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At the heart of learning-by-doing1 lies a well-known psychological phenomenon: 

information will be remembered better if it is actively generated rather than 

passively read or heard2,3. First described in humans2,4, this generation effect can 

also be observed in various animal models3,5-7. However, the neurobiological 

mechanisms underlying the generation effect are unknown. Here we show that two 

reciprocal interactions between its active and passive components contribute to the 

generation effect in flies. One interaction consists of the active (skill-learning) 

component facilitating the passive (fact-learning) component. Fact-learning, on the 

other hand, inhibits skill-learning. Experiments with adenylyl cyclase I deficient

rutabaga mutant flies revealed that the fact- but not the skill-learning component 

requires this evolutionarily conserved learning gene. Using mushroom-body 

deficient transgenic flies we observed that the mushroom-bodies mediate the 

inhibition of skill-learning. This inhibition also enables generalization and prevents 

premature habit formation. Extended training in wildtype flies produced a 

phenocopy of mushroom-body impaired flies, such that generalization was 

abolished and goal-directed actions were transformed into habitual responses. 

Thus, our results identify various neural processes underlying learning-by-doing, 
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delineate some of their synergisms and provide a framework for further dissecting 

them in a genetically tractable model system. 

In the 100 years since the term was coined1, "learning-by-doing" has been 

recognized as a successful educational and economic strategy8. At its core lies a 

psychological phenomenon which was described only a few years earlier: Active 

engagement of the brain provides learning capabilities which are difficult or impossible 

to achieve by passive observation alone2,3. This phenomenon is today known as the 

generation effect4 and can also be observed in animals such as monkeys5, cats6 or fruit 

flies7. Despite the impact learning-by-doing has on society and the ubiquity of the 

generation effect, the mechanism by which activity enhances passive learning is 

unknown.

To study its neurobiological basis, we hypothesized that the generation effect may 

be brought about by an interaction of two components: an active, skill-learning 

component and a passive, fact-learning component. We tested this hypothesis by 

combining two simple experimental instances of fact- and skill-learning, respectively, in 

the fruit-fly Drosophila melanogaster. In both tasks, the fly is tethered to a torque meter 

to accomplish stationary flight. In the passive fact-learning task, the fly is presented 

with one of two visual cues in alternation, independently of its own behaviour. The 

presentation of one of these cues is associated with an infrared beam of light providing 

instantaneous, aversive heat. The animal learns the fact that one cue is punished and 

prefers the unpunished over the punished cue in a subsequent choice test without heat9.

In the active skill-learning task, the fly’s spontaneous turning maneuvers10 are divided 

into two groups (i.e. attempts to turn left or right, respectively) and one of them is 

punished by heat. During the subsequent choice test without heat, the animal generates 

manoeuvres preferentially in the previously unpunished direction11. There are no 

external cues guiding the animal during skill-training or testing. The fly has to rely 
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solely on its own internal representation of its movements in order to solve this task. In 

the combined paradigm (Fig. 1), attempted turning will lead to either blue or green 

illumination (i.e. a right turn will cause illumination of one colour while a left turn will 

cause illumination of the other). During training, one of the two situations is associated 

with heat. During test, the heat is permanently switched off. Extending previous results7,

the flies showed the generation effect also in this composite paradigm (Supplementary 

Figures 6, 7). This finding is consistent with our hypothesis that an interaction of fact- 

and skill-learning components may underlie the generation effect. But of what nature is 

this interaction? A simple possibility is that the fact-learning component and the skill-

learning component are formed in parallel, and that the two components are summed. A 

straightforward test of this ‘summation’ hypothesis is to disable one of the two 

components and then subject the animals to the composite learning task.  

