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ABSTRACT  

 

Tissue Diagnostics is the world of pathologists, and it is increasingly becoming digitalized 

to leverage the enormous potential of personalized medicine and of stratifying patients, 

enabling the administration of modern therapies. Therefore, the daily task for pathologists 

is changing drastically and will become increasingly demanding, in order to take 

advantage of the development of modern computer technologies. The role of pathologist 

has rapidly evolved from exclusively describing the morphology and phenomenology of a 

disease, to becoming a gatekeeper for novel and most effective treatment options. This is 

possible based on the retrieval and management of a wide range of complex information 

from tissue or a group of cells and associated meta-data. Intelligent and self-learning 

software solutions can support and guide pathologists to score clinically relevant decisions 

based on the accurate and robust quantification of multiple target molecules or surrogate 

biomarker as companion or complimentary diagnostics along with relevant spatial 

relationships and contextual information from digital H&E and multiplexed images. With the 

availability of multiplex staining techniques on a single slide, high-resolution image 

analysis tools and high-end computer hardware, machine and deep learning solutions now 

offer diagnostic rulesets and algorithms that still require clinical validation in well-designed 

studies. Before entering the clinical practice, the "human factor“ pathologist needs to 

develop trust into the output coming from the “digital black box of computational 
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pathology”, including image analysis solutions and artificial intelligence algorithms to 

support critical clinical decisions which otherwise would not be available.  
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INTRODUCTION  

 

Digitalization and intelligent data processing are playing increasingly important roles in the 

practice of histopathology. Consequently, traditional histopathology is gradually being 

transformed into a digital discipline whereby whole-slide scanners can capture images for 

further computer-assisted analyses. Algorithms can extract as much information from 

tissue and standardize the quantification of specific histopathological features, since it 

appears that it is no longer sufficient to exclusively classify cancers just on the basis of 

morphology and genomic profile. Rather, it is essential that the pathologist also accurately 

measures the quantity and dimensions of different critical components in the tissue and 

then links such parameters to all other patient’s and available meta-data.  
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The comprehensive extraction of disease-related knowledge allows educated decisions on 

the precise individual prognosis and the selection of the best available treatment at that 

time. Today, open-source or proprietary software solutions allow pathologists not only to 

manage available information, but also obtain more actionable information and relevant 

insights when applying appropriate techniques. Machine learning will also guide future 

decisions in clinical histopathology as the computer itself also learns to exclude tissue- and 

image-based artefacts while including “regions of interest” (RoI) to answer relevant clinical 

questions.  

 

Until today most commonly the clinically available software in a clinical histopathology 

laboratory is usually a validated information and management system (LIMS) that builds 

the communication interface between different clinical departments, outside contractors or 

analytical partners for tasks, performance and result management. The transition from a 

simple LIMS environment into a fully digital histopathology lab (maintaining the LIMS 

connectivity) requires the digitization of images as well as data and availability of 

significant virtual storage space. However, despite this disruption, digital histopathology 

allows entry into a new era of clinical decision making based on accumulation of big data 

to use advanced solutions, such as machine and deep learning tools generating novel 

clinical insights. Histopathologists have begun to resume different and more complex tasks 

that are almost impossible to achieve without software assistance.  
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The origin of digital pathology lies in the area of telepathology to share images across long 

distances for a remote second or expert opinions [1]. Pathologists have used 

telepathology effectively driving a microscope remotely for several decades [2], and now 

they are making further use of its applications.  The field of digital histopathology is 

currently following technical advancements with its rapid transitioning from primarily a 

research tool into a viable clinical solution for patient primary diagnosis and the 

determination of prognosis. The use of such tools also allows for the discovery of novel 

features [3].  

The success of digital pathology also relies on the availability technically sophisticated 

viewing devices and the entire infrastructure within the clinical setting according to 

regulatory standards. This includes whole-slide scanners, laboratory information systems, 

the digital archiving of specimens, and, of course, the willingness of histopathologists to 

quickly adopt clinically validated software. 

The concept of ‘personalized’ or ‘precision’ medicine, stratifying patients to the best 

available treatment according to diagnostic test results, has been built over the past 

decades. While genomic and gene expression analysis still represent a large proportion of 

“biomarker” tests, the analysis of tissue images is actually very well-suited to address 

complex biological questions especially in oncology.  

