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Abstract 

The mechanism by which the enzyme pyruvate decarboxylase from yeast is activated 

allosterically has been elucidated. A total of seven three-dimensional structures of the 

enzyme, of enzyme variants or of enzyme complexes from two yeast species (three of them 

reported here for the first time) provide detailed atomic resolution snapshots along the 

activation coordinate. The prime event is the covalent binding of the substrate pyruvate to the 

side chain of cysteine 221, thus forming a thiohemiketal. This reaction causes the shift of a 

neighbouring amino acid, which eventually leads to the rigidification of two otherwise 

flexible loops, where one of the loops provides two histidine residues necessary to complete 

the enzymatically competent active site architecture. The structural data are complemented 

and supported by kinetic investigations and binding studies and provide a consistent picture of 

the structural changes, which occur upon enzyme activation. 

 

Introduction 

The two closely related pyruvate decarboxylases from Saccharomyces cerevisiae (ScPDC) 

and Kluyveromyces lactis (KlPDC) are well-characterised thiamine diphosphate (ThDP) 

dependent enzymes, which share 86.3 % identical amino acid residues. They have been 

studied in great detail by means of kinetic investigations of the native enzymes1-4 of 
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catalytically active variants and of catalytically almost inactive variants of ScPDC, like D28A 

or E477Q5-12. They display an allosteric substrate activation behaviour, which they share with 

PDCs from plant seeds13-17. Consequently, sigmoidally shaped v/S plots result. At substrate 

concentrations around S0.5 (the equivalent value to Km for enzymes with hyperbolic v/S plots) 

a considerable time period (~60 s at 30 ºC) elapses before catalysis is accelerated and the 

steady state is entered18. The observed activation rate constants rise with increasing substrate 

concentration. In contrast, the PDC from the bacterium Zymomonas mobilis (ZmPDC)19 and 

indolepyruvate decarboxylase from Enterobacter cloacae (EcIPDC)20 show Michaelis-

Menten type kinetics without any sign of substrate activation.  

A number of substrate surrogates have been identified, which are able to activate PDC as 

well. The effects of pyruvamide (PA) on the activation kinetics have been studied in detail for 

ScPDC1 and KlPDC4. Phosphonate analogues (among them methyl acetylphosphonate, MAP) 

of pyruvate have been applied to elucidate the catalytic cycle21-25 or to trap reaction 

intermediates in crystal structures26-28.  

PDCs are multi-subunit enzymes dependent on the cofactor thiamine diphosphate (ThDP), 

which is bound mainly via a divalent metal ion, magnesium in most cases, to the protein 

component. The typical molecular mass of the subunit is 59-61 kDa. The catalytically active 

state of most PDCs is the tetramer, but higher oligomers (octamers, hexadecamers) have also 

been described for PDCs from plant seeds14,15 or some fungi29. Crystal structures are known 

for ScPDC30 for KlPDC31, for ScPDC activated by PA32 and ketomalonate33, respectively, and 

for two non-activated species, ZmPDC34 and EcIPDC35. All three-dimensional structures 

display a very high similarity on the basis of monomers and dimers (for an early comparison 

see Muller et al.36). Monomers consist of three domains, each with an open α/β topology, 5-6 

stranded β-sheets are surrounded by α-helices. Domains are connected by long, in some cases 

flexible loop regions. The cofactor ThDP is bound between two monomers. Each N-terminal 

(PYR-) domain binds the aminopyrimidine part of the cofactor, each C-terminal (PP-) domain 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.1
63

9.
1 

: P
os

te
d 

27
 F

eb
 2

00
8



 3

the corresponding diphosphate part via the divalent metal ion, generating the vital V-

conformation of the cofactor ThDP37. The proposed ThDP binding motif is found in all PDCs 

analysed so far38. Because of this cofactor-binding mode monomers are associated very 

tightly within one dimer with a large interface area34. Significant differences between PDC 

crystal structures manifest themselves at the tetramer stage. ScPDC without bound ligands 

forms an open tetramer30, whereas ScPDC crystallised in the presence of the substrate 

surrogate PA forms a half-side closed tetramer32. A half-side closed conformation was also 

found for KlPDC in the absence of any ligand31. Hence, the mode of tetramer arrangement 

does not appear to be the critical feature of the activation mechanism. Instead, it is the 

flexibility of two loop regions near the catalytic site of PDC, which seems to be different 

between activated and non-activated enzyme species. These loop regions, comprising residues 

