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Abstract 

While there are many differences between tumor and non-tumor cells, the basic 

underlying distinction is in the DNA.  Tumor cells harbor mutations, at least some of 

which are not present in non-tumor cells.  Thus, a method of directly targeting cells 

containing specific mutations has potential for detection or treatment of cancer without 

the toxicity associated with more indirect approaches.  Also, as mutations are a necessary 

component of malignancy, such a method is potentially applicable to all tumors.   

 

I propose a method by which several recently developed techniques can be utilized in a 

novel way to accomplish the goal of directly targeting mutations for cancer detection and 

therapy.  The model can be summarized as follows:  (1) Determine potential target 

mutations present in tumor cells but not non-tumor cells.  (2)  Construct molecules that 

will bind to DNA at the sites of mutation, but will not bind to DNA in normal cells.   

And, as a consequence of the molecules binding to the mutation, the cells will be 

destroyed.  (3)  Deliver these molecules to all cells (or at least all tumor cells).  I 

hypothesize that such molecules can now be constructed using sequence-specific DNA 

binding proteins (such as customized zinc-finger DNA binding proteins) fused to 

transcriptional activator domains (such as VP16) and reporter or toxin genes.  The 

necessary genes can be linked to the DNA binding proteins utilizing a recently described 

method based on expressed protein ligation.  
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Introduction 

Most, if not all, tumors are thought to arise due to the accumulation of mutations, 

providing the cells with the necessary characteristics for malignancy.  Yet, this most 

fundamental attribute of cancer has not been amenable to targeting for therapeutic or in 

vivo diagnostic purposes.  The most obvious factor limiting mutations as potential targets 

is their concentration—there may be only a single copy of a specific mutation per cell.  

Thus, in order to have a useful effect any approach that targets DNA must incorporate 

significant amplification. 

In recent work, the ability to construct zinc-finger (ZF) DNA binding proteins designed 

to bind to specific, user-defined DNA sequences has been demonstrated [1-4].  These 

proteins have been fused to various other protein moieties, producing for example 

artificial transcription factors and site-specific nucleases [5-11].  Additionally, ZF 

proteins fused to reporter proteins have been used to detect specific DNA sequences both 

in vitro [12-14] and in plants and mammalian cell culture [15].  A limitation of these 

techniques is the lack of amplification:  As there is only a single copy of reporter protein 

(e.g. green fluorescent protein) per target DNA site, the methods must be used either in 

vitro (with many copies of the target DNA) or targeted to highly repetitive DNA 

sequences.   

Recently a conceptual paper was published [16] describing a technique for targeting 

DNA in non-tumor cells.  However, key components of that method (such as split 

nucleases) do not currently exist so that the approach cannot be implemented at this time, 
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and DNA methylation and compaction in non-tumor cells may limit the method’s 

applicability should it become possible to test it.  The strategy proposed here, utilizing a 

different method and with a different target, does not have these limitations.   

Hypothesis 

In this article I propose a new strategy, with potential to directly target mutations in vivo.  

I hypothesize that DNA binding proteins, constructed to bind to mutations, can be joined 

to other moieties as described below, with the resulting molecules enabling detection and 

treatment of tumor cells based on these molecular differences (i.e. mutations) from non-

tumor cells. 

The method is illustrated in Figure 1.  Two DNA binding proteins (assumed to be ZF 

proteins) are constructed, designed to bind near to one another on the cellular DNA.  At 

least one must bind at a mutation not present in normal cells; however, the other may 

bind to non-mutated DNA as both proteins must be bound for the mechanism to produce 

an effect.  Attached to one ZF protein (which can be constructed as a fusion protein via 

standard techniques) is a transcriptional activator (e.g. VP16).  Attached to the other is 

DNA with an appropriate promoter followed by DNA to be transcribed (typically a 

reporter gene for tumor detection, or a toxin gene for therapy). 

