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Abstract 11 

Soil moisture has a pronounced effect on Earth surface processes. Global soil moisture is 12 

strongly driven by climate, whereas at finer scales, the role of non-climatic drivers 13 

becomes more important. We provide insights into the significance of soil and land surface 14 

properties in landscape-scale soil moisture variation by utilising high-resolution Light 15 

Detection and Ranging data (LiDAR) and extensive field investigations. The data consist of 16 

1200 study plots located in a high-latitude landscape of mountain tundra in north-western 17 

Finland. We measured the plots three times during growing season 2016 with a hand-held 18 

time-domain reflectometry sensor. To model soil moisture and its temporal variation, we 19 

used four statistical modelling methods: generalized linear models, generalized additive 20 

models, boosted regression trees, and random forests. The model fit of the soil moisture 21 

models were R² = 0.60 and RMSE 8.04 VWC% on average, while the temporal variation 22 

models showed a lower fit of R² = 0.25 and RMSE 13.11 CV%. The predictive 23 

performances for the former were R² = 0.47 and RMSE 9.34 VWC%, and for the latter R² = 24 

0.01 and RMSE 15.29 CV%. Results were similar across the modelling methods, 25 

demonstrating a consistent pattern. Soil moisture and its temporal variation showed strong 26 

heterogeneity over short distances; therefore, soil moisture modelling benefits from high-27 

resolution predictors, such as LiDAR based variables. In the soil moisture models, the 28 

strongest predictor was SAGA wetness index (SWI), based on a 1 m² digital terrain model 29 

derived from LiDAR data, which outperformed soil predictors. Thus, our study supports the 30 

use of LiDAR based SWI in explaining fine-scale soil moisture variation. In the temporal 31 

variation models, the strongest predictor was the field-quantified organic layer depth 32 

variable. Our results show that spatial soil moisture predictions can be based on soil and 33 

land surface properties, yet the temporal models require further investigation.  34 

  35 
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Introduction 36 

Earth surface processes and landforms (Johnson and Sitar 1990, Jaesche et al. 2003, 37 

Hoover and Rogers 2016) and Earth-atmosphere interactions (Koster et al. 2004, 38 

Seneviratne et al. 2006, Jung et al. 2010) are profoundly impacted by soil moisture. Soil 39 

moisture plays a crucial role in water, energy, and biogeochemical cycles (Natali et al. 40 

2015, Maxwell and Condon 2016, Tuttle and Salvucci 2016). In high-latitude landscapes, 41 

soil moisture is closely related to e.g., permafrost dynamics (Fisher et al. 2016), 42 

shrubification of the tundra (Ackerman et al. 2017), and increasing greenhouse gas 43 

emissions (Kwon et al. 2016). The importance of soil moisture research is magnified by 44 

rising temperatures in the Arctic (Serreze and Barry 2011, Xu et al. 2013, Winkler et al. 45 

2016) that lead to earlier snowmelt and increased evaporation and further cause drought 46 

later in the snow-free period (Williams et al. 2009, Blankinship et al. 2014, Harpold and 47 

Molotch 2015). Soil moisture projections are further obscured by the substantial 48 

uncertainties and limitations concerning precipitation simulations (Huntington 2006, 49 

Bintanja and Andry 2017, Pfahl et al. 2017).  50 

Soil moisture, unlike precipitation, can significantly vary over short distances (Engstrom et 51 

al. 2005, le Roux et al. 2013). Broad-scale soil moisture patterns are driven by climate 52 

(Seneviratne et al. 2010, Legates et al. 2011, McColl et al. 2017). However, at finer scales 53 

soil moisture variation is influenced by local soil and land surface properties as well (e.g., 54 

Grayson et al. 1997, Wilson and Gallant 2000, Korres et al. 2015). Topography, such as 55 

slope angle and upslope ground-surface conditions, control the downslope flow of water 56 

(Beven and Kirkby 1979, Isard 1986, Crave and Gascuel-Odoux 1997). Soil properties, for 57 

example soil texture, regulate the amount of water percolating the soil (Cosby et al. 1984, 58 

Famiglietti et al. 1998, Teuling and Troch 2005). However, the importance of soil and land 59 
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surface properties and their control over spatio-temporal variation of soil moisture has not 60 

been yet explicitly investigated in high-latitude landscapes. 61 

The role of soil moisture is often underestimated in studies regarding high-latitude and 62 

high-alpine landscapes, due to the lack of data (Kammer et al. 2013, le Roux et al. 2013, 63 

Myers-Smith et al. 2015). Spatially extensive soil moisture measurements are challenging, 64 

since they are time-consuming, expensive, and hard to obtain (Famiglietti et al. 2008, 65 

Hajek et al. 2013). Thus, terrain-based surrogates, such as wetness indices, are 66 

commonly used in the absence of field-obtained soil moisture data. Wetness indices 67 

describe the topographic control over the steady state of soil moisture and its spatial 68 

variation (Murphy et al. 2009, Southee et al. 2012, Buchanan et al. 2014). Therefore, other 69 

factors (e.g., precipitation events, hydrological seasons, and soil conditions) can cause 70 

variance between measured soil moisture values and wetness index values (Western et al. 71 

2002). Wetness indices portray general soil moisture patterns, especially in deeper soils 72 

(Western et al. 2002, Murphy et al. 2011, Southee et al. 2012). Whereas, at finer scales 73 

and in shallow soils, wetness indices may encounter challenges (Penna et al. 2009, le 74 

Roux et al. 2013, Ågren et al. 2014). This is due to the fact that often indices are based on 75 

low-quality terrain data that portray relatively poorly or ignore completely 1) local 76 

topography, such as minor flow channels and depressions (Sørensen and Seibert 2007, 77 

Ågren et al. 2014), and 2) variation in soil factors, for example soil texture, permeability, 78 

and soil depth (Jutras and Arp 2011, Oltean et al. 2016).  79 

Soil moisture research benefits significantly from LiDAR (Light Detection And Ranging) 80 

technology (e.g., Sørensen and Seibert 2007, Murphy et al. 2009), which enables high-81 

resolution terrain mapping (Wehr and Lohr 1999). Rapidly evolving LiDAR is widely 82 

available and has recently become an essential remote sensing tool commonly used for 83 

developing more accurate wetness indices (Jaboyedoff et al. 2012). Compared to coarse-84 
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resolution topographic data, LiDAR is superior, as it has the capacity to provide terrain 85 

information at very fine-resolutions (Sørensen and Seibert 2007, Southee et al. 2012, 86 

Leempoel et al. 2015). However, few studies have utilised LiDAR for topographic 87 

investigations in the Arctic (Sørensen et al. 2006) regardless of its great potential in 88 

complimenting field-obtained soil moisture data (Lookingbill and Urban 2004, Famiglietti et 89 

al. 2008). Furthermore, the benefits of remote sensing are notable in high-latitude and 90 

high-altitude regions, which are often inaccessible. 91 

Temporal variation of soil moisture plays an essential role in land-atmosphere feedbacks 92 

