderately affects
the effective area (see Table 1).

As a comparison example, the black dashed curve in Fig. 6
shows the dispersion profile of a 3.75 μm wide waveguide with
a 250 nm thick chalcogenide top cladding. The dispersion
curve is similar to the one of a 4.3 μm wide air-clad waveguide
(green curve). The maximum group velocity dispersion shifts
from 11.6 ps/nm/km down to 7.53 ps/nm/km by widening the
air-clad waveguide and down to 7.67 ps/nm/km by adding the
chalcogenide layer, while the ZDWs shift from 3.8 and

4.89 μm to 4.07 and 5.03 μm and to 4.02 and 4.94 μm,
respectively.

While the tuning of the dispersion properties is very similar
with the two techniques, the effective area of the mode is lower
in the 250 nm thick chalcogenide-clad case (6.77 μm2, com-
pared to 7.14 μm2 in the 4.3 μm wide air-clad case), leading to
a higher γ factor. The undesirable increase in the effective area
of the air-clad waveguide is even more severe when targeting
normal dispersion for which a waveguide width of more than
5 μm is needed, resulting in a γ factor of less than
0.45 �Wm�−1, compared to γ � 0.57 �Wm�−1 for the chalco-
genide-clad waveguide. Importantly, we reemphasize that the
chalcogenide layer can be added as a post-process, and the
thickness of the layer could be chosen to trim the dispersion
properties after the fabricated waveguide is characterized. A
thickness resolution of the chalcogenide layer around 100 nm
is easily achievable.

B. Outlook

Besides the potential for adjusting the waveguide dispersion by
controlling the thickness of a chalcogenide top cladding, the
high photosensitivity of chalcogenide glasses [38] can be used
to locally change their refractive index, density, and thickness
through simply illuminating this material with light energy
above their band gap. Exploiting the photosensitivity of these
glasses is thus, in principle, an additional tool for post-
trimming the properties of individual waveguides not only to
relax the fabrication constraints but also to tailor the dispersion
along the waveguide and to optimize the design of individual
structures for different environments and applications [40].
Finally, although it was not exploited here, chalcogenide glasses
possess a third-order optical nonlinearity up to a thousand
times higher than silica glasses, [41] minimizing the potential
negative impact that an additional top cladding might have on
the effective nonlinear parameter.

5. CONCLUSION

We presented a simple post-process technique to fine-tune the
dispersion profile of a nonlinear SiGe on an Si waveguide
through adding a top chalcogenide layer for changing the prop-
erties of a chip-based generated supercontinuum. We demon-
strated the utility of this approach through the generation of a
mid-IR supercontinuum and have compared it with more
traditional geometric changes of the waveguide dimensions.

Supercontinuum generation in both the normal and anoma-
lous dispersion regimes requires group velocity dispersion pro-
files that are as low in magnitude and as flat as possible.
Nanowaveguides that are used in integrated platforms can fulfill
these strict requirements through design adjustment. They are,
however, very sensitive to fabrication inaccuracies, surface
roughness, surface contamination, and the presence of defects,
resulting in deviations of the final device from the targeted
dispersion profile. Therefore, a post-process approach that al-
lows us to trim the group velocity dispersion depending on the
actual structure produced by fabrication is a highly attractive
complementary tool for optimizing chip-based supercontin-
uum generation. Finally, the wide transparency window of
both the SiGe core and the chalcogenide cladding makes this

Fig. 6. Calculated group velocity dispersion for different waveguide
widths (the thickness is fixed to 2.7 μm) and for a 3.75 μm wide wave-
guide with 250 nm thick chalcogenide top cladding (dashed black
curve). The dashed black line indicates the zero dispersion. The
out inset shows a schematic of the air-clad waveguide.
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platform well suited to extend mid-IR coherent supercontin-
uum generation toward longer wavelengths, covering a great
part of the mid-IR region, with potential applications in bio-
medical imaging, medical and environmental sensors, food
quality analysis, and security.
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Conclusion  

 In this chapter, we discussed the dispersion trimming technique performed after the 

waveguide fabrication and the nonlinear supercontinuum measurements associated with the 

change in the waveguide dispersion profile (within a post-processing step). This technique can be 

used to match the dispersion of a fabricated waveguide to an intended design or to optimize the 

dispersion profile by finely tuning the zero-dispersion wavelengths.  