104-113 and 288-304 (identical numbering for KlPDC and ScPDC, for sequence details see 

supplemental figure 1), have never been detected in crystal structures of native PDCs due to 

their inherent disorder30,31. For the side chains of the adjacent residues H114 and H115 very 

poor electron density was found, indicating high flexibility. However, in the crystal structure 

of PA activated ScPDC, the loops become at least ordered at one side of the tetramer32. The 

binding of ligands at the regulatory site of the enzyme affects the efficiency of catalysis by 

initiating conformational changes of the protein structure. Although the catalytic cycle of 

PDCs has been analysed in great detail by kinetic studies of enzyme variants6,10,11,39-44 along 

with intermediate analyses45,46,47 and studies of the effect of cofactor analogues48-54, 

information on the mechanistic basis of allosteric regulation is rather scarce. Chemical 

modification of PDCs with group specific reagents pointed to an important role of cysteine 

residues55. The number of cysteines and their reactivity was determined by derivation with 4-

hydroxy mercuribenzoate and 3-bromopyruvamide, respectively56. Site directed mutagenesis 

of cysteine residues to alanine or serine demonstrated that residue C221 might be the decisive 

one for enzyme activation7,8,57-59. Consequently, it was postulated that the region around C221 
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 4

is the regulatory site of PDC. The question remained, however, how the signal is transferred 

to the active site. Kinetic studies on a number of variants favour a direct pathway through 

neighbouring amino acid side chains to the cofactor ThDP9,60. 

First insights into the structural background of substrate activation of PDCs came from small 

angle X-ray solution scattering (SAXS) studies and X-ray crystal structure analysis. The 

artificial substrate surrogate PA was used with both methods. The presence of PA in enzyme 

solutions led to a significant increase of the radius of gyration (RG). This suggested a global 

conformational change of the enzyme molecule in solution61. In the crystal structure of PA-

ScPDC the binding of the activator at the regulatory site caused a rotation of two dimers 

relative to each other within the tetramer. However, PA was found in half of the regulatory 

and active sites only and not directly bound to C221, but 10 Å away instead. Consequently, 

only half of the flexible loop regions became ordered32. 

Here, we present the crystal structures of KlPDC with the bound substrate surrogate methyl 

acetylphosphonate (MAP, for chemical structures, see supplemental figure 2) and of the 

ScPDC variants D28E and E477Q with bound substrate pyruvate (PYR) together with 

detailed kinetic studies on the activating effect of both activators and binding studies using the 

SAXS method. With this knowledge in hand it is now possible to comprehensively describe 

the mechanism of allosteric activation of PDCs. 

 

Results and Discussion 

Kinetic effects of MAP 

As MAP was used as a substrate surrogate in crystallographic studies on KlPDC it was 

important to demonstrate that this analogue does indeed act as an activator of this enzyme. In 

the absence of any effectors KlPDC displays typical sigmoidal steady state kinetics4. After 

incubation of the enzyme with MAP the sigmoidicity of the v/S-plot becomes gradually 

suppressed with increasing concentrations of this surrogate (Fig. 1A). At an MAP 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.1
63

9.
1 

: P
os

te
d 

27
 F

eb
 2

00
8



 5

concentration of 75 mM the enzyme’s steady state kinetics is essentially hyperbolic. 