(e.g., Tuttle and Salvucci 2016), vegetation and soil ecosystem dynamics (Sylvain et al. 93 

2014, Trahan and Schubert 2016), geomorphological hazards (Jaesche et al. 2003), and 94 

the global carbon cycle (Falloon et al. 2011). In addition, global warming amplifies 95 

temporal variation of soil moisture by intensifying aridity and droughts (Dai 2011, 2013, 96 

Berg et al. 2016). In the high-latitudes, this is realised as increasing frequency of heat 97 

waves (Hauser et al. 2016), tundra fire susceptibility (Sitch et al. 2003), and the 98 

disappearance of waterbodies across the Arctic (Smith et al. 2005, Smol and Douglas 99 

2007, Andresen and Lougheed 2015). Thus, there is a need for more research focused on 100 

temporal variation of soil moisture. 101 

This is the first study utilising spatially extensive high-resolution data to examine soil 102 

moisture variation in a high-latitude landscape. We conducted an intensive and systematic 103 

soil moisture investigation, with 1200 study plots across an environmentally 104 

heterogeneous study area in north-western Finland. Therefore, this examination 105 

represents a powerful study system to scrutinise the importance of soil and topography in 106 

controlling spatio-temporal soil moisture variation. The aim of this study was 1) to quantify 107 

both spatial and temporal variation of soil moisture across a high-latitude landscape; 2) to 108 

examine the influence of soil and topography variables on soil moisture pattern and its 109 
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temporal variation in a multivariate system; and 3) to evaluate the predictive performance 110 

of these variables to model soil moisture variation at fine spatial resolution. 111 

 112 

Study area  113 

The study area extended 3 km² covering various environmental gradients between two 114 

mountain massifs, Mount Saana and Mount Jehkas, in north-western Finland (69°03´N 115 

20°51´E; Figure 1). The relative elevation reaches nearly 250 m, with the highest point 116 

located on the northern slope of Mount Saana (808 m a.s.l.). The massifs form the 117 

geological margin of the Finnish Caledonian area overlaying a Precambrian base 118 

(Lehtovaara 1995). An organic layer, with varying thickness up to 70 cm, covers nearly the 119 

whole area (Figure 7C). The main vegetation type is dwarf-shrub dominated mountain 120 

heath. The treeline cuts through the south-western corner of the area with a mountain 121 

birch forest (Betula pubescens ssp. czerepanovii; ca. 650 m a.s.l.). The climate of the 122 

study area is affected by its high-latitude location in the Scandes Mountains and its close 123 

proximity to the Arctic Ocean (Aalto and Luoto 2014). July is the warmest and wettest 124 

month (June: 7.5°C, 42 mm; July: 11.2°C, 73 mm; August: 9.6°C, 47 mm; 1981 – 2010), 125 

measured at the nearby Kilpisjärvi meteorological station (1.5 km from the study area, 126 

69°05´N 20°79´E; 480 m a.s.l.) (Pirinen et al. 2012). 127 

Figure 1. The study setting consists of 1200 plots, of which 1043 (black dots) were 128 

analysed. The white dots represent the remaining 157 plots, from which all three soil 129 

moisture measurements were not possible to obtain, due to snow cover or extremely 130 

shallow soils. Red indicates vegetation and blue rock surfaces in the false colour aerial 131 

image (0.5 m resolution), provided by the National Land Survey of Finland. This figure is 132 

available in colour at wileyonlinelibrary.com/journal/espl 133 
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 134 

Materials and methods 135 

Soil moisture data 136 

Soil moisture data consisted of soil moisture and its temporal variation. The study setting 137 

consisted of 1200 study plots of 1 m², systematically sampled at 50 m intervals (Figure 1). 138 

Soil moisture was measured on three moisture campaigns (June, July, and August 2016) 139 

each lasting three to five consecutive days (Figure 2). Soil moisture, measured as 140 

volumetric water content (VWC%), was obtained with a hand-held time-domain 141 

reflectometry sensor (FieldScout TDR 300; Spectrum Technologies Inc., Plainfield, IL, 142 

USA) up to a depth of 7.5 cm, taking the mean of three measurements per plot during 143 

each campaign. We calibrated the devices using air and distilled water as advised by the 144 

manufacturer and verified that the devices showed similar soil moisture values with 145 

minimal variation (Spectrum Technologies 2012). Even though soil moisture 146 

measurements from different depths correlate strongly with each other (Tromp-van 147 

Meerveld and McDonnell 2006), only those plots with a soil depth ≥ 7.5 cm and that were 148 

snow free during all campaigns (n = 1043) were further used in the analyses, as temporal 149 

variation throughout the campaign months could not be assessed with less than three 150 

measurements. All plots were marked in the field and their exact locations were recorded 151 

using a hand-held GNSS receiver with accuracy up to ≤ 6 cm under optimal circumstances 152 

(GeoExplorer GeoXH 6000 Series; Trimble Inc., Sunnyvale, CA, USA). 153 

Figure 2. Temperature and precipitation during the soil moisture campaigns. The moisture 154 

campaigns were held on 158 – 162, 189 – 191, and 229 – 232 day of year (DOY) in 2016. 155 

The study area was located near Kilpisjärvi meteorological station (1.5 km from the study 156 

area, 480 m a.s.l) and Saana weather station (2.0 km from the study area, 1002 m a.s.l.). 157 
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The pillars represent total precipitation (snow and rain), which is only available for 158 

Kilpisjärvi meteorological station. Lines represent mean temperatures measured at both 159 

stations, and the shaded colouring represents their ranges. All weather data were derived 160 

from the database of the Finnish Meteorological Institute. This figure is available in colour 161 

at wileyonlinelibrary.com/journal/espl 162 

Antecedent precipitation 48 hours prior to the first campaign was 0.6 mm, the second 15.8 163 

mm, and the third 0.0 mm (Figure 2). Average precipitation sum during the first campaign 164 

was 0.2 mm/d, the second 2.6 mm/d, and the third 1.7 mm/d. To avoid possible bias in the 165 

data caused by rain events, we measured a calibration transect twice daily during the 166 

campaigns (Supplementary Material Appendix A). This transect was located in 167 

topographically varying terrain within the study area and thus had a representative soil 168 

moisture gradient. Temporal change at the transect was tested with ANOVA F-test, and 169 

was found statistically significant only for the first moisture campaign, yet the difference 170 

between observed and calibrated values was rather subtle, 0.5 VWC% on average 171 

