
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

11-2013

Automatically partition software into least privilege components Automatically partition software into least privilege components

using dynamic data dependency analysis using dynamic data dependency analysis

Yongzheng WU

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Yang LIU

Jin Song DONG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
WU, Yongzheng; SUN, Jun; LIU, Yang; and DONG, Jin Song. Automatically partition software into least
privilege components using dynamic data dependency analysis. (2013). Proceedings of the 2013 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE), Silicon Valley, USA,
November 11-15. 323-333. Research Collection School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5006

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email libIR@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/287750829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5006&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5006&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Automatically Partition Software into Least
Privilege Components using Dynamic Data

Dependency Analysis
Yongzheng Wu and Jun Sun

Singapore University of Technology and Design
{yongzheng wu,sunjun}@sutd.edu.sg

Yang Liu
Nanyang Technological University

yangliu@ntu.edu.sg

Jin Song Dong
School of Computing

National University of Singapore
dongjs@nus.edu.sg

Abstract—The principle of least privilege requires that soft-
ware components should be granted only necessary privileges,
so that compromising one component does not lead to com-
promising others. However, writing privilege separated software
is difficult and as a result, a large number of software is
monolithic, i.e., it runs as a whole without separation. Manually
rewriting monolithic software into privilege separated software
requires significant effort and can be error prone. We propose
ProgramCutter, a novel approach to automatically partitioning
monolithic software using dynamic data dependency analysis.
ProgramCutter works by constructing a data dependency graph
whose nodes are functions and edges are data dependencies
between functions. The graph is then partitioned into subgraphs
where each subgraph represents a least privilege component. The
privilege separated software runs each component in a separated
process with confined system privileges. We evaluate it by apply-
ing it on four open source software. We can reduce the privileged
part of the program from 100% to below 22%, while having a
reasonable execution time overhead. Since ProgramCutter does
not require any expert knowledge of the software, it not only
can be used by its developers for software refactoring, but also
by end users or system administrators. Our contributions are
threefold: (i) we define a quantitative measure of the security
and performance of privilege separation; (ii) we propose a
graph-based approach to compute the optimal separation based
on dynamic information flow analysis; and (iii) the separation
process is automatic and does not require expert knowledge of
the software.

I. INTRODUCTION

The principle of least privilege [29] requires that software
components are only granted privileges that they need. If
one component is compromised, the impact is minimized.
Unfortunately, most software adopts the monolithic design,
where the privileges of components are not separated. Any
component is able to invoke procedures and modify states of
any other components. Every component can access the same
set of system resources such as files, network connections and
hardware devices. If a bug in a component is exploited or a
component is malicious, the whole software is compromised.

One of the reasons why the principle of least privilege is not
widely applied on software components and monolithic design
still dominates is because it is hard to find a good separation
given the complexity of software. Firstly, it is hard [31] to
separate software running in one process into multiple com-
ponents running in multiple processes without shared memory.

Secondly, the communication between components running in
multiple processes is more costly comparing to single process
version. Lastly, the privilege of different components must be
sufficiently distinct so that the separation is meaningful.

Consider a scenario where the software provides some
service to users connected from the Internet. The software
uses PAM (Pluggable Authentication Modules) to authenticate
each connected user by passing the user name and password
to PAM. PAM then accesses the password database backend
such as /etc/shadow or private keys and then returns back the
authentication result. The software runs in a single process,
thus compromising the software results in leaking /etc/shadow
or private keys to the Internet. Even worse, since the process
runs as the super user, the whole system can be compromised,
resulting all files to be stolen. We can separate the software
into three components each running in a separate process:
an unprivileged component, a network component, and a
PAM component. The unprivileged component performs most
of the computation of the service, which requires neither
access to the backend nor network. It presumably contains
most of the software’s logic and code base, thus is most
likely to be buggy or vulnerable. The network component
manages network connections and only accesses the network,
but not the backend. The PAM component only accesses
the backend. The unprivileged component can interact with
the other components by calling their API functions. If the
unprivileged component is compromised, it can neither read
the backend nor send information through the Internet.1

Manually finding the cut among the three components
requires understanding the software, which can be quite com-
plex. A good cut should satisfy the following requirements.
First, the code base of the high privilege components should
be small so that they are less likely to be vulnerable. Second,
the privilege of the high privilege components should be
sufficiently distinct. In the previous case, a high privilege
component can access either file or network, but not both.
Third, the component interactions should be minimized so that
the system is efficient.

1The compromised unprivileged component can still interact with other
components through their API. For example, it can try all possible passwords
in a brute force manner by calling the PAM API, but this can be easily limited
by rate control.

978-1-4799-0215-6/13/$31.00 c© 2013 IEEE ASE 2013, Palo Alto, USA323

We propose ProgramCutter, a tool to help software de-
velopers automatically refactor monolithic software into least
privilege components which run in different processes. Pro-
gramCutter finds the optimal cut according to the three
requirements above. In addition, given the source code of
monolithic software, ProgramCutter automatically transforms
it into the component separated form. ProgramCutter does not
require expert knowledge of the software, although additional
knowledge can give better results.

ProgramCutter works by analyzing execution traces of the
software to get the communication and privilege of each
function. We consider two forms of communications between
functions: function invocation and data dependency. Function
invocation is self-explanatory. A function f1 is data-dependent
on f2 if f1 reads from the data that is previously written
by f2. The communication among functions forms a graph,
where the functions are nodes and the communications are
edges. Each function invocation and data dependency has a
communication cost which is reflected on the edge weight.
Each function is associated with certain system privileges if it
makes certain system calls. Each node is also associated with
a weight reflecting the size of the code of the function body.
ProgramCutter finds the optimal separation of components by
searching for a partition of the graph such that: nodes with
different privileges are in different partitions; inter-partition
edge weight is minimized; and the total node weight of high
privilege component is minimized. Finally, ProgramCutter
refactors the software into a privilege separated form by
changing inter-component calls to remote procedure calls.

