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KE ARAH SISTEM PENGECAMAN MUKA PRAKTIKAL MENGGUNAKAN
KAEDAH JARAK BERASASKAN BARIS DALAM ALGORITMA

BERASASKAN 2DPCA

ABSTRAK

Pengecaman muka secara automatik telah menjadi satu topik fokus penyelidikan

dalam beberapa dekad ini. Ini adalah kerana kelebihan pengecaman muka dan poten-

si permintaan kepada kawalan keselamatan yang tinggi dalam aplikasi komersil dan

penguatkuasaan undang-undang. Walaubagaimanapun, disebabkan sifat semulajadi

muka, ianya tertakluk kepada beberapa variasi. Sehubungan itu, pencarian satu sis-

tem pengecaman muka yang baik masih lagi menjadi satu topik penyelidikan yang

aktif sehingga ke hari ini. Banyak kaedah telah dicadangkan untuk mengatasi ma-

salah variasi muka ini. Di antara kaedah-kaedah ini, kaedah subruang adalah antara

kaedah yang paling popular dan berkesan. "Eigenface" atau kaedah Analisa Kompo-

nen Prinsipal (PCA) adalah merupakan satu kaedah yang dianggap sebagai salah satu

teknik yang paling berjaya dalam kaedah subruang ini. Salah satu daripada lanjutan

PCA yang paling penting adalah Dua Dimensi PCA (2DPCA). Walaubagaimanapun,

ciri-ciri 2DPCA adalah berasaskan matriks dan bukannya vektor seperti dalam PCA.

Oleh itu, kaedah pengiraan jarak yang berbeza telah dicadangkan untuk mengira jarak

antara ciri matriks ujian dan ciri matriks latihan. Semua kaedah terdahulu menanga-

ni masalah klasifikasi adalah secara matematik tanpa mempertimbangkan ciri matriks

dan imej muka. Selain itu, prestasi sistem dalam aplikasi praktikal bergantung kepada

bilangan "eigen" yang dipilih. Sebagai penyelesaian kepada isu-isu yang dinyatakan
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di atas, empat kaedah jarak baharu telah dicadangkan dalam tesis ini, yang berasaskan

kepada baris matriks ciri bagi algoritma 2DPCA. Melalui eksperimen menggunakan

lapan pangkalan data muka, peningkatan mereka berbanding dengan kaedah jarak ter-

dahulu telah ditunjukkan. Sebagai tambah, kaedah berasaskan tekstur sebagai langkah

pra-pemprosesan juga dicari dan ia digunakan bagi menangani kesan perubahan pen-

cahayaan. Selain itu, satu lagi isu aplikasi praktikal, berkaitan pemilihan data latihan

teroptimum juga telah diselesaikan. Kaedah ini menyelesaikan persoalan berapa ba-

nyak data dari galeri yang patut dimasukkan dalam peringkat latihan bagi mendapatkan

keputusan klasifikasi terbaik dengan menggabungkan Algoritma Genetik (GA) dengan

PCA. Dengan menggunakan tiga pangkalan data muka, Keputusan mendedahkan yang

kaedah kajian ini mempunyai prestasi lebih tinggi danipada prestasi PCA dari segi ke-

tepatan dan masa klasifikasi.
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TOWARDS PRACTICAL FACE RECOGNITION SYSTEM EMPLOYING
ROW-BASED DISTANCE METHOD IN 2DPCA BASED ALGORITHMS

ABSTRACT

Automatic face recognition has been a focus research topic in past few decades.

This is due to the advantages of face recognition and the potential need for high se-

curity in commercial and law enforcement applications. However, due to nature of

the face, it is subjected to several variations. Thus, finding a good face recognition

system is still an active research field till today. Many approaches have been proposed

to overcome the face variations. In the midst of these techniques, subspace methods

are considered the most popular and powerful techniques. Among them, eigenface or

Principal Component Analysis (PCA) method is considered as one of the most suc-

cessful techniques in subspace methods. One of the most important extensions of

PCA is Two-dimensional PCA (2DPCA). However, 2DPCA-based features are ma-

trices rather than vectors as in PCA. Hence, different distance computation methods

have been proposed to calculate the distance between the test feature matrix and the

training feature matrices. All previous methods deal with the classification problem

mathematically without any consideration between feature matrices and the face im-

ages. Besides, the system performance in practical applications relies on the number

of eigenvectors chosen. As a solution to the above mentioned issues, four new distance

methods have been proposed in this thesis, which are based on the rows of a feature

matrix of 2DPCA-based algorithms. Through experiments, using eight face databases,

their improvements compared to the previous distance methods are demonstrated. In
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addition, texture-based methods as a preprocess step are also investigated and used

to suppress the effect of illumination variations. On top of this, another practical ap-

plication issue, which is related to selecting an optimized training data, has also been

solved. This method solves the question of how much data from the gallery that should

be included in the training stage to achieve better classification results by associating

Genetic Algorithm (GA) to PCA. Experimental results using three face databases re-

veal that the proposed method outperforms PCA in terms of accuracy and classification

time.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The problem of face recognition is investigated in this thesis. This chapter intro-

duces the problem considered in this thesis and thesis objectives. The contributions

and the organization of the thesis are then described.

