
 

   1

The spread of antimalarial drug resistance: A mathematical model with  
practical implications for ACT drug policies 
 
Wirichada Pongtavornpinyo1 
Shunmay Yeung1,2,4 
Ian Hastings3 
Arjen Dondorp1,4 
Nicholas Day1,4 

Nicholas White1,4 

 
1. Mahidol – Oxford Tropical Medicine Research Unit, Faculty of Tropical 

Medicine, Mahidol University, Bangkok , Thailand 
2. Health Policy Unit, London School of Hygiene and Tropical Medicine, Keppel 

Street, London, UK 
3. Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK 
4. Centre of Clinical Vaccinology and Tropical Medicine, Churchill Hospital, 

Heading, Oxford, UK 
 
 

Most malaria-endemic countries are implementing a change in 

antimalarial drug policy to artemisinin combination therapy (ACT). The impact 

of different drug choices and implementation strategies is uncertain. A 

comprehensive model was constructed incorporating important epidemiological 

and biological factors and used to illustrate the spread of resistance in low and 

high transmission settings. The model predicts robustly that in low transmission 

settings drug resistance spreads faster than in high transmission settings, and 

that in low transmission areas ACTs slows the spread of drug resistance to a 

partner drug, especially at high coverage rates. This effect decreases 

exponentially with increasing delay in deploying the ACT and decreasing rates of 

coverage. A major obstacle to achieving the benefits of high coverage is the 

current cost of the drugs. This argues strongly for a global subsidy to make 

ACTs generally available and affordable in endemic areas. 
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For the past half-century the malaria parasites of humans have been under 

tremendous selection pressure to evolve mechanisms of resistance to the prevailing 

antimalarial drugs. Chloroquine, and increasingly sulfadoxine-pyrimethamine (SP), 

have become largely ineffective as monotherapy for the treatment of Plasmodium 

falciparum malaria in much of the world. The World Health Organization (WHO) 

now recommends artemisinin-based combination therapy (ACT) as first line treatment 

for all P. falciparum malaria in endemic areas 1. 

ACTs are efficacious, rapidly acting, well-tolerated and safe. They are 

available in various formulations which are generally given over three days. ACTs are 

effective against both asexual and early sexual parasite stages 2, and thereby reduce 

transmissibility 3,4. The contribution of reduced transmissibility of individual treated 

infections to overall transmission depends on the proportion of transmissible 

infections that are treated and the degree of ‘saturation’ in the transmission dynamics. 

So far, significant in-vivo resistance to artemisinin derivatives has not yet been 

confirmed, and stable resistance has been very difficult to produce in the laboratory 5. 

As for any combination therapy, which involves two effective drugs from different 

classes, both component drugs protect each other from the development of drug 

resistance whilst present at effective concentrations. This should prolong their useful 

lifespan provided that the individual components are not widely available as 

monotherapies 6. 

Although malaria-endemic countries are switching to ACTs with increasing 

momentum, even at prices as low as US$1 per dose they are still too costly for 

communities and governments in poorer countries (5 – 10 times higher than the prices 

of chloroquine or SP in Africa 7). Doubts have been raised about their actual 

operational effectiveness when they are implemented in “real-life” situations, where 
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infrastructures are weak, access to health care is poor, and there is widespread 

inappropriate use of antimalarial drugs 8. Although providing easy access to very low 

cost ACTs in the private sector or free ACTs in the public sector may achieve this 

aim, it has to be balanced against the costs and risks of their widespread use. In 

particular, if artemisinins are used on their own and not in co-formulation with an 

effective partner drug, then there is a much greater risk of drug resistance arising to 

this precious class of drugs. Questions remain about the choice of combination 

therapy and timing of policy change. Finally, an important additional benefit of ACTs 

in low-transmission areas is their potential ability to reduce malaria transmission and 

thus the incidence of malaria. Enthusiasm for their deployment in high transmission 

settings is tempered by the expectation that their deployment is less likely to translate 

into reduced malaria incidence in these settings. 

 

Modelling transmission dynamics and the spread of antimalarial drug resistance 

The development of drug resistance is a two-step process, the de novo or the 

initial emergence of resistance and its subsequent spread. Resistance spreads because 

of the higher reproductive rate of resistance infections in the presence of antimalarial 

drugs. In this paper, we focus on modeling the spread of resistance assuming that drug 

resistance has already emerged among the human population. Combinations prevent 

resistance by preventing de novo emergence. Modeling the de novo emergence of 

drug resistance is discussed elsewhere 9,10. 

