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Abstract5

The robustness of receptance-based active control techniques to uncertain parameters in fitted transfer
function matrices is considered. Variability in assigned closed-loop poles, which arises from uncertain open-
loop poles, zeros, and scaling parameters, is quantified by means of analytical sensitivity formulae, which
are derived in this research. The sensitivity formulae are shown to be computationally efficient, even for a
large number of random parameters, and require only measured receptances, thereby preserving the model-
free superiority of receptance-based techniques. An evolution-based global optimisation procedure is used
to perform eigenstructure assignment so that the robustness, as defined by a metric, is maximised. The
robustness metric is designed to scale the relative importance of each closed-loop pole and their respective real
and imaginary parts. The proposed technique is tested numerically on a multi-degree-of-freedom system.
It is shown that, in both single- and multiple-input systems, it is possible to increase the robustness by
optimally selecting a set of closed-loop poles. However, it is determined that the closed-loop eigenvectors of
the system play a significant role in the propagation of uncertainty and hence, since multiple-input systems
may independently assign both closed-loop poles and eigenvectors, multiple-input systems are able to reduce
the uncertainty propagation to a greater extent.

Keywords: eigenstructure assignment, receptance method, robust control, uncertainty quantification

1. Introduction

The Receptance Method, first formulated by Ram and Mottershead [1], is a now well-established,
experimental-based active vibration control technique that has been applied to numerous mechanical, aerospace
and civil engineering systems [2, 3, 4, 5]. The technique involves using input-output transfer function ma-10

trices, obtained by rational transfer function fitting of measured frequency response function (FRF) data
[6], to design a feedback controller that performs eigenstructure assignment [7]. That is, the placement
of closed-loop poles and also, if the system is multiple-input, the assignment of closed-loop left or right
eigenvectors [8, 9]. The method is advantageous in that, since only experimental data is used, there is no
need to create a numerical model of the system and thus errors associated with numerical modelling are15

eliminated. However, despite this significant benefit, other sources of uncertainty are introduced, including:
measurement errors, variability between supposedly nominal systems, issues due to controller performance
and robustness, and transfer function misfitting.

In recent years, there have been several studies on the effect of such uncertainties on the Receptance
Method. Mottershead et al. [10] and Tehrani et al. [11] considered the robustness of the closed-loop poles,20

assigned using the Receptance Method, to the feedback gains used in the receptance controller. A sensitivity-
based approach was used and it was shown possible to assign either the closed-loop poles or their respective
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sensitivities. Similar work on closed-loop eigenvalue sensitivities has also been considered by Bernal [12] and
Bernal and Ulriksen [13]. Tehrani et al. [14] also used a sensitivity-based approach to quantify the variability
of closed-loop poles due to uncertainty in measured transfer functions. Small, complex perturbations were25

used to simulate measurement uncertainty and an optimum pole placement strategy was used to reduce
the resulting spread of the closed-loop poles. Also in [14], multiple-input systems with uncertainty were
considered for the first time using a sequential pole placement technique. Bai et al. [15] developed an
approach to simultaneously maximise the robustness of the closed-loop poles and minimise the norm of
the feedback gains using a nonlinear optimisation approach. However, the method required knowledge of30

the system matrices, which are generally not available without system identification techniques. Liang et
al. [16, 17] considered, for the first time, the sensitivity of eigenvalues to physical sources, such as friction
coefficients and contact stiffness parameters, and also used an optimisation approach to minimise such
sensitivities. Adamson et al. [18, 19] investigated variability between supposedly nominal systems, which
arises from manufacturing tolerances, damage and degradation. Variability in the closed-loop poles were35

minimised, according to their variance in the real and imaginary parts, using a global optimisation algorithm.
Despite the above-mentioned works, little research effort has been given to the issue of transfer function

misfitting. This issue arises when parameters, such as poles and zeros, in the fitted transfer functions are
uncertain, which leads to the random placement of poles in the closed-loop system. Physical sources that
lead to such misfitting include difficulty in estimating large damping values, modes that have very close40

frequencies, and poor fitting algorithms. This is the subject of the present work.
In this research, variability in the assigned, closed-loop poles is quantified by means of local sensitivity

expressions, which are derived for the first time. The expressions are shown to be dependent only on the
nominal transfer function matrix, the control gains, and the left and right eigenvectors. Thus, there is
no need to know the system matrices. A robustness metric is then defined, similar to [18], which serves to45

weight the relative importance of the robustness of each closed-loop pole and its respective real and imaginary
parts. A global optimisation procedure is then developed to optimise the robustness metric. In single-input
systems, this is done by optimally assigning the poles within rectangular regions in the complex plane. In
multiple-input systems, this is done by either assigning the closed-loop eigenvectors, the closed-loop poles,
or a combination of both.50

The remainder of this paper is divided as follows. In Section 2, the theory of the Receptance Method is
outlined and the problem associated with parameter misfitting in the transfer function matrices is formalised.
Following this, in Section 3, analytical expressions for the closed-loop pole sensitivities are derived for each
parameter in the transfer function fittings. Next, in Section 4, a robustness metric is defined, which uses
the earlier derived sensitivity expressions. In Section 5, the global optimisation procedure is described for55

single-input and multiple-input systems. Finally, in Section 6, the optimisation procedure is tested on a
multi-degree-of-freedom system in the form of four numerical examples.

