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The neuron, when considered as a signal processing device, its 
inputs are the frequency of pulses received at the synapses, and its 
output is the frequency of action potentials generated- in essence, a 
neuron is a pulse frequency signal processing device. In 
comparison, electrical devices use either digital or analog signals 
for communication or processing, and the mathematics behind 
these subjects is well understood. However, in regards to pulse 
frequency processing devices, there has not yet been a clear and 
persuasive mathematical model to describe the functions of 
neurons. It goes without saying that such a model is very important, 
not only for understanding neuron and neural system behavior, but 
also for undeveloped potential applications in industry. This paper 
proposes a method for obtaining the mathematical relationship 
between the input and output signals of a neuron based on 
physiological facts. The proposed method focuses on the currents 
across the postsynaptic membrane of each synapse, and the key is 
to recognize that the net charge across the whole membrane of a 
neuron over each action potential cycle must equal to zero. By 
analyzing the relationship between the input of a synapse and the 
currents across the postsynaptic membranes, a dynamic pulse 
frequency model of the neuron can be obtained. Here, we show that 
the transfer function of a neuron depends on the function of the 
postsynaptic current of each synapse in resting state, which can be 
found by detecting the postsynaptic current when a pulse is 
received at the synapse. The transfer function of a typical neuron 
generally includes addition and subtraction of feedthrough terms 
and/or first order lag functions. To focus on the most basic 
characteristics of a neuron, accommodation, adaptation, learning, 
etc. are not discussed in this paper. 

If a neuron is considered as a signal processing unit, the synapses 
and dozens of different types of neurotransmitters discovered thus far 
that can act on transmitter-gated ion channels in synapses must be 
examined. Thus far, many neuron models were proposed for explaining 
the active principle of a neuron1-6, such as the famous Hodgkin-Huxley 
(H-H) model1,2. However, until now, none of these models has 
considered the function of the synapses. Therefore, those models 
cannot explain the basic signal processing characteristics of the neuron 
in principle.  

It would seem to be very difficult to find a function to explain the 
characteristics of each type of transmitter-gated ion channel. However, 
all of these channels can be considered as having only one primary 
function, which is to allow the flow of ions though the postsynaptic 
membrane. This function is easy to satisfy because the ions move 
passively down its chemical potential which arises from the differential 
concentrations of ions between the two sides of the membrane. 
Therefore, each of these ion channels can be modeled as a time-varying 
conductance. The functions of the time-varying conductance can be 
obtained from the functions of the currents through the postsynaptic 
membrane, and the total of the currents in a synapse is the postsynaptic 
current, which can be experimentally obtained using common methods 
in the neurophysiology field.  

The following section introduces the principle of the action potential 
as basic background for this paper. Since only the transient signal 
processing characteristics of a neuron is discussed, the intracellular and 
extracellular ion concentrations can be assumed to be constant, and the 
effects of active transports such as ion pumps can be ignored 1-6, 9.
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Figure 1 | The relationship between membrane potential and ion 
currents across the membrane. a, Illustration of the electrical mechanism 
of a neuron. b, Equivalent circuit of a neuron. Cm represents the membrane 
electrical capacitance, and the voltage Vm across the capacitance represents the 
membrane potential. The conductance gNa, gK, and g0 represent the membrane 
permeability of Na+, K+, and the aggregate membrane permeability of other ions 
(mostly Cl-). ENa and EK, are the chemical potentials of Na+ and K+. E0 is the 
resting membrane potential or resting potential. It is defined as the membrane 
potential when there is no net current across the membrane. Iin is the total 
current from transmitter-gated ion channels of all synapses, and mIs (m=1,2, … 
M) represents the current through the postsynaptic membrane of the mth synapse. 
E1, E2, …, EM represents the chemical potentials of each corresponding ions, ex. 
if Em is the chemical potential of Na+, Em=ENa. c. The membrane potential 
caused by the ion currents across the membrane: INa is the current through the 
Na+ channel, IK is the current through the K+ channel, I0 is the leakage current, 
which includes all ions flowing through the membrane without channels. Note 
that none of the currents mentioned above are postsynaptic currents. Trest(n) is 
the resting state period, and Tact(n) is the action state period of the nth action.  