1.2 The Face Recognition Problem

Biometric technologies in the current era society have become a vital side in their

lives because of increasing security demands. Among these technologies, face recog-

nition has several advantages. It is user-friendly, its facial features have got the high-

est compatibility scores among the other biometric technologies (MRTD, 2010) and

harmonious with human visual perception. In fact, one of the natural capabilities of

humans is remembering and recognizing an enormous number of faces during their

lifetime without a considerable effort. Due to this capability, many researchers in

different areas, such as psychophysicists, neuroscientists and engineers, have studied

diverse characteristics on human and machine face recognition.

One of the important characteristics of human perception that may lead to a good

machine face recognition system, which has been investigated, is whether the face

recognition is done globally or locally (Zhao et al., 2003). Besides, the issue whether

the facial features have the same significance in recognition perception or not has also
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been studied. Some experiments demonstrate that identifying familiar faces with the

existence of various lighting conditions is a very hard task (Johnston et al., 1992).

Due to the advantages of face recognition and the potential need to a high security

in commercial and law enforcement applications, automatic face recognition has been

a research topic in past few decades (Zhao et al., 2003) and many approaches have been

proposed to overcome the face variations. However, due to the natural of the face as

the three-dimensional object, it is a subject to several variations. Thus, finding a good

face recognition system is still an active research field till today. The main sources

of difficulties in automatic face recognition are the pose and illumination variations.

Another difficulty that usually encounter in practice is whether all the available images

should be included in the training stage or maybe not the foremost choice for building

an effective face recognition system (Martínez and Kak, 2001).

The development of face recognition systems in the state-of-the-arts shows that

subspace methods are considered the most popular and powerful techniques (Jafri

and Arabnia, 2009; Lu, 2003; Zhao and Chellappa, 2006; Li and Jain, 2004; Rao and

Noushath, 2010). This is due to the strength of their mathematical model, which re-

veals the underlying discriminative data, solves the curse-of-dimensionality problem,

reduces the system’s memory and computational requirements (Li and Jain, 2004; Rao

and Noushath, 2010; Zuo et al., 2009). Among these approaches, eigenface or Princi-

pal Component Analysis (PCA) method (Turk and Pentland, 1991; Kirby and Sirovich,

1990) is considered as one of the most successful techniques in subspace methods

(Turk, 2001; Grudin, 2000; Pentland, 2000; Kim et al., 2002; Moon and Phillips, 2001;

Tjahyadi et al., 2006; Meng and Ke, 2008; Gupta et al., 2010; Radha and Pushpalatha,
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2010; Zeng et al., 2011), because of the ease of implementation, its reasonable per-

formance level (Moon and Phillips, 2001; Tjahyadi et al., 2006), effectiveness in large

databases (Zhao and Chellappa, 2006) and it is less sensitive to different training data

set (Jafri and Arabnia, 2009).

Due to the advantages of subspace and PCA-based methods mentioned above and

based on the state-of-the-arts related to the face recognition, the research presented

in this thesis is highly motivated to concentrate on the techniques based on the PCA

coupled with face recognition problems. PCA goal is to derive a lower dimensional

subspace from a set of training face images so that it maximizes data variance (Turk

and Pentland, 1991). Thus, the subspace that is obtained from PCA carry out most of

the data information in small space.

Since its initial proposal in face recognition, many researchers have focused on

enhancements of PCA and have different directions. One of the most important exten-

sions of PCA is Two-dimensional PCA (2DPCA) (Yang et al., 2004) which changes

the way of PCA calculation and deals with original images matrices directly without

any conversion as in PCA. However, 2DPCA-based features are matrices rather than

vectors as in the PCA. Hence, different distance computation methods have been pro-

posed to calculate the distance between the test feature matrix and the training feature

matrices. However, all previous methods deal with the classification problem math-

ematically without any consideration between feature matrices and the face images.

Despite of all previous issues, the number of coefficients of the feature matrix relies on

the number of eigenvectors chosen. These number of eigenvectors have a significant in-

fluence on the performance of the algorithm classification (Rao and Noushath, 2010),
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which affects on classification accuracy, time and storage capacity. Furthermore, it

is difficult and laborious calculations are needed to classify an image into the correct

class with varying number of eigenvectors in practical applications (Rao and Noushath,

2010). Instead, automatic methods, which determine the best number of eigenvectors,

are used (Draper et al., 2002). Accordingly, a robust classification method, which is

not influenced too much with selecting an imprecise number of eigenvectors, is essen-

tial to keep the accuracy in an acceptable value compared with the maximum accuracy.