If the two ZF proteins are bound near one another, the transcriptional activator will 

interact with the promoter, resulting in markedly increased transcription of the attached 

gene.  If the proteins are not attached near one another (Figure 2) there will be some 
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occasional interaction and baseline transcription, but at a far reduced level.  Thus, there 

will be a much larger amount of the desired protein in cells with target mutations.   

The method employs techniques which have previously been demonstrated to work in 

vitro and/or in mammalian cell culture (custom zinc-finger DNA binding proteins and 

artificial transcription factors, regiospecific protein-DNA conjugate synthesis [17-26], 

and elements employed in one- and two-hybrid systems [27-29]), but now combined and 

modified in a way that allows targeting of native, cellular DNA.  This is, to my 

knowledge, the first proposal of fusing reporter or toxin gene DNA (as opposed to single 

proteins) to ZF DNA binding proteins, enabling significant amplification of the gene 

product for the purpose of directly targeting mutations in tumor cells. 

Evaluation of the Hypothesis 

The principle of having a transcriptional activator held near a promoter has been 

successfully demonstrated in one- and two-hybrid systems, in the evaluation of DNA 

binding proteins and protein-protein interactions (Figure 3).  Such systems are not useful 

for detecting cellular DNA, however, because in cells there will not generally be an 

appropriate promoter and reporter or toxin gene immediately adjacent to the site of 

mutation.  Therefore one- and two-hybrid systems introduce a reporter plasmid with a 

DNA protein binding site adjacent to the necessary promoter and reporter gene.  

Adapting this approach to detect cellular DNA requires a method of bringing the 

necessary foreign DNA (promoter plus reporter or toxin gene) to the vicinity of the 

mutation so that the bound transcriptional activator can interact with it. 
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While the foreign DNA may be attached to the ZF protein in numerous ways, ideally it 

will be done in a regiospecific manner.  Non-specific attachment of the DNA (for 

example to lysine residues in the ZF protein) may interfere with ZF binding and thus 

reduce the sensitivity of the system.  Various techniques have been described for 

regiospecific protein-DNA binding.  The method based on “expressed protein ligation” 

[23-27] has the advantages of being regiospecific, well-tested, and simple.  Also, it does 

not introduce large intermediate proteins which could cause problems with steric 

hindrance.   

In order to maximize the interaction of the transcriptional activator with the promoter, 

appropriate linkers connecting the ZF proteins to their conjugates must be included.  This 

is an area with much potential room for optimization, and may differ based on the 

separation of the two DNA binding sites.  However, in general flexible linkers consisting 

of serine, glycine, and threonine have been shown to work well and are an appropriate 

starting point for investigation [30,31]. 

For use in eukaryotic cells, a nuclear localization signal [32] may be included in the 

proteins, as has been previously employed with other ZF fusion proteins [15].  In order to 

protect the free end of the linear DNA from exonuclease degradation, it may be helpful to 

form a covalently closed end using oligonucleotides (“dumbbell DNA”) [33], or to 

otherwise modify the free end by attachment to a peptide or modification of the 

nucleotides at this end.  Additional DNA elements, such as polyadenylation signals, will 

also likely be helpful in eukaryotic cells. 
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Functioning of the system will require delivery of the two constituent molecules to all or most 

tumor cells.  However, a tumor-specific delivery system is not required as the system is designed to 

only have an appreciable impact on tumor cells.  It is expected that the molecules will be 

constructed ex vivo and delivered as protein (and protein-DNA conjugate) therapeutic agents.  

There is much active research into the in vivo delivery of such agents, including cell-penetrating 

peptides, liposomes, and viral vectors [34-36].  Whether or not these or other delivery mechanisms 

will function with this system is perhaps the largest question regarding in vivo implementation.  

However, given the general interest in delivery of protein therapeutic agents, there is likely to be 

significant progress in this area and testing of this approach in cell culture need not wait for the in 

vivo delivery issue to be resolved. 

