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Abstract 

 

The use of gold nanorods for photoacoustic molecular imaging in vivo with simultaneous multiple 

selective targeting is reported. The extravasation of multiple molecular probes is demonstrated, and 

used to probe molecular information of cancer cells. This technique allows molecular profiles 

representing tumor characteristics to be obtained and a heterogeneous population of cancer cells in a 

lesion to be determined. The results also show that the image contrast can be enhanced by using a 

mixture of different molecular probes. In this study, HER2, EGFR, and CXCR4 were chosen as the 

primary target molecules for examining two types of cancer cells, OECM1 and Cal27. OECM1 cells 

overexpressed HER2 but exhibited a low expression of EGFR, while Cal27 cells showed the 

opposite expression profile. Single and double targeting resulted in signal enhancements of up to 3 

dB and up to 5 dB, respectively, and hence has potential in improving cancer diagnoses.  
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Introduction 

 

Molecular imaging refers to remote sensing the characteristics of biological process and interactions 

between molecules at the molecular level1. It has a great potential for the early detection and more 

effective treatment of diseases, because aberrations at the cellular and molecular levels occur much 

earlier than anatomic changes. In general, specific targeting employs an exogenous nanoprobe that 

has a high affinity to the molecule (i.e., the biomarker) associated with a specific type of disease, 

with the targeting of probes tracked using a suitable imaging system. Molecular imaging methods 

have developed for many different imaging modalities1, including optical imaging2, ultrasonic 

imaging3, magnetic resonance imaging4, and nuclear medicine based imaging5.  

 

The goal of targeting cancer cells is to determine the expressions of oncogenic surface molecules, 

which will aid the prediction of clinical outcomes and treatment responses. For this it is necessary to 

image cancer lesions and obtain pathogenic information on them at the molecular level. However, 

most previous researches reported in the literature have employed only a single target. Therefore, the 

goal of this study was to realize in vivo photoacoustic (PA) imaging with simultaneous multiple 

selective targeting for cancer diagnosis. We have previously demonstrated in vitro multiple 

targeting6, and the present study further demonstrates the in vivo imaging of small-animal models 

and extravasation of multiple molecular probes. 

 

PA imaging is a new imaging modality under preclinical development that has been applied to 

several biomedical applications for obtaining anatomic and functional information, including breast 

tumor detection7, epidermal melanin measurements8, blood oxygenation monitoring9, and 

quantitative blood flow estimation10. In the current study, cylindrical antibody-conjugated gold 

nanorods (AuNRs) were used as nanoprobes for PA imaging to achieve multiple selective targeting. 

The wavelength at which the optical absorption of gold nanorods is maximal increases with their 

aspect ratio11, and AuNRs with different aspect ratios can be conjugated to different antibodies and 

detected by irradiation with laser pulses at appropriate wavelengths.  
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To achieve simultaneous multiple targeting, different antibodies and a blocker (PEG) are conjugated 

to AuNRs with different aspect ratios to form various types of nanoprobes that are injected into 

blood vessels at the same time. The purpose of attaching blockers is to avoid nonspecific binding 

such as electrostatic binding and endocytosis12. The extravasating nanoprobes can target cancer cells 

with antigens specific to the conjugated antibody. Consequently, different types of cancer cells can 

be recognized and multiple characteristics can be obtained with laser irradiation at wavelengths 

corresponding to the peak absorption wavelengths of the nanoprobes. 

 

The first part of this study used oral cancer OECM1 (oral squamous cell carcinoma) cells with HER2 

(human epidermal growth factor receptor 2) overexpressed on the cell surface, and Cal27 (squamous 

cell carcinoma) cells with EGFR (epidermal growth factor receptor) overexpressed on the cell 

surface. These two cell types, each with a specific cell–antibody pair, were adopted to demonstrate 

multiple selective targeting.  

 

HER2 expression is associated with growth characteristics and sensitivity to Herceptin 

chemotherapy, and is a member of the HER tyrosine kinase family that regulates cell growth and 

proliferation. HER2 has been associated with an aggressive phenotype and a poor prognosis, making 

it an appealing therapeutic target13.  

 

EGFR expression is strongly correlated with tumor metastasis. It is overexpressed in several 

epithelial malignancies, including head and neck squamous cell carcinoma (HNSCC), with 90% of 

such tumors exhibiting EGFR overexpression. EGFR plays a critical role in HNSCC growth, 

invasion, metastasis, and angiogenesis14. 