Moreover, at pyruvate concentrations below 1 mM the activating effect of MAP is also 

documented by the higher absolute values of the steady state rates (inset of Fig. 1A). This 

effect is even more apparent from the corresponding progress curves (Fig. 1B). In the absence 

of MAP the progress curves of KlPDC show lag phases, which reflect the conversion of the 

initial inactive enzyme state into the activated enzyme state4. Upon pre-incubation of KlPDC 

with MAP the initial reaction rate (v0) is increased. Eventually, at a MAP concentration of 75 

mM the progress curve appears to be a straight line in accordance with the hyperbolic v/S 

plots obtained under these conditions (Fig. 1A). Initial rates (v0) and steady state rates (vSS) 

can be evaluated from empirical progress curves (for details, see Krieger et al.4). The plot of 

the ratio v0/vSS versus MAP concentration (Fig. 1C) clearly demonstrates that MAP is able to 

completely activate KlPDC. This is in contrast to what is observed for the substrate surrogate 

PA, which accounts for upper values of 0.65 for v0/vSS in comparable kinetic experiments4. 

For MAP a half saturation value of 37 mM can be extracted from the sigmoidal fit in Fig. 1C. 

Time-dependent pre-incubation studies revealed that the MAP-triggered activation of KlPDC 

is a rather slow process as compared to the activation by its native substrate pyruvate (Fig. 

1D). In presence of MAP substrate saturation is reached at somewhat higher substrate 

concentrations (Fig. 1A), pointing to a weak competitive inhibition by this effector. 

Accordingly, MAP binds non-covalently to the active site of KlPDC as shown below. In 

summary, the kinetic data presented here demonstrate that MAP is an activator for yeast 

PDCs, thus justifying its application in crystallographic studies. A kinetic study, which will 

present a detailed model, is in progress. 

Direct activator binding studies using SAXS 

It had been demonstrated earlier61 that addition of PA to ScPDC resulted in a significant 

increase of the radius of gyration (RG), the scattering parameter describing the maximum 

distance of two points within a particle in solution. These changes in RG had been interpreted 
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 6

as global rearrangement (dimer rotation) within the protein molecule without altering the 

oligomerisation state of the enzyme (because of the unchanged scattering intensity I(0), which 

correlates with the molecular mass of the particle). Here we illustrate, to the best of our 

knowledge for the first time, the activator concentration dependence of RG for the binding of 

PA and MAP to KlPDC and of the substrate pyruvate to the variant ScPDCE477Q. All plots 

exhibit a clear saturation of the ligand binding (Fig. 2). Binding constants can be drawn 

directly from sigmoid fits of the experimental data. As shown in Fig. 2, MAP and PA have 

similar binding affinities for KlPDC (20 and 30 mM, respectively) and for ScPDC (data not 

shown). However, by far the highest affinity is found for the native substrate pyruvate with a 

value of 6 mM along with the highest increase of RG. The lowest shift of RG was found after 

binding of PA. Notably, the values for the binding affinities of MAP drawn from activation 

kinetics and SAXS binding studies, respectively, conform closely to each other. This indicates 

that both methods monitor the same process. 

Structural implications 

Overall structures 

The crystal structure of KlPDC in complex with MAP was determined to 2.3 Å resolution, 

those of the ScPDC variants in complex with pyruvate to 1.7 Å (D28A) and 1.4 Å resolution 

(E477Q), respectively (for data collection, processing and refinement statistics see table 1). 

The final models comprise four times 562 amino acid residues, each of the subunits 

harbouring one cofactor molecule ThDP, one Mg2+ and 2 molecules of activator (in case of 

MAP three additional molecules per tetramer could be pasted). The asymmetric units contain 

the PDC tetramer. The overall folds of the subunits within one dimer (Fig. 3A) are almost 

identical to that of native species (KlPDC, r.m.s.d. 2.28 Å for 1116 superimposed Cα-atoms, 

ScPDCE477Q, r.m.s.d. 0.97 Å for 1074 superimposed Cα-atoms, ScPDCD28A, r.m.s.d. 0.96 Å 

for 1074 superimposed Cα-atoms). Differences were found at the surface of the tetramer, i.e. 

at the middle domains and the C-terminal α-helices. The MAP molecules are located at the 
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 7

active sites of KlPDC with distances of 2.22 Å between the Cα-atoms of MAP and the C2 

atoms of ThDP within one tetramer, and at the regulatory sites, covalently bound to C221 