Whilst there is a long history of modelling malaria epidemiology 11-13 (and the 

population genetics of drug resistance 10,14,15 16) none of the existing models 

incorporate all the important pharmacological, epidemiological, parasitological, and 

human behavioural factors that affect the effectiveness of drugs, the development of 
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drug resistance, and the transmission of malaria. More recent models have become 

more realistic although they were not developed primarily to study drug resistance 17-

21. We developed a complete model of the spread of antimalarial drug resistance, 

which incorporates all the important epidemiological factors, and we use it to evaluate 

different antimalarial policy options focusing on ACT deployment in low and high 

transmission settings. 

This is a data-driven model; the model parameters for mosquito dynamics, 

malaria infection in the human host (asymptomatic, symptomatic and recrudescent 

infections) and immunity functions were obtained from clinical, laboratory and 

epidemiological studies and appropriate model fitting was then performed 

(Supplementary Information A). 

At the outset, we assume a human population which has little or no exposure 

to malaria and therefore the population has no immunity to malaria. Infected 

mosquitoes bite randomly and infect humans with drug susceptible infections and a 

monotherapy is the only available treatment. As the population becomes exposed to 

malaria and gains some level of immunity, the model updates the age-stratified 

immunity of the population according to the Entomological Inoculation Rate (EIR) 

(which varies with vectorial capacity and the infective human population (see 

equation 8, Supplementary Information B)), and is allowed to run until a steady state 

is reached (Figure 1). At this point, resistance to the monotherapy is introduced and 

ACTs are deployed when resistance reaches a specified threshold. Resistance can then 

be tracked for a specified length of 10 years after steady state to gauge the impact on 

model outcomes over time. The model provides a number of outputs but we 

concentrate here on those relevant to policy. We present the proportion of infections 
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with resistant parasites, the malaria prevalence, and the incidence of malaria. Results 

of sensitivity analyses are presented in Supplementary Information C. 

 

Results 

Resistance, Transmission Intensity and ACT coverage 

We explore model consistency and model sensitivity from the Coefficient of 

Variation (CV) and Partial Rank Correlation Coefficient (PRCC) respectively through 

four baseline scenarios at two levels of transmission intensity and two levels of ACT 

coverage i.e. low transmission setting with low ACT coverage (scenario A), low 

transmission setting with high ACT coverage (scenario B), high transmission setting 

with low ACT coverage (scenario C) and high transmission with high ACT coverage 

(scenario D) (Tables A9 and A10, Supplementary Information C). ACT coverage is 

defined as the proportion of ACT treatments among all symptomatic treated 

infections. 

In the low transmission setting (EIR<1) with low ACT coverage variations in 

the estimated prevalence of malaria stay consistently high over time (CV ~ 90%) after 

the steady state is obtained, while the variation in the estimated resistance falls 

significantly by year 8 (CV ~ 9%) with resistance approaching fixation at 100% in our 

10 year time horizon. In low transmission settings with high ACT coverage, the mean 

prevalence of malaria stays below 1% over 10 years. Migration plays an important 

role in sustaining malaria. Without imported cases, malaria is readily eradicated. 

Mean resistance increases at a slower rate than in a low coverage setting, reaching 

80% in year 10. Compared to scenario A, variation in the estimated prevalence is 

slightly lower (CV ~ 75%) while variation in the rate of resistance is higher (CV > 

30%). This indicates some levels of uncertainty in the consequences of deploying a 
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high coverage of ACT on the malaria prevalence and the rate of resistance. Once 

resistance to the slowly eliminated partner drug has emerged the spread of drug 

resistance and the malaria prevalence could be slowed down only by deploying ACTs 

at a high coverage rate while the resistance prevalence is still reasonably low. 

In the low transmission setting, Vectorial Capacity (VC) was the most 

influential parameter affecting malaria prevalence (PRCC ~ 0.6), while VC (PRCC ~ 

0.7) and the proportion of treated infections (PRCC ~ 0.4) were the most influential 

parameters affecting the spread of drug resistance. 