2. Introductory theory

2.1. Receptance-based formulation

Consider a linear, multiple-input, multiple-output dynamic system governed by the frequency domain60

equation
Z(s)y(s) = B(s)u(s) (1)

where Z(s) ∈ Cn×n is the dynamic stiffness matrix, y(s) ∈ Cn is the output vector, B(s) ∈ Cn×m is the force
distribution matrix, and u(s) ∈ Cm is the input vector. When a static, linear, proportional plus derivative
output feedback controller is used, u(s) is related to y(s) by

u(s) =
(
sFT + GT

)
y(s) (2)

where F,G ∈ Rn×m are matrices of control gains, which are constant. The closed-loop dynamic is therefore65

described by (
Z(s)−B(s)

(
sFT + GT

))
y(s) = 0 (3)
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Pre-multiplying by the receptance matrix, H(s) = Z(s)−1, gives that(
I−R(s)

(
sFT + GT

))
y(s) = 0 (4)

where R(s) = H(s)B(s) is the input-output transfer function matrix. This is illustrated in block-diagram
form in Fig. 1.

Figure 1: Closed-loop system.

The eigenvalue problem associated with the closed-loop system is(
I−R(µi)

(
µiF

T + GT
))

wR,i = 0, i = 1, 2, . . . , 2n (5)

wT
L,i

(
I−R(µi)

(
µiF

T + GT
))

= 0T , i = 1, 2, . . . , 2n (6)

where µi is the ith closed-loop pole, and wL,i and wR,i are the left and right closed-loop eigenvectors70

belonging to the ith pole, respectively.
In the above formulation, the poles are a function of only the open-loop transfer function matrix R(s)

and the control gains F and G. Therefore, it is possible to determine a set of control gains to assign desired
closed-loop poles using only the transfer function matrix. The process of determining such gains is known
as the Receptance Method and is outlined below.75

2.2. The Receptance Method

Suppose that the desired set of closed-loop poles is µ = {µ1, µ2, . . . , µ2n}, which is closed under conju-
gation1. From Eq. 5, the control gains F and G must be chosen so that

wR,i = R(µi)
(
µiF

T + GT
)
wR,i, i = 1, 2, . . . , 2n (7)

By setting
αi =

(
µiF

T + GT
)
wR,i, i = 1, 2, . . . , 2n (8)

Eq. 7 reduces to80

wR,i = R(µi)αi, i = 1, 2, . . . , 2n (9)

and hence from Eq. 8
αi =

(
µiF

T + GT
)
R(µi)αi, i = 1, 2, . . . , 2n (10)

By denoting
F = [f1 f2 . . . fm], G = [g1 g2 . . . gm] (11)

Eq. 10 may be written as
Piy = αi, i = 1, 2, . . . , 2n (12)

1This condition ensures that the control gains are strictly real, which is required for physical implementation.
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where

Pi =


µiα

T
i R(µi)

T 0 . . . 0 αTi R(µi)
T 0 . . . 0

0 µiα
T
i R(µi)

T . . . 0 0 αTi R(µi)
T . . . 0

...
...

...
...

...
...

...
...

0 0 . . . µiα
T
i R(µi)

T 0 0 . . . αTi R(µi)
T

 (13)

y =



f1
...

fm
g1

...
gm


(14)

By defining

T =


P1

P2

...
P2n

 (15)

and85

z =


α1

α2

...
α2n

 (16)

the gains necessary to assign the closed-loop poles are given by

y = T−1z. (17)

It is to be noted that Eq. 17 is valid if, and only if, all closed-loop poles do not coincide with any of the
open-loop poles. This is because H(µi) is ill-defined at the open-loop poles. Further details on the resolution
of this problem are given in [8].

It has been shown in [8] that the choice of αi is arbitrary. That is, the poles will always be assigned90

to the desired positions in the complex plane for any αi. However, one may choose αi such that the
resulting control gains are minimum norm [20] or so that a desired eigenstructure assignment is achieved
[8]. Furthermore, it is necessary that αi is closed under conjugation for any eigenvalue pair {µi, µ̄i}[20].

2.3. Problem formulation

As shown above, the transfer matrix R(s) must be evaluated at each closed-loop pole (s = µi, i =95

1, 2, . . . , 2n) in order to find F and G. In the case that Re(µi) = 0, R(µi) is simply a matrix of frequency
response functions (FRFs), which can be measured experimentally. However, in the more general case that
Re(µi) 6= 0, R(µi) is not available directly from experimental measurements. Therefore, it is usually required
to perform rational function fitting to measured FRF data in order to estimate R(µi).

Consider the general form of R(s), given by100

R(s) =
N(s)

d(s)
(18)

where N(s) is the matrix numerator term; and d(s) is the scalar denominator term, which is also known as
the characteristic polynomial. Expanding the numerator and denominator allows R(s) to be written in the
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form

R(s) =
1∏2n

i=1 (s− λi)


n11(s) n12(s) . . . n1m(s)
n21(s) n22(s) . . . n2m(s)
. . . . . . . . . . . .

nn1(s) nn2(s) . . . nnm(s)

 (19)

where

nij(s) = ηij

q<n∏
r=1

(s− zijr ) (20)

Therefore, the transfer matrix is described entirely by the parameters λi, zijr and ηij , which are referred105

to as the poles, zeros, and scaling parameters, respectively. Due to uncertainty in the measured FRFs, it
is difficult to estimate the fitting parameters precisely and, consequently, there is usually an error between
the true and estimated value of R(s).