Nonetheless, more attention to these feature matrices must be spent when classifica-

tion methods are considered with, as well as the relationship between the 2DPCA based

methods and features extracted.

As a solution to the above mentioned problems, sequence of new robust classifi-

cation methods based on the rows of the feature matrix of 2DPCA-based techniques

have been proposed. The successive experiments show clearly their enhancement com-

pared with the previous classification methods regarding the issues mentioned above.

In addition, the relationship between the 2DPCA-based methods and their features is

explored and further investigated.

Another issue related to PCA-based techniques in practice is that the distribution

of training images in the image space is unexpected and the underlying distribution

of different classes is not known in advance (Martínez and Kak, 2001). Therefore,

the available training data may be unsuitable or may be not the foremost choice for

building an effective face-recognition system. Thus, finding the most suitable training

data from the available ones is demanded in practical face recognition applications

which may lead to the enhancement of their performance in terms of classification
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time and accuracy.

To handle this matter, a new method that associates Genetic Algorithm (GA) to

PCA has been proposed to search the most suitable training data from the available

ones. By using GA combined with PCA, the best underlying distribution for classifica-

tion can be determined that enhance the performance of PCA in terms of classification

time and accuracy.

1.3 Thesis Objectives

Based on the aforesaid problems in section 1.2, this research investigates the dif-

ficulties of practical face recognition applications with the presence of several face

recognition variations. The aim of this work is to improve the existence face recog-

nition algorithms in terms of recognition rate and classification times. The leading

objectives of this thesis are:

1. To investigate existing 2DPCA-based face recognition algorithms with the pres-

ence of various face variations related to practical face recognition applications.

2. To propose a robust classification method on 2DPCA-based techniques for face

recognition.

3. To optimize the training process which finds the most suitable training data from

the available ones to build a better face recognition system.
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1.4 Thesis Contributions

The contributions of the thesis can generally be categorized into two main aspects

and summarized as follows:

1. Four new distance methods in 2DPCA-based algorithms have been proposed as

follows:

i. Row distance method is introduced in 2DPCA-based algorithms, which is

based on the rows of a feature matrix of 2DPCA-based algorithms. It takes

the advantages of the multiplication of the feature matrix of a 2DPCA-

based method and face properties. It distinctly demonstrates the stability of

the Row distance accuracies with different numbers of eigenvectors com-

pared with other distance methods. This stability has a great influence on

the performance of classification methods in practical applications.

ii. RowAMD distance method is an extension to the Row distance method

with a control variable p. It shows a clear improvement compared with the

Row distance method along with different 2DPCA-based algorithms and

different databases with different face variations and problems.

iii. RowkNN distance method is another extension to the Row distance method

with 2DPCA algorithm. It has a slight improvement compared with Row

distance method when the number of training images is increased or a well

alignment method is used.

iv. GRowkNN distance method is the general form of the RowkNN distance

method with two control variables p and q. A precise and appropriate se-

lection of these two control variables will result in better result.
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2. A new method that associates Genetic Algorithm (GA) to PCA-based algorithm

has been proposed to search the most suitable training data for classification from

the available ones. It solves a practical application issue, which is the difficulty

of ascertaining whether or not the available training data is appropriate for the

recognition system. In addition, it enhances the performance of PCA in terms of

accuracy and classification times.

1.5 Scope of thesis

The work in this thesis have been conducted within the following scope:

1. Face images used in the experiments are only 2D images.

2. The experiments focus only in frontal pose within approximately ±45◦.

3. All experiments are conducted using bench mark databases and there is no self

developed database used in the work.

4. The thesis only considers PCA-based and 2DPCA-based algorithms.

1.6 Outline of the Thesis

The remainder contents of this thesis are organized into four chapters as outlined

below:

Chapter 2 comprises of four main sections. The first section generally gives a

background information about face recognition techniques associated with their pros

and cons. The concept of subspace methods and the mathematical background are then

explored in the second section. More details about PCA, which are related to this work
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directly, are also given in the same section. 2DPCA-based algorithms are described

in detail. Besides, the distance computation methods, which are proposed in the state-

of-the-arts related to 2DPCA-based methods, are explained with their pros and cons.

Then, methods to evaluate face recognition systems are reviewed. Finally, the chapter

is summarized.

Chapter 3 introduces eight public face databases, which are used in the thesis.