 

Image mining software solutions can assist histopathologists in identifying RoI for further 

thorough exploitation, document the complete survey of the digitized image as part of a 
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certification-related quality measure, or to understand tumour heterogeneity in its entirety. 

In the dawning age of immunotherapies and complex combination treatments, along with 

cancer-specific scoring algorithms on different platforms that are linked to selected drugs 

and concordant molecular parameters, validated software solutions guide the decisions of 

the pathologist without depriving them of the role as the ultimate diagnostic authority.  

 

There is still uncertainty amongst clinical histopathologists about the use of digital 

pathology, and perhaps there is a nervous perception that terminology and software 

applications in histopathology are difficult. Pathologists question what kind of solutions are 

of true value in the daily personal clinical practice and which are research-use only (RUO) 

applications.  Has the tool or the solutions been validated or even approved by the 

authorities or notified bodies? Is the decision supported by the software or associated 

algorithms even more confusing or distracting when trying to conclude and sign-off a 

difficult clinical case, or are they indeed even misleading or plainly wrong?  Is the software 

proprietary or an open-source product, and for what purpose and intended use? In the 

end, it is still the pathologist who signs out the case, and also takes full responsibility of 

any secondary action. The learning curve for pathologists and software engineers for the 

routine application of digital histopathology is still present and steep. One aim is to develop 

a mutually understandable language and nomenclature to agree to a common goal and 

the same meaning. A “solution” can have a different meaning for a clinician and for a 

software developer. In this publication, we follow the recommendation and suggestion of 
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the White Paper of members of the Digital Pathology Association (DPA) [4]. The term 

“computational pathology” (CPATH) is used in the context of digital pathology and goes 

beyond the simple digitization of stained slides and the inspection of tissue images on a 

computer screen. CPATH implies already an expansion of the normal viewing fields (e.g. 

via microscopy) because it allows the simultaneous inspection of various stains along with 

accompanying meta data, such as expression and/or sequencing data, or the tumour 

mutational burden which is currently under evaluation as a molecular surrogate to predict 

the clinical response to immune modulating agents.   

 

THE CHALLENGES IN HISTOPATHOLOGY  

 

Over the past 10 years, the pathology community experienced disruptive changes in the 

practice of histopathology and the consequences of its action. Although the US Food and 

Drug Agency (FDA) stated even in 2004 it would disapprove any novel drug without a 

biomarker assay under development or at least an existing biomarker strategy, we have 

only recently experienced the serious effects of this decision. Today, treatment decisions 

are still mainly achieved by histological investigations of individual cell populations. 

However, in the future, the study of networks of cells, their contextual relationship and 

even spatial genomics empowered by software solutions and AI-assisted algorithms will 

bring these decisions to a newer level. With the ability to measure and directly target 

checkpoint molecules, such as CTLA-4 and the PD-1/PDL-1 axis, to unleash a specific 
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anti-cancer immunity, the need for specific testing of the individual immune status in 

individual cancer types has become mandatory for most histopathology laboratories.  But 

the complexity of measuring PD-1 and / or PD-L1 has by far excelled the testing for 

Her2/neu or any hormonal receptor in breast or prostate cancer, independent of the 

available staining platform or robust manual processes in place. Even expert 

histopathologists have to be trained on the correct reading and reporting of the different 

PD-1 / PD-L1 antibodies provided by different vendors, with the scores being dependent 

on the stage of disease and line of treatment. Sometimes it is “sufficient” to score the 

individual case “positive” in case of more than 25% PD-L1 positive cancer cells. In different 

indications, counting the absolute numbers of invasive cancer cells plus any PD-1 positive 

immune cells (sometimes even tumour-infiltrating lymphocytes versus macrophages or 

other immune cells) above 1% are considered a positive score. Consequentially, the 

accurate measure of checkpoint inhibitors in different tissue compartments (e.g. tumour-

stroma) is of essential importance to select the best therapy option for an individual patient 

and might therefore warrant an automated PD-1 / PD-L1 scoring solution.  