Suppose that one of the fitting parameters, denoted θ, is uncertain. The new eigenvalue problem,
considering the influence of parameter uncertainty, is(

I−R(µi, θ)
(
µiF

T + GT
))

wR,i = 0, i = 1, 2, . . . , 2n (21)

wT
L,i

(
I−R(µi, θ)

(
µiF

T + GT
))

= 0T , i = 1, 2, . . . , 2n (22)

Therefore, for a fixed set of control gains, the eigenvalue condition depends explicitly on the fitting parameter
and thus its choice affects the eigenvalue solution. That is, the closed-loop poles now also depend on the110

fitting parameter. In the remainder of this paper, the influence of the fitting parameter on the closed-loop
poles is investigated.

3. Closed-loop pole sensitivities

Consider a small perturbation of one of the fitting parameters about its nominal value, so that: θ −→ θ+δθ,
µi −→ µi+ δµi and wR,i −→ wR,i+ δwR,i. The new eigenvalue problem associated with the perturbed system115

is given by (
I−R(µi + δµi, θ + δθ)

(
(µi + δµi) FT + GT

))
(wR,i + δwR,i) = 0, i = 1, 2, . . . , 2n (23)

Assuming that δθ and δµi are sufficiently small,

R(µi + δµi, θ + δθ) ≈ R(µi, θ) +
∂R

∂s
δµi +

∂R

∂θ
δθ, i = 1, 2, . . . , 2n (24)

and therefore(
I−

(
R(µi, θ) +

∂R

∂s
δµi +

∂R

∂θ
δθ

)(
(µi + δµi) FT + GT

))
(wR,i + δwR,i) = 0, i = 1, 2, . . . , 2n (25)

Expanding Eq. 25 and neglecting second-order terms leads to(
I−R(µi, θ)

(
µiF

T + GT
))

(wR,i + δwR,i)

+

(
−R (µi, θ) FT δµi −

(
∂R

∂s
δµi +

∂R

∂θ
δθ

)(
µiF

T + GT
))

wR,i = 0, i = 1, 2, . . . , 2n
(26)

Pre-multiplying by wT
L,i gives120

wT
L,i

(
I−R(µi, θ)

(
µiF

T + GT
))

(wR,i + δwR,i)

+wT
L,i

(
−R (µi, θ) FT δµi −

(
∂R

∂s
δµi +

∂R

∂θ
δθ

)(
µiF

T + GT
))

wR,i = 0, i = 1, 2, . . . , 2n
(27)
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and hence by definition of Eq. 22

wT
L,i

(
−R (µi, θ) FT δµi −

(
∂R

∂s
δµi +

∂R

∂θ
δθ

)(
µiF

T + GT
))

wR,i = 0, i = 1, 2, . . . , 2n (28)

Re-arranging and taking the limit as δθ tends to zero gives

∂µi
∂θ

= −
wT
L,i

∂R
∂θ

(
µiF

T + GT
)
wR,i

wT
L,i

(
R (µi, θ) FT + ∂R

∂s (µiFT + GT )
)
wR,i

, i = 1, 2, . . . , 2n (29)

which is the sensitivity of the closed-loop pole µi to a change in some fitting parameter θ.
In practice, the term ∂R

∂s of Eq. 29 is evaluated by differentiating the nominal, fitted transfer function
matrix. Also, the left and right eigenvectors are found from the null space of125

I−R(µi, θ)
(
µiF

T + GT
)

(30)

and (
I−R(µi, θ)

(
µiF

T + GT
))T

(31)

respectively. In the following subsections, expressions are derived for the term ∂R
∂θ , which depends explicitly

on the fitting parameter of interest.

3.1. Sensitivity to fitted poles

Let the transfer function matrix be expressed as130

R (s) =
N(s)∏2n

i=1 (s− λi)
(32)

and suppose that one of the fitted poles, λj , is uncertain. Separating out the bracketed term involving λj
gives that

R (s, λj) =
N(s)

(s− λj)
∏2n
i=1,i6=j (s− λi)

(33)

and hence differentiating with respect to λj gives

∂R

∂λj
=

N(s)

(s− λj)2
∏2n
i=1,i6=j (s− λi)

=
R(s)

s− λj
(34)

Substituting Eq. 34 into Eq. 29 yields

∂µi
∂λj

= −
wT
LR(µ)

(
µiF

T + GT
)
wR

(µi − λj) wT
L

(
R (µi, θ) FT + ∂R

∂s (µiFT + GT )
)
wR

, i = 1, 2, . . . , 2n (35)

which is the sensitivity of a closed-loop pole µi to one of the fitted open-loop poles λj . Using the eigenvalue135

condition of Eq. 5, the sensitivity can be reduced to

∂µi
∂λj

= − wT
LwR

(µi − λj) wT
L

(
R (µi, θ) FT + ∂R

∂s (µiFT + GT )
)
wR

, i = 1, 2, . . . , 2n (36)

3.2. Sensitivity to fitted zeros

Let the transfer matrix be expressed as

R(s) =
N(s)

d(s)
(37)

6



and suppose that the kth zero zij,k belonging to the ijth element of N(s) is variable. The derivative of R(s)
with respect to zij,k is given by140

∂R

∂zij,k
=

1

d(s)

∂N(s)

∂zij,k
=

1

d(s)