Fig.1a illustrates the electrical mechanism of a neuron. When an 
action potential from the presynaptic neuron arrives at a synapse, ion 
currents will flow into or out of the postsynaptic membrane. If the 
synapse is an excitatory synapse, the ion current flow is positive (ex. 
the flow of Na+ ions into the cell) and results in membrane 
depolarization. Conversely, if the synapse is inhibitory, the ion current 
flow is negative (ex. the flow of Cl- ions into the cell) and results in 
membrane hyperpolarization. If the stimulations at the excitatory 
synapses are continuous or strong enough to result in membrane 
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potentials greater than the action potential threshold VT of the neuron, 
then most of the Na+ channels on the membrane will open and Na+ ions 
will flow into the neuron in the direction of the chemical gradient. 
Subsequently, the membrane potential increases sharply and an action 
potential is generated. Since the K+ channels also open shortly 
afterwards, K+ ions flow out of the cell in the direction of the chemical 
gradient. Thus, the membrane potential goes back down quickly, and 
most of the ion channels become closed. The H-H equivalent circuit, as 
depicted by Fig.1b, can explain this process.  

Fig.1b is an H-H equivalent circuit of a neuron that is improved with 
the addition of synaptic circuits. To simplify the discussion, other types 
of ion channels, such as the Ca2+ channel, are not considered.  

The membrane potential of a neuron depends on the ion currents 
across the membrane. Fig.1c illustrates the ion flows based on the 
equivalent circuit of a neuron shown in Fig.1b. To analyze the principle 
of an action potential, the input current Iin is set as square waves, and 
each square wave is sufficient to cause an action potential. For my 
analysis of the action potential frequency of a neuron, I divided the 
time for one action cycle into two periods. The start of the first period 
Trest(n) for the nth action potential, is defined as the time ts(n), when the 
neuron first reaches the resting potential E0 after the end of the 
refractory period of the n-1th action potential. The end of the first 
period Trest(n), is defined as the time tt(n), when the membrane potential 
reaches threshold for the nth action potential. Because in period Trest, the 
neuron is in the resting state, Trest will be referred as the resting period. 

The start of the second period Tact(n), is defined as the time tt(n). The 
end of the second period, defined as te(n), is when the membrane 
potential first reaches the resting potential E0 after the end of the 
refractory period of the nth action potential. Note that te(n-1) = ts(n),
and the total time T(n) of the action cycle is T(n)=Trest(n)+Tact(n). In 
period Tact, the neuron is in the action state (includes the refractory 
period), so Tact is referred as the action period. 

Since the shape of the membrane potential during the action period 
is almost always the same, and Tact is almost always constant, the 
frequency of action potentials can be considered to be dependent solely 
on the characteristics of ions flowing through the membrane during 
resting period Trest.

Because most neurons can be considered as a pulse frequency 
processing device, the intervals between pulses need to be broad 
enough, relative to the width of the pulse, to explain the wide range of 
signal values. So, ideally,  

),2,1,0()()()( nnTnTnT actrest        (1) 
From Fig.1c it is easy to realize that the charge flowing into a neuron 

in period Trest is equal to the charge flowing out of the neuron in period 
Tact. In Fig.1b,  

)()()()()( 0 tItItItItI KNainm               (2) 
In the resting period Trest(n), because the neuron is in the resting state, 
the ion channels on the membrane, except those on the postsynaptic 
membrane, are closed, i.e. INa(t) and IK(t) are close to 0, so the total ion 
current flow into the neuron are the sum of the total currents Iin(t) from 
the synapses and the leakage currents I0(t). From Fig.1b, Fig.1c, and 
equation (2) the following equations are obtained.  

)(

)(
0

)(

)(

)(

)(
0 )()()()(

nt

nt

nt

nt
in

nt

nt
mTmin

t

s

t

s

t

s

dttIdttIdttIEVCnq     (3) 

Where, q
in

(n) is the total charge of ions which flow into the neuron in 
the period Trest(n), and VT is the threshold for action potential. Because 
Cm, VT, E0 are constant, q

in
(n) is also constant. Additionally, in the 

period Trest(n), the membrane potential is close to the resting potential 
E0, therefore the leakage currents I0 can be considered to be small 
enough to be insignificant.  

Here, we define the frequency of action potentials of a neuron in the 
period T(n) as fout(n)=1/T(n), and thus equation (3) becomes, 
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The average current of Iin(t) in the period Trest(n) is, 
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From (4) and (5), the following equation can be obtained. 
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Tact is almost constant. From equation (1), if Tact is small enough, i.e. 
Tact(n)/T(n) 0, the following equation is obtained. 
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 is a constant.  
From Fig.1b equation (7) can be explained as 
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Where M is the number of synapses of the neuron, and )(tI s
m  depends 

on the characteristics of the synapse and the frequency of the action 
potentials of the presynaptic neurons. Notice Is(t) is the current through 
the postsynaptic membrane of the synapse in the resting state of the 
neuron.  