Other issues that may affect protein therapeutic agents generally, such as immunogenicity and 

toxicity, will also need to be addressed.  

The genetic instability of tumors must also be considered.  Research has shown that tumor cells 

may contain 10,000 to 100,000 mutations, although there is significant variation in genetic 

instability in different tumors [37].  While this may appear to pose difficulty for an approach 

targeting specific mutations, it is unlikely to cause significant problems in practice.  The large 

number of mutations (many of which appear very early in tumor development) create a wealth of 

potential targets.  While there are many mutations, the target sites for this approach are expected to 

be approximately 12 base pairs long (expected to be sufficient to specify a unique site in the 

genome), and sequencing of short segments of DNA in individual tumor cells from the same 

individual suggests that it is uncommon for such a short segment of DNA to be a site of repeated 

mutations [38].  Thus, while it will likely be necessary to target multiple mutations (particularly in 
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tumors with a high degree of genetic instability), the number of required sites is not likely to be 

large.  More research on the degree of genetic instability in tumors will help to clarify this point. 

Discussion 

The mutations which are the root of malignancy are an interesting but difficult potential therapeutic 

target.  The fact that there may be only a single copy of a mutation per cell poses significant 

challenges in terms of producing a useful signal or effect.  In this article I have proposed a method 

which has the potential to target individual mutations, either for detection or therapy (or both—for 

example, HSV-tk in conjunction with radiolabeled ganciclovir or penciclovir analogs can function 

as both reporter and toxin [39]).  It incorporates several methods which have previously been 

successfully implemented in mammalian cell culture, so that it is reasonable to expect that this 

combination will also work in culture.  Use of the system in vivo poses further challenges, however. 

In addition to therapy, the method is easily adapted to tumor detection as well, simply by employing 

a reporter gene (e.g. green fluorescent protein, HSV-tk, luciferase [40]) rather than a toxin gene.  

Also, it may be of interest to determine the prevalence or distribution of mutations (or other specific 

DNA sequences) in non-malignant cells.  This may also be accomplished with this method. 

Furthermore, any DNA difference between two cell populations may be exploited.  Thus, in 

addition to malignancy the method has potential in treatment of infections in which foreign DNA is 

present within cells.  Retroviral infections, such as HIV, in which the viral genome is integrated into 

the cellular genome, are obvious candidates. 
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In summary, I have proposed a technique for directly targeting mutations as a method of 

detecting or treating malignancy.  Experiments to test this hypothesis are currently under 

way.  
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FIGURE LEGENDS 

 

Figure 1:  THE METHOD IN TARGET CELLS.  Two zinc-finger proteins (ZF1, ZF2) 

are bound to the cellular DNA at nearby locations.  As a result, the transcriptional 

activator (e.g. VP16) is held in proximity to an appropriate promoter on foreign DNA 

which is attached to ZF2.  Following the promoter, there is a reporter or toxin gene.  

Interaction of VP16 and the promoter leads to transcription of the gene and production of 

the resulting protein. 

 

Figure 2:  THE METHOD IN NON-TARGET CELLS.  In this case the target sequences 

for the zinc-finger proteins (ZF1, ZF2) are not present, so ZF1 and ZF2 are not generally 

bound near one another.  As a result VP16 is not held in proximity to the promoter on the 

DNA attached to ZF2, and there will be less transcription and resulting protein than in 

target cells. 

 

Figure 3:  ONE-HYBRID SYSTEM.  In a one-hybrid system a reporter plasmid is 

introduced into cells, along with a separate plasmid which codes for a fusion protein 

consisting of a DNA binding protein linked to a transcriptional activator.  The reporter 

plasmid contains a potential site for binding of the DNA binding protein, and downstream 

of this is an appropriate promoter and reporter gene.  If the DNA binding protein binds to 

the site on the reporter plasmid, transcription is activated and reporter gene product is 
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increased over cases where the DNA binding protein does not bind to the reporter 

plasmid. 
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