∂nij(s)

∂zij,k
eie

T
j (38)

where ei ∈ Rn and ej ∈ Rm are vectors with unit entries belonging to the ith and jth coordinates of the
zero, respectively. Since

nij(s) = ηij

q≤2n∏
p=1

(s− zij,p) (39)

Eq. 38 may be written as

∂R

∂zij,k
= − ηij

d(s)

q≤2n∏
p=1,p6=k

(s− zij,p) eie
T
j = − rij(s)

s− zij,k
eie

T
j . (40)

Therefore, by substituting Eq. 40 into Eq. 29, the sensitivity of a closed-loop pole with respect to a fitted
zero is given by145

∂µi
∂zij,k

=
wT
L,irij(s)eie

T
j

(
µiF

T + GT
)
wR,i

(s− zij,k) wT
L,i

(
R (µi, θ) FT + ∂R

∂s (µiFT + GT )
)
wR,i

(41)

3.3. Sensitivity to fitted scaling parameters

Finally, suppose that the ijth scaling parameter ηij of N(s) is variable. Using Eq. 37, the derivative of
R(s) with respect to ηij is given by

∂R

∂ηij
=

1

d(s)

∂N(s)

∂ηij
=

1

d(s)

∂nij(s)

∂ηij
eie

T
j (42)

Since

nij(s) = ηij

q≤2n∏
p=1

(s− zij,p) (43)

Eq. 42 may be written as150

∂R

∂ηij
=

1

d(s)

q≤2n∏
p=1

(s− zij,p) eie
T
j =

rij(s)

ηij
eie

T
j (44)

Therefore, by substituting Eq. 44 into Eq. 29, the sensitivity of a closed-loop pole with respect to a fitted
scaling parameter is given by

∂µi
∂ηij

=
wT
L,irij(s)eie

T
j

(
µiF

T + GT
)
wR,i

ηijwT
L,i

(
R (µi, θ) FT + ∂R

∂s (µiFT + GT )
)
wR,i

(45)

Special case: No zeros
If the matrix element nij(s) does not contain any zeros and is simply a constant term (i.e. nij(s) = ηij)

∂R

∂ηij
=
ηij
ηij

eie
T
j = eie

T
j (46)

and hence155

∂µi
∂ηij

=
wT
L,ieie

T
j

(
µiF

T + GT
)
wR,i

wT
L,i

(
R (µi, θ) FT + ∂R

∂s (µiFT + GT )
)
wR,i

(47)
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4. Robustness metric

With analytical sensitivity expressions derived, it is now possible to consider strategies to maximise
the robustness of the assigned closed-loop poles to variations in the fitting parameters. In order to do
so, however, one must first define a robustness metric. The robustness metric is used to quantify: (i) the
combined effect of all fitting parameters on the movement of a chosen closed-loop pole, and (ii) the relative160

importance of the robustness of each closed-loop pole. In this work, the robustness metric is defined by
using a total differential approach. In this way, the combined effect of all uncertain parameters is considered
simultaneously using the previously derived sensitivity formulae.

Consider the total differential of a closed-loop pole µi, which is written as

dµi =
∑
j

∂µi
∂θj

dθj , i = 1, 2, . . . , 2n (48)

By extending the differential of each parameter, it is shown that165

∆µi ≈
∑
j

∂µi
∂θj

∆θj , i = 1, 2, . . . , 2n (49)

and hence, provided the perturbations of the fitting parameters are sufficiently small, the movement of the
closed-loop pole is determined uniquely by a weighted linear sum of the sensitivity associated with each
fitting parameter. Taking the real and imaginary part of Eq. 49 leads to

Re (∆µi) ≈
∑
j

Re

(
∂µi
∂θj

∆θj

)
, i = 1, 2, . . . , 2n (50)

Im (∆µi) ≈
∑
j

Im

(
∂µi
∂θj

∆θj

)
, i = 1, 2, . . . , 2n (51)

and hence by expanding

Re (∆µi) ≈
∑
j

(
Re

(
∂µi
∂θj

)
Re (∆θj)− Im

(
∂µi
∂θj

)
Im (∆θj)

)
, i = 1, 2, . . . , 2n (52)

Im (∆µi) ≈
∑
j

(
Re

(
∂µi
∂θj

)
Im (∆θj) + Im

(
∂µi
∂θj

)
Re (∆θj)

)
, i = 1, 2, . . . , 2n (53)

If one assumes that each fitting parameter is within an interval specified by

∆θj = ±xj ± yj i (54)

where xj ∈ R+ and yj ∈ R+, the maximum values of the real and imaginary parts of Eq. 52 and Eq. 53 are
given by

Re (∆µi)max ≈
∑
j

(∣∣∣∣Re

(
∂µi
∂θj

)∣∣∣∣xj +

∣∣∣∣Im(∂µi∂θj

)∣∣∣∣ yj) , i = 1, 2, . . . , 2n (55)

and

Im (∆µi)max ≈
∑
j

(∣∣∣∣Re

(
∂µi
∂θj

)∣∣∣∣ yj +

∣∣∣∣Im(∂µi∂θj

)∣∣∣∣xj) , i = 1, 2, . . . , 2n (56)
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For each pole µi a pole metric is defined as170