(Supplementary Material Appendix B). Thus, for consistency and comparability between 172 

the campaigns, uncalibrated moisture values were used for all analyses. In our models, 173 

soil moisture was represented by the mean values of each plot measured on all three 174 

moisture campaigns. Temporal variation of soil moisture was represented by the 175 

coefficient of variation (CV%), which indicates the volume of change relative to the soil 176 

moisture level, thus, it does not denote the direction of change (Brown 1998). In other 177 

words, CV% indicates, whether an area is stable or prone to experience temporal variation 178 

in soil moisture. CV% is based on the ratio of the standard deviation (𝜎) to the mean 179 

(Equation 1) (Brown 1998): 180 

𝐶𝑉 =  
𝜎

𝑚𝑒𝑎𝑛
               (1). 181 
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 182 

Predictor variables 183 

Six predictors commonly used in soil moisture research were obtained from each plot for 184 

modelling both response variables (Equation 2), soil moisture and its temporal variation 185 

(e.g., Crave and Gascuel-Odoux 1997, Penna et al. 2009, Williams et al. 2009): 186 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 187 

=  𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑙𝑎𝑦𝑒𝑟 𝑑𝑒𝑝𝑡ℎ + 𝑆𝑢𝑟𝑓𝑖𝑐𝑖𝑎𝑙 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑠 +  𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛188 

+ 𝑆𝐴𝐺𝐴 𝑤𝑒𝑡𝑛𝑒𝑠𝑠 𝑖𝑛𝑑𝑒𝑥 + 𝑇𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥              (2). 189 

All predictor variables, excluding the point measured organic layer depth, were extracted 190 

for each plot from the raster layers using Spatial Analyst toolbox in ArcMap (Esri 2012). 191 

 192 

Soil data 193 

Soil composition controls water percolation (Cosby et al. 1984, Teuling and Troch 2005), 194 

hence, the amount of organic matter in soil has a strong positive correlation with soil 195 

moisture (Hudson 1994). We determined organic layer depth with a thin metal rod (method 196 

modified from Rose and Malanson 2012, Aalto et al. 2013). The organic layer depth was 197 

measured to the nearest centimetre for layers < 10 cm, and for layers > 10 cm the 198 

measurements were rounded to the nearest 5 cm. For visualisation, point measured 199 

organic layer depth was interpolated using multivariate kriging method from gstat package 200 

in R (Figure 7C) (R Development Core Team 2016). In addition to organic matter, texture 201 

is another important soil property, which is closely related to soil moisture (Cosby et al. 202 

1984). Thus, we composed a surficial deposits classification of the study area (Figure 7D) 203 

using field surveys and high-resolution (0.5 m) aerial images provided by the National 204 
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Land Survey of Finland (Figure 1). The surficial deposits classification represents the main 205 

soil textures of the area: peat deposits, fluvial deposits, glacial till, boulders, and rock 206 

outcrops (Figure 7D). 207 

 208 

Terrain data 209 

The LiDAR data were obtained from the National Land Survey of Finland. The scanning of 210 

the area was performed during the third campaign (228 ‒ 229 DOY, 16th ‒ 17th of August 211 

2016) with a Leica ALS60 laser scanner. Flight altitude was 2950 m a.s.l. (c. 2200 m 212 

above ground), beam divergence (1/e²) was 0.22 mrad, and the maximum scan angle was 213 

20°. Nominal pulse spacing in the study area was 1.3 m. The data were processed from 214 

the point cloud into a 1 m resolution digital terrain model (DTM) consisting only of ground 215 

classified last echoes using las2dem tool from LAStools (Isenburg 2017).  216 

Land surface parameters, namely elevation, potential incoming solar radiation (radiation), 217 

SAGA wetness index (SWI), and topographic position index (TPI), were derived from the 218 

DTM using RSAGA package in R (Brenning 2008, Conrad et al. 2015, R Development 219 

Core Team 2016). Elevation (m a.s.l.) describes the basic topography of a site, and 220 

creates zonation followed by several other environmental gradients, such as temperature, 221 

which controls, e.g., soil formation, soil climate, and soil activity (Amundson et al. 1989, 222 

Trumbore et al. 1996, Dahlgren et al. 1997). 223 

Slope aspect affects soil moisture, since radiation distributes unevenly on north and south 224 

facing slopes creating varying soil temperature conditions (Isard 1986, Dai et al. 2004, le 225 

Roux et al. 2013). Soil temperature has a strong negative correlation with soil moisture 226 

during snow-free period (Aalto et al. 2013). Radiation was integrated for the campaign 227 

months (June, July, and August). The shadow effect from obstructing topography was 228 
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taken into account with a sky view factor option (Böhner and Antonic 2009). Sun positions 229 

were calculated for every fifth day, with a four-hour interval. For atmospheric 230 

transmittance, we used the lumped atmosphere option. 231 

SWI was used as a proxy of soil water accumulation (Böhner and Selige 2006). SWI is a 232 

modification of the commonly used, topographic wetness index (TWI) (Beven and Kirkby 233 

1979). SWI takes into account small differences in elevation values by using an iterative 234 

modification of the specific catchment area (SCA). The modified SCA depends on the 235 

neighbouring maximum values and a given suction parameter, t, which was set to 20 236 

(Böhner and Selige 2006). Thus, compared to the traditional flow accumulation algorithms 237 

(e.g., Freeman 1991, Moore et al. 1993), SWI (Equation 3) should perform better in flat 238 

areas, as such areas may direct the flow into wrong directions, hence falsifying the flow 239 

accumulation (Böhner and Selige 2006). We used a hydrologically corrected DTM for 240 

calculating SWI (Wang and Liu 2006). The multiple flow direction algorithm was used for 241 

SCA calculation (Freeman 1991, Kopecký and Čížková 2010). Finally, SWI was calculated 242 

with the given formula (Böhner and Selige 2006): 243 

𝑆𝐶𝐴𝑀  =  𝑆𝐶𝐴max ( 
1

20
 )

𝛽 exp(20𝛽)

 for 𝑆𝐶𝐴 < 𝑆𝐶𝐴max ( 
1

20
 )

𝛽 exp(20𝛽)

              (3.1), 244 

𝑆𝑊𝐼 = ln ( 
𝑆𝐶𝐴𝑀

tan(𝛽)
 )               (3.2), 245 

where β is the slope angle (Equation 3.1), SCA is the specific catchment area, SCAM the 246 

modified specific catchment area (Equation 3.2), and tan (β) is the local slope 247 

(Zevenbergen and Thorne 1987).  248 

TPI describes the relative topographic position of a site: it is based on the elevation 249 

difference between the site and the mean elevation within a given radius (Guisan et al. 250 