(bond length 1.82 Å). Pyruvate molecules are found with distances of 1.69 Å (Cα-C2) at the 

active sites and 2.12 Å at the regulatory sites in ScPDCD28A, and with distances of 2.04 Å to 

C221 of ScPDCE477Q, but not in the active sites of the latter variant. The absence of pyruvate 

in the active site of ScPDCE477Q might be associated with the disrupted cofactor molecule 

(exposed thiazolium ring) in this species. The tetramers of MAP-KlPDC, PYR-ScPDCD28A 

and PYR-ScPDCE477Q are superimposable without significant differences (r.m.s.d. of 0.5-0.6 

Å for 2248 Cα-atoms).  

Comparison of the new crystal structures with that of PA activated ScPDC 

A comparison of these structures with the structure of PA activated ScPDC shows that the 

latter exhibits a tilted dimer-dimer arrangement in the tetramer and that the activator is non-

covalently bound at the regulatory site, 10 Å away from C221. Furthermore, only half of all 

activator sites are occupied. The differences between the activation capabilities of PA on one 

hand, and MAP and pyruvate on the other are corroborated by many other studies on the 

mechanism of activation. In contrast to MAP and pyruvate, PA is not able to activate PDCs 

completely. Progress curves of PDC catalysis always show lag phases, even in the presence of 

high concentrations of PA4.  

Loop structuring 

The most salient feature common to all activated structures described herein is the well-

defined electron density for two loop regions (residues 104-113 and 288-304, respectively, 

Fig. 3A), which is virtually absent in the crystal structure of native ScPDC30 or poorly defined 

in the structure of native KlPDC31 (Fig. 3B). It may therefore be postulated that loop 

structuring and loop translocation are the decisive events in the activation process. The gained 

rigidity of both loop regions at all subunits within the tetramer enforces the planar and 

symmetric dimer arrangement within the tetramer. Both loops are located in the 
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 8

neighbourhood to the active site (Fig. 3). In the frozen state these loop regions are stabilized 

internally by a number of H-bonds (Supplemental table 1). Loop 104-113 additionally 

develops a short α-helix and closes partially over the active site. H114 and H115, the next 

upstream neighbours of loop 104-113, are part of the active site. Especially for H114 an 

essential function in PDC catalysis has been proposed from kinetic studies with accordant 

variants form yeast and bacteria10,11,39,44. Tittmann et al.46 postulated a specific role for H114 

(together with D28) during release of the reaction product acetaldehyde. 

Regulatory site 

The most striking result of this study is the evidence for a covalent C-S bond at the side chain 

of C221 in the activated structures, which finally confirms results of studies on the activation 

mechanism by chemical modification55,56 and mutation of cystein residues7,8,57-59 in ScPDC. 

The covalent character of this bond is well documented by the crystallographic C-S distance 

(1.82 Å) as well as by the tetrahedral configuration at the former carbonyl carbon of both 

MAP (Fig. 4A) and pyruvate (Fig. 4B). Notably, the sp3 character of the Cα-atom of pyruvate 

in both activated ScPDC variants is somewhat less developed than that of the equivalent 

carbon atom in the MAP-activated KlPDC. Together with the longer distances between the 

Cα-atom of pyruvate and the Cβ-atom of C221, this could be indicative of a dynamic 

equilibrium of non-covalently and covalently bound pyruvate at the regulatory site. Apart 

from C221, the following residues are located in vicinity (within 5 Å distance) to the bound 

activator (for MAP-KlPDC): H92, R161, H225, G286, A287, L288, H310, S311, Y313, 

M326 and 5 waters. Thus, the regulatory site is predominantly lined by positively charged 

side chains, which can interact electrostatically with the phosphonate moiety of MAP or the 

carboxylate moiety of pyruvate, respectively, as well as with their corresponding 

thiohemiketals. Surprisingly, H-bonds are only formed from main chain carbonyl oxygen 

atoms of G286 and A287 to the α-hydroxyl group (the former carbonyl group) of the 

covalently bound MAP.  
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 9

Effects on the active site 

Interestingly, almost all side chains constituting the active site apart from D28, H114 and 