Ji = βi
Re (∆µi)max

|Re (µi)|
+ γi

Im (∆µi)max

|Im (µi)|
, i = 1, 2, . . . , 2n (57)

where βi, γi ∈ R+ are constants. The constants serve to weight the relative importance of the percentage
change of the real and imaginary part of each pole. In other words, βi > γi is chosen if it is more important
for the real part of the pole to be robust, and βi < γi is chosen if it is more important for the imaginary
part of the pole to be robust. The total robustness metric is then defined as

JT =

2n∑
i=1

ρiJi (58)

where ρi ∈ R+ are constants. The constants here serve to weight the relative importance of each pole; that175

is, they weight the robustness of each mode.
It is important to point out that, in general, the variation of a closed-loop pole to a random parameter

is not linear. Therefore, Eqs. 55-56 may not accurately predict the maximum real and imaginary part.
However, even if this is the case, the purpose of the values xj and yj is still to weight the relative confidence
in each parameter. That is, to adjust the total robustness metric so that parameters that are well known180

do not have such a large impact.

5. Sensitivity reduction

In this section, three optimisation procedures are developed to minimise the total robustness metric
defined in Section 4.

5.1. Single-input systems185

In single-input systems, the force distribution matrix B(s) reduces to a vector b(s) ∈ Cn. This means
that the transfer matrix also reduces to a vector r(s) ∈ Cn and thus so too do the control gains f ,g ∈ Rn.
As a consequence, the αi term in Eq. 8 becomes scalar and hence, since the eigenvector in Eq. 9 may be
scaled arbitrarily, the single-input system is unable to independently assign eigenvectors if the closed-loop
poles are assigned. Therefore, the only way in which to minimise the robustness metric is by optimally190

choosing where to place the closed-loop poles in the complex plane.
Of course, one cannot simply allow an optimisation to place the closed-loop poles arbitrarily in the

complex plane. Firstly, a condition of stability must be enforced (Re (µi) < 0). Secondly, the poles must be
placed in a location that is physically achievable by the controller (i.e. the control gains must not be too
large). Thirdly, the poles must usually be placed so as to achieve desired natural frequencies and damping195

values, which are chosen by the user.
In this work, the closed-loop poles µi are constrained to rectangular regions defined by

µi = [ai, ai] + [bi, bi]i, i = 1, 2, . . . , 2n (59)

where ai, ai, bi, bi ∈ R. With such a restriction, the optimisation problem is defined by:

Optimisation 1: Minimise JT in Eq. 58 by placing the closed-loop poles µi subject to the constraints200

given by Eq. 59.

5.2. Multiple-input systems

In multiple-input systems, it is possible to independently assign both the eigenvalues and eigenvectors.
Therefore, in theory, there is greater flexibility to reduce the robustness metric compared to the single-input
equivalent system. Here, two optimisation strategies are considered.205
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5.2.1. Strategy 1: fixed closed-loop poles

In this first strategy, the closed-loop poles are assigned to fixed locations in the complex plane. That is,
they are not optimisation variables, as was the case in the single-input system. Instead, only the vectors αi
are chosen optimally. This is equivalent to optimally choosing the closed-loop eigenvectors, and hence the
displacement pattern, of each mode.210

Since αi may be chosen arbitrarily, the optimisation may produce values of αi that yield very large control
gains and hence an unfeasible control effort. Therefore, constraints on the control gains are enforced. In
this work, the gain constraints take the form

w||F||F + ||G||F ≤ cmax (60)

where ||.||F represents the Frobenius norm, and cmax ∈ R+ and w ∈ R+ are constants. The term w is used
to scale the gains associated with the feedback derivative term to comparable levels with the proportional215

term. This is because F is, in general, much smaller than G. For general purposes, the scaling parameter
w may be selected as the largest imaginary part from the set of all poles. This is equivalent to scaling the
F matrix by the damped natural frequency.

In this case, the optimisation problem may be summarised by:
220

Optimisation 2: Minimise JT in Eq. 58 by placing the closed-loop poles at the desired locations in
the complex plane and choosing optimum αi, subject to the gain constraints in Eq. 60.

5.2.2. Strategy 2: variable closed-loop poles

An alternative, and more flexible, strategy is a combination of the two above-mentioned optimisation
problems. Now, both the poles and the eigenvectors are optimally selected.225

Optimisation 3: Minimise JT in Eq. 58 by selecting optimum closed-loop poles and αi vectors, sub-
ject to the gain constraints in Eq. 60 and the pole constraints in Eq. 59.

230

6. Numerical examples

The optimisation strategies discussed in Section 5 are applied numerically on a three-degree-of-freedom
mass-spring-damper system. Throughout all examples, the mass, damping and stiffness matrices are given
respectively by

M =

2 0 0
0 1 0
0 0 3

 , C = 0.5

1 0 0
0 1 −1
0 −1 1

 , K =

 6 −2 −1
−2 4 −2
−1 −2 3

 ,

and hence the open-loop poles are as given in Table 1.

Table 1: Open-loop poles.

Pole Value
λ1 -0.0166 + 0.5516i
λ2 -0.0166 − 0.5516i
λ3 -0.1890 + 1.6044i
λ4 -0.1890 − 1.6044i
λ5 -0.2528 + 2.2289i
λ6 -0.2528 − 2.2289i

10



6.1. Single-input

In the case that

b =

1
1
1


the transfer matrix is given by

R(s) =
1∏6

i=1(s− λi)

 1
2

(
s4 + 2

3s
3 + 22

3 s
2 + 3

2s+ 8
)

s4 + 7
12s

3 + 23
4 s

2 + 5
3s+ 13

2
1
3

(
s4 + 5

4s
3 + 39

4 s
2 + 21

4 s+ 21
)


and thus the open-loop zeros and scaling parameters are as given in Table 2 and Table 3, respectively.