1999, Wilson and Gallant 2000, Weiss 2001, Ågren et al. 2014). Thus, TPI defines the 251 
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relative position of a location along a topographic gradient (ridge top, middle slope, or 252 

depression). We used a non-filled DTM for calculating TPI with a 30 m radii, thus it is more 253 

representative of local-scale moist depressions, which are ignored by SWI, as SWI was 254 

calculated using the filled DTM. Positive TPI values represent sites, which are located 255 

higher compared to their surroundings, and negative values represent lower surroundings. 256 

Values close to zero represent flat areas or continuous slopes. 257 

Before selecting the predictor variables, we considered other relevant land surface 258 

parameters derived from the 1 m² DTM based on LiDAR data. One of them was the 259 

traditional TWI formula with the non-modified SCA (Equation 4),  260 

𝑇𝑊𝐼 = ln ( 
𝑆𝐶𝐴

tan(𝛽)
 )               (4), 261 

where tan (β) is the local slope, but it was outperformed by SWI (Supplementary Material 262 

Appendix F). Slope was considered as a predictor as well (following Mitášova and Mitáš 263 

1993, Moore et al. 1993), but was not used, as it is a component of both radiation and 264 

SWI. TPI is a highly scale dependent variable (Weiss 2001). Therefore, we calculated TPI 265 

with three other radii at micro (1 m, 5 m) and landscape (100 m) scales, in addition to the 266 

local scale (30 m). We chose the TPI with 30 m radii, as it had the highest Spearman 267 

correlations with the response variables (Supplementary Material Appendix F). Using the 268 

same radii (1, 5, 30, and 100 m), we calculated the elevation difference between a site and 269 

the minimum elevation within a given radius, commonly referred as relative elevation 270 

(method from Ashcroft and Gollan 2012). However, relative elevation had a correlation of – 271 

0.46 on the average with SWI (Supplementary Material Appendix F). 272 

 273 

Spatial modelling 274 
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We used four multivariate statistical methods to model soil moisture and its temporal 275 

variation: generalized linear models (GLM), generalized additive models (GAM), boosted 276 

regression trees (BRT), and random forests (RF) (Hastie and Tibshirani 1987, Breiman 277 

2001, Elith et al. 2008). The methods represent both regression (GLM and GAM) and 278 

regression tree -based machine learning (BRT and RF) methods. GLM is a non-parametric 279 

extension of linear regression models that allows the use of non-normally distributed 280 

response variables (Nelder and Wedderburn 1972). GAM is similar to GLM, yet it is a more 281 

flexible method, as it splits the regression lines into segments and uses local spline 282 

smoothing functions to track the nonlinearity in the relationships between the response 283 

and predictor variables (Hastie and Tibshirani 1987). The user appoints the maximum 284 

complexity of the smoothing function, which is then applied to each predictor separately. 285 

Thus, the user controls the rate of fitting. BRT and RF are regression tree -based machine 286 

learning methods. Characteristic to tree models, they automatically account for interaction 287 

effects between the predictor variables and they can model complex nonlinear 288 

relationships (Breiman 2001, Elith et al. 2008). BRT splits the data internally multiple times 289 

into training and evaluating data, and builds the trees recursively using the information 290 

from the previous ones to improve the accuracy of the current tree (Boosting) (Elith et al. 291 

2008). BRT requests the user to specify the distribution of error of the response variable, 292 

in order to calculate the residuals correctly during the boosting. While, RF does not require 293 

any user-specified assumptions on the data. RF bootstraps the data numerous times 294 

(random sample with replacement), but it also samples the predictor variables as 295 

candidates at each split during the tree fitting (Breiman 2001). Finally, when all individual 296 

trees are fitted, the RF algorithm produces an ensemble of the trees by averaging the final 297 

prediction over the ones produced by multiple trees (Bagging). 298 
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These modelling methods are commonly used for analysing large data sets in 299 

environmental research (e.g., Franklin 2010), and are quite common in soil science 300 

(McBratney et al. 2003, Scull et al. 2003, Ali et al. 2015). GLM is widely used for modelling 301 

both field-obtained and remotely sensed soil moisture data (e.g., Lane 2002, Srivastava et 302 

al. 2013). Compared to GLM, GAM is not as common in soil science (McBratney et al. 303 

2003, Scull et al. 2003). Yet, it has been found to be superior compared to GLM in 304 

modelling soil organic carbon (Odeh et al. 1997). BRT is commonly used in soil science, 305 

e.g., for mapping groundwater or composing soil classifications (McBratney et al. 2000, 306 

Naghibi et al. 2016). In recent years, RF has been a popular method in soil moisture 307 

modelling and related studies (e.g., Ahmad et al. 2010, Hedley et al. 2013, Ali et al. 2015). 308 

The use of RF has significantly improved predictions of various soil properties, such as soil 309 

organic carbon, pH, texture, and nutrients (Hengl et al. 2015). In addition, an ensemble 310 

model (ENS) based on all four modelling methods was evaluated, using the median value 311 

of the four methods (method modified from Araújo and New 2007, Marmion et al. 2009). 312 

ENS showed similar results as the individual methods, therefore the ENS are made 313 

available only in the Supplementary Material Appendix E. 314 

GLM was fitted to the data using functions from the stats package. GAM was fitted using 315 

the mgcv package, with maximum degrees of smoothing restricted to four (Wood 2011). 316 

BRT was fitted using the gbm package, with interaction depth set to three, learning rate to 317 

0.001, bagging fraction to 0.5, and number of trees to 3000 (Ridgeway 2017). RF was 318 

fitted using the randomForest package, with number of trees set to 500 (Liaw and Wiener 319 

2002). The response variables were non-normally distributed, thus, response variables 320 

were log-transformed before all subsequent analyses. Gaussian distribution was assumed 321 

for GLM, GAM, and BRT. 322 

 323 
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Model validation 324 

Model fit and predictive performance were evaluated using cross-validation with 100 325 

permutations. In the cross-validation a random sample of 70% was used for testing model 326 

fit, and predictive performance was tested with the remaining 30%. Models were evaluated 327 

and compared using the coefficient of determination (R²), root-mean-squared-error 328 

(RMSE), and Nash-Sutcliffe Efficiency (NSE) for measuring the relationship between the 329 

predicted and the observed values with 100 permutations. RMSE and NSE were 330 

calculated using hydroGOF package (Zambrano-Bigiarini 2017). The statistical 331 

significance of the differences was determined with paired two-tailed Wilcoxon signed rank 332 

test using stats package. 333 

Variable importance is a useful measure of individual contribution of a predictor variable in 334 

a multivariate model (Breiman 2001). With variable importance, we investigated which of 335 

the predictor variables were relatively the most influential, i.e. which predictors controlled 336 

soil moisture and its temporal variation. Variable importance was calculated in a 337 

randomised procedure, one by one for each predictor variable. First, the model was fitted 338 

with a non-manipulated data set. Secondly, the model was used to make predictions 1) to 339 

the data set used in the model fitting, and 2) to a data set, in which a certain predictor 340 

variable is shuffled randomly. Finally, the variable importance of the shuffled predictor was 341 

calculated using Pearson correlation coefficient as followed (Equation 5): 342 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 343 