Although it has been shown that an experienced and well-trained histopathologist can 

generate correct scoring results manually without any technical assistance, it takes a 

considerable amount of time, and such cases will become even more complex in the 

future. Jerome Galon and his team already demonstrated with the “ImmunoScore” for 

Colon Cancer that only two different immune markers (CD3 and CD8) in different tissue 

compartments (invasive margin versus tumour centre) provide a significant progress on 
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the prognosis in limited versus advanced disease [5,6]. This was supported by a validated 

software solution that identified the different regions automatically and quantified the 

spatial ratio of immune cells in the different compartments [7].  

 

Increasingly, software-assisted tools play a crucial role in the stratification of patients to 

certain therapies in the age of immunotherapies and beyond. The reasons are manifold: 

the increasing understanding of disease complexity and the so far underestimated role of 

tumour heterogeneity and its microenvironment. Figure 1 schematically demonstrates the 

diagnostic challenges ahead in histopathology.  

 

 

 

 

SOLUTIONS THROUGH SOFTWARE-ASSISTED IMAGE ANALYSIS   

 

It was more than three decades ago, when pathologists were first offered assistance to 

count Ki-67-positive cells. At that time, there was still a significant gap between the 

capabilities of the available soft- and hardware compared to the intuitive competence and 

skill sets of well trained and experienced pathologists. The next challenge was to count 

mitotic figures, which not only had a prognostic value but could also determine malignancy 

with radical therapeutic consequences. Even today, software solutions still struggle to 
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reliably discriminate between a true mitosis or some wizened, clump of chromatin due to 

an activated apoptosis pathway or fixation artefact. This “mystery” is still not completely 

solved, independent of the use of sophisticated immunostainings related to cell cycle 

phases and different machine / deep learning attempts, which were subject to several 

grand challenges [9]  

The success of the HER2/neu scoring “algorithm” as a first predictive digital biomarker 

about twenty years ago was rather an accomplishment of a community of pathologists who 

understood the need to optimally stratify patients with breast cancer and a single 

biopharmaceutical company that did their utmost to train and educate the practicing 

histopathologists. A HER2/neu scoring algorithm was the first to receive regulatory 

approval as an in-vitro diagnostic medical device. This strategy is still successfully 

deployed in the age of combination immunotherapies [10,11].  

 

On the road to better diagnoses and combination therapies, the availability of different 

multiplex assays adds another mostly overwhelming level of insights but also complexity to 

the pathologists’ arsenal [12]. While tools like the molecular profiling or the mutational 

burden are very helpful to identify a plethora of potential diagnostic hints or therapeutic 

targets, they all lack spatial context and relevant contextual information that is often 

necessary to understand the complete tumour microenvironment. Software solutions as an 

integral part of image analysis tools can assist the pathologist to understand the multiplex 
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images or even virtually mount complex pictures to visualize the true nature of a tumour in 

a piece of tissue [13] (Figure 2).   

 

 

 

SOFTWARE-ASSISTED ANNOTATION AND SEGMENTATION  

 

The development of artificial intelligence (AI) has in part been shaped by the field of 

neuroscience and other non-medical applications. By understanding the human brain, 

scientists have attempted to build new intelligent machines capable of performing complex 

tasks. While the development of artificial intelligence algorithms has been fast paced, the 

actual use of most software algorithms in clinical practice is still markedly below its 

conceivably broader potentials also in histopathology. This is partly because for any 

algorithm to be incorporated into existing or future workflows, it has to stand the test of 

thorough scientific validation and robust clinical utility without causing any harm or 

confusing the human factor. In this context, there is much to be gained by combining AI 

and the human intelligence of experienced pathologists. Harnessing empirical knowledge, 

big data, computing power and storage capacities, and addressing clinical issues demand 

deploying expert knowledge in tandem with AI. Drug discovery and translational 

biopharmaceutical research will also gain from AI technology when humans fail to see 

pivotal next step and the next suitable application. Since the revolutionary success of the 
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deep learning architecture for ImageNet image classification in 2012, the computer vision 

community has seen an exponential growth in convolutional network methodologies, 

architectures and applications. This growth is fuelled by ever-increasing computational 

power, the availability of freely available open-source packages and the availability of 

robust big data [14,15].  