We have implemented a prototype and evaluated it by
separating four open source software. The evaluation shows
that we can bring about 90% of the code from running
in privileged mode to unprivileged mode. This means that
most of the vulnerabilities are contained in the unprivileged
component, thus they are mitigated by ProgramCutter. The
cost paid in performance overhead is below 20% except in a
rare extreme case.

II. RELATED WORK

Manual Separation: Privilege separation has been man-
ually applied on many software to prevent attackers from
gaining full privilege. Service software (daemon) such as
postfix [1], sendmail [2] and vsftpd [3] typically first executes
as the super user in order to acquire system resources such as
binding network ports and opening log files for writing. After
that, it gives up all privileges so that in case it is compromised,
it cannot acquire additional system resources. Service software
that constantly requires privilege cannot adopt this method. For
example, OpenSSH needs to call setuid(2), which requires
root privilege, after each successful user authentication in
order to launch a shell on behave of the user. Provos et
al. manually separated OpenSSH [28] into a high privilege
process which only does authentication and a low privilege
process which does everything else. Doing privilege separation
manually can take a substantial amount of time and can be
error prone.

Automated Separation: Kilpatrick proposed Privman [17]
which provides reusable library to help software developers
to write privilege separated software. Brumley et al. proposed
Privtrans [9] which provides some degree of automation in
privilege separation. Software developers only need to specify
privileged functions and variables by adding annotations in the
source code, and Privtrans generates source code of privilege
separated software. Although both approaches provide some
degree of automation, expert knowledge on the software is
still required. ProgramCutter does not require any expert
knowledge. Other than that, the main difference between Priv-
trans and ProgramCutter is that Privtrans uses static analysis
whereas ProgramCutter uses dynamic analysis. The problem
with static analysis is that firstly, dynamic behavior such
as type cast, function pointer and pointer arithmetic cannot
be accurately analyzed by static analysis. Secondly, runtime
information such as buffer size is not available for static anal-
ysis. As a result, Privtrans prefers the size of high privileged
component to be minimal and ignores the communication cost.
ProgramCutter generalizes this by considering communication
cost and allowing the user to balance the trade-off between
the two. Lastly, software developers are still required to under-
stand the software in order to pinpoint the privileged functions
and variables. On the other hand, dynamic analysis has the
downside of incomplete coverage. The accuracy of dynamic
analysis depends on the completeness of the execution traces.
We will further discuss this issue in Section III-A.

Apart from separating C programs, Swift [12] works on a
Java-like language, named Jif, in which programmers explic-
itly classify variables in order to specify a information flow
policy such as confidential information should stay in the web
server and not be send to the web browser. Swift is then able
to partition the program into two programs one running in the
web server and the other in the web browser, while ensuring
the information flow policy. Both Swift and ProgramCutter
adopt a graph cut based approach, where the edge weight
represents the amount of information flow. However, Swift
adopts a static approach while ProgramCutter adopts a dy-
namic one. To determine the amount of information flow, we
need to know the number of times a piece of code is executed,
which is unavailable in static analysis. Swift uses certain
assumptions such as equal probability of both branches in all
if statements. On the other hand, ProgramCutter relies on
execution traces. The lack of dynamic features such as pointer
arithmetic, function pointers and unrestricted type casting in
Jif (or Java) make static information flow analysis simpler.

Separation Mechanisms: Implementation of separation
should ensure software components only (i) access their
dedicated memory, (ii) execute their dedicated code and (iii)
only call the granted system calls. There are two com-
monly adopted approaches: verification-based and OS-based.
Verification-based separation [30], [24], [25] ensures that
there is no bad instruction, which accesses memory beyond
the dedicated memory range. This is done by scanning all
memory loading and storing instructions to make sure that
the target address falls inside the dedicated memory range.

324

For indirect memory access, where the target address is only
known at the runtime, an assertion is inserted before the
instruction. OS-based separation [26], [9], [17], [28] runs dif-
ferent components in different processes and uses the hardware
paging mechanism to ensure the memory safety, and therefore
there is no performance penalty on memory access as in
verification-based separation. However, the inter-component
calls are implemented as IPCs, thus it has performance penalty
proportional to the number of inter-component calls and size
of parameter passed. It is feasible to adopt either approach.
However, as our component separation tries to minimize inter-
component communication, the OS-based separation suits us
better.

Software Module Clustering: Graph-based approach has
been used to partition software module for the purpose of
program comprehension. Bunch [23] models software into
a graph where the nodes represent modules and the edges
represent their dependencies such as function invocations and
variable access. It then searches for the optimal cut that
has least inter-partition edge weight. While both Bunch and
ProgramCutter adopt a min-cut algorithm on searching for the
optimal cut, ProgramCutter incorporates security properties
of software components and the graph cut has to satisfy the
constrain of the security policy. In addition, the edge weight in
ProgramCutter represents information flow (dynamic), while it
represents module dependency (static) in Bunch.

III. SYSTEM DESIGN

Separating software using ProgramCutter consists of three
stages. As illustrated in Fig. 1, a monolithic program is first
compiled with debug symbols. The program is then executed
in the trace collector which collects execution traces. The
traces are then analyzed by the graph partitioner in order to
compute the optimal separation of components. The separated
components are used by the source translator to rewrite the
monolithic program into a privilege separated program where
different components run in different processes.

When using ProgramCutter, we do not assume that the user
has any knowledge of the program to be separated, hence we
claim that ProgramCutter separates programs automatically.
However, we assume that the user has some knowledge on
system privileges, which are independent of the program itself.