Then, it describes the relationships between the distance methods and feature matrices

generated by 2DPCA algorithm. Four new distance methods, namely Row, Row As-

sembled Matrix Distance (RowAMD), Row k nearest neighbor (RowkNN) and General

Row k nearest neighbor Euclidian distance methods, are presented. The performance

of the proposed four distance methods is then evaluated with eight face databases com-

pared with the state-of-the-arts distance methods. Consequently, the final discussion

regarding the experiment results is presented. Finally, the chapter is summarized.

Chapter 4 introduces the problem of ascertaining whether or not the available train-

ing data is appropriate for the recognition system. It also describes the solution of the

problems mentioned in this Chapter and gives a description of genetic algorithm. Ex-

perimental results with three face database are presented in later part of this chapter.

Then, the final discussion regarding the experiment results is then presented. Finally,

the chapter is summarized.

Chapter 5 concludes the work of this thesis and summarizes its contributions. Dif-

ferent directions for future work in face recognition systems are then suggested.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

The purpose of this chapter is to give background information about face recogni-

tion in general and the recent techniques, which are related to the work in this thesis.

Different research directions on face recognition and their pros and cons are introduced

in Section 2.2. The concept of subspace methods and related mathematical background

is presented in Section 2.3. More details about PCA, which is directly related to this

work, are also given in the same section. Then, 2DPCA-based algorithms are described

in details in sections 2.4. In addition, the distance computation methods, which are pro-

posed in the state-of-the-arts to 2DPCA-based methods, are investigated in section 2.5.

After that, face recognition systems evaluation methods are described in Section 2.6.

Finally, the chapter is summarized in 2.7.

2.2 Face Recognition

Biometric technology applications are growing because of the increasing needs of

security demands in different life aspects. Six different biometric technologies are con-

sidered by Hietmeyer (Heitmeyer, 2000); finger, hand, face, voice, eye, and signature.

Among these technologies, face recognition has several advantages. It is natural, non-

intrusive, and easy to use. The main advantage of the face technology is that it can

be captured invisibly at a distance. Besides, facial features achieve the highest com-

patibility with a Machine Readable Travel Documents (MRTD) (MRTD, 2010) system
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based on several evaluation factors such as enrollment, renewal, machine requirements,

and public perception. Due to these reasons along with its potential for continuously

increasing law enforcement and commercial applications, it has been a research topic

for decades.

However, face as a three-dimensional object is subjected to different variations

such as, camera noise, illumination, pose and facial expression. These variations de-

grade face recognition systems’ efficiency. Many approaches have been proposed to

overcome the face variations and can be categorized into three main general strate-

gies (Zhao et al., 2003; Tolba et al., 2005; Guan, 2012; Jafri and Arabnia, 2009):

• Appearance-based or Holistic-based approach

In this approach, the whole face region is fed into a recognition system as a raw

input. Then, the global features of faces are used for recognition. As such, a

small number of features describes the global information of faces, which are

extrapolated outrightly from the pixel information (Turk and Pentland, 1991;

Belhumeur et al., 1997; Bartlett et al., 2002; Phillips, 1998; Lin et al., 1997).

• Feature-based approach

Here, local features and prior information about face geometry are first obtained.

These features encompass eyes, nose, mouth, chin, and head outline. Then the

spatial relations among the parts are computed. This information is then used for

classification (Cox et al., 1996; Lades et al., 1993; Wiskott et al., 1997; Nefian

and Hayes III, 1998; Lawrence et al., 1997).
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• Hybrid-based approach

This approach follows the human perception system, which utilizes both previ-

ous approaches. Hence, local features and the whole face region are both used

for face recognition (Pentland et al., 1994; Penev and Atick, 1996; Lanitis et al.,

1995; Yong et al., 2006; Kisku et al., 2011; Singh et al., 2012).

In principle, feature-based methods are less sensitive to variations in illumination

and viewpoint (Zhao et al., 2003; Tolba et al., 2005; Guan, 2012; Jafri and Arabnia,

2009). However, the facial features required for methods using this approach are dif-

ficult to be extracted automatically and still not robust enough (Zhao et al., 2003; Jafri

and Arabnia, 2009; Lu, 2003; Zhao and Chellappa, 2006). In addition, feature-based

methods cannot withstand with noise and occlusion variations (Jafri and Arabnia,

2009; Lu, 2003; Zhao and Chellappa, 2006; Li and Jain, 2004). This is because the

extraction of local features is an extremely difficult task.