 In this particular example, we reported the use of a simple dispersion trimming technique 

to shift dispersion from anomalous to the all-normal regime. The technique consists of adding a 

chalcogenide cladding as a post-processing step on the top of a silicon germanium-on-silicon 

waveguide. We have compared this technique with more traditional techniques relying on 

geometric changes of the waveguide dimensions and found that waveguides with chalcogenide top 

cladding have lower effective area and flatter dispersion (i.e. lower 𝛽3). Finally, we demonstrated 

the utility of this approach through the generation of mid-infrared supercontinuum. The result 

reported here is, to our knowledge, the first mid-infrared supercontinuum generation in an all-

normal dispersion regime on a silicon-based chip. Consequently, the resulting supercontinuum 

spectrum is smoother than using a more traditional anomalous dispersion regime.  

 As a cladding material, we used the selenide glass owing to its wide transparency window 

to around 16µm. The wide transparency window and well suited refractive index of the 

chalcogenide cladding make this technique a highly attractive complementary tool for optimizing 

the dispersion of the on-chip waveguides operating in the mid-infrared. 
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Chapter 5.  

Conclusion and perspectives 

 The purpose of this thesis was to investigate mid-infrared supercontinuum generation on a 

silicon-based chip. During the course of this work, performed in collaboration between several 
French and Australian laboratories under the LIA (Laboratoire International Associé) ALPhFA 

(Associated Laboratory for Photonics between France and Australia) initiative, I have demonstrated 

the generation of a bright, coherent and octave-spanning mid-infrared supercontinuum in silicon 

germanium-on-silicon waveguides. This could prove important for on-chip broadband molecular 

sensing and spectroscopy applications. Such a supercontinuum has the potential to become an 

essential ingredient for future mid-IR lab-on-a-chip that can be used at the point-of-care. An 

application such as early cancer diagnosis via exhaled breath analysis could be envisioned in the 

long-term [89].  

 Previously reported results in silicon-on-insulator, silicon germanium-on-insulator, and 

silicon-on-sapphire platforms demonstrated supercontinua limited to 3.7 µm and 5.5 µm that are 

the onset wavelengths of the absorption in silica and sapphire substrates, respectively. Moreover, 

the coherence properties of the reported results were not analyzed. The need to generate coherent 

and broadband supercontinuum light beyond 5.5 µm, to cover atmospheric absorption band from 4 

to 8 µm, is calling for the use of alternative mid-infrared material platforms that are compatible 

with CMOS fabrication processes. The use of germanium, the material initially used in 

semiconductor electronics, has been proposed. The good performance reached with this platform 

can be attributed to several factors: a reduced lattice mismatch between the high index Si0.6Ge0.4 

core material and the Si cladding that provides low loss waveguides as well as a theoretically 

predicted strong Kerr index, and low multiphoton absorption losses. 

 To achieve an octave-spanning supercontinuum, both a strong nonlinearity and low 

dispersion are required. Considering the low index contrast between SiGe and Si, which is around 

0.2 for 40% Ge in SiGe, I showed that a low anomalous dispersion regime could be achieved in an 

air clad waveguide geometry. Due to their asymmetry, the air clad ridge waveguides supported 

non-degenerate quasi-TE and quasi-TM linearly polarized modes. This reduced the power 

fluctuation when coupling light into the waveguide and contributed to the higher spectral 

coherence provided that the polarization noise was reduced. However, the non-symmetric 

waveguide geometry also induced a mode cutoff at long wavelengths. Achieving a longer cutoff 

wavelength can be generally obtained with a larger waveguide cross-section. Therefore, there was a 

tradeoff in achieving strong confinement and single-mode operation versus achieving low loss and 

long cutoff wavelength. Taking into account these constraints, two sets of waveguides were 

designed: the first one with a large cross-section with long cutoff wavelength designed to achieve a 

large bandwidth and the second one with comparatively “small” cross-section designed to operate 

in the single-mode regime and to achieve stable and coherent supercontinuum.   

