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Bayesian estimation for quantum sensing in the absence of single-shot detection
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Quantum information protocols, such as quantum error correction and quantum phase estimation, have been
widely used to enhance the performance of quantum sensors. While these protocols have relied on single-shot
detection, in most practical applications only an averaged readout is available, as in the case of room-temperature
sensing with the electron spin associated with a nitrogen-vacancy center in diamond. Here, we theoretically
investigate the application of the quantum phase estimation algorithm for high dynamic-range magnetometry,
when single-shot readout is not available. We show that, even in this case, Bayesian estimation provides a natural
way to efficiently use the available information. We apply Bayesian analysis to achieve an optimized sensing
protocol for estimating a time-independent magnetic field with a single electron spin associated to a nitrogen-
vacancy center at room temperature and show that this protocol improves the sensitivity over previous protocols
by more than a factor of 3. Moreover, we show that an extra enhancement can be achieved by considering the
timing information in the detector clicks.
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I. INTRODUCTION

Sensors based on individual quantum systems combine
high sensitivity and spatial resolution in measuring physi-
cal quantities [1]. Quantum information protocols, such as
quantum error correction [2], can be used to enhance their
performance and their resilience against imperfections and
environmental noise. The quantum phase estimation protocol,
in particular, has proven helpful for sensing over a large
dynamic range [3–9]. The performance of this protocol can
additionally be enhanced by real-time adaptation of measure-
ment settings based on earlier outcomes in the measurement
sequence [3,8,9].

Quantum protocols have relied on single-shot measure-
ments, which deliver detection limited only by quantum
projection noise. Unfortunately, single-shot detection is not
always experimentally available. In most practical situations,
the classical noise is much larger than the quantum projection
noise and one has to rely on the average signal from a large en-
semble of experiments (“averaged” detection) [1]. Typically,
in such cases the measurement results are converted into a
binary outcome by using a threshold [6,10,11]. However, it is
shown that by avoiding thresholding and processing the data
in a better way an enhancement can be achieved, for instance,
in state detection [12]. In this work, we propose a Bayesian
approach to enhance the quantum phase estimation protocols
in the regime of averaged detection.

For noisy systems, various adaptive Bayesian phase es-
timation protocols have recently been proposed and exper-
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imentally implemented [13–17]. Here, we propose to use
the standard generalized quantum phase estimation algorithm
[18] and show that, even for the case of averaged detection,
Bayes’ theorem can efficiently include all information avail-
able from each measurement. An improvement in the amount
of information taken into account for each measurement leads
to a decrease in the number of measurements required to
achieve a given estimation precision, increasing the sensitivity
of the procedure. This is a very general approach, applicable
to different qubit systems, such as nitrogen-vacancy (NV)
color centers in diamond or superconducting transmon qubits
[11].

In the following discussion, we focus on the sensors based
on the NV center electron spin and show that the proposed
protocol results in a factor of > 3 enhancement in sensitivity
compared to the protocol used in the previous work [6].

II. MAGNETOMETRY WITH AN NV CENTER

The NV center is composed of a substitutional nitrogen
atom next to a vacancy in a diamond lattice. The electron spin
associated with the NV center features a long coherence time
and it can be initialized and read out via optical excitation and
detection due to spin-dependent photoluminescence, even at
room temperature. The NV center electron spin can be used to
detect a variety of physical parameters such as magnetic field
[3,19], electric field [20], temperature [21], and strain [22].

The NV center electron spin can measure an external
time-independent (dc) magnetic field B applied along its
quantization axis through a Ramsey experiment, using a
microwave field resonant with its ground-state zero field
splitting D/(2π ) = 2.87 GHz. In this case, the spin, initial-
ized in an equal superposition state (|0〉 + |1〉)/

√
2, evolves
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FIG. 1. A sketch of the estimation protocols. Previous work addressed implementations of the quantum phase estimation algorithm for
magnetometry when single-shot readout is available, i.e., the measurements are close to projective quantum measurements (a). In this case,
the outcome (u = 0, 1) of the qubit readout after each Ramsey experiment is used to update the current probability distribution P( fB) for the
Larmor frequency fB through Bayes’ rule. This scheme allows for real-time choice of the optimal setting for the readout basis, through the
choice of θ , based on the current P( fB). When single-shot readout is not available [case (b)], each individual interrogation of the qubit does not
provide sufficient information to discriminate between the spin states |0〉 and |1〉. However, a Bayesian approach, compatible with real-time
adaptation of the measurement basis is still possible.

as (|0〉 + ei2π fBτ |1〉)/
√

2, where τ is the interaction time.
Here, fB = γ B/(2π ) is the Larmor frequency with γ /(2π ) =
28 MHz/mT being the gyromagnetic ratio of the electron spin.
By measuring in a basis rotated by an angle θ compared to
the initialization basis, the probability of outcome u = 0, 1,
corresponding to the spin states |0〉 and |1〉, given fB is

Pm(u| fB) = 1
2 (1 + (−1)ue−(τ/T ∗

2 )2

cos (2π fBτ − θ )), (1)

assuming perfect initialization/readout. The Gaussian decay
factor e−(τ/T ∗

2 )2
accounts for the magnetic field fluctuations

induced by a nuclear-spin bath, with T ∗
2 being the coherence

time of the electron spin which is of the order of few microsec-
onds [23].