In the high transmission setting (EIR > 100), malaria cannot be eradicated by 

antimalarial treatment of symptomatic cases alone because the major transmission 

reservoir is in asymptomatic persons who do not take antimalarial drugs. In the high 

transmission setting with low ACT coverage, malaria prevalence increases from 36% 

to 44% within 10 years due to the spread of resistance. Resistance spreads more 

slowly compared to the low transmission setting, reaching 80% in year 10. Variation 

in estimated prevalence is small (CV < 30%) while variation in the rate of resistance 

is consistently high (CV > 45%) compared to estimates in the low transmission 

setting. Both outcomes and their variations are unaltered by deploying a high 

coverage of ACT. Treatment of symptomatic infections in the high transmission 

setting has much less effect than in the low transmission setting. Consequently, the 

spread of drug resistance is driven by the fraction of the population with some 

residual antimalarial drug in their blood and not by treatment failure. 

In the high transmission setting, the parameters influencing malaria prevalence 

are the characteristics of the infection in immune subjects with untreated infections. 

These are the parasite biomass (PRCC ~ 0.4), the gametocyte switch rate (PRCC ~ 

0.4) and the duration of infection (PRCC ~ 0.3). The proportion of residual drug in the 
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population (PRCC ~ 0.9) is the dominant factor driving the spread of drug resistance 

in this setting. The strong correlation between the fraction of population with residual 

drug concentrations and the levels of resistance from this model suggests that 

controlling the use of presumptive treatment and encouraging the use of combination 

therapy with matching half-lives to reduce the selective window would slow the 

spread of resistance down within this setting. 

 

Scenario A: Effects on resistance of delaying the policy change the ACTs 

In the first scenario we consider the impact of varying the timing of switch to 

a high coverage (i.e. 85% of all symptomatic treated infections) by combining an 

artemisinin derivative with a failing partner drug (e.g. mefloquine) where the timing 

of the switch is governed by an observed prevalence of resistance to the partner drug 

in low and high transmission settings (Figure 2 and 3). 

In the low transmission setting, treatment dependent parameter values are 

given in Table A8, Supplementary Information A. The force driving resistance comes 

from two sources; the first is from symptomatic malaria infections failing treatment 

and the second is exposure of infections to residual drug taken for presumptive or 

previous malaria treatment. More than 85% of all infections are symptomatic and thus 

treated. The rate of spread of resistance is faster relatively to the high transmission 

setting where treatment failure was identified to be the main force driving the spread 

of resistance. Deploying a high coverage of effective treatment, such as an ACT, 

when the level of resistance is still low delays the spread of drug resistance, a result 

consistent with previous results from simple epidemiological models 22. 

In the high transmission settings, immunity prevents most acquired infections 

transmitting (and synergises with antimalarial drugs). Approximately 94% of all 
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infections are asymptomatic and untreated. In the absence of antimalarial treatment, 

the resistant infections have no survival advantage over the sensitive ones, and may 

have a fitness disadvantage. The main driving force for resistance is created from the 

selective filter provided by people carrying low residual concentrations of drugs, 

which protect against the establishment of new sensitive infections but not the 

resistant ones 23,24. Without this residual drug effect, the rate of resistance would be 

much lower than shown in Figure 2b. Residual drug levels come mainly from 

previous ‘presumptive’ treatments (normally for other febrile illness), and are largely 

unrelated to the peaks of parasitemia 9 and are thereby assumed to have little or no 

influence on the de novo resistance selection probability. 

Combining an artemisinin with a drug to which resistance has arisen delays 

the spread in resistance in the low transmission setting (Figure 2a and 3a) but this 

delay decreases exponentially the later the switch is made to the ACT. By contrast, in 

the high transmission setting (Figure 2b and 3b), varying the time to switch to the 

ACT has only a small impact on delaying the spread of resistance. 