 In the second chapter, I demonstrated a supercontinuum from a dispersion-engineered 

silicon germanium-on-silicon waveguide covering 1.4 octave in the mid-infrared. The spectrum 

spanned up to the 8.5 µm wavelength, which is the longest wavelength generated on a silicon chip, 
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longer than the best previous result reported in the silicon-on-sapphire platform of 5.5 µm. The 

generated supercontinuum reached the onset of the silicon absorption in the mid-infrared (i.e. 

where the absorption loss in silicon is larger than 2 dB/cm). Moreover, the supercontinuum 

spectrum covers the entire atmospheric absorption band from 4 to 8 µm. 

 The Si0.6Ge0.4/Si waveguide propagation loss was measured using the cutback method. 

Thanks to a tight mode confinement and strong overlap of the field intensity in the core, a 

propagation loss as low as 0.23 dB/cm was achieved. This has been the lowest propagation loss 
(~0.2 dB/cm) of any Si-based waveguide in the mid-IR to date. In addition, we reported a low four-

photon absorption coefficient that was extracted comparing our results with our numerical model. 

The low propagation loss combined with the low nonlinear loss yielded high on-chip power. More 

than 10 mW on-chip SC power was generated with ~50% power conversion efficiency. This result 

is an improvement of more than an order of magnitude with respect to the previously reported 

result in silicon germanium-on-silicon platform [143]. 

 A spectrally bright supercontinuum, demonstrated in the second chapter, is desirable for 

the mid-infrared molecular spectroscopy. In addition to larger bandwidth and high brightness, high 

spectral coherence is also required for high-sensitivity ultra-fast molecule detection. Indeed, 

incoherent supercontinuum pulse suffers from spectral fluctuations from pulse to pulse that limits 

the sensitivity of the detection. I discussed the coherence properties of the mid-infrared 

supercontinuum generated on our platform, in the subsequent chapter.  

 In the third chapter, we actually demonstrated the high-coherence of an octave-spanning 

mid-IR supercontinuum generated in our silicon germanium-on-silicon integrated platform. The 

coherence property was numerically investigated for the supercontinuum presented in the second 

chapter, highlighting the usefulness of the achieved result for a lot of applications. To bring 

additional insights into the origin of this coherence, we reported a detailed analysis of the 

supercontinuum generation dynamics, demonstrating a new approach that can be used to achieve 

high coherence without the constraining use of very short pulses and short waveguides. The high 

coherence of the pump pulse was preserved owing to a specific dispersion profile where an 

anomalous dispersion regime was surrounded by two closely spaced zero-GVD wavelengths. In 

short, a significant part of the spectrum is generated in the normal dispersion regime, resulting in 

an effective reduction of the soliton order and decreasing the impact of modulation instability and 

other mechanisms that typically degrade coherence. This makes the reported result the first 

(numerically assessed) coherent mid-IR supercontinuum in this novel type of nonlinear platform – 

silicon germanium-on-silicon. 

 The coherence of the supercontinuum has been numerically investigated. In the future, it 

would be important to experimentally explore the coherence properties of the SC pulses, even 

though this is a challenging task in the mid-infrared wavelength range. Fully coherent 

supercontinuum pulses can be recompressed. High coherence can thus be proved by measuring the 

auto-correlation of the compressed pulse. More often, the coherence is assessed through the 

interference pattern between two subsequent SC pulses. However, to date, this method has not 

been reported for SC in the mid-infrared. In the mid-infrared, only the coherence characterization 

by the relative intensity noise (RIN) measurements has been reported. 

 The coherence of distinct spectral components has been used as a tool to analyze the 

supercontinuum generation dynamics. The calculation of the degree of coherence at different 
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wavelength is indeed useful, as it allows one to distinguish between different spectral features in 

the supercontinuum and attribute them to either coherent and incoherent processes, e.g. dispersive 

waves and modulation instability. 