Discussion (1): In the above analysis, the leakage current I0 was 
considered to be small enough to be neglected. In the standpoint of 
energy efficiency, the smaller g0 is, the better. However, if g0 is too 
small, the membrane potential cannot easily be kept at the resting 
membrane potential. Since the K+ channel causes the membrane 
potential during after-hyperpolarization to be lower than the resting 
potential, if it cannot let the potential return to the resting potential 
quickly, the generation of high frequency action potentials will be 
difficult.  

To answer this contradiction, I considered that there are 3 
possibilities in a neuron. First case is that the efficiency of ion pumps is 
variable. This means that when the membrane potential is lower than 
the resting potential (in Tact period), the efficiency becomes higher, and 
causes the membrane potential to return to the resting potential more 
quickly. Second case is to let g0 to be a variable value. For example, g0
may have a small value in Trest period, and become a large value in Tact
period. Third case is that g0 has different values depending on the 
direction of current flow, like a diode (i.e g0 is small during 
depolarization and g0 is large during hyperpolarization). Because the 
resting potential is close to the reverse chemical potential of chloride, 
considering the second and third cases, I speculate that there exists a 
type of chloride channel that opens during the refractory period, and/or 
the membrane is highly permeable to chloride ions flowing out, and 
relatively impermeable to chloride ions flowing in. 

Of course, all of the three cases do not influence the above equations 
because the variations of the ion pumps or g0 are all in action period 
Tact.

Discussion (2): In equations (1) and (6), the action pulse width Tact is 
considered small enough compared with the action cycle T. However, 
in cases of high frequency output, the Tact/T 0 simplification will not 
hold, and the relative refractory period will become shorter i.e. Tact is 
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not a constant. Therefore, in the high frequency domain, nonlinear 
problems will become apparent. To address this complex problem, one 
possible approach may be to introduce a sigmoid function, similar to a 
neural network using the Back-Propagation method12. However, for the 
sake of simplicity, this paper only considers the linear period of the 
function of neurons, i.e. we assume cases where Tact/T 0.  

Modeling of synapses: Fig.2 shows the mechanism of synapses. When 
an action potential traveling along the axon arrives at a synapse, some 
synaptic vesicles in the presynapse will move towards the presynaptic 
membrane and release an amount of neurotransmitter into the synaptic 
cleft. The neurotransmitters bind to transmitter-gated ion channels on 
the postsynaptic membrane and allow specific ions to flow through the 
channels. The flow of ions will cause membrane depolarization 
(excitatory synapse) or hyperpolarization (inhibitory synapse). All of 
these transmitter-gated ion channels can be considered as having one 
primary function, which is to allow the flow of ions through the 
postsynaptic membrane. This function is easy to satisfy because the 
ions move passively down its chemical potential. 

In this paper, we divided the neurotransmitters into two types. If the 
amount of transmitter, emitted by a single pulse is rapidly removed 
from the synaptic cleft before the next pulse arrives, we call this type of 
transmitter the type I neurotransmitter. Thus, this type of 
neurotransmitter has the characteristic that previous action potentials 
from the presynaptic neuron do not affect the postsynaptic membrane 
current of the subsequent action potentials. Most Type I 
neurotransmitters are released from small vesicles (Fig.2)7,9.
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Figure 2 | A typical mechanism of a synapse8

If some of the transmitters from a previous pulse remain in the 
synaptic cleft after the subsequent pulse, then we call this type of 
transmitter the type II transmitter. Thus, previous pulses can affect the 
present postsynaptic current. Most Type II neurotransmitters are called 
slow chemical transmitters, and considered to be released from large 
vesicles8,7.
In the case of type I neurotransmitters: If we define qs as the amount 
of charge that flows through the postsynaptic membrane in the resting 
period postTrest (Trest of the postsynaptic neuron) of postsynaptic neuron 
caused by a type I transmitter emitted by 1 pulse of presynaptic neuron, 
then the current through the postsynaptic membrane is 

)()( tfqtI inss                            (9) 
Where fin(t)=1/preT(t) is the input signal, which are the frequency of the 
action potentials of the presynaptic neuron at the synapse.  

Since adaptation characteristics are not discussed, it can be assumed 
that the amount of transmitter emitted into the synaptic cleft caused by 
a single pulse is constant. In addition, we assume that the same amount 
of transmitter in a synapse causes the same amount of charge to flow 
through the postsynaptic membrane. Therefore, the value of qs is 
almost constant.  