=  1 –  𝑐𝑜𝑟𝑟 (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑛𝑜𝑛−𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑒𝑑, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑒𝑑)              (5). 344 

Thus, the results settled between zero and one. If the shuffled predictor variable had a 345 

high contribution in the model, the two predictions should differ greatly, i.e. the variable 346 

importance value should be close to one, indicating high individual contribution of the 347 
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predictor variable. In our analyses, regardless of the modelling method, variable 348 

importance was calculated in the exact same manner, thus, it is fully comparable between 349 

modelling methods (Thuiller et al. 2009). We calculated variable importance with 100 350 

permutations for each of the modelling methods and for all predictors separately. On each 351 

permutation round, the data set was first bootstrapped (random sample with replacement), 352 

for a slightly different data set on each round. 353 

Spatial autocorrelation was examined using Moran’s correlogram for both raw data and 354 

model residuals (Supplementary Material Appendix C). Regarding soil moisture, plots 355 

close to each other (< 100 m) were moderately spatially autocorrelated for model 356 

residuals, whereas greater distances showed no spatial autocorrelation. For temporal 357 

variation of soil moisture, spatial autocorrelation was nearly absent for both raw data and 358 

model residuals. Thus, we did not continue to further evaluate spatial autocorrelation 359 

(Supplementary Material Appendix C). 360 

The relationships between numerical predictor variables were assessed and tested with 361 

Spearman correlation using the stats package (R Development Core Team 2016). 362 

Correlations between the factor variable (surficial deposits) and other predictor variables 363 

were assessed with polycor package, and statistical significances were tested with 364 

Kruskal-Wallis test (Fox 2015). The BRT based spatial predictions for soil moisture and its 365 

temporal variation were created with the raster package (Hijmans 2015). All analyses and 366 

models were carried out in R (R Development Core Team 2016). 367 

 368 

Results 369 

Mean soil moisture was 22.0 VWC%, varying within the study area from 4.6 to 78.2 370 

VWC% (Figure 3; Supplementary Material Appendix D). The mean temporal variation of 371 
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soil moisture was 25.0 CV%, ranging from low (1.3 CV%) to high variation (99.0 CV%) 372 

during the campaign months. Spearman correlations between numerical predictor 373 

variables were ≤ |0.39| (Figure 4). Polyserial correlations between the factor variable 374 

(surficial deposits) and other predictor variables were ≤ |0.54| (Figure 4). Spearman 375 

correlations between the three campaigns ranged from 0.62 to 0.67 and were all 376 

statistically significant (p ≤ 0.001) (Supplementary Material Appendix F). 377 

Figure 3. Spatial variation of soil moisture and its temporal variation. Soil moisture was 378 

investigated from 1200 plots during three moisture campaigns (A – C). The campaign held 379 

on July was the wettest (B), and August the driest (C). Soil moisture (D) and its temporal 380 

variation (E), i.e. the mean of the three measurements and the coefficient of variation (CV) 381 

respectively (Equation 1). The blank spaces represent the remaining 157 plots, from which 382 

measurements were not possible to obtain. This figure is available in colour at 383 

wileyonlinelibrary.com/journal/espl 384 

Figure 4. Relationships between variables. Spearman correlation was used to calculate 385 

the relationships between numerical variables, and polyserial correlation used for the 386 

factor variable (surficial elements) and other predictor variables. Statistical significance of 387 

the correlation: *** = p ≤ 0.001; ** = p ≤ 0.01; * = p ≤ 0.05; ns = not significant. This figure 388 

is available in colour at wileyonlinelibrary.com/journal/espl 389 

All four modelling methods performed similarly when predicting soil moisture and its 390 

temporal variation (Figure 5; Supplementary Material Appendix E). They performed 391 

similarly, when modelling separately all three campaigns (Supplementary Material 392 

Appendix G). The average model fit of the soil moisture model was R² = 0.60 and RMSE 393 

8.04 VWC%, and for the temporal variation model R² = 0.25 and RMSE 13.11 CV% (100 394 

permutations, four methods). Based on cross-validation, the average predictive 395 
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performance of the soil moisture model was moderate: R² = 0.47 and RMSE 9.34 VWC%, 396 

and for temporal variation model poor: R² = 0.01 and RMSE 15.29 CV%. The NSE values 397 

were similar to R², therefore they are made available only in the Supplementary Material 398 

Appendix E. 399 

Figure 5. Comparing four soil moisture modelling methods. The predictive performance of 400 

the soil moisture models was moderate across methods, unlike temporal variation of soil 401 

moisture models, which performed poorly. The horizontal and vertical segments represent 402 

the ranges of each modelling method, which in some cases were minor, e.g., RF for 403 

temporal variation. This figure is available in colour at wileyonlinelibrary.com/journal/espl 404 

SWI had a higher Spearman correlation with soil moisture compared to TWI (0.46 > 0.18; 405 

p ≤ 0.001) (Supplementary Material Appendix F). Spearman correlation between SWI and 406 

TWI was 0.50 (p ≤ 0.001). The soil moisture models were mainly influenced by SWI, which 407 

was indicated by all four multivariate models (Figure 6A). Other important variables in the 408 

soil moisture models were soil properties: organic layer depth and surficial deposits. 409 

Organic layer depth had a positive correlation with soil moisture, showing a threshold type 410 

of response: increase of soil moisture levelled off after ≥ 30 cm deep layers (Figure 6B). 411 

The influence of organic matter was also highlighted by surficial deposits: peat deposits 412 

contained the highest soil moisture values, whereas low soil moisture prevailed in areas 413 

covered by glacial till and boulders (Figure 6B). Elevation had a positive correlation with 414 

soil moisture, whereas radiation and TPI had the opposite (Figure 6B). These three 415 

topography predictors had a minor influence in the soil moisture models (Figure 6A). 416 

Models of individual campaigns showed similar results: soil moisture is mainly depicted by 417 

SWI (Supplementary Material Appendix H). 418 

According to GLM, GAM, and BRT, the temporal variation models were strongly influenced 419 

by organic layer depth (Figure 6A), with higher temporal variation found in thin layers 420 



19 
 

(Figure 6B). The importance of other predictor variables was not as clear, as their relative 421 

influence was dependent on the modelling method (Figure 6A). GLM and GAM stressed 422 

the importance of surficial deposits, which showed low temporal variation in peat deposits 423 

and higher variation in areas with boulders or rock outcrops. BRT indicated that surficial 424 

deposits had the least influence on temporal variation. RF proposed elevation, radiation, 425 