In contrast, though holistic-based methods are more sensitive to these variations,

few modifications or enhancements with several algorithms compensating such varia-

tions will generally lead to better results compared to feature-based methods (Jafri and

Arabnia, 2009). Besides, holistic-based methods can be applied to low resolution or

poor quality images (Lu, 2003). Due to these reasons, the holistic-based approach is a

more preferable approach for dealing with face recognition systems (Jafri and Arabnia,

2009; Li and Jain, 2004). Two main categories belong to holistic-based approach; sta-

tistical dimensionality reduction and Artificial Intelligence (AI) approaches (Jafri and

Arabnia, 2009). AI approaches employ machine learning and neural networks tech-

niques to recognize a face (Jafri and Arabnia, 2009). Good results have been reported

11



using AI (Jafri and Arabnia, 2009). However, statistical subspace methods are con-

sidered the most popular and powerful techniques (Jafri and Arabnia, 2009; Lu, 2003;

Zhao and Chellappa, 2006; Li and Jain, 2004; Rao and Noushath, 2010). This is due to

the strength of their mathematical models, which reveals the underlying discriminative

data, solves the curse-of-dimensionality problem, reduces the system’s memory and

computational requirements (Li and Jain, 2004; Rao and Noushath, 2010; Zuo et al.,

2009). Thus, they are more suitable in practical applications.

2.3 Subspace Methods

In this section, the importance of using subspace based methods in face recognition

system is introduced. Besides, three popular subspace methods are described.

2.3.1 Overview

A face image is represented as a high dimensional m-by-n pixel array, which is

recorded as an array of intensity values using sensors. Broadly, the face image is a

high dimensional in nature. This high dimensional array can be represented as a point

in mn-dimensional vector space. This space is called image space or more specifically

face space. The simplest way of recognition task is to perform a direct comparison

in a high dimensional space between input face image and other face images in the

database. However, such approach is sensitive to face variations and it is computation-

ally intensive (Jafri and Arabnia, 2009). Besides, applying parametric methods to this

high dimensional space makes the estimation task ill-posed. This is because the num-

ber of parameters increases with high dimensional spaces and concurrently the number

of face images is usually much lower.
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Nonparametric methods also face the same problem (Li and Jain, 2004). These

methods need a very high number of samples to describe the underlying distribu-

tion of face data efficiently (Li and Jain, 2004). These problems are conventionally

called curse-of-dimensionality (Jafri and Arabnia, 2009; Li and Jain, 2004; Rao and

Noushath, 2010). To counter the curse-of-dimensionality, statistical techniques can

be used to analyze the distribution of the face image data in image space, and de-

rive a much lower subspace which retains the most features of the face images (Lu,

2003; Rao and Noushath, 2010). Thus, a lower dimensional feature space can be used

for face recognition, which represents face images efficiently and effectively. In this

way, the computational burden is reduced significantly and other problems of curse-of-

dimensionality are alleviated dramatically. Subspace methods have been successfully

applied in face recognition (Mohanty et al., 2008; Zuo et al., 2009; Rao and Noushath,

2010; Jiwen and Yap-Peng, 2013; Imran et al., 2013).

Few popular subspace methods are discussed here, one of which is the Principal

Component Analysis (PCA). It will be described in more details because it is used in

this work. Besides, Linear Discriminant Analysis (LDA) and Independent Component

Analysis (ICA) are also explained in brief.

2.3.2 Principal Component Analysis (PCA)

In this section, PCA algorithm is described in detail. Then, different directions of

its improvement are summarized.

13



2.3.2.1 Algorithm

PCA goal is to derive a lower dimensional subspace from a set of training face

images so that it maximizes data variance (Turk and Pentland, 1991). The subspace is

known as principal components or eigenfaces. More precisely, let X represents a set of

face images as follows:

X = [x1x2 . . . . . . . . .xM]

where xi is a vector of face image with dimension N and M is the number of face

images. The vector of face image is formed by concatenating the columns or rows of

the image. The typical method of calculating the principal component is to find the

eigenvectors and eigenvalues of the covariance matrix C (Turk, 2001) as in Equation

(2.1):

C =
M

∑
i=1

(xi− x̄)(xi− x̄)T (2.1)

where xi is a vector of face image and x̄ is the average face image vector. The eigen-

vectors and the eigenvalues can be calculated from Equation (2.2):

Cvi = λivi, i = 1, . . . ,N (2.2)

where vi is the ith eigenvector and λi is the corresponding eigenvalue which reflects

the variance of the images. However, determining N eigenvalues and eigenvectors is

an impractical solution for a typical face image size. Practically, there are (M− 1)

non-zero eigenvalues. Hence, it is more convenient to work with M×M matrix for
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eigenvectors calculation. This is can be done by rewriting the covariance matrix as

given in Equation (2.3):

D =
M

∑
i=1

(xi− x̄)T (xi− x̄) = XT X (2.3)

The eigenvector problem is solved using Equation (2.4):

Dei = µiei, i = 1, . . . ,M (2.4)

where ei and µi are the eigenvectors and the eigenvalues of the covariance D.