The rutabaga (rut)-mutant flies lack a type I adenylyl cyclase that is required for 

most learning tasks including the instance of fact-learning tested here (Supplementary 

Figure 7). If mutant rut flies are only deficient in fact-learning, the summation 

hypothesis predicts two similar learning scores: reduced, but significant composite 

learning and unaffected skill-learning. If the Rutabaga cyclase is required for both 

learning components, the mutant flies should perform poorly in both the composite and 

the skill-learning task. Surprisingly, rut mutants performed well (even exceeding 

wildtype levels; Supplementary Figure 7) in the skill-learning task, but they failed in the 

composite task (Fig.2a). How can this dominant-negative effect of the colours be 

explained? One explanation is that the colour changes may interfere with skill-learning 

in rut flies. However, colour changes unrelated to the flies’ behaviour did not disrupt 

performance (i.e., a yoked control; Supplementary Figure 7). Rather, in rut mutant flies, 

colour changes concomitant with turning behaviour somehow inhibit skill-learning 

during the composite learning task. To investigate whether this inhibition occurs during 

acquisition or during retrieval of the skill-learning component, we removed the colours 
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after training and tested for the skill-learning component in isolation. If the inhibition 

takes place at the level of acquisition, the learning score should be zero, because no skill 

was ever learned. If the inhibition takes place during retrieval, the rut flies should reveal 

a significant learning score, because the colours are no longer present and thus cannot 

interfere with the performance of the skill which was learned during composite training. 

The significant rut learning score places the inhibition firmly at the level of retrieval for 

the mutant flies (Fig. 2a). The same experiment with wildtype flies did not reveal any 

significant learning score. We conclude that in wildtype flies fact-learning also exerts an 

inhibitory effect on skill-learning. In contrast to rut flies, this inhibition of skill-learning 

acts during acquisition and not during retrieval.

These results show that the interaction between fact- and skill-learning 

components is more complex than mere summation. Counter-intuitively, one factor 

involved in this interaction is inhibition of skill-learning by a dominant fact-learning 

component. Because the generation effect entails an overall enhancement of learning, 

there must be a second, facilitating factor which more than compensates for the skill-

learning inhibition. One may assume this second factor to be reciprocal to the first, from 

the skill-learning component back to the fact-learning component (Fig. 3). While on the 

surface this arrangement may seem implausible, such an enhancement of fact-learning 

at the expense of skill-learning allows for keeping the learned fact flexible for use with 

a different behaviour than with which it was acquired. It has been shown previously that 

flies can perform such a generalization7 and that the mushroom-bodies (MB), a 

prominent neuropil in the insect brain, are required for certain generalization tasks12,13.

Conspicuously, the general MB function has long been thought to be inhibitory in 

nature14-16. We therefore suspected that the inhibition of skill-learning may be mediated 

by the MB and enable generalization of the learned fact. To test this hypothesis, we 

genetically blocked output from the MB, trained the transgenic flies in the composite 

task and subsequently tested them for generalization of colour memory and for the 
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isolated skill-learning component (as in the rut experiments). Flies with impaired MB 

function can learn visual cues and perform well in skill-learning as well as several other 

learning tasks9. If the MB mediate the inhibition of skill-learning in order to generalize 

learned facts, removal of this inhibition in the transgenic flies should lead to significant 

skill-learning and no generalization. Indeed, flies with blocked MB output perform 

according to these predictions (Fig. 2b). Further experiments indicate that the MB  and 

 lobes, but not the  lobes contribute to this inhibition (Supplementary Figure 8). Are 

the MB also involved in the facilitation of fact-learning? There is a different composite 

paradigm in which skill-learning can be prevented technically by making the behaviour-

heat association non-predictive7. In this experiment, a lack of fact-learning facilitation 

would entail a decrement in composite performance compared to control animals. No 

such decrement was observed9. Thus, current data are consistent with the hypothesis 

that the MB mediate inhibition of skill-learning in order to generalize learned facts and 

are not involved in the facilitation of fact-learning. 