 

The second part of the study involved targeting two specific targets in an oral cancer cell line. The 

specific recognition of the antigens of CXCR4 (CXC-chemokine receptor 4) on the two selected cell 

types was verified carefully by Western blot analysis. CXCR4 is highly expressed in tumor cells and 

plays an important role in tumor metastasis15. It also functions as a coreceptor for human 

immunodeficiency virus (HIV) and is an attractive target for the development of anti-HIV drugs16. 
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We conducted multiple-target measurements on OECM1 cells using HER2- and CXCR4-based 

nanoprobes in order to cross-examine the types and amounts of protein expressed. 

 

To demonstrate multiple targeting, three types of nanoprobes were prepared: AuNR785-HER2, 

AuNR1000-EGFR, and AuNR785-CXCR4; where the subscripts represent the peak absorption 

wavelengths of two types of gold nanorods with mean aspect ratios of 3.7 (785 nm) and 5.9 (1000 

nm) (Fig. 1). The conjugated antibodies were HER2, EFGR, and CXCR4. 

 

Results 

 

Western blot analysis 

 

Western blot analysis can detect and indicate the size of specific proteins in a mixture. For multiple-

target molecular PA imaging, the cancer cell-line bank has been screened for appropriate model cells 

(see Supplementary Fig. 1). OECM1 cells overexpressed HER2 and exhibited a relatively low 

expression of EGFR, while Cal27 cells showed the opposite expression profile. Both cells exhibited 

high expressions of CXCR4. 

 

Binding between cells and nanoprobes 

 

The efficacy of the binding between cells and nanoprobes was examined using transmission electron 

microscopy (TEM). The TEM image (see Supplementary Fig. 2) of an OECM1 cell slice shows 

bioconjugated gold nanorods attached to the cell surface, demonstrating the specific binding ability 

of nanoprobes. 

 

In vitro PA measurements of cell cultures 

 

Before performing in vivo animal experiments, in vitro experiments with cell cultures were 

performed to verify the targeting ability of the bioconjugated gold nanorods to cancer cells. The 

samples were placed in a phantom made from transparent plastic (Rexolite 1422, San Diego Plastics, 
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CA). The phantom was 4 cm × 4 cm × 3 cm in size and contained several tubes with an internal 

diameter of 2.5 mm.  

 

For each cell line, the cells on the left, middle, and right in the phantom were reacted with probes of 

a specific targeting relation (experimental group), with probes of a nonspecific targeting relation 

(control group), and with pure gold nanorods (control group) (see Supplementary Fig. 3).  

 

To demonstrate multiple targeting of bioconjugated gold nanorods, the two wavelengths chosen to 

irradiate the samples for generating PA signals (one close to and the other far from the peak 

absorption of the specific target probes) were 800 and 1064 nm, corresponding to the peak 

absorption wavelengths of the AuNR785-HER2 and AuNR1000-EGFR probes. Results showed that the 

image intensities of the experimental groups were generally about 10 dB higher than those in the 

control groups (see Supplementary Fig. 4). In other words, the targeting ability of specific probes to 

cancer cells and the wavelength selectivity of PA detection are clearly demonstrated. 

 

PA system for in vivo imaging of multiple selective targeting  

 

The PA experimental setup for in vivo imaging (Fig. 2) consisted of an optical irradiating system, a 

precision translation stage, a homemade animal stage, and a data acquisition card. The nanoprobes 

and gold nanorods (control group) were injected into the tail veins of two mice. In each mouse the 

targeting process was monitored at multiple time points within 24 hours after probe/nanorod 

injection. At each measurement time point, the tumor was imaged in three cross sections to calculate 

the averaged PA intensity within the tumor region. After each PA scanning procedure, an ultrasound 

image was also acquired in the same region to show anatomic information. Ultrasound images 

displayed on a grayscale were superimposed with the corresponding PA images displayed in red 

pseudocolor.  