 

Scenario B: Effects on artemisinin resistance of different levels of ACT coverage 

In this scenario we assume that the monotherapy is the artemisinin and that 

drug resistance emerges to the artemisinin compound, rather than to the partner drug 

in an ACT (e.g. either piperaquine or lumefantrine), which is assumed to remain 

effective (see Table A8, Supplementary Information A). This simulates the current 

scenario in places such as Cambodia where artesunate monotherapy use is widespread 

25. We assume that the switch to the combination therapy is made when the resistance 

to artemisinin is as low as 1% (Figure 4). If the switch is made very early, when there 

are still very few cases of drug resistance, then the higher the coverage with the ACT, 
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the greater is the delay in the spread of resistance. At coverage rates of >80%, the 

level of resistance to the artemisinin does not reach 50% within the time span of 10 

years. In general, the impact of ACT deployment on malaria incidence and prevalence 

is as expected. By deploying ACTs at a high coverage, the prevalence of malaria can 

be kept at a very low level over time (0.5%) and incidence is less than 50 cases per 

year, indeed in the model eradication is only prevented by the influx of malaria in 

immigrants (Figure 5). Similar to the first scenario, the impact of ACT in the high 

transmission setting is much less. 

The model shows that deploying ACT in a high transmission setting has a 

small impact on the spread of resistance and malaria prevalence. However, as one of 

the model outcomes (results not shown), treatment failure in both low and high 

transmission settings can be sustained to a low level by deploying high ACT coverage 

(25% of recrudescence compared with 10% when deploying high ACT coverage at 

year 10). In order to make an impact on malaria transmission and resistance, vector 

control strategies need to be applied to reduce the vectorial capacity. Reduction in the 

transmission intensity results in fewer infections which, as host immunity declines, 

are more likely to be symptomatic and eventually this makes malaria control by drugs 

more effective. 

 

Discussion 

A mathematical model always represents a simplified version of the true 

biological system. Complexity is traded against robustness. We have developed a 

model of suitable complexity to include all important features of malaria transmission 

and the spread of antimalarial drug resistance in P.falciparum. The model predicts 

rapid spread of drug resistance in low transmission settings, and slower spread in high 
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transmission settings. This is consistent with epidemiological observations. In low 

transmission settings a higher proportion of potentially transmissible infections are 

exposed to antimalarial drugs and lower immunity increases the individual probability 

of treatment failure and transmission of resistant parasites. In low transmission 

settings, the spread of drug resistance can be slowed by combination treatments in 

which two or more effective drugs, which do not share resistance mechanisms, are 

combined. ACTs are currently the combinations of choice. This switch to 

combination treatment needs to be made early in the evolution of drug resistance with 

high rates of coverage (> 80%) if the full benefits in terms of delaying resistance are 

to be realised. This is the case whether the monotherapy to which resistance arises is 

an artemisinin derivative, or a non-artemisinin drug. The structure of this model 

allows many other policy relevant questions related to malaria control (vector 

controls, drug adherence and intermittent presumptive treatments etc) to be addressed. 

However, as a population based model, the ability to assess the effects of individual 

variation and the incorporation of important pharmacokinetic and pharmacodynamic 

variables is limited. 

In low transmission settings increasing ACT coverage is essential if the 

dramatic effects on malaria incidence observed recently in Northwest Thailand, 

KwaZulu Natal and Zanzibar are to be extended to other areas 26,27. P. falciparum 

malaria can be eliminated, although microheterogeneities in transmission intensity in 

remote areas will often ensure a protracted “end–game”. The impact of ACTs on drug 

resistance in high transmission intensity settings is limited because the majority of 

population are immune, many infections are asymptomatic, and therefore a smaller 

proportion of the infections are treated. An important weakness in our understanding 

of the epidemiology of malaria is the relative contribution of asymptomatic and 
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symptomatic infections to transmission. The smaller the contribution of asymptomatic 

infections, the greater is the effect of ACTs in slowing resistance spread. The main 

force driving the spread of drug resistance in these circumstances is the 

chemoprophylactic effect of presumptive therapy, which provides a selective filter for 

resistant parasites. The model also predicts that at low transmission intensities malaria 

transmission is readily eradicated without the continued influx of infected migrants. 

This has important implications for eliminating malaria 28,29. 

The question of whether it is possible to reduce malaria transmission 

sufficiently to eliminate malaria eventually in high malaria transmission areas remains 

unresolved 8. In high transmission settings, this model predicts that high ACT 

coverage alone cannot reduce malaria transmission unless it is used together with 

vector-control measures i.e. use of insecticides and deployment of insecticide-treated 

bednets (ITN) and other materials to reduce the force of infection. To overcome the 

obstacles to high coverage of the unaffordability and unavailability of ACTs, it has 

been argued persuasively that provision of global subsidies for co-formulated ACTs 

must be provided at the top of the distribution chain. This would facilitate 

considerably the flow of drugs down to the end users through the existing public and 

private sector distribution pathways, with the ultimate objective of making effective 

antimalarial treatments available and affordable even to the poorest people 30. 