 

At the same time, Digital Pathology has been recognized as one of the most impactful 

application areas for AI, and headlines such as “Artificial intelligence could yield more 

accurate breast cancer diagnoses” [16] will certainly be followed by medical products 

implemented in daily clinical routine. The first systems have been already approved by the 

FDA, and Kapil et al published first results in Scientific Reports showing performance 

comparable to well-trained clinicians for an automated PD-L1 scoring solution for lung 

cancer therapy prediction [17].  

 

The “correct annotation” to train any system is still the bottle neck, and the automated 

software solution should be as good as those human experts, who still define the “ground 

truth”. Most digital pathology systems are based on thousands and thousands of cells and 

annotated regions in histopathology images performed by human expert pathologists 

[18,19]. However, there is one way out: Yousefi et al presented in 2017 a scientific paper 

called “Predicting clinical outcomes from large scale cancer genomic profiles with deep 

survival models” [20]. It describes how to predict patient survival with very little biological 
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knowledge, and it opened the way for the research team to apply the published methods 

to whole slide images of our gastric and lung cancer patient cohorts. Other examples 

demonstrate how deep learning can be applied to classify lung cancer and predict 

mutations in lung cancer [21] or microsatellite instability in gastric cancer [22].  

 

Machine learning, like deep learning, is a part of computer science and more precisely 

artificial intelligence that can learn from images and data without requiring the user to 

define explicit rules. Machine learning applications have made tremendous progress in the 

last decades, especially in the fields of image analysis, natural language processing and 

pattern recognition [23–25]. This development has been fostered by the availability of 

large data sets for training these systems as well as reasonably priced computing power, 

especially of graphics processing units (GPUs) [26]. Typical applications include, but are 

not limited to, the detection of RoI, automated tumour-stroma-separation or the detection, 

segmentation, and classification of objects, such as different cell types. Most of those 

tasks can often be achieved easily by humans (being an expert or becoming an expert 

after training). Therefore, the most common tasks in the analysis of digital pathology are 

the detection and segmentation of objects of interest, followed by an accurate 

measurement of staining or defining spatial relationships, which also requires image and 

data organization into training and test sets [27]. However, sometimes knowledge-based 

(“heuristic models”) approach like cognition network solutions [28] are not sufficient to 
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generate novel insights. Instead, reinforced (feature) learning solutions are warranted, and 

their applications are steadily growing (Figure 3).   

 

The continues rise of the machines will trigger significant changes on how 

histopathologists analyse tissue images, profile patients, and derive medical conclusions. 

Besides image analysis, object classifications and well-trained machine-based algorithms, 

a fast-growing body of scientific literature and an increasing number of relevant clinical 

studies is another rich source of knowledge, which requires also emphasis on Natural 

Language Processing (NLP) plus text analysis to leverage all available information. There 

are 700 000 new articles on health care every year, which can no longer be 

comprehended by an individual or group of pathologists. Nowadays a stage is reached 

where, after expending significant effort in labelling (scientific) text, natural language 

sentences can be mapped to a logical form, which can be used in formalized reasoning 

mechanisms to work with these extracted formulas. However, the question remains 

whether the practicing pathologist needs to fully understand how any software comes to a 

certain conclusion coming from text, data, or images and how to trust the conclusion that 

comes from such a “black box”? [29]. Experts stress the need to become more transparent 

on the training of deep learning models and how to apply them at scale across 

increasingly more complex and diverse diagnostic tasks [30]. The path to efficiency will be 

led in part by steps of “small data” and the use of more unsupervised learning due to the 

scarcity of available tissue and good data. While clinical scientists try to make the clinical 

This article is protected by copyright. All rights reserved.



trial formats even more efficient in designing basket, umbrella and platform trials, the 

number of relevant subjects might remain small. Sometimes there simply is not enough 

data available to feed a deep learning model. Since patients do not have the time to wait 

for that researchers are pushing to figure out ways to train systems on less data and are 

confident, they’ll find a viable and clinically trustworthy solution. Current deep learning 

models require datasets that are not only massive but also representative of the relevant 

problem. “Supervised learning” largely relies on pathologists to do the labelling and the 

subject matter expert (e.g. expert pathologist) telling the system everything they know with 

relative certainty. On the other hand, unsupervised learning allows raw unlabelled data to 

be used to train a system with little to no human effort, and one might receive insights that 

are truly new and innovative. The relevance of the in- as well as out-put might be uncertain 

until it is clinically validated. 