To describe how ProgramCutter works, we separate a toy
program shown in Fig. 2. The program signs the message “I
am [user]” for an authenticated user. The user launches the
program by providing his user name and password. The pro-
gram then employs a password-based authentication method,
which reads the system password database /etc/shadow. Af-
ter a successful authentication, it signs the message “I am
[user]”, where “[user]” is the authenticated user, using a
private key. For simplicity, we omit the error handling and
cleaning code. We also omit the code of function matches()
and dosign(). matches(l,u,p) matches password p
together with user name u with an entry l in the password
database. dosign(p,m) signs message m using private key
k and returns a signature. The program reads two confidential

files, /etc/shadow and /private_key. We purposely
introduced a buffer overflow vulnerability in Line 27. This
is a typical stack-based buffer overflow vulnerability [27]
which can lead to execution of arbitrary code. We will later
demonstrate how ProgramCutter automatically separates the
program into three components with different privileges, so
that in case the vulnerability is exploited, the confidential files
cannot be stolen by the attacker.

A. Trace Collector

The trace collector logs execution traces that record memory
access and privileged system calls done by each function.
More specifically, each trace consists of a sequence of events,
where each event is either a memory access or a privileged
system call.

• Memory Access: We record all memory read and write
operations together with the virtual address range. This
includes all memory accesses to the program stack and
heap. Each record is in the form of (function, operation,
address and size) tuple. Only user space memory accesses
are recorded. The recorded functions are the functions
that perform the memory operations. The operations
can be either reading or writing. The address and size
capture the target memory range. We only record memory
addresses but not variable names because using debug
symbol of the program, we can translate memory ad-
dresses to variable names.
In addition to instructions that read or write user space
memory, we also record memory access to user space
memory due to system calls. For example, the system
call write(fd, ptr, size) writes N bytes of user
space memory from ptr to file descriptor fd, where N
is the return value. In this case, we record that memory
[ptr, ptr +N) is read.
Table I shows some of the memory access records gen-
erated by our authentication program. The order of the
records is significant. Note that the last column, line#,
which is the program line number responsible for the
memory access, does not appear in the record and is
added manually for the purpose of the illustration.

• Privileged System Call: In this paper, we assume that
all privileged operations are made by system calls, such
as opening a file, sending data to a remote host. To have
fine grained privilege, we record system call parameters
such as file path and network address.
After traces are collected, the user lists all privileged
system calls and labels some of them. In the end,
the program will be partitioned into lease privileged
components according to the labels. Labeling privileged
system calls does not require understanding the structure
of the software, because only the knowledge on system
privileges is required.
In our toy program, reading from /etc/shadow or /private
key is considered privileged. The user may use one label
to label reading from the two files. He may use two
labels to label them separately to give more fine grained

325

Program Binary with
Debug Symbol

Execution Traces

Components

1. Trace Collector

2. Graph Partitioner

3. Source Translator

Monolitic Program
Source Code

Separated Program
Source Code

Privilege Specification
(optional)

Compile

Input

Intermediate Result

Output

Processing Stage

Legend

Fig. 1. Overview of ProgramCutter stages

TABLE I
MEMORY ACCESS RECORDS

function operation address size line#
main write username pointer size 23
inpasswd write line BUFSIZE (by syscall) 5
inpasswd write return value word size 7
main read return value word size 25

separation. In the latter case, the program will be sepa-
rated into three components: an unprivileged component,
a component for reading /etc/shadow, and a component
for reading /private key.
For another example, in OpenSSH server, the user may
use three labels. Opening /etc/ssh/ssh host rsa key is
labeled privatekey; network related system calls are la-
beled network and other file writing except in /tmp are
labeled filewrite. In the end, it will be partitioned into
four components.

We can collect traces from multiple executions in order to
get sufficient coverage of the program. Multiple executions
can be collected by running the test cases given by the pro-
gram developer or from other automated test case generation
methods [13], [18], [10].

B. Graph Partitioner

The task of graph partitioner is to partition the set of
functions into a number of components, such that different
privileges are separated into different components. In addition,
there is an unprivileged component, which cannot call any
privileged system call. As mentioned earlier, the code size of
privileged components2 should be minimized, as well as the
communication among components.

We propose a novel graph-based formulation of this prob-
lem. A function f1 depends on f2 if f1 reads memory that
is last written by f2. If we partition f1 and f2 into two
different components, we need to transfer the memory from
one component to the other, which incurs communication cost.

2For simplicity, we consider all privileges to be equally significant. An
alternative would be having a significance factor for each privilege and
minimizing the weighted sum of the code size.

In our graph, each node denotes a function. The edge weight
between two nodes is the sum of the number of bytes of the
memory dependency between the two functions. This captures
the communication cost if the two functions are partitioned
into different components. Each node is associated with a
weight denoting the size of the source code implementing
the function. This captures the size of the code base of a
component, which is correlated to the probability of being
buggy or vulnerable. If a function performs a privileged system
call, the corresponding node is labeled with the privilege of
the system call. Functions that do not perform system calls
are not labeled, except that the program entry point, main(),
is assigned with a special unprivileged label3. The task of the
graph partitioner is to partition the graph into N partitions,
where N is the number of different labels, such that (i) all
labeled nodes in each partition share the same label; (ii) the
total weight of the inter-partition edge is minimized; and (iii)
the total weight of privileged partitions is minimized. Since
we have two values to minimize, we aggregate the two into
one value by computing a weighted sum. The weight is used
to balance between security and performance.

Fig. 3 shows the data dependency graph of our toy program.
The dependency between main and inpassword is the
size of user name and password, which is typically less than
40 bytes. However, the dependency between inpassword
and fgets is the size of /etc/shadow file, which is much
larger. The graph partitioner may partition the inpassword
function in the privileged component in order to minimize
communication cost. In this way, the graph partitioner auto-

3We assume main() does not directly perform any privileged system call.
If it does, as the case in Section VI-B, we manually make a wrapper for the
system call.