H115 remain unaffected by the binding of the activators at C221. Furthermore, no significant 

distortion of the cofactor’s vital V-conformation is seen in the activated state. However, a 

comparison of the native and the MAP-activated crystal structures of KlPDC revealed that the 

two amino acids H114 and H115 undergo marked structural reorientations upon activator 

binding (Fig. 5). The histidine side chains are now directed towards the substrate-binding site, 

i. e. the distances of their ring nitrogens to the C2 atom of the cofactor ThDP are diminished 

from 12-15 Å to 6-7 Å. Concomitantly, the main chain of residue D28/A28 is rotated by ~35° 

and the side chain is orientated towards H115. This reorientation basically restructures the 

active site into its enzymatically competent architecture - triggered by activator binding at 

C221. 

Signal transfer from the thiohemiketal at C221 to the active site 

The question of how the signal of activation is transmitted from C221 to the active site is a 

matter of debate that has not been decided to this very date. What can be drawn about signal 

transduction from the new structures? Firstly, the formation of the thiohemiketal at C221, 

which itself is not part of either loop (Fig. 6B), shifts the side chain of this amino acid about 4 

Å from its original position in the native structures. Secondly, this shift induces the 

translocation of A287 by 4 Å (Fig. 6C), thereby rigidifying the loop 288-304 (Fig 6D). 

Thirdly, the fixated loop 288-304 forms a number of interactions (Supplemental table 1) with 

the other, originally flexible loop 104-113, thereby becoming structured itself (Fig. 6E). The 

position of the latter is now identical to those in the three-dimensional structures of ZmPDC 

and EcIPDC, which are not allosterically regulated species. Eventually, the signal is 

transmitted to H114 and H115, which adopt their new orientation in activated PDC (Fig. 5, 

6F). Notably, residues E91 and W412 proposed to be pivotal side chains for the signal 

transduction in ScPDC9,60 does not experience any displacement in the activated structures. 
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 10

However, it should be noted that the activation process does not necessarily require a distinct 

set of amino acids to push each other like billiard balls. Rather, activation represents a search 

process on the protein’s free energy landscape62, which becomes slightly distorted upon 

binding of effectors at C221, developing new interactions along the way until the activated 

state is reached. Thus, the molecule undergoes this conversion as an entirety, implying that 

also side chains that are not subject to any significant structural rearrangement might be 

dynamically important in the process. Therefore, the amino acids shown to be relevant by 

extensive kinetic and spectroscopic studies7-9,60 keep playing their part. 

Molecular causes of cofactor activation 

Phenomenologically, the activation of ScPDC and KlPDC is reflected in lag phases of their 

respective progress curves as well as in the sigmoidal shape of the steady state kinetics1,4. 

Both enzyme species are potentially inactive at the start of the reaction4,18. A decade ago, 

Kern et al.45 have shown that the first step of activation in ScPDC is the deprotonation at the 

C2 atom of thiamine diphosphate, which requires a tremendous shift of the pKa value of the 

C2 proton to become catalytically competent63. The structural basis of this kinetic effect 

remained, however, largely elusive. Evidently, some structural differences between the active 

sites in the native and the activated state must account for the observed acceleration of the 

H/D exchange at the cofactor’s C2 atom as triggered by activation in both yeast PDCs. The 

results of the current crystallographic study allow some preliminary insight. First and 

foremost, the active site is complete only in the activated state. A vital role has been ascribed 

to H113 in ZmPDC, as part of a catalytic dyad supporting aldehyde release40,46. Its position is 

equivalent to that of H114 in ScPDC and KlPDC, respectively, which reorients upon 

activation. Both histidines, H114 and H115, are required for efficient catalysis. Moreover, the 

H114F/H115F variant, though being almost inactive, shows perfect Michaelis-Menten 

behaviour, pointing to abolished activation10. These observations, however, do not yet explain 

the accelerated deprotonation at the C2 atom of the cofactor, as neither H114 nor H115 are 
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 11

specifically involved in this process. Secondly, the structured loops, particularly the region 