SWI, and TPI having a greater influence on temporal variation over organic layer depth. 426 

SWI and elevation showed negative correlation with temporal variation, whereas radiation 427 

and TPI showed the opposite. 428 

Figure 6. Variable importance (A) and BRT based response curves (B). All modelling 429 

methods indicated that SWI was the strongest predictor of soil moisture, with additional 430 

important effects from soil properties (A). The results were similar when modelling 431 

individual campaigns as well (Supplementary Material Appendix H). For temporal variation, 432 

the importance of a predictor variable was not as clear, as their relative influence values 433 

depended on the modelling method (A). Error bars show the confidence interval of 95%. 434 

Response curves showed opposite results for soil moisture and its temporal variation (B). 435 

For example, thick organic layers indicate high soil moisture, but low temporal variation of 436 

soil moisture. This figure is available in colour at wileyonlinelibrary.com/journal/espl 437 

 438 

Discussion 439 

Our results demonstrate great spatial soil moisture variation over short distances across 440 

this high-latitude landscape (Figure 3). Fine-scale variation of soil moisture is controlled by 441 

both soil and land surface properties, with LiDAR based SWI being the most important 442 

predictor in our spatial soil moisture models (Figure 6A). Our results demonstrate a robust 443 

pattern based on four statistical modelling methods and three model evaluation methods, 444 
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indicating that these predictors can be used to produce spatial soil moisture estimates 445 

across high-latitude mountain landscapes (Figure 7; Supplementary Material Appendix I). 446 

In addition to our initial questions presented in the beginning of our work, we found that 447 

SWI outperforms the commonly used TWI in modelling soil moisture (Supplementary 448 

material Appendix F). 449 

Figure 7. Predicted soil moisture (A) and its temporal variation (B), i.e. the mean of the 450 

three measurements and the coefficient of variation, respectively (BRT). The scale of the 451 

1200 organic layer depth measurements (C) and the surficial deposit classification (D; 452 

based on 0.5 m resolution aerial image provided by the National Land Survey of Finland) 453 

are comparable with the other predictor variables: land surface variables based on 1 m 454 

resolution LiDAR data (E ‒ H). This figure is available in colour at 455 

wileyonlinelibrary.com/journal/espl 456 

Soil moisture distribution is highly heterogeneous not only in hilly terrains (le Roux et al. 457 

2013), but also in relatively flat plains as well (Engstrom et al. 2005). Our results support 458 

previous high-resolution studies, which have documented strong topographic control over 459 

soil moisture in montane systems with relatively steep environmental gradients and 460 

complex topography (e.g., Isard 1986, Lookingbill and Urban 2004, Milledge et al. 2013). 461 

Crave and Gascuel-Odoux (1997) demonstrated that the use of topography information is 462 

insufficient in varying soil conditions. Whereas in our study area with diverse soil depth 463 

and soil texture, the most important predictor of spatial soil moisture variation was SWI 464 

across methods as well as campaigns (Figure 6A; Supplementary Material Appendix H). 465 

SWI showed a high statistically significant positive correlation with the soil moisture 466 

measurements (Figure 4). 467 
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The general, steady-state soil moisture patterns are captured by topography-based 468 

wetness indices, e.g., TWI (Southee et al. 2012, Ågren et al. 2014) and depth-to-water 469 

index (Murphy et al. 2009, Oltean et al. 2016). Thus, they are common surrogates in lack 470 

of field-obtained soil moisture data (Western et al. 2002, Seneviratne et al. 2010). Yet, in 471 

previous studies by Penna et al. (2009) and le Roux et al. (2013) TWI has performed 472 

poorly in similar plot sizes and environmental conditions, i.e. rugged terrain and steep 473 

slopes. This may be due to several reasons, for instance rain events during soil moisture 474 

measurements (Western et al. 2002), varying soil conditions across the study area (Jutras 475 

and Arp 2011, Oltean et al. 2016), or the chosen flow accumulation algorithm (Kopecký 476 

and Čížková 2010). In addition, the soil moisture state itself is also an important factor, as 477 

water must first build up in the soil for it to flow from ridges to depressions, i.e. precipitation 478 

must exceed evapotranspiration (Grayson and Western 2001). Therefore, two issues 479 

should be taken into account when comparing our results to other studies. Firstly, wetness 480 

index performance is partly determined by the algorithm used (e.g., Sørensen et al. 2006, 481 

Buchanan et al. 2014). We chose to use SWI instead of TWI, as the modified specific 482 

catchment area (SCAM) algorithm used in the SWI (Böhner and Selige 2006) seemed to 483 

work better compared to the unmodified SCA (Freeman 1991) (Supplementary Material 484 

Appendix F). This may be because SWI is designed to take into account flat areas in 485 

particular; however, more research is needed to validate the suitable algorithms with field-486 

obtained data. Secondly, we used topography variables based on 1 m resolution DTM 487 

derived from LiDAR data, with the resolution equal to the size of our study plots (1 m²). 488 

Based on these results, we recommend considering high-resolution SWI as a proxy of 489 

fine-scale soil moisture distribution, when field-obtained data is unavailable. 490 

LiDAR is a superior tool for mapping topography in detail (Southee et al. 2012). The 491 

benefits of LiDAR are based on its capacity to detect minor terrain features, for instance 492 
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hill tops, ridges, small depressions, and meltwater outlets, which are key determinants of 493 

fine-scale soil moisture variation (Engstrom et al. 2005, Kammer et al. 2013; but see also 494 

Lookingbill & Urban 2004). Thus, high-resolution LiDAR based soil moisture surrogates 495 

are more accurate (Southee et al. 2012, Leempoel et al. 2015) compared to coarser 496 

resolution surrogates, which are based on conventional digital elevation models instead of 497 

LiDAR data (Murphy et al. 2009). However, the optimal resolution of topography variables 498 

is dependent on the size of the terrain features (Lookingbill and Urban 2004, Sørensen 499 

and Seibert 2007). Nonetheless, more research is needed in different landscapes, at 500 

various resolutions and with different wetness index algorithms (Murphy et al. 2011). 501 

In addition to land surface properties, soil moisture is also influenced by soil properties as 502 

well (Figure 6A) (Crave and Gascuel-Odoux 1997). Organic layer depth shows a 503 

significant positive correlation with soil moisture (Figure 4). Soil moisture and organic soils 504 

have a strong positive feedback: organic soils are formed in wet ground conditions, and 505 

they can hold more moisture compared to mineral soils, which have more efficient 506 

drainage due to their coarser texture (e.g., Cosby et al. 1984, Darmody et al. 2004, 507 

Legates et al. 2011). In the study area, soil moisture increases as the organic layers 508 

deepen, up to the saturation point at ca. 30 cm, after which the effect levels off (Figure 509 