Stabilizing demand for ACT would also create incentives for ACT production, 

resulting in lower prices 7. 

 

Methods 

Model development and parameter estimation 
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We model transmission and antimalarial drug resistance using a dynamic, age-

structured population-based model where the introduction of new imported (migrant) 

infections varies stochastically each day. At the end of each iteration, the inoculation 

rate for the human population is calculated from the infective contact with vectors and 

host susceptibility, based on the formula given by Dietz 31 (see equation 1, 

Supplementary Information B). The human infectiousness of infected Anopheline 

mosquito feeds is estimated from the non-linear relationship between gametocyte 

density and the chance of infecting mosquitoes, formula given by Jeffery and Eyles 32 

(see equation 5, Supplementary Information B). The average gametocytemia depends 

on the average parasite biomass by age group and the estimated gametocyte switch 

rate (i.e. probability that an asexual parasite develops to a sexual parasite). The size 

and age-structure of the human population was assumed to be constant over time in 

the model and was based on an average African age-structure (http://esa.un.org/unpp). 

The model handles malaria like a “macro” parasite by quantifying the density 

of infection in the human host. The in-vivo effect of drugs on parasite density can be 

measured, allowing quantification of the pharmacodynamic properties of antimalarial 

drugs 33. Different multiple linear and non-linear regressions equations as a function 

of age and EIR were fitted to data from age-stratified epidemiological studies in areas 

with different transmission intensities. Stepwise selection using the Akaike 

Information Criteria (AIC) was used to identify the best fit in the case of non-nested 

functions and the maximum-likelihood ratio test was used for nested functions. These 

relationships represent the development of immunity with age and malaria exposures. 

Different facets of malaria immunity are incorporated into this model (Figure 6) i.e. 

reducing host susceptibility to infection 34,35, reducing the level of (largely 

asymptomatic) parasitemia in infected people 36,37, reducing the likelihood of fever 
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and other symptoms in infected patients 38-40, reducing the treatment failure rate for a 

particular level of antimalarial drug resistance 41-46, and increasing the recovery rate of 

an established infection i.e. shortening the duration of infection 47-49 (Table A7, 

Supplementary Information A). Some immunity functions were not measured directly 

from epidemiological studies (i.e. host susceptibility, duration of infections and 

treatment failure), so a normalized function of age-stratified parasite density was used 

to estimate the relationship between age and host susceptibility and between age and 

duration of infections by specifying initially the “maximum host susceptibility” in a 

non-immune person and the “maximum duration” of treated and untreated infections. 

The host susceptibility and the duration of infection for any given age group in any 

transmission intensity setting are then determined by the shape of the immunity curve. 

As the shape of the age effect on treatment failure is similar to the relationship 

between age and severe malaria 41, we apply the same technique to the normalized 

function of age-stratified risk of severe malaria to adjust the treatment failure rates for 

any given age group in any transmission intensity setting. The maximum value of 

duration of infection and the maximum value of treatment failure are dependent on 

treatment type, drug resistance, and patient adherence to therapy. 

For simplicity, the gametocyte switching rate (GSR) was assumed to be 

uniform among asexual parasites and infections but to vary depending on the type of 

drug, and also between primary and recrudescent infections. It is assumed that all 

humans are equally attractive to biting mosquitoes and that all mosquito biting vectors 

are equally susceptible i.e. the infectiousness to mosquitoes is assumed to be 

determined solely by the gametocyte density in humans. 

To track the rate of spread of resistance, the inoculation rates of resistant and 

sensitive infections were calculated separately. Thus, the proportion of infected and 
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infectious sensitive infections is the sum of all drug - sensitive infections treated with 

different treatments multiplied by their mean infectiousness. Similarly, the proportion 

of infected and infectious drug - resistant infections is the sum of all resistant 

infections treated with different treatments multiplied by their mean infectiousness. 

Both were then divided by total number of infections (see equation 2 – 3, 

Supplementary Information B). The population with selective residual antimalarial 

drug concentrations focused on this model is the proportion with concentrations in the 

blood which prevent establishment of new drug sensitive infections but allow 

establishment of resistant infections. This proportion of population was based on 

published literature (equation 6 – 7, Supplementary Information B). 