Table 2: Open-loop zeros (single-input).

Element ij zij,1 zij,2 zij,3 zij,4
11 -0.2678+2.4161i -0.2678-2.4161i -0.0656+1.1617i -0.0656-1.1617i
21 -0.1429+2.0115i -0.1429-2.0115i -0.1487+1.2555i -0.1487-1.2555i
31 -0.1690+1.8863 -0.1690-1.8863 -0.4560+2.3764i -0.4560-2.3764i

Table 3: Scaling parameters (single-input).

Scaling parameter Value
η11

1
2

η21 1
η31

1
3

If the closed-loop poles were to be assigned to the nominal points

µ1,2 = −0.2± 0.8i

µ3,4 = −0.5± 2i

µ5,6 = −1± 2.5i

the required control gains, computed by the Receptance Method, would be235

f =

−4.2265
−0.5163
0.4387

 , g =

−0.3915
−6.8904
4.2002

 (61)

for any choice of α [8]. However, in the following two examples, the pole placement procedure is relaxed so
that the poles are instead assigned to any points inside the regions defined by

µ1,2 = [−0.5,−0.2]± [0.6, 1]i

µ1,2 = [−0.7,−0.3]± [1.7, 2.3]i

µ1,2 = [−1.2,−0.8]± [2.2, 2.8]i.

These regions have been chosen both to contain the nominal closed-loop poles given earlier and also to
ensure that entire rectangular regions have lower (more negative) real parts than the open-loop poles, thus
representing a stabilising control objective. Moreover, the upper limit of the real part of the rectangular
region of the first pole pair is equal to the corresponding nominal closed-loop pole pair. This is to enforce
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that the real part of the first pole pair in the optimisation is always less than or equal to the nominal pole,240

as would likely be used in practice for poles with low damping.
This relaxation allows the poles to be placed to minimise a total robustness metric. Here, two metrics

are investigated and are given in the proceeding examples.

Example 1: eigenvalue assignment 1 - equal weighting

Consider the case where the constants βi, γi and ρi in Eq. 57 and Eq. 58 are set to one, for all i. That is,
equal priority of the robustness of each closed-loop pole and equal priority of the robustness of the real and
imaginary part. It is assumed that each fitting parameter is variable by 3% of its nominal value. In other
words, 3% in the real (xj) and imaginary part (yj) of the values given in Tables 1, 2 and 3. The initial
robustness metric, using the gains in Eq. 61, is calculated as 4.64. Using the Differential Evolution global
optimisation algorithm by Storn and Price [21], the poles are placed optimally, satisfying the constraints, to
minimise the robustness metric. After running, the optimum set of closed-loop poles are computed as

µ1,2 = −0.2± 1i

µ3,4 = −0.3± 2.245i

µ5,6 = −1.2± 2.8i

which corresponds to control gains of

f =

−3.1986
−0.2951
−1.7668

 , g =

−9.6234
−4.0595
2.7671


and a robustness metric of 2.19 (a reduction of 53%). Figure 2 shows the variability of the poles before and
after optimisation. Note that the rectangles represent the constraints of the nominal closed-loop poles. The
pole variability is shown visually by means of a Monte-Carlo simulation with 1000 samples between ±3%
variation of the fitting parameters. For simplicity, a uniform distribution is chosen; however, this is merely245

for visualisation purposes and an underlying probability distribution is not needed in this method.

Figure 2: Pole spread (Single-input: optimisation 1).
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An interesting point to consider is that the optimum closed-loop poles lie in the corners, or extreme
points, of the rectangular constraints. This suggests that the global minimum of the optimum poles lies
beyond the constraints enforced by the rectangles and thus one is likely to obtain better solutions if one
were able to relax the constraints. However, we consider such a relaxation to yield control gains that are
beyond the performance limits of the controller.250

Overall, it was found that the Differential Evolution algorithm provided a robust solution to the defined
optimisation problem. Regardless of the starting positions of the closed-loop poles, the solutions always
converged to the one given above. Of course, this may be specific to this particular problem and one cannot
always guarantee that the constrained minimum is always found [21].

Example 2: eigenvalue assignment 2 - first pole pair priority, real part priority

Now, consider the case where β1,β2, ρ1, ρ2 are set to one and all other weighting parameters are set to
zero. That is, the robustness is defined only by the real part variation of the first pole pair (µ1, µ2). Again
assuming that each fitting parameter is variable by 3% of its nominal value, the initial robustness metric
is calculated as 1.29. After running, using the same algorithm as in optimisation 1, the optimum set of
closed-loop poles are

µ1,2 = −0.2± 1i

µ3,4 = −0.3± 1.94i

µ5,6 = −0.8± 2.2i

which corresponds to control gains of

f =

−0.6273
−1.3065
−0.1896

 , g =

−0.3197
−2.9580
0.3633


and a robustness metric of 0.38 (a reduction of 71%). Figure 3 shows the new variability of the poles before
and after optimisation. By comparison with Fig. 2, the spread of the real part of the first pole pair is now
slightly smaller. This is, however, at a small expense to the variability of the other pole pairs (µ3, µ4, µ5, µ6).
Interestingly, the placement of the first pole pair is identical to optimisation one. However, the placement
of the other poles is different, especially in the case of the third pole pair (µ5, µ6). This implies that there255

is an interdependence between all of the poles in relation to the propagation of uncertainty from the fitted
parameters to the pole spreads. In addition, since the first pole pair does not move, this suggests that the
variability of a closed-loop pole is governed most by its own placement in the complex plane. That is, the
placement of the other poles, whilst having an effect, do not have such a large impact. However, one cannot
guarantee that this is always true and may only be valid for this specific example.260
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Figure 3: Pole spread (Single-input: optimisation 2).