6B). In addition to the point-measured organic layer depth, surficial deposits highlight the 510 

importance of organic soils: peat deposits had the highest soil moisture content (Figure 511 

6B). 512 

Compared to soil properties and SWI, other terrain data based predictors, namely 513 

elevation, radiation, and TPI, were less important for soil moisture variation (Figure 6A). 514 

However, the responses of these predictors support previous studies as follows (Figure 515 

6B). High soil moisture content is found in areas of low radiation and are therefore less 516 

exposed to surface warming and excess evaporation (Dai et al. 2004). Soil moisture 517 
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decreases with increasing amount of radiation (Isard 1986), which supports the study by 518 

Aalto et al. (2013): soil moisture has a strong negative correlation with soil temperature in 519 

high-latitude montane systems. Relative topographic position leads to differences in spatial 520 

soil moisture distribution (Engstrom et al. 2005), as it affects a range of environmental 521 

variables, such as wind exposition as well as snow and organic matter accumulation. 522 

Depressions accumulate water, while ridges tend, by comparison, to be drier (Weiss 2001), 523 

which was visible from the response curves (Figure 6B). Elevation had a negative relation 524 

with soil moisture, which we assumed to be a combined effect of several environmental 525 

gradients, which follow the zonation created by elevation, namely climate, vegetation, and 526 

soil formation (e.g., Amundson et al. 1989, Lenoir et al. 2008). 527 

While the soil and land surface -based soil moisture predictions performed moderate, 528 

these static predictors alone are less suited for predicting temporal variation of soil 529 

moisture. Our results suggest that temporal variation is mainly controlled by organic layer 530 

depth, with deeper layers indicating less temporal variation in soil moisture (Figure 6B). 531 

The relationship between temporal variation and surficial deposits highlights the influence 532 

of organic soils: compared to peat deposits all other classes experienced more variation, 533 

exposed rock outcrops in particular (Figure 6B). Due to their higher water holding capacity, 534 

organic soils are more resistant to excess evaporation caused by e.g., wind and radiation 535 

(Hinkel et al. 2001, Moeslund et al. 2013). In addition, the results demonstrated that areas 536 

exposed to strong radiation experienced more temporal variation than shaded areas 537 

(Figure 6B). 538 

We examined solely static soil and land surface properties controlling temporal variation of 539 

soil moisture, though it has been previously assessed mainly with climatic variables, for 540 

instance precipitation events and hydrological seasons (e.g., Wilson et al. 2004, Williams 541 

et al. 2009, Garcia-Estringana et al. 2013, Mihailović et al. 2016). In addition to climatic 542 
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factors, the inclusion of biotic factors may also improve the temporal variation models 543 

(Lookingbill and Urban 2004, Emanuel et al. 2014), as vegetation may offset the increases 544 

in evaporative water losses in soils (Zavaleta et al. 2003, Aalto et al. 2013). Nonetheless, 545 

more attention should be drawn to model the temporal variation of soil moisture, as it is an 546 

important topic, but not thoroughly investigated yet, especially regarding high-latitude 547 

environments. Thus, we encourage considering novel remote sensing methods and data 548 

(e.g., Sentinel 1 radar imaging satellites), and soil moisture surrogate algorithms, as these 549 

innovations may further promote the use of soil moisture in the spatio-temporal research of 550 

the environment (Kopecký and Čížková 2010, Leempoel et al. 2015, Griesfeller et al. 551 

2016). 552 

 553 

Conclusions 554 

In this study, we examined soil moisture in a heterogeneous high-latitude tundra 555 

landscape covering an extensive soil moisture gradient. We investigated the spatio-556 

temporal heterogeneity of soil moisture using soil and land surface predictors to estimate 557 

soil moisture variation. Firstly, we demonstrate fine-scale heterogeneity of spatio-temporal 558 

soil moisture patterns in this high-latitude environment. Secondly, our study supports the 559 

use of LiDAR based SWI for detecting land surface features in explaining fine-scale soil 560 

moisture variation. Thus, we would like to stress the benefits of high-resolution predictors, 561 

LiDAR based in particular. Thirdly, our results show that soil and land surface properties 562 

are important when investigating soil moisture variation in high-latitude landscapes. 563 

Therefore, these high-resolution variables can be used as first filter estimates of landscape 564 

scale soil moisture conditions. 565 
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We stress that more focus is needed to investigate the effect of other fine-scale drivers, 566 

optimal resolution, and different topography-based wetness proxies in future soil moisture 567 

research. Our work contributes to understand the drivers of high-latitude soil moisture 568 

variation, while also promoting the applicability of high-resolution terrain data in modelling 569 

soil moisture patterns in different environments. 570 
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Supplementary Material Appendix A  997 

Workflow for calibration. After calibrating the data, we found that the difference between 998 

observed and calibrated values was rather subtle, only 0.5 VWC% on the average 999 

(Supplementary Material Appendix B). Thus, we decided to use uncalibrated moisture 1000 

values for all analyses, for consistency and comparability between campaigns. All 1001 

calculations were executed in R. This figure is available in colour at 1002 

wileyonlinelibrary.com/journal/espl 1003 
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Supplementary Material Appendix B  1004 

Observed and calibrated soil moisture observations. A calibration transect situated on a 1005 

soil moisture gradient located on a topographically variating terrain was measured 1006 

throughout all campaigns. Temporal change at the calibration transect was tested with 1007 

ANOVA F-test, and was found statistically significant only for the first moisture campaign, 1008 

yet the difference between observed and calibrated values was rather subtle, only 0.5 1009 

VWC% on the average. Thus, for consistency and comparability between campaigns, we 1010 

decided to use uncalibrated moisture values for all analyses. This figure is available in 1011 

colour at wileyonlinelibrary.com/journal/espl 1012 
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Supplementary Material Appendix C  1013 

Spatial structure and spatial autocorrelation of soil moisture on all 1043 study plots used in 1014 

the analyses. In the regard of soil moisture, plots close to each other (< 100 m) had high 1015 

spatial autocorrelation. In the regard of temporal variation of soil moisture, spatial 1016 

autocorrelation was nearly absent. Thus, we did not continue into further evaluation of 1017 

spatial autocorrelation. This figure is available in colour at 1018 

wileyonlinelibrary.com/journal/espl 1019 

1020 
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Supplementary Material Appendix D 1021 

A summary of response and predictor variables. Due to the nature of factor variables, 1022 

surficial deposits are not represented in this table. 1023 

 1024 

1025 

mean sd range
Soil moisture (VWC%) 22.0 12.5 4.6 – 78.2

Temporal variation (CV%) 25.0 14.4 1.3 – 99.0

Organic layer depth (cm) 6.3 6.9 0.0 – 70.0
Elevation (m) 667.6 53.7 582.3 – 807.5