In the case of type II neurotransmitters: Assuming that the amount 
of type II transmitter emitted from the synapse caused by each pulse 

from the presynaptic neuron is constant, and the same amount of 
transmitter causes the same ion current function. Then the total current 
through the postsynaptic membrane Is(t) at the time of mth pulse 
received the synapse can be explained as (Fig.3), i.e. 
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Here, IP(t) is defined as the time-varying postsynaptic current function
for a single pulse received at the synapse10. Furthermore, time t=0 is 
defined as when one pulse is received at the synapse. 
Defining fin(j)=1/preT(j), (11) becomes, 
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if preT(k) is short enough, equation (12) becomes 
t
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Equation (14) is a convolution integral function. IP(t), which is named 
the “one pulse postsynaptic current,” can be approximately quantified 
by experiments. Fig.4 shows an example of such an experiment7. When 
providing a stimulus at a synapse, the trace of the current on the probe 
A is the function of a one pulse postsynaptic current IP(t).
 Actually, the type I neuron can also be explained by (14). In this case,  

Ip(t)=k1 (t)                               (15) 
since subsequent pulses do not add together, we can substitute IP(t)
with an unit impulse function (t), and k1 is a constant which depends 
on the kind of the transmitter and the synapse. 
    From (8) and (14), the following equation which explain the 
relationship of input and output is obtained. 
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So, Laplace transform of (16) is, 
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The transfer function of the neuron from the mth synapse to the axon 
mG(s) is 

)()( sIsG P
mm                               (18) 

Where mIp(s) can be obtained using the method showed in Fig.4. 
1

0
1 EVC Tm

 is a constant, where Cm is the capacitance of the 
membrane, VT is the threshold for action potential, and E0 is the resting 
potential. Because most neurons have the same VT and E0 in the short 
term, and the value of Cm is constant, therefore  is also a constant 
value.  Furthermore, since Cm is related to the area of the membrane, 
the smaller the neuron cell (smaller membrane area), the bigger the 
gain for the transfer function of the neuron. From (17), a neuron model 
can be explained as Fig.5 (a). The mark  in Fig.5 means that 
excitatory synapses are denoted with the symbol +, whereas inhibitory 
synapses are denoted with the symbol -. 

Discussion(3): Equation (17) shows that the transfer function of a 
neuron from a synapse to the axon depends on the characteristics of the 
postsynaptic current of the neuron. That means that the signal 
processing functions of a neuron depends on the type of transmitters 
emitted by the presynapse. By adjusting the types of neurotransmitters 
emitted, different signal processing functions can be composed. This 
characteristic highlights a very important principle; that is when 
structuring an equivalent circuit of a neuron, by adjusting the synapse 
circuit to vary the shape of the one pulse synaptic current, almost any 
transfer function can be realized.  
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Pulse train of presynaptic neuron
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Figure 3 | The relationship between presynaptic action potentials and the amount of type II transmitter in a synapse10.
Where, Ip(t) is the postsynaptic current function caused by the 0th pulse,  
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Figure 4 | A method for obtaining the function of a current IP(t)
through the postsynaptic membrane caused by a single pulse7,
assuming that only one kind of type II neurotransmitter is in the 
synapse.  
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Figure 5 | Neural models 

Discussion(4):  Equation (14) assumed that the current function 
through the postsynaptic membrane caused by each pulse received at 
the synapse is same. However, in the case when almost all Na+

channels are open, the postsynaptic currents will become saturated. The 
saturation problems I feel can be explained by a sigmoid function at 
each synapse. Because each synapse is connected with the presynaptic 
neuron’s axon, as per discussion (2), we only need one sigmoid 
function at the output of the model as shown in Fig.5 (b). 

Discussion(5): Since the Laplace transform of the one pulse 
postsynaptic current function is the transfer function of the neuron, if 
one pulse can trigger enough number of output pulses, the single input 
pulse can be considered as an impulse signal, and the frequency of 
output pulses is the impulse response. 

Discussion(6): In some cases, the signals of the output and/or input of 
a neuron can be considered as pulse frequency modulation (PFM) 
signals. Examples include the neuron fibers from vestibular organs, 
which has a pulse train at a specific base frequency, and when the head 
moves, the frequency shifts higher or lower to encode the velocity and 
direction of head movements. To analyze this problem, we can consider 
3 cases. First case is that the input pulse trains of one or more synapses 
of a neuron have base frequencies, but the output of the neuron has no 
base frequency (i.e. the base frequency is 0). The second case is that 
not only do the input pulse trains of the neuron have base frequencies, 
but also the output pulse train has a base frequency. The third case is 
that the input pulse trains of the neuron have no base frequency, but the 
output pulse train has a base frequency. 
 In fact, in each of the three cases, equations (16) and (17) hold, and 
the input signals fin(t) or output signal fout(t) are values of the real 
frequency minus the base frequency. 
As for the 1st and 2nd cases, the base frequency pulse train input on the 