 

 

THE HUMAN FACTOR PATHOLOGIST 

 

Pathologists usually struggle with unsupervised learning methods or AI solutions. During 

their course of training they are used to learning from other experienced pathologists, slide 

seminars and scientific conferences. While in recent years most novel biological and 

clinical insights have come from molecular pathology and deep sub-typing of different 

cancer types, now also software solutions enter the perception of histopathologists.  
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An automated software solution for histopathology that achieves a performance of 90 

percent may appear to outperform human pathologists. But the conditions are usually not 

quite the identical, so “pathologist versus AI” may not really be the right comparison. 

Instead, pathologists and computers need to work together, each performing to their own 

strengths and controlling each other.  

 

Asking the pathologist to determine the percentage of cells (to be evaluated against a pre-

determined threshold, for example, >25 percent) of a certain cell type (for example, all 

invasive tumour cells) that have any positive staining (for example PD-L1) in a certain cell 

compartment (e.g. tumour versus stroma) that is above an absolute threshold is not an 

uncommon task nowadays, and it seems obvious that manual scoring will lead to high inter 

and intra-pathologist variabilities unless the histopathologists was thoroughly trained and 

maintains a significant level of routine. The pathology practice involved in immuno-

oncology today has to deal with even more stains in different tissue contexts and apply 

more complex scoring schemes (see above). The level of complex analysis required is 

becoming almost impossible for a pathologist using just a microscope. A computer, on the 

other hand, would complete many of these tasks with little difficulty if the used algorithm 

has been designed, trained, and validated properly. With the increasing adoption of digital 

pathology, which enables computers to analyse images of histology slides, it is time to 

allow software to assist and support the pathologist.   
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One of the key problems for any automated system in pathology is the variation between 

samples, the pre-analytical inconsistency. No two examples of a disease look the same – 

even in similar patients under similar conditions. Human pathologists know that only too 

well. The best way is to develop a standard clinical workflow as the perfect intermediate 

step between manual microscopy and automated software solutions. This also requires as 

a first step the integration of true or virtual multiplex staining and software solutions into a 

standardized laboratory environment where possible and suitable (Figure 4).  

 

 

SOFTWARE-ASSISTED DECISIONS IN CLINICAL PRACTICE  

 

Digital Pathology is already now rapidly translating into the clinical practice, facilitating 

multiple advantages compared to traditional histopathology today [31]. Regulatory 

approval and advances in associated technologies including high power computing and 

data storage capabilities along with whole-slide image (WSI) scanners allow large batch 

image capture and the application of deep learning to make informed decisions in 

histopathology [32] Despite all progress in the genomic and post-genomic era [33], the 

importance of spatial localization of gene expression (“spatial genomics”) has been 

recognized as a missing link that provides order to the conundrum of cancer biology. This 

not only allows the translation into clinical development and practice, but also to train the 

future generation of young pathologists and tissue experts [34]. The next generation of 
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domain experts is eager to use the support of software-based solutions especially to error-

prone problems, like Gleason Scoring [35,36] which usually require substantial training or 

identify biomarker signatures that are not too obvious [37,38]. But it still to the discretion of 

the pathology on how and to what extent accept or dismiss the results of a software-based 

image and data analysis solution (Figure 5).  