104-113, shield the active site against the solvent. Thus, the microenvironment of the cofactor 

is probably less polar in the activated than in the native state. As a non-polar environment 

dramatically promotes deprotonation at the C2 atom of the cofactor64, the partial closure of 

the active site might well be the decisive molecular cause of the cofactor’s activation. Thirdly, 

solvent shielding might likewise contribute to the stabilization of non-polar reaction 

intermediates as e.g. the enamine and, additionally, promote the general sequestration of 

substrates and intermediates. On the other hand, substrate molecules must have access to the 

active site during catalysis. Therefore, the active site cannot be totally shielded from the 

solvent. It should be noted that even the rigidified loop structures retain a considerable 

measure of mobility, which allows substrate access. It remains to be clarified, whether a 

quasi-periodic closure and re-opening of the active site in the activated state is coupled to 

particular stages of the catalytic cycle as advocated by Kluger & Smyth65 or is even 

synchronised with a dynamic alternation between covalently and non-covalently associated 

pyruvate at C221 as proposed by Alvarez et al.3 and defended recently by Schowen66. Finally, 

the question might be raised, why nature chose thiohemiketal formation, a rare mode of 

covalent modification, which is, to the best of our knowledge, unique as principle of enzyme 

regulation. It might be speculated that thiohemiketal formation was favoured as pyruvate 

lacks an extended hydrophobic moiety that could function as a partner in non-covalent ligand-

protein interaction. 

 

Methods Summary 

The enzymes were purified to homogeneity by using established protocols, KlPDC according 

to Kutter et al.31, the others according to Killenberg-Jabs et al.6. 

The enzyme complexes were crystallised using the vapour diffusion technique with hanging 

drops31. For cryoprotection of crystals 1:1 mixtures of reservoir and PEG400 or glycerol were 
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 12

applied. Diffraction data were collected at synchrotron beamlines. Standard programs were 

used for data treatment. Structures were solved by molecular replacement. Model building 

and evaluation was done with the program WINCOOT67,68.  

Protein concentration was determined spectrophotometrically.  

Catalytic activities were measured via a coupled optical test with NADH/ScADH69 on a Jasco 

V-560 UV/VIS spectrophotometer. 

SAXS data were collected at a synchrotron beamline70. The forward scattering intensity I(0) 

and radius of gyration (RG) were calculated with the program GNOM71. 

 

Methods 

Protein crystallisation 

KlPDC was dissolved in 20 mM citrate buffer pH 6.1, 1 mM DTT, 5 mM ThDP, 

5 mM MgSO4, 80 mM MAP. The same solution without MAP, but with 7-23 % (w/v) PEG 

2000/PEG 6000 (1:1 ratio) as precipitant was used as reservoir. Well diffracting crystals were 

obtained after 10 days equilibration at 8 °C at 20 % PEG and 1 mg KlPDC per mL. Stored 

stock solutions of ScPDC variants were diluted into 12 mM citrate/1,33 mM MES pH 6.35, 

1.33 mM DTT, 1.33 mM ThDP, 1.33 mM MgSO4, 630 mM pyruvate, 5 µg/mL ScADH, 

2 mM NADH+H+. A buffer containing 18 mM citrate/2 mM MES pH 6.35, 2 mM DTT, 

2 mM ThDP, 2 mM MgSO4 together with 7-24 % (w/v) PEG 2000/PEG 6000 (1:1 ratio) was 

used as reservoir solution. Well diffracting crystals resulted from these batches after 14 days 

of incubation at on ice at PEG concentration of 22.5 % (w/v) and 1 mg enzyme per mL. 

Data collection, structure determination and refinement 

For cryoprotection crystals were incubated in a 1:1 mixture of reservoir and an aqueous 

solution of 32-42 %(w/v) PEG400 and 5 %(v/v) glycerol for 1 min (in case of MAP-KlPDC, 

10-15 s). Diffraction data were collected at the beamlines X12 (EMBL Outstation Hamburg, 

c/o Desy), and ID14-2 (ESRF, Grenoble). For indexing, integration and scaling the programs 
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DENZO und SCALEPACK72 were used. Intensities were converted to structure factor amplitudes 

using the program TRUNCATE73. KlPDC (PDB ID code, 2G1I) was used as search model for 

the MAP-KlPDC-complex, and PA-ScPDC (PDB ID code, 1QPB) for the PYR-ScPDCD28A-

complex and the latter for the PYR-ScPDCE477Q-complex. Refinement was realised with the 

program REFMAC573. 