synapses causes a base current through the postsynaptic membrane, and 
the base current causes the membrane potential to be higher than the 
resting membrane potential. If the base current is not strong enough to 
cause an action potential, then this is met by case 1. In contrast, if the 
base current is big enough to cause action potentials, we have case 2, 
where the frequency of the action potentials is the base frequency of 

output pulse train. 
As for the 3rd case, the base output frequency can be caused by 

some types of channels on the membrane which allow a constant 
current flow into the neuron. These currents can be included into Iin(t) 
(Fig.1b), so that we can define 
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where 0Iin is a constant current that causes a base frequency output 
pulse train. From (7), the base frequency is )(0 tI in .

A model of a typical neuron:  

The curve IP(t) shown in Fig.4 is one found commonly in 
neurophysiology textbooks7. IP(t) can be explained approximately as, 
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Where, the parameter , TI, and Td depend on the characteristics of the 
transmitter and the channels. The transfer function (18) of the neuron 
through the synapse can be obtained from (19) as follows. 
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The upper equation shows that the synapse which has type II 
neurotransmitter (19) is a first order lag function with a dead time7.

If there are any non-linear elements in the neuron caused by type II 
neurotransmitters, then a different mathematical model of type II 
neurotransmitters will be required. This can be done as per the 
experiment in Fig.4. 

Using (15), (17) and (20) the whole neuron model can be structured 
as follows,  
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Where, N is the number of synapses, and KP, KI, TI are parameters 
which depend on the transmitters and the transmitter-gated ion 
channels of each synapse. If learning or adaptation functions of the 
neuron are ignored, KP, KI, TI are constant. When the synapse is an 
excitatory synapse KP, KI are positive, and when the synapse is an 
inhibitory synapse KP, KI are negative. 

From (21) the relationship between inputs and output of the neuron 
can be explained as in Fig.6. For normalization, and taking into account 
the action potential frequency limitation of a neuron, the summation 
unit in Fig.6 can be modeled using a sigmoid function as in Fig.5(b). 
Compared with most common neuron unit models11, it is clear that the 
proposed neuron unit model is a dynamic system. When Td is small 
enough, and TI is big enough, (21) can be viewed as a summation of 
integrator units and feedthrough terms. 
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Figure 6 | A dynamic model of a typify neuron 
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Conclusion
This paper analyzed the physiological mechanisms of a neuron using 

mathematical techniques and the salient points are as follows: 
(1) A neuron is a pulse frequency signal processing device. The 

transfer function, from a synapse of the neuron to the axon, can be 
obtained by detecting the characteristics of the postsynaptic current. In 
other words, the transfer function is the Laplace transform of the time 
function of the post-synaptic current caused by one input pulse. 

(2) If we construct an equivalent circuit of a neuron based on Fig.1b, 
by adjusting the synapse circuit to vary the shape of the one pulse 
synaptic current, almost any transfer function can be realized. 

(3) A typical neuron model is a dynamic calculation system that has 
feedthrough terms and/or first order lag functions (integration function 
with a loss). 

(4) The characteristics of the postsynaptic currents and membrane 
potential in the action period do not contribute to the signal processing 
results. Remarkably, this means that the shape of an action potential 
conveys almost no information. 

(5) A single pulse can be considered as an impulse signal, when the 
pulse can cause a strong enough postsynaptic current to trigger action 
potentials on the postsynaptic neuron. 

Future works: 
For our next paper, we will demonstrate some neuron equivalent 

circuits that include synapses. Since the transfer functions of a neuron 
depends on the characteristics of one pulse postsynaptic currents of the 
neuron, arbitrary transfer functions of the equivalent circuit can be 
easily constructed by correctly designing the circuit of the synapse. We 
will show that these equivalent circuits will have many practical 
industrial applications. 

To focus on the most basic characteristics of a neuron, this paper 
only discusses the short-term functions. However, our future research 
will focus on discussing the long-term functions. The long-term 
functions includes the characteristics of the potential dependent Ca2+

channel and Ca2+-activated K+ channel9, the plasticity of the synapses 
and the growth of a neuron. 

In this paper, the transfer functions of the synapses are independent 
of each other. However, this condition is under the assumption that the 
transmitters released from a synapse cannot functionally affect 
neighbouring synapses. In the future, we will investigate if any neuron 
transmitters do not conform to the above assumption, and if so, how to 
explain the characteristics of the neuron transmitter using a 
mathematical model. 
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