6.2. Multiple-input

Now, consider the case where

B =

1 0 0
0 2 0
0 0 3


so that the system has three inputs. The new transfer matrix is given by

R(s) =
1∏6

i=1(s− λi)

 1
2

(
s4 + 2

3s
3 + 5s2 + 1

2s+ 8
3

)
2
(
s2 + 1

4s+ 4
3

)
1
2

(
s2 + 3

2s+ 8
)

s2 + 1
4s+ 4

3 2
(
s4 + 5

12s
3 + 97

24s
2 + 3

4s+ 17
6

)
1
2

(
s3 + 17

4 s
2 + 4s+ 14

)
1
6

(
s2 + 3

2s+ 8
)

1
3

(
s3 + 17

4 s
2 + 4s+ 14

)
s4 + 3

4s
3 + 57

8 s
2 + 5

2s+ 10


and hence the new zeros and scaling parameters are as given in Table 4 and Table 5, respectively. As

Table 4: Open-loop zeros (multiple-input).

Element ij zij,1 zij,2 zij,3 zij,4
11 -0.3209+2.0668i -0.3209+2.0668i -0.0124+0.7807i -0.0124-0.7807i
12 -0.125+1.1479i -0.125-1.1479i
13 -0.75+2.7272i -0.75-2.7272i
21 -0.125+1.1479i -0.125-1.1479i
22 -0.1234+1.7506i -0.1234-1.7506i -0.0849+0.9554i -0.0849-0.9554i
23 -4.1062 -0.0719+1.8451i -0.0719-1.8451i
31 -0.75+2.7272i -0.75-2.7272i
32 -4.1062 -0.0719+1.8451i -0.0719-1.8451i
33 -0.2077+2.2211i -0.2077-2.2211i -0.1673+1.4076i -0.1673-1.4076i

before, we consider all fitting parameters to be variable by 3% of their nominal value.

265
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Table 5: Scaling parameters (multiple-input).

Scaling parameter Value
η11

1
2

η12 2
η13

1
2

η21 1
η22 2
η23

1
2

η31
1
6

η32
1
3

η33 1

Example 3: eigenvector assignment

In this example, we consider the case where the closed-loop poles are assigned to the fixed points

µ1,2 = −0.2± 0.8i

µ3,4 = −0.5± 2i

µ5,6 = −1± 2.5i

and the eigenvectors are optimally assigned by appropriate selection of the αi vectors in Eq. 12, subject to
the the gain constraint

3||F||F + ||G||F ≤ 7

The weighting parameter of the ||F||F term in the gain constraint is chosen to be based roughly on the
maximum imaginary part of the closed-loop poles.

The same robustness metric and optimisation procedure as in example 1 is used throughout this example.
In other words, all weighting constants are set to one.

The optimum set of αi vectors are computed as

α1,2 =

 1
−0.16

−1.6613± 4.2788i

 , α3,4 =

 1
0.0541± 0.2543
−1.3277± 1.1091i

 , α5,6 =

 1
−9.6961± 2.4055i

0

 ,

which corresponds to control gains of

F =

−0.5758 0.3000 0.1308
0.0510 −0.7657 −0.1349
0.3297 0.6033 −0.6640

 , G =

−0.5572 1.5169 1.4346
−0.1247 −1.2435 −0.0245
0.5684 0.1341 −1.4786


and right eigenvectors of

w1,2 =

 1
1.4959± 0.0385i
1.5297± 0.2102i

 , w3,4 =

 1
0.0283± 0.9508i
−0.97± 0.3930i

 , w5,6 =

 1
−3.0714± 4.2318i
0.3231± 0.4319i

 ,

Note that, since eigenvectors may be scaled arbitrarily, the first element in the vector of αi is always selected270

as one and hence this reduces number of optimisation variables.
Figure 4 shows the closed-loop pole spread of the optimised system. Note here that the rectangular boxes

from the previous examples do not appear since the nominal closed-loop poles are fixed to set locations and
may not move. To compare the results, the pole spreads are also shown for a reference multiple-input system
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where αk,i = 1∀k, i. As shown, the position of the nominal poles are the same. However, by assigning275

different values of αi, the pole spreads are vastly different. Indeed, the robustness metric decreases from
7.73 (in the reference case) to 2.77 (a decrease of 64%).

Figure 4: Pole spread (Multiple-input: optimisation 1).

At this point, the need to use the gain constraint becomes clear. Simply by substituting the control gains
into the gain constraint equation, the gain constraint is evaluated as 7.1. This is a slight violation of the
constraint given above and arises since the constraint is implemented as a penalty function in the objective280

function (see [22]). Therefore, the controller is at its maximum limit and therefore it is likely that relaxing
the constraint will yield a better optimisation result. However, again, we consider such a relaxation to by
physically unfeasible.