326

1 static int inpasswd (char *username, char *password)
2 {
3 char line[BUFSIZE];
4 FILE *fp = fopen("/etc/shadow", "r");
5 while (fgets(line, BUFSIZE, fp) != NULL) {
6 if (matches(line, username, password))
7 return 1;
8 }
9 return 0;

10 }
11
12 static char *signmsg (char *message)
13 {
14 char privkey[KEYSIZE];
15 FILE *fp = fopen("/private_key", "r");
16 fread(privkey, KEYSIZE, 1, fp);
17 char *signature = dosign(privkey, message);
18 return signature;
19 }
20
21 int main (int argc, char **argv)
22 {
23 char *username = argv[1];
24 char *password = argv[2];
25 if (inpasswd(username, password)) {
26 char buffer [100];
27 sprintf(buffer, "I am %s", username);
28 char *signature = signmsg(buffer);
29 printf("%s\n", signature);
30 } else
31 printf("Bad login\n");
32 }

Fig. 2. A toy program that signs a message for an authenticated user

matically finds out the function in charge of authentication.
Similarly, the data dependency between main and signmsg
is the size of the message and the signature, which is smaller
than the cryptographic key. Thus the graph partitioner may
partition the signmsg function in the privileged component.

This problem is a variant of multi-terminal cut problem,
whose complexity is in general NP-hard and was first exten-
sively studied by Dahlhaus et al. [14]. A number of solutions
and approximations were proposed [11], [16]. Our main focus
is not to solve the multi-terminal cut problem, instead, we
can apply any existing solution. In particular, we choose an
integer programming based solution which will be described
in Section IV. Our choice of solution is easy to implement
and its performance is sufficient for our purpose, which will
be shown in Section VI.

In the end, the graph partitioner outputs the labels to
all functions. In our toy example, if we define two labels:
private key for reading /private_key and user password
for reading /etc/shadow, the graph partitioner will assign

main, signmsg and inpassword to the unprivileged label,
private key and user password respectively.

C. Source Translator

The output of the graph partitioner can be manually exam-
ined by the software developer to help studying code structure
or to find out the code that is responsible for privileged
operations. In this way, ProgramCutter is used as a program
comprehension tool. We take a step further to automatically
translate the original program into privilege separated pro-
gram.

The privilege separated program works as follows. The pro-
gram consists of L processes, where L is the number of labels
including the unprivileged label. As main is always assigned
the unprivileged label, the program starts in the unprivileged
process, which cannot directly perform any privileged system
call. Rather, it needs to perform privileged operations through
the privileged processes by doing remote procedure calls
(RPCs). The privilege separated program firstly launches L
processes, where the unprivileged process start the execution

327

main

inpasswd

signmsg

sprintf

printf

fopen: privilege 1

fgets: privilege 1

matches

fopen: privilege 2

fread: privilege 2

dosign

Fig. 3. The data dependency graph of our toy program. The thickness of an
edge represents the amount of the data dependency between two functions.
We mark two sets of privileges: 1. reading /etc/shadow and 2. reading
private key file.

from main() and other processes wait to be called by RPCs.
The inter-component function calls are translated to RPCs.
Each component is allowed to call a limited set of RPCs in
other components. This set is determined by outgoing edges
of each partitioned component in the graph.

In the separated toy program, three processes represent-
ing three components are created. The unprivileged process
executes main(), while the two privileged processes wait
for RPC. The invocation of inpassword() on Line 25 is
replaced by a RPC invocation. After the unprivileged process
invokes the RPC, the execution is transferred to the privileged
process, which then executes inpassword() and returns
the result back to the unprivileged process through the RPC
return. Similarly, The invocation of signmsg() on Line 28
is replaced by a RPC invocation as well.

When the buffer overflow vulnerability on Line 27 is
exploited, the attack can execute arbitrary code in the un-
privileged process. This process cannot read /etc/shadow
or /private_key. It can invoke the two RPCs. However,
by invoking inpassword(), it cannot read the password
database either. By invoking signmsg(), it can sign arbitrary
messages, but cannot read the private key. In this case,
we mitigate the damage from losing private key to signing
arbitrary messages.

Difficulty on Parameter Marshalling: RPC requires pa-
rameters to be passed-by-value, because passing-by-reference
does not work when the caller and callee are in two different
address spaces. Our source translator translates passing-by-
reference function call to passed-by-value using parameter
marshalling. Unfortunately, parameter marshalling requires the
type of each parameter to be serializable, which cannot be
done automatically, hence the serialization function has to be
manually implemented for each data type.

We manually implemented the serialization functions for
C library’s commonly used data types such as FILE and
time_t. In addition, our source translator deals with the
following types.

• Buffer with Statically Known Size: This includes char-
acter arrays such as the buffer, privkey and line
variables in our toy program.

• Structure with no Pointers: A structure’s size is stati-
cally known thus it can be handled similar to a buffer.
However, if a structure contains pointers, which may be
dereferenced by the other process, we need to marshal the
pointed data. This can be problematic if the other process
modifies the pointer.

• Null-terminated String: Although the length of a string
is not statically known, we can compute it at runtime as
long as we know it is a null-terminated string. We use
some heuristic to determine whether a character array
is a string. (i) Strings are passed as a parameter to a
known library function. For example, if variables x and
y are passed to fopen(x, y), we know that both x and
y are null-terminated strings. The variables username
and password are recognized as string in this manner.
(ii) Similarly, Strings are returned from a known library
function, such as strdup.

For other custom types, the serialization functions have to be
manually implemented in order to use our source translator.
Implementing the serialization functions requires much little
work than manually separating the program.

IV. IMPLEMENTATION

We choose to implement ProgramCutter in GNU/Linux
since there are more open source software to test with. It can
be easily ported to other operating systems since we do not
rely on any special feature of Linux.