Protein concentration 

Whenever possible, the protein concentration was determined spectrophotometrically from 

the UV-spectra at 280 nm (Jasco V-560 UV/VIS spectrophotometer) using a molar extinction 

coefficient of 60,000 M–1·cm–1 for one PDC subunit. In all other cases the Bradford method74 

was applied. 

Kinetic measurements  

0.05 M MES buffer pH 6.0, 0.15 M ammonium sulphate and an observation wavelength of 

355 nm were applied. The corresponding extinction coefficient for NADH at this wavelength 

was determined to be 4764 M-1·cm-1. 

Small-angle X-ray solution scattering (SAXS) with synchrotron radiation 

Measurements were performed at beamline X33 at the EMBL Hamburg outstation, DESY, 

Hamburg (camera length 2.7 m, MAR345 image plate detector, vacuum sample cell) at 16 °C 

and at protein concentrations of ~2.5 mg/mL. The buffer system was the same as used for 

kinetic measurements, but 2 mM DTT were added. The momentum transfer axis s 

(s=4πsinθ/λ, where 2θ is the scattering angle and λ=0.15 nm, the X-ray wavelength) was 

calibrated using collagen or tripalmitin as standards. The scattering patterns were collected for 

120 s. MAR image files were extracted during data collection for intensity normalization 

(transmitted flux, detector response, scaling of the s-axis) by the data reduction program 

AUTOMAR75. Buffer scattering was subtracted using the program PRIMUS-MAR76. The 

molecular masses were obtained from the ratio of the forward scattering intensity of the 

samples and that of the molecular mass standard bovine serum albumin.  
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Table 1 

Data collection and refinement statistics for MAP-KlPDC, PYR-ScPDCD28A, PYR-

ScPDCE477Q  

Parameter MAP-KlPDC PYR-ScPDCD28A PYR-ScPDCE477Q 
pdb ID 2VJY 2VK1 2VK8 
Beamline X12 ID14-2 ID14-2 
Detector MARCCD ADSC Q4R CCD ADSC Q4R CCD 
Wavelength (Å) 0.93001 0.933 0.933 
Temperature (K) 100 100 100 
Crystal detector distance (mm) 220 125 101 
Rotation range per image (°) 0.5 0.5 0.5 
Total number of images 437 360 360 
Resolution range (Å) 
(Highest resolution shell) 

104.26-2.30 
(2.34-2.30) 

99.0-1.71 
(1.74-1.71) 

95.4-1.42 
(1.44-1.42) 

Space group P21 P21 P21 
Unit cell parameters (Å, °) a=81.76, 

b=135.77, 
c=107.26, 
β=103.88 

a=80.88, 
b=141.31, 
c=114.41, 
β=107.19 

a=78.98, 
b=190.51, 
c=84.14, 
β=113.01 

Mosaicity (°) 0.79 0.38 0.40 
Total number of reflections 438,157 937,903 1,523,231 
Unique reflections 100,426 262,151 427,276 
Redundancy 4.4 3.6 4.4 
I/σ(I) 9.6 (2.3) 17.5 (2.1) 22.5 (1.9) 
Completeness (%) 99.7 (99.9) 99.3 (99.2) 99.7 (99.8) 
Rmerge (%) 14.8 (61.5) 6.8 (57.4) 5.3 (62.9) 
Rr.i.m. (%) 16.8 (70.6) 8.0 (68.0) n.d. 
Rp.i.m. (%) 8.0 (34.3) 4.2 (36.1) n.d. 
Overall B-factor (Wilson plot, 
Å2) 