Encouraged by these results, we developed our hypothesis one step further. When 

the colours were removed after composite training, flies with impaired MB function 

stereotypically continued their attempts to turn in the unpunished direction, despite the 

change in the environment. Accumulating evidence suggests that the inhibitory nature 

of the MB allows them to serve a gating function12,13,16, preventing all but the most 

important events from forming memories. In our case, one may interpret the results as 

the MB preventing the formation of a motor memory or habit. Skills and habits are 

important for efficiently carrying out often-repeated behaviours by limiting the amount 

of behavioural variability. If our simple skill-learning paradigm indeed were an 

adequate model for studying habit formation in flies, extended composite training 

should overcome the MB-mediated inhibition and lead to stereotyped turning attempts 

and abolished generalization, much as in the transgenic flies. Remarkably, wildtype flies 
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trained for twice the regular amount of time in the composite task indeed perform as 

phenocopies of the flies with impaired MB function (Fig. 2c). 

Our results allow for the first time to establish a mechanistic model of how active 

and passive learning systems interact in composite learning situations and which 

biological substrates mediate the processes resulting in the generation effect (Fig. 3). 

Acquisition of the rut-dependent fact-learning component suppresses acquisition of the 

rut-independent skill-learning component via the MB. The skill-learning component 

facilitates fact-learning via still unknown, non-MB pathways. This interaction leads to 

efficient learning, enables generalization and prevents premature habit-formation. Habit 

formation after extended training reveals the gate-keeping role of the MB, allowing only 

well-rehearsed behaviours to consolidate into habits. Despite these advances, we still do 

not know what specific mechanisms lead to the enhancement of learning in the 

generation effect. However, with this new set of behavioural tools and the molecular 

genetic arsenal of Drosophila, it is only a matter of time until we see progress in this 

area as well. Lacking any direct evidence, an attractive speculation is that the operant 

behaviour serves to focus the fly’s attention, to more quickly detect coincidences 

between stimuli. Recent work shows that flies modulate their attention, can focus it to 

different areas of their visual field and that these attention-like processes require short-

term memory genes17-19. It is also still unknown what molecular cascades mediate skill-

learning. There is preliminary but converging evidence from mice and the marine snail 

Aplysia that one critical molecular component of skill-learning is a calcium-independent 

but dopamine-dependent adenylyl cyclase acting upstream of protein kinases A and 

C20,21.
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Methods summary: 

Wild-type strain Berlin (WT) and rutabaga mutant strain rut2080 were used for this 

study. Experimental transgenic flies were obtained by crossing a MB-specific GAL4 

driver strain (mb247) to an effector strain expressing the catalytic subunit of bacterial 

tetanus toxin (UASGAL4-TNT). This cross results in a block of synaptic output in the 

MB neurons targeted by the driver strain. The heterozygote offspring from crossing 

driver and reporter strain, respectively, to Canton-S wildtype flies served as genetic 

controls for these experiments. As both crosses were tested simultaneously and their 

results did not differ, both control groups were pooled. After briefly immobilizing 24-

48h old female flies by cold-anesthesia, the flies were glued with head and thorax to a 

triangle-shaped copper hook the day before the experiment. The animals were then kept 

individually overnight in small moist chambers containing a few grains of sucrose. The 

apparatus for dissecting learning-by-doing in Drosophila is shown in Fig. 1a, b. The 

tethered fly, suspended at a torque meter, is flying stationarily in the centre of an arena 

that is illuminated from behind. The torque meter records the attempts of the fly to turn 

around its vertical body axis (yaw torque). For green and blue illumination of the arena, 

the light is passed through monochromatic broad band filters. Filters can be exchanged 

by a fast solenoid within 0.1s. Alternatively, the arena is illuminated with ‘daylight’ by 

passing it through a blue-green filter. Yaw torque is recorded every 50 ms and direction 

preferences are calculated for nine (extended 15) consecutive 2-min periods 

(performance index (PI) 1–9; Fig. 1c). During training, one yaw torque/colour 

combination is paired with ambient temperature and the other with heat from an infrared 

laser diode. If tA is the time the fly spends in one of the two situations, and tB the time in 

the other, the performance index is calculated as PI = (tA - tB)/(tA + tB). Error bars in the 

figures are s.e.m.; asterisks indicate levels of significance against zero (one-sample t-

test; two-sided P-value). For details see Supplementary Methods. 
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Fig. 1: Drosophila composite learning at the torque meter. 