Trace Collector: The trace collector is implemented using
Pin [22]. Pin works by dynamically instrumenting instruc-
tions of a program binary in run time. We need to collect
information on two types of events, memory reading/writ-
ing and system call. The former is done by instrumenting
each memory reading/writing instruction and recording the
instruction pointer, memory range during execution. The latter
is done by hooking all system call entry and exit points4

and recording the instruction pointers that invoke the system
call, parameters and return values. ProgramCutter currently
recognizes the following privileged system calls: file open-
ing/reading/writing, socket creation/binding/connecting/send-
ing/receiving, program execution, changing user ID and send-
ing signal. Additional privileged system calls can be easily
added. We only record the instruction pointer but not the
name of the function because we can look up the name of
the function using instruction pointer from the debug symbol.

We only record functions of the program but not all
functions including system libraries because ProgramCutter

4PIN_AddSyscallEntryFunction and PIN_AddSyscallExit
Function are PIN APIs to hook system calls.

328

partitions the program, not system libraries. As a result, when
the instruction pointer does not fall within the program’s code
range, we need to backtrack and find out the latest caller in
the program and record the instruction pointer of that call
invocation. For example, in our toy example, Line 5, fgets5,
which is a C library function, writes to the buffer pointed by
line. Instead of recording the instruction pointer of fgets,
we record its caller in the program, inpasswd.

Graph Partitioner: The graph partitioner consists of two
stages, constructing the graph and partitioning the graph.
The graph can be constructed by scanning the trace in a
single pass. Throughout the algorithm, a data structure is
maintained to keep the last writer of each byte in the memory.
Initially, the last writer of the whole memory is none, meaning
uninitialized. When scanning a memory writing record, the last
writer of all the bytes in the record’s memory range is changed
to the function of the record. When scanning a memory
reading record, for each byte in the record’s memory range,
we add an edge, or increment the edge’s weight if already
added, between the reader and the last writer. In the end, we
obtain a graph where each node represents a function and
each edge represents the data dependency. Instead of keeping
the last writer of individual bytes, we use a redblack tree to
store segments of memory. The running time complexity is
O(n log k), where n is the number of records in the trace and
k is the number of memory segments, which is much smaller
than n in practice.

After we have obtained the graph, we reduce the multi-
terminal cut problem to an integer programming problem and
use lp solve [8] to solve it. We choose this approach because
it is easy to implement and works reasonably well.

We reduce it into an integer programming problem as
follows. For each function, we declare an integer variable
l1...F ∈ [1, L] (where L is the number of labels and F is
the number of functions) to denote the label to be assigned
to the function. We use value 1 to denote the unprivileged
label and value above 1 for privileged labels. For pre-labeled
function i, li is fixed. For an edge i with weight w between
function j and k, we declare a variable ei = w if lj 6= lk and
ei = 0 if lj = lk to represent the cost of cutting it. For each
function i with weight w, we declare a variable fi = w if
li 6= 1 and fi = 0 if li = 1 to represent the cost of putting the
function in a privileged partition. The value to be minimized is
weighted sum of (i) the sum of all edge costs and (ii) sum of all
functions: α

∑E
i=1 ei+(1−α)

∑F
i=1 fi, where α is the weight

that can be adjusted. In total, F dlog2(L)e + E variables and
2Edlog2(L)e constrains are declared, where F is the number
of unlabeled functions and E is the number of edges.

Source Translator: To make different components execute
in different processes, there are two major changes to the
program. First, before invoking main, (i) the additional pro-
cesses have to be created; (ii) their system privileges have to
be confined according to the privilege specification; and (iii)

5More precisely, _IO_getline_internal, which is called by fgets,
performs the memory write.

the communication sockets have to be initialized. Confining
system privilege can be enforced by capability systems [20]
or system call monitoring [19], [15], which are orthogonal to
ProgramCutter. Second, inter-component function calls have
to be changed to RPCs.

We use a substituted main to perform the initialization.
The original main is renamed to orig_main6. If the process
is the main process, the substituted main calls orig_main
after the initialization. Otherwise, after initialization, the sub-
stituted main enters an event loop, in which the process waits
and dispatches incoming RPCs.

We say a function to be a component entry function if it can
be called from another component. We substitute each com-
ponent entry function with an RPC wrapper, which handles
the parameter marshalling and communication. We also check
if the calling component is allowed to call the entry function
at runtime. The original function is renamed to orig_func.
The calling of a component entry function (e.g. Line 25 and
28 in Fig. 2) is unchanged.

In our toy example, the function names in the declarations
on Line 1, 12 and 21 are rewriten with prefix orig_. The
substituted main performs initialization as described earlier
and either invokes orig_main or enters RPC dispatching
loop. Since inpasswd and signmsg are component entry
functions, we add one RPC wrapper for each function.

V. SECURITY ANALYSIS

In our threat model, we assume the privileged component
to be vulnerability-free, while the unprivileged component to
be vulnerable and is compromised to execute arbitrary code.
This assumption is based on the fact that (i) the number of
software bugs is positively correlated to the size of code, and
(ii) ProgramCutter makes the privileged component to be as
small as possible. Previous study has built different models
to correlate the number software bugs and the software size.
Akiyama [7] found that the lines of code (L) and the number
of bugs (B) are linearly correlated, while Lipow [21] found
B to follow a quadratic function of log(L). We also assume
that the attacker is aware of ProgramCutter and knows how
the program is partitioned. Our goal is to prevent the attacker
from performing privileged operations that are specified to the
graph partitioner. We now discuss the potential attacks and
how ProgramCutter prevents (or fails to prevent) them.

• System Call Invocation: The compromised unprivileged
component may try to directly invoke privileged system
calls. Since the unprivileged component runs in an un-
privileged process, the invocation is denied by the system
call filtering mechanism.

• Modifying Privileged Code/Data: The compromised
component may try to change the code of the privileged
component and let it perform privileged operations on
behave of the attacker. The compromised component may
modify data to achieve similar purposes. For example,

6For simplicity, we assume that there is no function named orig_main
in the original program.

329

it can change function pointers or other control flow
related data structures. This is prevented because different
components run in different processes and they do not
have directly access each other’s memory.