 

Cal27 tumor with EGFR-probe targeting 

The PA images of a Cal27 tumor for injections with AuNR1000 and AuNR1000-EGFR in Fig. 3 

demonstrate the specific targeting ability of the AuNR1000-EGFR probe. The contrast is higher for 
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the AuNR1000-EGFR data postinjection (7 hours after injection) PA image within the tumor region 

(Fig. 3d) than for the preinjection image (Fig. 3c), while there is no apparent difference between the 

pre- and postinjection images for the AuNR1000 injection (Fig. 3a, b). The intensities of three cross-

sectional PA images of the tumor region were averaged and normalized relative to the preinjection 

averaged intensity of the tumor region in order to quantitatively measure the targeting efficacy. The 

contrast between the experimental group (AuNR1000-EGFR injection) and the control group 

(AuNR1000 injection) was maximally about 3.5 dB at 7 hours after the injection, indicating the 

specific targeting of AuNR1000-EGFR to Cal27 cells. The increased intensities at 1 hour postinjection 

in both cases might indicate nonspecific binding due to accumulation in the circulation17.  

 

OECM1 tumor with HER2 probe and mixed-probe targeting 

 

The PA images of OECM1 tumors in Fig. 4a–d also demonstrate the other specific cell–antibody 

binding relations. The pre- and postinjection images of the control group (i.e., injection of AuNR785) 

showed no obvious changes in signal intensity (Fig. 4a, b). In contrast, the postinjection image for 

AuNR785-HER2 exhibited an evident increased PA intensity relative to the preinjection image. 

 

Multiple targeting of an OECM1 tumor with AuNR785-HER2 and AuNR785-CXCR4 injections 

revealed an enhanced contrast between the tumor region and surrounding tissues, demonstrating the 

effectiveness of using a mixture of different nanoprobes (Fig. 4f). Injecting mixtures with different 

probes yielded conspicuous PA signals from the increased level of targeted probes in the tumor 

region, with various protein expressions being obtained.  

 

Fig. 4g shows normalized averaged image intensities within the OECM1 tumor regions plotted as a 

function of the observation time. The intensity contrast between the tumor with AuNR785-HER2 

injection (dashed line) and the tumor with AuNR785 injection (dotted line) was up to about 2 dB at 

14 hours, while multiple targeting with AuNR785-HER2 and AuNR785-CXCR4 showed maximum 

contrasts of 4 dB at 10 hours and 3 dB at 24 hours.  

 

Discussion 
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Biocompatibility has been an important issue for in vivo applications of gold nanoparticles. Results 

from analyses of AuNRs including in vitro biosafety tests (see Supplementary Fig. 5), 

hemocompatibility analyses (see Supplementary Fig. 6) and in vivo systemic toxicity tests (see 

Supplementary Fig. 7) show that AuNRs are biocompatible and hemocompatible for in vivo tests. 

Nanoparticles exhibit satisfactory biosafety at the dosages expected for in vivo applications. The 

results of an in vivo toxicity test for AuNRs administered to BALB/c mice via tail-vein injection 

were also satisfactory, with all mice surviving the 2-month observation period.  

 

In addition, the temporal biodistribution of AuNRs in BALB/c mice was analyzed to determine their 

metabolic clearance. An evaluation of metabolic uptake and clearance of the nanoparticles indicated 

that these nanoparticles were mainly taken up by the liver, and the accumulations in the spleen and 

liver reached a plateau at 24 hours then gradually reduced over time (Fig. 5). The nanorod 

concentration returned to the background level at 168 hours after the intravenous injection. 

 

The biodistribution of particles from organs removed at 24 hours postinjection indicated that the 

percentage concentrations of particles relative to the injected dose for the injections with AuNR785-

HER2 and AuNR785 were 8.88% and 6.1% (Fig. 6), which indicates a 3.26-dB difference compared 

to 2 dB in the imaging results. The contrast could be improved by determining the optimal strategy 

for conjugating antibodies and PEG to increase the targeting efficiency and to avoid nonspecific 

binding. Below we describe how to titrate the appropriate concentration of nanoprobes or other types 

of conjugated targeting probes to enhance the PA signals. 

 

PA molecular imaging with multiple selective targeting has been demonstrated using AuNRs on oral 

cancer cells in vivo. The results reveal that information about the oncogene surface molecules of 

cancer cells can be obtained with PA techniques, which will help to improve our understanding of 

cancer cells better and to develop effective diagnosis tools as well as indications for effective 

treatments. Safe and effective gold-nanoparticle-based cancer diagnoses have great potential in the 

pharmaceutical industry and could also make significant contributions in the biomedical field. 
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Methods 

 

Cell culture 

OECM1 cells were maintained in 90% RPMI1640 and 10% FBS (fetal bovine serum), and Cal27 

cells were cultured in 90% DMEM and 10% FBS. All of the cell lines were maintained in a 37°C 

incubator with a humidified environment of 5% CO2 in air.  