 The fourth chapter showed how adding a chalcogenide top cladding onto our SiGe/ Si 

waveguides could be used as a post-fabrication step to trim the waveguide dispersion in the mid-

infrared. The selenide glass was used as a top cladding material owing to its wide transparency 

window to around 16µm. This dispersion trimming method can be used to optimize the waveguide 
dispersion profile by fine-tuning of the zero-GVD wavelengths, to compensate for any deviation 

from the targeted dispersion profile and to shift the dispersion profile of a waveguide, from 

anomalous to all normal, for instance. This can be useful to achieve a specific dispersion profile as 

that discussed in the third chapter where the pump is enclosed by two closely spaced zero-GVD 

wavelengths. The experimental dispersion profile of a fabricated waveguide can deviate from the 

intended design due to inaccuracies in both modeling and fabrication steps. In this scenario, this 

technique allows for compensating, as part of a post-fabrication step, the deviations from the 

targeted dispersion. In chapter 4, as a proof of concept of this capability, we have tuned the 

dispersion of a SiGe/ Si waveguide from anomalous to all normal dispersion. Dispersion trimming 

was numerically investigated. The fourth chapter then reported supercontinuum in all normal 

dispersion that generally maintains the coherence of the sub-picosecond pump as the SC dynamics 

is dominated by the coherent self-phase modulation processes. Measuring the waveguide 

dispersion could be useful to experimentally support our numerical results.  

 The results achieved in this thesis clearly establish the silicon germanium-on-silicon as a 

relevant platform for mid-infrared silicon photonics. By demonstrating a bright and broadband 

supercontinuum up to 8.5 µm, we showed the full potential of this platform. The generated 

supercontinuum is well suited for on-chip sensing applications as it covers the entire atmospheric 

absorption band from 4 to 8 µm. Moreover, the high coherence of the octave-spanning 

supercontinuum allows for f-to-2f interferometry that is required to stabilize the supercontinuum 

spectrum for frequency metrology on a chip.  

 As a perspective, we consider exploring alternative material platforms to further improve 

our supercontinuum properties (in terms of bandwidth, brightness and coherence). Considering the 

good nonlinear properties of silicon germanium, as demonstrated in this thesis, the germanium-on-

silicon germanium platform could be a solution to extend the operation wavelength range beyond 

8.5µm on a CMOS compatible chip. The lattice mismatch between germanium and silicon 

germanium is less than between germanium and pure silicon. This could potentially reduce the 

density of threading dislocations at the interface that is required to achieve low loss waveguides in 

this platform. 

 In this thesis, a femtosecond laser operating around 4 µm wavelength has been used to 

generate the supercontinua. Regarding the use of this pump, I identified two challenges for future 

work. The first challenge is to achieve coherent supercontinuum spanning an octave in the mid-

infrared under (less constraining) picosecond pulse excitation. The second challenge is to achieve 

bright supercontinuum at shorter pump wavelength (λ < 4µm). These two aspects could contribute 

to facilitate the assembly of the demonstrated supercontinuum with a more compact pump source, 

thereby helping the widespread deployment of this broadband light technology. 
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 Shifting anomalous dispersion to longer wavelengths in simple ridge waveguide is generally 

accompanied by a red-shift of the first zero-dispersion wavelength. This requires a long pump 

wavelength. Certainly, this will be an issue when exploiting the entire transparency window of the 

germanium up to 15µm. More advanced designs than a simple ridge waveguide will be required. 

The other solution might be to exploit a multimode waveguide. In a multimode waveguide, the 

dispersion of the higher order mode can be designed for near-infrared operation and the dispersion 

of the fundamental mode for mid-infrared. Provided that the modes are coupled, a short 

wavelength pump can be used. 

 Finally, the mid-infrared supercontinuum achieved here has been suggested for molecular 

detection. Silicon germanium-on-silicon is realized in a CMOS compatible fabrication process 

allowing for the integration of many photonics components and micro-fluidics on the same chip. 

This advantage should be exploited to demonstrate the high sensitivity molecule detection scheme 

using a coherent mid-infrared supercontinuum.   
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