• Exploiting Privileged Component Entry Function:
An unprivileged component is permitted to call entry
functions of another component. If the entry functions,
in turn, invoke privileged system calls, the attacker can
call it to perform attacks. For example, if the task of
an entry function is to append a string to a log file,
and both the string and log file are specified as function
arguments, the attacker is able to append arbitrary data to
an arbitrary file. This can be exploited to attack the file
system. One way to prevent this type of attacks is to do
input sanitization in the entry functions. ProgramCutter
does not automatically perform input sanitization, thus
manual work is needed.

• Collusion Attack: Two or more compromised compo-
nents can collude to perform attacks that cannot be
achieved by a single component. For example, if both
the network component and sensitive data component are
compromised by the same attacker, sensitive data can
be sent to the network. Two conditions must be met in
order for the attack to succeed. First, there must be a
usable entry function. For example, there must be an
entry function in the network component that can be
used to send data to the attacker. Similar to previous
attack, input sanitization can be used to eliminate this
condition. Second, the entry function must be directly
callable from the other component. ProgramCutter fails
to prevent collusion attack if and only if both conditions
are satisfied.

• Denial of Service: The compromised component can
pass incorrect data or refuse to do any useful work. This
can cause the program to behave incorrectly or crash.
ProgramCutter does not ensure correctness thus does not
prevent this type of attacks. Another form of DoS attack
is that the compromised component repeatedly calls the
trusted component so that the trusted component is not
able to serve other legitimate components. This attack
can be effectively mitigated by thresholding the calling
frequency based on the calling component if the expected
frequency is known.

VI. EVALUATION

In this section, we use ProgramCutter to partition real-word
programs. We want to evaluate ProgramCutter based on the
following criteria.

• The trace collector should be able to monitor and collect
all function calls, system calls and memory operations of
the program. The execution time overhead of the program
being monitored and the size of the trace should be
practical.

• The graph partitioner should be able to construct the
graph and solve its optimal partition within a reasonable
time.

• The partitioned program should behave identical to the
original program in normal execution. In addition to run
the program in the same configuration (command line
options and input) as the one generating the trace, we
should be able to run it in different configurations. The
performance overhead should be reasonable.

• The size of the privileged components in the partitioned
program should be small. We also want to know if real-
world security vulnerabilities can be mitigated.

• If a bug in an unprivileged component is exploited to
execute malicious code, system privileges should not be
used by the component. In particular, we should be able
to prevent the attacker from gaining a root shell.7

We evaluate ProgramCutter using the following software:
OpenSSH server, wget, ping and thttpd, because they (i) use
system privileges (especially OpenSSH server and ping run as
root) which make them to be attacker’s valuable targets; (ii)
read from external input which can an attacking vector; and
(iii) are widely used and previously known to have security
vulnerabilities.

For each of the four programs, we first describe how we
execute it to collect the execution trace. We then show statistics
of the program and trace. We label the privileged system calls
and use the graph partitioner to partition the program into
components. Finally, we use the source translator to obtain the
privilege separated programs. We test the privilege separated
programs from three aspects: (i) We execute them several times
with different configurations or input to see if the separated
program behave like the original program. (ii) We compare
the execution time of the two programs. (iii) We execute the
privilege separated programs with root privilege and try to
exploit their vulnerabilities to see if we can obtain a root shell
or read confidential information such as user passwords and
private keys.

We quantitatively evaluate the quality of the partition in
terms of security and performance. We measure the security
by the size of code executed in unprivileged process. The
original program executes all code in the privileged process.
The privilege separated program executes only a fraction of
the code in the privileged process. The smaller the fraction is,
the more secure the program is. We look at the performance
overhead which is the additional execution time divided by
the original execution time. In all our test cases, we set the
weight α in the optimization algorithm to be 0.5, which we
obtain through experiments. A summary of the statistics and
benchmark results are listed in Table II. All the benchmarks
are performed on an Intel Core i5-2520M machine with 4G
physical memory running 32-bit Fedora 17 (kernel 3.5.4).

A. OpenSSH Server

OpenSSH server is the most widely used SSH server in
Unix-based systems. We collect an execution trace of the
server by connecting to the server, performing a password

7A root shell is a shell with root privilege. Gaining a root shell is commonly
the first thing to do after a security vulnerability is exploited.

330

TABLE II
SUMMARY OF EVALUATION RESULTS. ABBREVIATIONS: “FUNC.”: TOTAL NUMBER OF FUNCTIONS APPEARED IN THE TRACE; “LOC”: TOTAL LINES OF

CODE IN THE CORRESPONDING FUNCTIONS; “F-INV”: TOTAL NUMBER OF FUNCTION INVOCATIONS IN THE TRACE; “COMP.”: NUMBER OF COMPONENTS
TO PARTITION INTO; “P-LOC”: TOTAL LOC IN THE PRIVILEGED PARTITIONS; “tpart”: THE RUNNING TIME OF THE GRAPH PARTITIONER; “tmono”: THE

EXECUTION TIME OF THE ORIGINAL MONOLITHIC PROGRAM; AND “tsep”: THE EXECUTION TIME OF THE SEPARATED PROGRAM.

software func. LOC f-ivk. comp. p-LOC tpart tmono tsep
openssh 219 10244 770763 3 563 (5.5%) 7.771s 153ms 181ms (+18%)

ping 11 2149 7369 2 304 (12%) 1.133s 10000.196s 10000.281s (+10−4%)
wget 197 13156 22305 2 791 (6%) 2.150s 815ms 830ms (+1.8%)
thttpd 38 2717 7492 2 617 (22%) 0.859s 815ms 815ms (0%)

based authentication, and immediately logging out from the
server. The source code of OpenSSH server (version 3.1p1)
consists of 27419 lines of code (LOC) and 504 functions. In
our trace, 219 different functions are invoked 770763 times in
total. We define two privileged labels: shadow file for reading
the user password file and private key for reading the private
key files. The graph partitioner partitions the 504 functions into
three components. The shadow file partition has 12 functions
with 401 LOC; the private key partition has 3 functions with
162 LOC; and the unprivileged partition has the rest.