It is to be noted here that the initial robustness metric in example 1 and example 3 are not identical,
despite the closed-loop poles initially being placed as the same locations in the complex plane. This is due
to the additional uncertain parameters in the transfer function matrix, which are introduced by the two
additional inputs. An interesting point to consider is whether the introduction of more inputs leads to a
situation where the robustness metric is always increased, regardless of the optimisation. However, this is
left as an area of future research.

Example 4: eigenstructure assignment

Finally, we consider the case of eigenstructure assignment; that is, where both the poles and eigenvec-
tors are assigned. In addition to choosing optimal αk values, the poles are now placed subject to the
constraints

µ1,2 = [−0.5,−0.2]± [0.6, 1]i

µ1,2 = [−0.7,−0.3]± [1.7, 2.3]i

µ1,2 = [−1.2,−0.8]± [2.2, 2.8]i

To enable a comparison to the previous example, the same optimisation procedure and gain constraints are
used.285
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After running, the optimum solution set was computed as

µ1,2 = −0.2± 0.6i

µ3,4 = −0.3± 1.7i

µ5,6 = −0.8± 2.3631i

and

α1,2 =

 1
−6.1699± 0.0249i
−8.0772± 0.7286i

 , α3,4 =

 1
−0.0099± 0.0017

0

 , α5,6 =

 1
−9.57

1.6021± 0.8635

 ,

which corresponds to control gains of

F =

−0.5795 0.4785 −0.1507
0.0662 −0.5496 −0.0176
0.2963 0.0985 −0.2943

 , G =

−0.9245 0.6526 −0.2264
−0.1820 −0.5489 0.1528
0.6079 0.0347 −0.0998


and right-eigenvectors of

w1,2 =

 1
1.6061±−0.0803i
2.0365±−0.0730i

 , w3,4 =

 1
0.9976±−0.0985i
−0.5046± 0.0752i

 , w5,6 =

 1
−2.5269± 3.2459i
0.4014± 0.6070i

 ,

With these new control gains, the robustness metric decreases from 7.73 to 1.67 (a reduction of 79%).
This is illustrated visually in Fig. 5, which shows a significant reduction in the size of the pole spreads for
all three pole pairs. Interestingly, the optimal poles found in example 1 do not match those found in this
example. This suggests that the optimal eigenvectors and poles are not independent and are, in some way,
related to each other. Furthermore, it is clear that the pole spread corresponding to the first pole pair is

Figure 5: Pole spread (Multiple-input: optimisation 2).
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flatter and seems to be aligned in one particular direction, rather than a circular or elliptical spread. Such an290

effect may occur when the pole’s sensitivity to particular fitting parameters is vastly decreased. In this case,
the pole’s spread becomes dependent on only a smaller number of parameters and hence the pole spreads
appear more akin to a root locus of the most dominant fitting parameters.

7. Conclusions

This work considers the effect of transfer function parameter misfitting on eigenstructure assignment295

using the Receptance Method. Closed-loop pole sensitivity formulae are derived for variable fitted open-
loop poles, zeros and scaling parameters. A global optimisation approach is then used to minimise the
sensitivities by either eigenvalue and/or eigenvector assignment. The robustness of the system is measured
by a metric, which serves to weight the relative importance of each mode and the variation of each pole’s
real and imaginary parts. In single-input systems, the robustness metric is reduced by placing the poles300

optimally within rectangular regions in the complex plane. In multiple-input systems, the robustness metric
is reduced either by modifying the closed-loop eigenvectors, closed-loop poles, or a combination of both.

The method is applied numerically to a three-degree-of-freedom mass, spring, damper system. It is shown
that the definition of the robustness metric affects the optimal solution found by the global optimisation
and hence the location of the placed closed-loop poles in the complex plane and the assigned closed-loop305

eigenvectors. In addition, it is demonstrated that multiple-input systems are capable of reducing the pole
spreads more than single-input systems.

The work presented in this paper highlights several areas of research that the authors suggest may be
of interest for future work. Firstly, the examples presented in this paper are based on a simple mechanical
system with a small number of degrees of freedom. When the number of degrees of freedom increases, the310

number of fitting parameters largely increases and hence the computational effort in the optimisation will be
greater. It is suggested that it may be possible to decrease the size of the problem by identifying poles, zeros
and scaling parameters with little influence on the robustness metric. For example, poles that are far away
from each other in terms of frequency are less likely to influence one another than poles that are nearby.
Secondly, it was shown that using multiple inputs led to a reduction of the spreads associated with the315

closed-loop poles by optimally assigning the closed-loop eigenvectors. One may also investigate whether the
placement of the inputs, and hence the form of the force distribution matrix, can also reduce the uncertainty
and, if so, whether a similar procedure developed in this paper can be used in this case. Furthermore, it
would be interesting to consider the influence of the number of sensors used and their respective locations.
Thirdly, the numerical examples only considered the case where the inputs had equal uncertainty in their320

parameters. In other words, the parameters of each column of the transfer function matrix were weighted
equally. In practice, this is not likely to be the case and some inputs may have parameters that are more
uncertain than others. Therefore, it would be interesting to investigate whether the introduction of highly
uncertain inputs would actually increase the robustness metric, regardless of the optimisation. Finally,
further research is needed to investigate how to select the upper and lower bounds of the fitting parameters325

that are used to define the robustness metric.
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