a-b, Experimental setup. The fly is attached to a torque meter and its yaw 

torque, generated by attempted left and right turns, controls the colour of the 

panorama around it as well as a punishing beam of infrared light. The coloration 

of panorama illumination is accomplished by a fast solenoid moving two colour 

filters at the light source such that only light of a specific wavelength (either 

green or blue) illuminates the panorama at any given time. For instance, right 

turning may lead to green illumination of the panorama and heat off (a), while 

left turning may lead to blue illumination and heat on (b). c, Course of 

experiment. Bars show performance indices (PI) of successive 2-min intervals 

of pre-test (yellow bars; PI1, PI2), training (orange bars; PI3, PI4, PI6, PI7) and 

memory test (yellow bars; PI5, PI8, PI9). A PI of 1 means the fly spent the entire 

period in the unpunished situation, whereas a PI of -1 indicates that the fly 

spent the entire period in the situation associated with heat. Accordingly, a PI of 

zero indicates that the fly distributed the time evenly between heated and non-

heated situations. Therefore, PIs were tested against zero for statistical 

significance. The following bar graphs all show the first PI after the last training 

period (hatched bar). Error bars are s.e.m. throughout.
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Fig. 2: Experiments with wildtype, mutant and transgenic flies reveal 

hierarchical interactions between fact- and skill-learning. 

a1, Abolished composite and unaffected skill-learning rut mutant flies (red, 

composite: t16=0.7, p<0.5; light-green, skill-learning: t16=4.3, p<0.001). After 

composite training, the skill-learning component is significant (dark green: 

t29=2.9, p<0.007) indicating skill-learning inhibition at the level of retrieval. a2,

Significant composite and skill-learning in wildtype (WT) flies (composite: 

t31=5.1, p<0.001; skill-learning: t29=3.0, p<0.006). After composite training, the 

skill-learning score is not significant (t24=-0.3, p<0.8) indicating inhibition of skill-

learning during acquisition. b1, Flies expressing the bacterial tetanus toxin light 

chain in most mushroom-body intrinsic Kenyon cells perform well in composite 

learning (red: t19=3.1, p<0.01), but do not inhibit the skill-learning component 

during composite training (green: t18=2.6, p<0.05). Without inhibition of skill-

learning, these transgenic flies are unable to generalize the colour memory 

(blue: t20=-0.5, p<0.6.). b2. The genetic control flies (the two heterozygote 

strains did not differ and were pooled) reproduce the wild-type results: 

significant composite learning (t26=3.8, p<0.001), inhibition of skill-learning 

(t31=0.7, p<0.5) and successful generalization (t14=2.7, p<0.05). c, Extended 

training overcomes the inhibition of skill-learning in wildtype flies. The results 

constitute a phenocopy of the transgenic animals (b1). Extended composite 

learning does not lead to an overtraining decrement (t16=2.8, p<0.013). Testing 

for the skill-learning component after extended composite training shows a 

release from the inhibition of skill learning (t16=2.6, p<0.02). Without inhibition of 

skill-learning, the flies are unable to generalize (t19=0.1, p<0.91).

Grey shading – mutant or experimental animals. No shading – WT or control 

animals. Numbers at bars – number of animals. * – statistical significance. 
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Fig. 3: Composite learning consists of two components with reciprocal, 

hierarchical interactions.

The rut-independent skill-learning component facilitates acquisition of the rut-

dependent fact-learning component (generation effect) via unknown, non-

mushroom-body pathways. This facilitated fact-learning inhibits acquisition of 

skill-learning via the mushroom-bodies. These interactions lead to efficient 

learning, generalisation and prevent premature habit-formation. 
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