The execution time of the original monolithic server is
0.153 seconds and the time of separated server is 0.181s (18%
more). Note that the execution time here is an average of
10 executions. To minimize the network delay, we execute
both the SSH server and client on the same host and use
the local loop back interface as the network medium, Thus,
with actual networks, the performance overhead should be
much smaller than 18%. Since 95.5% of the code is in the
unprivileged component, most of the vulnerabilities, such as
CVE-2003-0682 [5] and CVE-2003-0695 [6] are due to bugs
in the unprivileged component, thus they can be mitigated by
ProgramCutter. For example, CVE-2003-0695 exploits a bug
in buffer_init which is in the unprivileged component,
thus it cannot access the shadow file or private key.

We test the following different execution scenarios and
found the privilege separated SSH server and the original
server behave identical. (i) The client authenticates with dif-
ferent accounts. (ii) Try two different client versions (5.9p1
and 3.1p1). (iii) Try different server key sizes (1024, 2048
and 4096 bits). Note that we use the same privilege separated
SSH server to test all scenarios. This shows that our trace
has sufficient coverage in order to support different execution
scenarios.

B. ping

Ping is a network diagnostic program which sends ICMP
echo packets to a remote host and receives reply from it. Since
sending ICMP packets requires super user privilege, the ping
tool is a setuid program, which means that the program always
runs in super user privilege regardless of the user who runs it.
This makes ping to be a highly wanted program by attackers
to find vulnerabilities. For example, the vulnerability CVE-
2000-1214 allows normal user to use super user privilege to
execute arbitrary code.

Ping is a simple program with only 11 functions in 2149
LOC. We execute ping (version s20101006) to send and
receive 3 packets in our trace collector. 7369 function invo-
cations are recorded in the trace. We label the system call
of sending and receiving ICMP packets as privileges. We
found that the main function directly invokes the privileged
system calls socket, setsockopt, ioctl and bind. This
makes ProgramCutter unable to partition the single function.
We thus add four wrapper functions for them. The graph
partitioner partitions the program into two components. The
privileged component contains 3 functions with 304 LOC from
the original program and 4 wrapper functions.

The execution time overhead is too small to be measured
because ping waits for one second between sending each
packet by default. The variance of the execution time caused
by random factors is larger than the overhead we want to
measure. In order to minimize the base execution time, we
set the wait interval between sending each packet to 0 (flood
mode) and use the local loopback interface as destination. The
time of sending 10000 packets using the original monolithic
program is 0.196 seconds; while the time using the separated
program is 0.281 seconds (43% more). Using this timing, we
can estimate the execution time overhead with the default
one packet per second. The execution time of the monolithic
program to send 10000 packets is tmono ≈ 10000 + 0.196 =
10000.196, and the time of the separated program program is
tsep ≈ 10000 + 0.281 = 10000.281. Thus, the overhead is
(tsep − tmono)/tmono = 8.5× 10−6.

We test different scenarios such as running in verbose and
quiet modes, using different packet sizes, and sending to
different addresses. The separated program mitigates CVE-
2000-1214[4] such that the attacker cannot gain super user
privilege.

C. wget

Wget is a command-line program to download files from the
Internet. We want to partition it into a privileged networking
component and an unprivileged component. We collect our
traces by using wget (version 1.13.4) to download a file from
a web server. 197 different functions are invoked in 22305
invocations. The privileged system calls performed are bind,
connect, socket, read, write8, recv and send. The

8read and write can operate on both local files and sockets. Here, we
are only interested in sockets.

331

privileged partition has 10 functions with 791 LOC and the
unprivileged partition has 187 functions with 12365 LOC.

To measure the execution time, we download a 1MB file
100 times from a local web server. The execution time of the
original monolithic wget is 0.815 seconds and the time of the
separated wget is 0.830 seconds (1.8% more). We test different
scenarios using different URLs, file sizes and enumerating dif-
ferent command line options such as verbose mode, continuing
downloading previously partially downloaded files, and using
a web proxy. The privilege separated wget behaves identical
to the original one.

D. thttpd

thttpd is an open source web server. Similar to wget, we
want to partition it into a privileged networking component
and an unprivileged component. We collect our trace by
letting thttpd (version 2.25b) serve one file download request.
38 different functions are invoked in 7492 invocations. The
privileged partition has 8 functions with 617 LOC and the
unprivileged partition has 30 functions with 2100 LOC.

To measure the execution time, we use it to serve a 1MB file
downloading 100 times by a local client. The execution time of
the original monolithic thttpd is 0.815 seconds with standard
deviation as large as 0.733 seconds which is much larger than
the overhead (less than 10ms). As a result, the overhead is not
measurable with practical number of tests. We test the privilege
separated thttpd with different configuration options such
as different document root, logging option, cache policy. We
also try to use different web browsers to access the server. The
two copies behave identical.

VII. LIMITATIONS

We now discuss the limitations of ProgramCutter.
• Our dependency graph is based on execution traces, thus

the correctness of the graph partitioner depends on the
completeness of the execution traces. Although we cannot
guarantee our dynamic approach to be complete, we can
see from our evaluation that different execution scenarios
are covered. In addition, works [13], [18], [10] in the
literature have made progress in generating test cases to
get good code coverage.

• As discussed in Section III-C, the source translator can
only automatically handle parameter passing of generic
data structures. Manual work is needed in implementing
marshalling of application defined data structures. How-
ever, the amount of manual work is substantially smaller
than rewriting the program in a different programming
language as in Swift [12]. Also, the person who imple-
ments the marshalling is only required to understand the
data structure to be marshalled, but not the full program
to be partitioned.