Radiation (kWh / m²) 433.8 51.9 257.7 – 555.9
SWI 5.2 2.4 0.2 – 14.4
TPI 0.0 0.8 -2.9 – 11.1
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Supplementary Material Appendix E 1026 

Comparing methods for modelling and predicting soil moisture and its temporal variation. 1027 

Four statistical multivariate modelling methods commonly used in environmental research 1028 

for analysing large data sets were evaluated for modelling soil moisture: generalized linear 1029 

models (GLM), generalized additive models (GAM), boosted regression trees (BRT), and 1030 

random forests (RF). In addition, an ensemble model (ENS) based on all four modelling 1031 

methods was evaluated. 1032 

 1033 

  1034 

R² RMSE NSE R² RMSE NSE R² RMSE NSE R² RMSE NSE R² RMSE NSE R² RMSE NSE

GLM 0.46 9.29 0.44 0.02 0.25 0.02 0.09 1.08 0.09 0.02 14.68 -0.06 0.01 0.37 0.01 0.04 1.60 0.05
GAM 0.49 9.05 0.47 0.02 0.25 0.02 0.10 1.14 0.10 0.03 14.63 -0.05 0.01 0.37 0.01 0.05 1.57 0.06

BRT 0.57 8.83 0.50 0.02 0.23 0.02 0.08 1.12 0.07 0.06 14.70 -0.06 0.01 0.37 0.01 0.09 1.56 0.06
RF 0.90 4.98 0.84 0.00 0.15 0.01 0.02 0.71 0.03 0.88 8.45 0.65 0.01 0.27 0.01 0.04 1.12 0.05

ENS 0.57 8.59 0.52 0.02 0.24 0.02 0.09 1.11 0.09 0.09 14.31 -0.01 0.01 0.37 0.01 0.08 1.59 0.06

GLM 0.45 9.41 0.43 0.05 0.65 0.05 0.23 2.65 0.23 0.01 15.09 -0.09 0.01 0.94 0.04 0.03 4.40 0.21

GAM 0.47 9.24 0.45 0.04 0.65 0.04 0.24 2.96 0.20 0.01 15.33 -0.13 0.01 1.59 0.26 0.04 13.80 2.44

BRT 0.47 9.49 0.42 0.05 0.69 0.04 0.24 3.41 0.18 0.01 15.08 -0.08 0.01 0.92 0.04 0.04 4.25 0.17

RF 0.48 9.28 0.44 0.05 0.68 0.04 0.21 3.43 0.18 0.00 15.55 -0.15 0.00 0.91 0.04 0.02 4.09 0.26

ENS 0.48 9.26 0.44 0.05 0.67 0.04 0.25 3.15 0.19 0.01 15.09 -0.09 0.01 0.93 0.04 0.04 4.36 0.19

R² RMSE R² RMSE R² RMSE R² RMSE R² RMSE R² RMSE R² RMSE R² RMSE R² RMSE

GLM 0.46 10.59 0.02 0.26 0.12 1.25 0.39 11.19 0.02 0.27 0.11 1.40 0.33 10.19 0.02 0.31 0.10 1.65

GAM 0.48 10.40 0.02 0.28 0.12 1.39 0.43 10.92 0.02 0.27 0.09 1.33 0.36 10.00 0.02 0.32 0.10 1.66

BRT 0.55 10.32 0.02 0.26 0.09 1.23 0.51 10.61 0.02 0.30 0.10 1.52 0.44 9.83 0.02 0.34 0.11 1.74

RF 0.90 5.75 0.01 0.20 0.03 0.89 0.90 5.95 0.01 0.19 0.03 0.94 0.88 5.79 0.01 0.22 0.03 1.05

ENS 0.56 9.87 0.02 0.26 0.11 1.29 0.51 10.37 0.02 0.28 0.09 1.40 0.45 9.63 0.02 0.32 0.10 1.66

GLM 0.44 10.70 0.06 0.68 0.29 3.41 0.38 11.28 0.05 0.72 0.24 3.41 0.33 10.10 0.05 0.81 0.26 4.07

GAM 0.45 10.60 0.06 0.72 0.29 3.60 0.40 11.05 0.05 0.73 0.22 3.18 0.35 9.98 0.05 0.84 0.21 3.75

BRT 0.45 10.96 0.05 0.73 0.25 3.85 0.41 11.22 0.05 0.78 0.25 3.40 0.34 10.22 0.05 0.87 0.24 3.60

RF 0.46 10.63 0.05 0.72 0.25 3.53 0.40 11.09 0.05 0.77 0.26 3.12 0.33 10.10 0.05 0.87 0.23 3.63

ENS 0.47 10.60 0.05 0.70 0.26 3.69 0.42 11.05 0.05 0.75 0.23 3.21 0.35 10.03 0.05 0.85 0.22 3.68

range
Temporal variation (CV%)

mean sd range mean sd
Soil moisture (VWC%)

Model fit

Predictive performance

Model fit

Predictive performance

Soil moisture June Soil moisture July

mean sd range mean sd range

Soil moisture August

mean sd range
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Supplementary Material Appendix F 1035 

Relationships between variables. The rectangular represents the predictor variables 1036 

chosen for further analyses. Spearman correlations was used to calculate the correlations 1037 

between numerical variables, and polyserial correlation used for the factor variable 1038 

(surficial elements) and other predictor variables. Statistical significance of the correlation: 1039 

*** = p ≤ 0.001; ** = p ≤ 0.01; * = p ≤ 0.05; ns = not significant. 1040 
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Supplementary Material Appendix G 1042 

Comparing four soil moisture modelling methods and three soil moisture campaigns. The 1043 

horizontal and vertical segments represent the ranges of each modelling method, which in 1044 

some cases were very minor, e.g., RF for temporal variation. This figure is available in 1045 

colour at wileyonlinelibrary.com/journal/espl 1046 

  1047 
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Supplementary Material Appendix H 1048 

Variable importance. All modelling methods and campaigns indicated soil moisture to be 1049 

influenced mainly by SWI, with additional important effects from soil properties. Error bars 1050 

show the confidence interval of 95%. This figure is available in colour at 1051 

wileyonlinelibrary.com/journal/espl 1052 
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Supplementary Material Appendix I 1054 

Spatial variation of soil moisture and its temporal variation, observed (A – C) and predicted 1055 

(D – E). Predictions were based on the 1200 plots, from which soil moisture was 1056 

investigated during three moisture campaigns (A – C). The blank spaces represent the 1057 

remaining 157 plots, from which measurements were not possible to obtain. Soil moisture 1058 

(D) and its temporal variation (E) predictions are based on the mean of the three 1059 

measurements and the coefficient of variation (CV) (Equation 1). This figure is available in 1060 

colour at wileyonlinelibrary.com/journal/espl 1061 
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