 

Model simulations and outputs 

Malaria infections initially are all drug-sensitive and symptomatic humans receive 

only monotherapy (drug A). A steady state is defined as the point at which the number 

of new malaria cases (i.e. excluding imported cases) has varied day to day by less 

than 1% over a year. When steady state point is reached, the resistance to drug A is 

introduced, either as importation of a small number of resistant infections or by the de 

novo emergence of resistance based on available clinical and laboratory data. 

Artemisinin or its derivatives, or a completely new drug can also be introduced and 

used in a combination with drug A, or it can be used as a monotherapy. Any changes 

in malaria prevalence and levels of drug resistance thereafter are assumed to result 

from the impact of the different treatment strategies. The relationship between drug 

resistance and the maximum failure rates in a non-immune host was defined 

depending on the infection, type of treatment, and likelihood of adherence. Adherence 

is incorporated in the model by adjusting down the expected failure rates of treated 
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infections. Multiple recrudescences are treated as one continuous recrudescence, and 

overall infectiousness is calculated from the area under the gametocyte – time curve 

(AUCgam). For each model iteration, the outcomes in terms of estimated EIR, 

proportion of symptomatic infections, proportion of treatment failure, malaria 

prevalence and percentage of resistant infections are estimated for a period of 10 

years from the steady state. 

The sensitivity of the model was tested in the four baseline scenarios (scenario 

A – D). The details of fixed and variable parameters with their respective distributions 

are given in Tables A1 – A6, Supplementary information A. Each scenario is 

repeatedly run for 5,000 simulations with a unique set of parameters selected using 

the Latin Hypercube Sampling technique (LHS). The Coefficients of Variation (CVs) 

which determine the uncertainties of the model outcomes (Table A9, Supplementary 

Information C) and the Partial Rank Correlation Coefficients (PRCCs), which identify 

influential factors, were calculated (Table A10, Supplementary Information C). Full 

technical details can be found in the author’s thesis 50. 

 
Note: Supplementary information is available on the website. 
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SP, sulfadoxine - pyrimethamine; 

ACT, artemisinin combination therapy; 

GSR, gametocyte switching rate, proportion of asexual parasites committing to sexual stage 

differentiation; 

EIR, entomological inoculation rate; 

VC, vectorial capacity; 

AIC, the Akaike information criterion; 

AUCgam, area under the curve of time versus blood gametocyte density; 

PRR, parasite reduction ratio, fractional reduction in parasitemia per asexual cycle;  

LHS, Latin hypercube sampling; 

CV, coefficient of variation;  
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PRCC, partial rank correlation coefficient;  

ITN, insecticide-treated bednet 
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Figure legends 
 

Figure 1. Schematic diagram of the biological model progression from 
steady state through to the introduction of resistance and changes in 
drug policy 
 
Figure 2. The predicted spread of resistance to mefloquine when 
combined with artesunate at different level of resistance. Figure 2a 

shows the result in low transmission setting and Figure 2b shows the result in 

high transmission setting, assuming 85% coverage of the ACT (mefloquine 

and artesunate). The dotted line shows the 50% resistance. Each curve 

represents the mean of ten simulations.  

 
Figure 3. Delay in the spread of resistance to mefloquine by combining it 
with artesunate. The delay in the development of resistance is measured as 

the proportional increase in time to 50% resistance compared to the continued 

use of mefloquine as a monotherapy.  

 
Figure 4. The spread of artemisinin resistance at different levels of ACT 
coverage. Figure 4a shows the spread of artemisinin resistance at varying 

levels of ACT coverage from 0% (i.e. use of artemisinin monotherapy) to 

100% use of ACTs. Each line represents the mean of ten simulations. The 

dotted line shows the 50% resistance level. Figure 4b shows the delay in 

resistance measured as the increase in the time to 50% resistance (t50) 

compared with the t50 when using artemisinin monotherapy. The dotted line 

represents an extrapolation of the curve when the resistance does not reach 

50% within the 12-year timeframe.  

 

Figure 5. Change in malaria prevalence and incidence at different rates 
of coverage with ACT 
 
Figure 6. Schematic diagram of how immunity influences age-stratified 
likelihoods in the biological model. 
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