• If an unprivileged component is compromised, it is able
to invoke RPC to privileged components. The potential
damage to the system depends on the functionality of the
RPC. For example, if the entry function of a privileged
component does not sanitize function parameters, it can

be exploited to execute arbitrary code in the privileged
component.
There are two ways to prevent this. Firstly, the program-
mer can sanitize the function parameters of the entry
functions, so that they cannot be abused by the caller.
Secondly, a fine grained system privilege can be applied
to restrict the privileged component, so that even if it is
exploited, the damage is limited.

• We adopt a function-based separation, where a function
is the base unit. Thus, we cannot partition a program
which has only one function. A workaround is to make
a wrapper function for the privileged system calls and
perform proper parameter sanitation to prevent abuse.
This is demonstrated in the ping case in Section VI.

VIII. CONCLUSION

In this paper, we present ProgramCutter, a novel approach
to automatically partitioning software into least privilege
components using dynamic data dependency analysis. The
partition is optimal in terms of our quantitative measure of
security and performance. The separation process is automatic
and does not require any expert knowledge of the software.
Our evaluation shows that we can take most of the code
from running in privileged mode to unprivileged mode with
reasonable performance overhead.

IX. ACKNOWLEDGMENT

This work is supported by project “IDD11100102A/
IDG31100105A” from Singapore University of Technology
and Design, and NTU-NAP project “Formal Verification on
Cloud”.

REFERENCES

[1] Postfix home page. http://www.postfix.org/.
[2] Sendmail home page. http://www.sendmail.org/.
[3] vsftpd home page. https://security.appspot.com/vsftpd.html.
[4] CVE-2000-1214: Buffer overflows in the (1) outpack or (2) buf variables

of ping in iputils before 20001010. http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2000-1214, 2000.

[5] CVE-2003-0682: ”Memory bugs” in OpenSSH 3.7.1 and earlier. http:
//web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2003-0682, 2003.

[6] CVE-2003-0695: Multiple ”buffer management errors” in OpenSSH
before 3.7.1 may allow attackers to cause a denial of service or
execute arbitrary code. http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2003-0695, 2003.

[7] Fumio Akiyama. An example of software system debugging. Informa-
tion Processing, 71(1):353–379, 1971.

[8] M. Berkelaar, K. Eikland, and P. Notebaert. lpsolve: Open source
(mixed-integer) linear programming system. Eindhoven U. of Technol-
ogy, 2004.

[9] D. Brumley and D. Song. Privtrans: Automatically partitioning programs
for privilege separation. In USENIX Security, pages 57–72, 2004.

[10] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In USENIX OSDI, pages 209–224, 2008.

[11] G. Calinescu, H. Karloff, and Y. Rabani. An improved approximation
algorithm for multiway cut. In STOC, pages 48–52, 1998.

[12] Stephen Chong, Jed Liu, Andrew C Myers, Xin Qi, Krishnaprasad
Vikram, Lantian Zheng, and Xin Zheng. Secure web applications via
automatic partitioning. In ACM SIGOPS Operating Systems Review,
volume 41, pages 31–44. ACM, 2007.

[13] L.A. Clarke. A system to generate test data and symbolically execute
programs. TSE, (3):215–222, 1976.

332

[14] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and
M. Yannakakis. The complexity of multiterminal cuts. SICOMP,
23(4):864–894, 1994.

[15] M. Haardt and M. Coleman. ptrace(2) manual, 1999.
[16] D.R. Karger, P. Klein, C. Stein, M. Thorup, and N.E. Young. Rounding

algorithms for a geometric embedding of minimum multiway cut. In
STOC, pages 668–678, 1999.

[17] D. Kilpatrick. Privman: A library for partitioning applications. In
FREENIX, volume 8, 2003.

[18] B. Korel. Automated software test data generation. TSE, 16(8):870–879,
1990.

[19] A. Kurchuk and A. Keromytis. Recursive sandboxes: Extending systrace
to empower applications. Security and Protection in Information
Processing Systems, pages 473–487, 2004.

[20] H.M. Levy. Capability-based computer systems, volume 12. Digital
Press, 1984.

[21] Myron Lipow. Number of faults per line of code. IEEE Transactions
on Software Engineering, (4):437–439, 1982.

[22] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V.J. Reddi, and K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In ACM SIGPLAN Notices,
volume 40, pages 190–200, 2005.

[23] Spiros Mancoridis, Brian S Mitchell, Yihfarn Chen, and Emden R
Gansner. Bunch: A clustering tool for the recovery and maintenance
of software system structures. In ICSM’99, pages 50–59. IEEE, 1999.

[24] S. McCamant and G. Morrisett. Evaluating sfi for a cisc architecture.
In USENIX Security, page 15, 2006.

[25] G. Morrisett, G. Tan, J. Tassarotti, J.B. Tristan, and E. Gan. Rocksalt:
better, faster, stronger sfi for the x86. In PLDI, pages 395–404, 2012.

[26] D.G. Murray and S. Hand. Privilege separation made easy: trusting
small libraries not big processes. In EuroSec, pages 40–46, 2008.

[27] A. One. Smashing the stack for fun and profit. Phrack magazine,
7(49):14–16, 1996.

[28] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege escalation.
In USENIX Security, 2003.

[29] Jerome H Saltzer and Michael D Schroeder. The protection of informa-
tion in computer systems. Proceedings of the IEEE, 63(9):1278–1308,
1975.

[30] R. Wahbe, S. Lucco, T.E. Anderson, and S.L. Graham. Efficient
software-based fault isolation. In SIGOPS OSR, volume 27, pages 203–
216, 1994.

[31] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed
computing. Mobile Object Systems Towards the Programmable Internet,
pages 49–64, 1997.

333

	Automatically partition software into least privilege components using dynamic data dependency analysis
	Citation

	/var/tmp/StampPDF/jGp_CV8I2T/tmp.1584005599.pdf.03lFZ