By substituting the value D we obtain:

XT Xei = µiei, i = 1, . . . ,M (2.5)

Multiply both sides by X we get:

XXT Xei = µiXei

C(Xei) = µi(Xei)

(2.6)

That is, the eigenvectors and the eigenvalues of matrix C in Equation (2.4) are obtained

as follow:

vi = Xei

λi = µi

(2.7)
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The eigenvectors corresponding to the largest eigenvalues reflect the most variance

of the face images. In this way, a subspace that represents the image space in minimum

Mean Square Error (MSE) manner can be yielded. After selecting the suitable number

of eigenvectors, the centered gallery face images are projected onto the eigenspace

using Equation (2.8):

yi = VT (xi− x̄) (2.8)

where yi ∈ Rm is the feature vector, V is the selected eigenvectors matrix and m is the

number of selected eigenvectors. When a probe face image appears, the centered probe

face image is projected onto the same eigenspace and the nearest gallery face image is

chosen as its match using Euclidean distance.

2.3.2.2 Improvement on PCA

The eigenface or PCA method (Turk and Pentland, 1991; Kirby and Sirovich,

1990) is considered as one of the most successful techniques in subspace methods

(Turk, 2001; Grudin, 2000; Pentland, 2000; Kim et al., 2002; Moon and Phillips, 2001;

Tjahyadi et al., 2006; Meng and Ke, 2008; Gupta et al., 2010; Radha and Pushpalatha,

2010; Zeng et al., 2011), because of the ease of implementation, its reasonable per-

formance level (Moon and Phillips, 2001; Tjahyadi et al., 2006), effectiveness in large

databases (Zhao and Chellappa, 2006) and it is less sensitive to different training data

set (Jafri and Arabnia, 2009). Despite its merits, PCA still demand improvement.

Hence, many researchers have focused on improvement of PCA. These improvements
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have different directions that can be summarized as follows:

a. Selecting the appropriate numbers of eigenvectors

The number of the eigenvectors’ selected is a critical issue in terms of PCA perfor-

mance. Some studies by Moon and Phillips (1998); Gupta et al. (2010); Kirby (2000);

Meng and Ke (2008); Draper et al. (2002); Li et al. (2010); Tjahyadi et al. (2006); Go-

mathi and Baskaran (2010); Satone and Kharate (2013) have addressed this problem.

These works can be divided into two main approaches. The first approach concentrates

on removing the last eigenvectors. The second one takes the other side and removes

the first eigenvectors.

Moon and Phillips (1998) found that removing the last 40% of the eigenvectors,

which comprises the least variance of images, improves the performance of PCA.

However, Gupta et al. (2010) in their experimental results show that the last 85% of

the eigenvectors can be removed. This should be associated with a threshold value of

80% as the maximum distance between face images. In Kirby (2000), an energy di-

mension is defined, which is 90% of the accumulated energy of non-zero eigenvalues.

It also defines a stretching dimension, which is the ratio of a selected eigenvalue over

the maximum eigenvalue. The eigenvectors, having a stretching dimension value of

less than or equals to 0.01, are neglected. The Kaiser criterion is also used. It removes

all the eigenvectors corresponding to the eigenvalues with values less than one (Meng

and Ke, 2008).

Another way to select the best eigenvectors is by using the eigenvalues curve, all

eigenvalues with a gentle slope are discarded (Meng and Ke, 2008). It is found that
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when the slope is less than 0.01, the eigenvectors after that slope can be removed.

Draper et al. (2002) have ordered the eigenvectors according to what is called like-

image difference values. Like-image difference value is the ratio of the summation

of the different images of the same class over the eigenvalue. To find the optimal

subspace, Tjahyadi et al. (2006) presents eigenvalue relative errors. The relative errors

between the current eigenvalue and the next eigenvalue of 60% of the total non-zero

eigenvalues are calculated. Then a subspace is selected depending on these relative

errors.

Genetic algorithm (GA) is also used in Gomathi and Baskaran (2010) to select the

most appropriate eigenvectors for classification. Li et al. (2010) used improved chaos

genetic algorithm (ICGA), which consolidates GA merits in global searching and the

sturdy local searching ability of the chaos optimization algorithm (COA), to extract

the best eigenvectors for classification. Satone and Kharate (2013) used a genetic al-

gorithm to select the most revelent eigenvectors and the entropy of eigenvectors on

wavelet subband.

It is also found that large eigenvalue may carry irrelevant information of face im-

ages and it is affected by another condition such as lighting (Moon and Phillips, 1998).