 

Antibody production 

HER2, EGFR, and CXCR4 antibodies was purchased from American Type Culture Collection (VA, 

USA), Thermo Fisher Scientific (MA, USA), and R&D Systems (MN, USA), respectively. HER2 

antibodies were purified from the A-HER2 hybridoma (CRL-10463). Antibodies were produced and 

purified by GlycoNex (Taiwan).  

 

Gold nanorods and nanoprobes 

Gold nanorods were synthesized by the electrochemical conversion of an anodic gold material into 

particles within an electrolytic cosurfactant system, which is a procedure that we have developed 

previously18, 19. The cationic surfactants used were CTABr (hexadecyltrimethylammonium bromide) 

and TDABr (tetradodecylammonium bromide). The particle shape was successfully controlled using 

cationic cosurfactant micelles that included several other ingredients such as cyclohexane and trace 

amount of silver ions20. The gold nanorods were then well dispersed in aqueous solutions. Multiple-

target studies were achieved using two nanorod samples and a gold-nanosphere system exhibiting 

surface plasmon resonances at approximately 800 and 1000 nm for the subsequent antibody 

conjugation and cell binding. 

 

In addition to successful and stable conjugation of the recognition unit to the AuNRs through 

chemical bonding, it was also necessary that the nanoprobes exhibited high dispersity prior to 

binding to cancer cells. To achieve these goals, we adopted a conjugation protocol involving a 1-

ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC-mediated coupling reaction and 

subsequent attachment of a blocking agent [mPEG-SH, a thiol-terminated methoxypoly 

(ethyleneglycol)] at nonspecific adsorption sites on the AuNRs21, 22.  
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Briefly, the absorbance of a 1-ml aliquot of the AuNR solution was adjusted to 0.8, as measured 

under a 2-mm optical path length at the resonance. Five milliliters of 0.4 M cysteamine 

dihydrochloride and 10 ml of 16 mM HNO3 were then added, and the solution was aged for 30 min 

before being centrifuged at 5500 rpm for 15 min and redispersed into 1 ml of deionized water to 

remove any excess cysteamine. In a separate vial, an EDC-mediated solution was prepared by 

adding 0.02 g of EDC to 100 μl of aqueous 1.04 M NHS (N-hydroxysuccinimide) solution and then 

aging the mixture for 10 min. A 2-ml aliquot of the EDC-mediated solution was mixed with 2 ml of 

a 8 mg/ml solution of HER2 monoclonal antibody (mAb) in 10 mM PBS in a microcentrifugation 

tube and then aged for 1 hour at 4 °C. To complete the conjugation process, this modified HER2 

mAb solution was then added into the previously prepared cysteamine-modified AuNR solution (1 

ml) and aged for 1 hour at 4 °C. This AuNR-HER2 mAb solution was flocculated by centrifugation 

at 5500 rpm for 15 min and then redispersed into 1 ml of aqueous 1.04 mM mPEG-SH (MW = 5000; 

Nektar) solution. The dispersed solution was then aged for either 1 hour or overnight. The final 

solution was again centrifuged at 5500 rpm for 15 min to remove any excess mPEG-SH. The 

flocculates were then redispersed into a 10 mM PBS solution to produce the nanoprobes. The 

aqueous nanoprobe solutions remained well dispersed for at least 1 month when stored at 4 °C. 

 

Tumor induction in small animals 

For in vivo studies, the cancer cells were induced on the back of NOD-scid male mice by the 

subcutaneous injection of 107 cells. The tumors were measured by the PA technique after 10–15 

days of growth, and were typically 5 mm in diameter and 2–3 mm thick.  

 

In vivo setup for PA measurements 

The optical irradiation was delivered by a widely tunable pulsed Ti:sapphire laser (CF-125, SOLAR 

TII, Minsk, Republic of Belarus) and an Nd:YAG laser lasing at 800 and 1064 nm, respectively. 