 

 

OUTLOOK 

 

Digital pathology is currently proving itself to be a reliable tool in the clinical practice and is 

also becoming a part of the education and training of histopathologists, as well as a critical 

in translational tissue-based research. Although still in its infancy, computational pathology 

in general, and especially software-assisted decision support systems, are here to stay 

and are ‘waiting at the front door’ to enter routine histopathology, given all the challenges 

ahead of pathologists [39,40]. While there are still regulatory and psychological barriers, 

there are multiple reasons for the clinical adoption of this technology, including technical 

advances in the digital technology and the availability of cognitive computing. No 

histopathologist will be replaced by software, but the way to practice histopathology will 

change; digital pathology would be there to augment diagnostics only, as one of the many 

tools used by histopathologists in their diagnostic tool repertoires. The question remains 

when to enter the routine use of clinical software support. Other clinical disciplines have 
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already embraced this ‘disruptive’ technology as the digital interface with the global 

community of domain experts [41], and to allow the real-time accessibility of all available 

data and best solutions for comprehensive patient profiling and optimal therapy matching 

[42, 43].  
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Figure 1. Today’s diagnostic challenge in histopathology is the understanding of the entire 

tumour heterogeneity and the complex immune interplay of different stakeholders in 

various compartments. Different groups have shown that it is of pivotal importance to 

precisely locate and accurately quantify immune cells inside (“hot tumour”) and outside 

(“excluded”) and correlate it with the entire area or provide percentages to start doing the 

math. It is an erroneous belief that tumours are only hot, cold or excluded. They can be a 

mixture of all activation states, which might change after treatment or in a metastatic 

setting. It could also be demonstrated that the topology of the spatial relationship of 

activating and modulating cells have a significant influence on different treatment 

modalities and their possible combinations. Only the use of a robust digital image analysis 

and mining solutions allow for the correct assessment of the true complexity and enable 

the proper diagnosis [adapted from 5–8]. 
 

 

 

Figure 2. Most current problems in routine histopathology can be solved with software-

guided image analysis tools. The increasing emergence of complex multiplex analysis 

allow the consideration of the tumour heterogeneity and the spatial relationships of various 

markers (manual attributions are a challenge in terms of robustness and accuracy). If 

single slide multiplexing is not possible due to inconsistent antigen-retrieval or disparate 
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Figure legends 



staining protocols, virtual multiplexing is also an option. Novel Artificial Intelligence (AI) 

solutions allow to reveal even novel and unique signatures from H&E slides which are 

available in abundance. The required hardware such as whole slide imaging (WSI) and 

related scanning devices are currently under regulatory scrutiny and have received 

approval in some instances.  

 

 

 

Figure 3: Simplified scheme on the use of different AI-tools (e.g. cognition network 

language, Bayes network, fuzzy logic, Random Forest, End-to-end solutions) in Machine 

Learning (ML) and related disciplines. Initial INPUT is usually provided by expert 

knowledge from pathologists supported by training data such as digitized images. With 

different level of supervision, active learning algorithms build mathematical models that 

provide OUTPUT solutions, which can be continuously improved by several iterations 

(reinforced learning) until the result becomes explainable (“Explainable AI”) and clinically 

validated. The transition from heuristic models to feature learning should be seamless, 

depending on the problem to be solved.  
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Figure 4. Adaption of a single mono- or multi-plex assay as a “lab-developed-test” in a 

CAP / CLIA (accredited according to the College of American Pathologists / Clinical 

Laboratory Improvement Amendments) histopathology lab environment and consecutive 

ruleset development, which still requires clinical validation. This allows the transfer of 

research solutions to enter the diagnostic market in a regulated environment. Alternatively, 

an already validated IVD (in vitro diagnostic) assay can be deployed or manual reading is 

still an option for the expert pathologist to sign out the case. By any means, it is still dual 

path forward for the pathologist to still read the stained slide(s) manually under the 

microscope but also to utilize the computer screen with its cloud-based or locally installed 

software solution to gain trust and perform an analytical and clinical plausibility check.  

 

 

 

Figure 5. Software-guided image analysis [4] is still embedded into a network of quality 

control measures and decision making before a diagnostic recommendation is accepted 

and an individual case is signed out. The recommended decision provided by the software 

(SW) has to be plausible to the experienced pathologists 1. The domain expert can dismiss 

any digital recommendation 2 if a decision is clearly wrong or based on inadequate input 

data or an inappropriate analytical process. The use of any pre-existing ruleset or 

computer algorithm has be carefully assessed for the particular histopathological solution 

prior to any clinical application 3. It might even require a clinical validation step. Different 
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free open-source or commercial proprietary software solutions are readily available to 

complete different tasks with more or less IA components [39, 40]. 
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