Hence, removing the first eigenvector may improve the performance of PCA. The pro-

posed methods improve the performance of PCA in terms of time duration and accu-

racy by eliminating eigenvectors containing noise.

b. Distance method

The original Eigenface method uses Euclidean distance as a measuring tool. Per-
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libakas (2004) stated 16 different measuring distance methods that can be used with

PCA. It is found that Mahalanobis distance and Euclidean distance superior than other

distance methods (Draper et al., 2002; Perlibakas, 2004). All these measuring distance

methods use the nearest neighbor (NN) rule between two points. However, the per-

formance of nearest neighbor depends on the available face images per class, which

are often small compared to all possibilities of testing data variations. To alleviate this

problem, the distance between a point and feature line links two points in eigenspace

of the same class replaces the point-to-point distance (Li and Lu, 1999). The results

show improvement in terms of accuracy compared to distance methods, which uses

nearest neighbor approach.

Another approach which avoids point-to-point distance has been proposed by Zhou

and Shi (2009). Each class of the training data is represented by a convex hull that

estimates the class distribution. Then l2-norm is used to calculate the distances be-

tween the probe face image and the convex hulls. Experimental results show that a

better performance can be obtained using the nearest neighbor convex hull (NNCH)

approach. Zhou et al. (2009) have applied l1-norm with nearest neighbor convex hull

(l1 NNCH) instead of l2-norm. The results show better performance compared with

previous distance methods including NNCH.

c. Preprocess

PCA as a statistical technique works well when the training samples per class are

sufficient to build an accurate eigenspace. However, its performance deteriorates when

it works with frontal view face recognition. To address this issue, generating new

images can detract from the severity of this problem. Using projection-combined prin-
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cipal component analysis (PC2A) (Wu and Zhou, 2002), new images could be gener-

ated using the idea of projection map of the first order to the original images. After

generation of the combined projection images using vertical and horizontal projection

map, PCA is applied to the new images. Experimental results show an improvement in

terms of accuracy and at the same time offer reduction in eigenvectors numbers. Chen

et al. (2004) has extended PC2A (EPC2A) and used first and second order of projection

map. In addition, the generation images of both orders and the original images are used

for training PCA to maintain more information about training images. EPC2A offers

further improvements compared with PC2A in terms of accuracy and number of eigen-

vectors. However, the values of combination parameters that are used in PC2A and

EPC2A are a critical point in these methods. Choosing the appropriate values, which

give the best accuracy and decrease time cost, is a trade off and is done manually.

Facial symmetry can be also used to generate new images. Symmetrical PCA

(SPCA) (Yang and Ding, 2002) generates an odd and even decomposition images from

the original images and their mirrors. Then, PCA is applied on the odd and even de-

composition images separately. The best features are selected from both eigenspaces.

However, only slight improvements are reported using SPCA.

In addition, differences between the same class images in existence of illumination

variations are larger than the differences between classes (Zhao et al., 2003; Heusch

et al., 2005; Phillips, 1998; Kim and Kittler, 2005; Moses et al., 1994). Hence, PCA-

based approaches are sensitive to illumination variations, which have a greater impact

on their performance. Recently, many approaches have been suggested to overcome

the problem of illumination variation regarding face recognition (Chen et al., 2006;
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Shao and Wang, 2009; Wang et al., 2009; Zhang and Samaras, 2006; O’Toole et al.,

2007; Tan and Triggs, 2010; Mian, 2011; Bozorgtabar et al., 2012). Among the ap-

proaches, Local Binary Pattern (LBP) (Ojala et al., 1996) has become a popular tech-

nique for face representation, because it is invariant to monotonic grayscale transfor-

mations.

The LBP descriptor assigns a binary string or a decimal number to a pixel of an

image by thresholding the intensity values of the eight neighborhood pixels with the

value of the central pixel using 3× 3-kernel matrix ( More details in Appendix A.1

). Since then, a number of LBP variants are offered (Tan and Triggs, 2010; Jin et al.,

2004; Heikkilä et al., 2009; Xiaosheng and Junding, 2009; Junding et al., 2010; Liao

et al., 2007; Zhang et al., 2010; Jabid et al., 2010; Petpon and Srisuk, 2009). In Jin

et al. (2004), Improved LBP (ILBP) is done by giving the largest weight to the central

pixel. As the central pixel always has more information than its neighbor pixels. The

ILBP operator also reveals the local shape by redefining the threshold, which is the

mean of a 3×3 patch.

To produce more compact binary pattern, a Center Symmetric Local Binary Pat-

tern (CS-LBP) (Heikkilä et al., 2009) modifies the description of interest regions. Here,

only 4-pairs of center-symmetric pixels are compared. Consequently, the coding num-

ber is reduced considerably. Nevertheless, important texture information contains in

the central pixel are discarded, which is considered as one of the drawbacks of CS-

LBP. Besides, choosing an adaptable threshold is a burdensome job (Xiaosheng and

Junding, 2009). To conquer these issues, an improvement to CS-LBP, called Direction

LBP (D-LBP) (Xiaosheng and Junding, 2009), has been proposed. The local pattern
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is classified by D-LBP descriptor based on the relation of the center pixel and the

center-symmetric pixels, i.e., the pairs of the opposed pixels in a circular neighbor-

hood. Looking at the previous texture methods, a common property can be noticed.