These wavelengths were chosen according to the peak absorptions of the gold nanoprobes. The pulse 

repetition rate was 10 Hz. A homemade PA transducer with a center frequency of 20 MHz and a 

focal depth of 9.5 mm was used for signal detection. The transducer was integrated with a single 

fiber (FT-600-UMT, Thorlabs, Newton, NJ) with a diameter of 600 μm through a hole at the center 
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of the transducer to achieve registered irradiation and detection. The integrated PA transducer was 

driven by a precision translation stage (HR8, Nanomotion, Yokneam, Israel) to perform one-

dimensional cross-sectional scans of the tumor with a step size of 0.2 mm. The received acoustic 

waveforms were amplified by an ultrasonic receiver (5077PR, Panametrics, Waltham, MA) and then 

recorded at a sampling rate of 200 Msamples/second by a data acquisition card (CompuScope 

14200, Gage, Lachine, QC, Canada). 

 

Mice with tumor cells were anesthetized with halothane vapor using a vaporizer system (Fluosorber, 

Market Supply, UK), placed on a plate stage, and illuminated with an incandescent bulb to keep the 

mouse warm. Transparent ultrasonic gel (ECGEL 4000, Hometech, Taiwan) was added between the 

tumor region and the transducer to improve acoustic wave propagation. For mice with the OECM1 

tumor, a 100-μl mixture of AuNR785-HER2 and AuNR785 at a concentration of 30 nM was prepared 

for injection, and the irradiating wavelength was 800 nm. For Cal27 tumors, a 100-μl mixture of 

AuNR1000-EGFR and AuNR1000 at a concentration of 30 nM was prepared for injection, and the 

irradiating wavelength was 1064 nm. For measurements of multiple targeting of OECM1 tumors, 50 

μl of each of two nanoprobes (AuNR785-HER2 and AuNR785-CXCR4) were mixed at a concentration 

of 30 nM, and the irradiating wavelength was 800 nm. 
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Figure Legends 

 

Figure 1 Absorption spectra of gold nanorods with two aspect ratios: (A) AuNR785 and (B) 

AuNR1000. 

 

Figure 2 Schematic diagram of the experimental setup for in vivo PA imaging. 

 

Figure 3 Images of a Cal27 tumor before and after the injection of AuNR1000 and AuNR1000-EGFR. 

The ultrasound images are displayed on a grayscale, and the superimposed PA images obtained at an 

optical wavelength of 1064 nm are displayed in red pseudocolor. Ellipses indicate the tumor regions. 

(a) Control PA image before AuNR1000 injection. (b) PA image at 7 hours after AuNR1000 injection. 

(c) Control PA image before AuNR1000-EGFR injection. (d) PA image at 7 hours after AuNR1000-

EGFR injection. (e) Averaged image intensities within the tumor region versus time for injections 

with AuNR1000-EGFR (solid line) and AuNR1000 (dashed line). The averages were calculated from 

three cross-sectional images. Error bars indicate standard deviations. 

 

Figure 4 Images of an OECM1 tumor before and after the injection of AuNR785 and a mixture of 

different probes (AuNR785-HER2 and AuNR785-CXCR4). The ultrasound images are displayed on a 

grayscale, and the superimposed PA images obtained at an optical wavelength of 800 nm are 

displayed in red pseudocolor. Ellipses indicate the tumor region. (a) Control PA image before 

AuNR785 injection. (b) PA image at about 17 hours after AuNR785 injection. (c) Control PA image 

before AuNR785-HER2 injection. (d) PA image at about 17 hours after AuNR785-HER injection. (e) 

Control PA image before injecting the mixture of different probes (AuNR785-HER2 plus AuNR785-

CXCR4). (f) PA image at about 17 hours after mixed-probe injection. (g) Averaged image intensities 

within the tumor region versus time for injection with mixed probes (solid line), injection with 

AuNR785-HER2 (dashed line), and injection with AuNR785 (dotted line). The mean values were 

calculated from three cross-sectional images. Error bars indicate standard deviations. 
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Figure 5 Atomic absorption spectroscopy analysis of various organs taken from test mice at 

different time points after intravenous injections. Nanorods mainly accumulated in the spleen and 

liver, and they cleared after 168 hours.  

 

Figure 6 Biodistributions of AuNR785-HER2 and AuNR785 from the organs removed at 24 hours 

postinjection. Data are mean and standard deviation values. 
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Figure 3 
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Figure 4 

 

 
Figure 5 

 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.1
68

7.
1 

: P
os

te
d 

15
 M

ar
 2

00
8



 
 

 
 

19 
 

 
Figure 6 
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