29.7 20.8 17.6 

 
Parameter MAP-

KlPDC 
PYR-

ScPDCD28A 
PYR-

ScPDCE477Q 
Total number of used reflections 99345 260330 425935 
Total number of atoms (non-hydrogen) 18588 18994 19242 
Number of protein atoms 17344 17280 17292 
Number of water molecules 1048 1558 1818 
Rcryst (%) 15.4 (19.2) 19.1 (24.8) 18.1 (25.4) 
Rfree (%) 22.5 (30.5) 22.0 (27.6) 18.6 (26.7) 
Total number of reflections for Rfree 1006 1313 1068 
Bond length (r.m.s.d. from ideality, Å) 0.025 0.018 0.013 
Bond angles (r.m.s.d. from ideality, °) 1.95 1.45 1.25 
Ramachandran plot (% in most favoured regions) 89.5 90.9 91.3 
Ramachandran plot (% in allowed regions) 99.8 100 100 
Average B-factor (Å2) 26.3 20.9 18.9 
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Figure legends  

Figure 1 

MAP kinetics. 

A, Influence of MAP on the shape of the v/S plot (black circles, 0 mM MAP, red squares, 20 

mM MAP, green triangles, 40 mM MAP, and blue inverse triangles, 75 mM MAP). The lines 

represent sigmoid fits for 0 and 20 mM MAP and hyperbolic fits for 40 mM and 75 mM 

MAP, respectively. Inset, enlarged view at low substrate concentrations. 

B, Transients of the KlPDC catalysed reaction at 3 mM pyruvate (conditions as in A). For 

better comparison, original data are normalised to steady state rate and to the same initial 

absorbance. 

C, dependence of the ratio of initial rate (v0) and steady state rate (vSS) on MAP concentration. 

The rates were obtained from transients (see B for examples)4. The line represents a sigmoid 

fit. 

D, Activator concentration dependence of the apparent activation rate constant kobs (circles, 

pyruvate, squares, MAP). The kobs values were obtained from transients4, in the presence of 

MAP a line is drawn for better visualisation only. 

Figure 2 

Dependence of the scattering parameter radius of gyration (RG) of PDC on the concentration 

of the added activator. 

In the case of PA and MAP, KlPDC, in the case of pyruvate, ScPDCE477Q was used (green 

triangles, PA, red squares, MAP, yellow inverse triangles, pyruvate, lines, sigmoid fit).  

Figure 3 

The overall structure of PDC tetramers representing MAP-KlPDC and PYR-ScPDC variants 

in A, and native KlPDC31 and PA-ScPDC32 in B.  
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The traces of Cα-atoms are shown with different colours for the individual subunits, loops 

104-113 and 288-304 are presented as sticks (Figure A only), and the cofactor ThDP in space 

filling mode. 

Figure 4 

View of the regulatory sites with the activators bound covalently to residue C221 for MAP-

KlPDC (A) and PYR-ScPDCE477Q (B). 

The electron density is shown at a σ-level of 2.0 in the 2Fo-Fc map, amino acid residues in 

stick mode. The labelled residues can directly interact with the thiohemiketal. Labels in A 

correspond also to B.  

Figure 5 

Location of the histidine residues 114 and 115 at the active site of native KlPDC (A) and 

pyruvate activated ScPDCD28A (B). 

Electron density is shown at a σ-level of 2.3 in the 2Fo-Fc map for ThDP and at a σ-level of 

1.1 for the others (green, loop 104-113-H114-H115, wood, loop 288-304, yellow, C-terminal 

residues). All residues are presented in stick mode. The colours represent their B-factors 

(from low values, blue, to high values, red). Residues labelled with an asterisk belong to the 

other subunit within the same dimer. 

Figure 6  

Snapshots of the signal transduction pathway within one subunit. 

For details, see section signal transfer. The outer edge of the subunit is visualised by a grey 

line. Only the residues mentioned in the text are shown, loop residues as sticks, all others in 

space filling mode. The asterisk labels residues of the other subunit of the same dimer. The 

secondary structure of the loops (red, α-helix, green, β-turn, white β-sheet) is illustrated. too. 
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