They consider only the gray disparity between the pixels in a local region, whereby

noise creates a great effect in the calculation (Junding et al., 2010). In order to cope

with this problem, Junding et al. (2010) introduced an improvement to D-LBP (ID-

LBP), which considers the relation between the center-symmetric pixels and the local

gray mean.

Another direction of LBP improvement is introduced in Liao et al. (2007), which

is called a Multi-scale Block Local Binary Pattern (MBLBP). It avoids the locality of

LBP descriptor by replacing the single pixel computation with comparison to average

gray-values of a block of sub-regions. Hence, more information of image representa-

tion is captured.

Recently, a high-order local pattern descriptor, called Local Derivative Pattern

(LDP) (Zhang et al., 2010), is proposed for face recognition. It encodes the directional

pattern features held in a particular region by extracting high-order local information.

Another approach to overcome the drawbacks of LBP, which is also more suitable for

face recognition, is proposed in Jabid et al. (2010). A new local feature descriptor,

called Local Directional Pattern (LDiP), is introduced. Its descriptor produces local

features by computing the edge response values in eight directions for each pixel and

generating a code from the relative strength magnitude.

A more discriminant and less sensitive to noise in uniform regions descriptor, called
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Local Ternary Patterns (LTP) (Tan and Triggs, 2010), is introduced. In Petpon and

Srisuk (2009), a novel face representation method for face recognition, called Local

Line Binary Pattern (LLBP), is proposed. It summarizes the local spatial structure

of an image by thresholding the local window with binary weight and introduces the

decimal number as a texture presentation. The basic idea of LLBP is to compute

horizontal and vertical line binary code separately and its magnitude so that the change

in image intensity can be captured ( More details in Appendix A.2).

d. PCA implementation

As mentioned in Section 2.3.2, principal components are calculated using Jacobi’s

method for eigenvalue decomposition of a covariance matrix. However, the complexity

of Jacobi’s method is proportional to the number of feature-vectors or samples used,

which requires around O(N3 +N2M) computations (Golub and Van Loan, 1996). To

reduce the computational complexity, a number of methods have been proposed for

computing PCA transformation (Reddy and Herron, 2001; Schilling and Harris, 2000;

Roweis, 1998). Recently, a computationally fast method, which uses a fixed-point

algorithm, was proposed (Sharma and Paliwal, 2007). The eigenvectors are founded

without diagonalizing a symmetric matrix. It was demonstrated that fast PCA reduces

the computational times of eigenvectors’ calculation with very close MSE compared

with original PCA.

Computational complexity of PCA is highlighted more in real time applications

when updating new face images dynamically is an important issue. Kokiopoulou and

Saad (2005) have proposed an efficient implementation of PCA without eigenvalue

calculations using the polynomial filtering technique. The numerical results show a
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clear improvement in terms of speed and storage with a very close performance com-

pared with PCA. Although the previous algorithms show an enhancement in terms of

speed and storage compared to Jacobi’s method, there is no guarantee that the same

performance can be obtained.

It is well known that PCA tries to find a subspace, which represents the image

space with a minimum Mean Square Error (MSE) between original matrices and the

reconstructed matrix using l2-norm. Hence, it is sensitive to outliers because large

errors squared take control of the sum. To minimize outliers’ influence, l1-norm or

the least absolute value has been proposed to deal with this problem (Ke and Kanade,

2005). However, l1-norm is a rotational variant algorithm (Ng, 2004), which is not

preferable in orthogonal transformation models as in PCA.

Taking the merits of the two norms, a rotational invariant l1-norm PCA (R1-PCA)

has been introduced (Ding et al., 2006). The results show a little improvement com-

pared to PCA. The main drawback of R1-PCA is that a subspace calculation is highly

dependent on the dimension m to be found, i.e, the subspace when m is equal to one

may not be obtained when m is equal to two and so on (Kwak, 2008). Furthermore, the

R1-PCA algorithm uses successive iterations to find the subspace, which takes longer

time to converge when applied to a large dimensional space like face images (Kwak,

2008). To resolve this weakness, Kwak (2008) has proposed a new PCA method based

on l1–norm maximization called PCA-L1. In this method, instead of maximizing the

variance, which is based on l2-norm, l1-norm maximization in feature space is used to

gain the advantage of l1-norm with rotational invariant PCA. It is shown that PCA-L1

gives the least reconstruction error compared with PCA and R1-PCA and has less time
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