A. Quantum phase estimation algorithm

One goal in magnetometry is to measure the magnetic
field over a large dynamic range, defined as the ratio of
the maximum detectable field to the uncertainty in the field.
This can be achieved, for instance, by using a protocol based
on the quantum phase estimation algorithm [3,4,8,9]. The
quantum phase estimation algorithm relies on a sequence of
K + 1 Ramsey measurements with exponentially decreasing
interaction times 2kτ0, where τ0 is the smallest interaction
time and k = K, K − 1, . . . , 1, 0. The longest interaction time
is limited by the coherence time T ∗

2 .
This protocol can achieve, at best, an uncertainty in the

estimate of the frequency scaling as ∝ 2−K/τ0. This scaling
can only be reached by performing M Ramseys for each
interaction time, where M is generally taken to scale linearly
with k as Mk = G + (K − k)F [18]. Here, G is the number

of repetitions corresponding to the largest interaction time
2Kτ0; as k decreases the number of repetitions increases by F .
The reason behind this choice for the number of repetitions is
that the measurements with shorter sensing times distinguish
frequencies over a wider range, so errors would have a larger
impact on the variance. Therefore, errors need to be more
strongly suppressed with more repetitions.

B. Single-shot readout

Previous work showed that adapting the angle θ in real time
based on earlier outcomes within the measurement sequence,
through a Bayesian estimation procedure, can lead to a reduc-
tion of the number of Ramsey experiments required for the
sequence, providing larger sensing bandwidth [8]. A sketch
of this protocol, which has been experimentally demonstrated
using the electron spin associated with a nitrogen-vacancy
(NV) center in diamond [3], is shown in Fig. 1(a). In that
experiment, single-shot detection of the electron spin was
achieved by resonant optical excitation of atomiclike spin-
selective optical transitions [24]. In this case, with a very high
fidelity, the presence (absence) of a detector click projects the
spin to the state |0〉 (|1〉) [Fig. 1(a)].

However, for the electron spin of the NV center and
other spin-active defects such as the silicon vacancy in dia-
mond [25] or other materials [26,27], single-shot readout is
available either through resonant excitation of spin-selective
optical transitions at cryogenic temperatures or by nuclear-
spin assisted readout at room temperature [28,29]. While
room-temperature operation makes nuclear-assisted readout
appealing for applications, it requires a strong magnetic field
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and it introduces a large overhead time due to multiple readout
repetitions [30].

C. Averaged readout

At room temperature, the standard approach for detecting
electron spin of the spin-active defects is based on detecting
spin-dependent photoluminescence intensity, with a contrast
well below unity. In this case, due to the presence of large
classical noise, the probabilities for a detector click associated
to the two different spin states are quite similar and spin state
discrimination cannot be achieved in a single shot, i.e., with
only one Ramsey measurement [Fig. 1(b)].

For the electron spin of the NV center, the two spin states
(|0〉 and |1〉) exhibit a difference in photoluminescence inten-
sity with a contrast of only roughly 0.3, and, on average, much
less than one photon is produced after each interrogation [31].
Typically, the experiment is repeated multiple times and the
average photoluminescence is considered. A number of ap-
proaches have been proposed to enhance the NV electron-spin
readout at room temperature including repetitive readout [32],
spin to charge conversion [33], analysis of photoluminescence
data [34], and a statistical model for the expected distribution
of measurement data [35].

III. THRESHOLD APPROACH

In previous applications of the quantum phase estimation
algorithm to room-temperature sensing, each of the Ramsey
measurements (which would give a binary outcome if single-
shot detection were available) is replaced by an ensemble of
R Ramsey measurements [6,36]. We call this ensemble of R
measurements a “batch.” The measurement time and the angle
θ are kept constant in each batch. In that approach, the spin
state corresponding to the batch is determined by comparing
the average photoluminescence intensity with a threshold and
retrieving a binary outcome. The threshold is normally chosen
halfway between the mean probability of detecting a photon
if the spin was prepared in the states |0〉 and |1〉.

The probability distribution P( fB) for the estimated quan-
tity fB is then updated in a sequence of n batches of R Ramseys
based on Eq. (1) and Bayes’ theorem as

P( fB|�un) ∝ P( fB|�un−1)Pm(un| fB). (2)

Here, ui = 0, 1, �un = (u1, u2, . . . , un) is the vector represent-
ing the spin states determined after each batch, and Pm(un| fB)
is the probability of detecting the spin state un in the nth batch
given the frequency fB. We adopt the notation �u0 being an
empty vector which represents no measurement being done.
The proportionality factor is just a normalization constant.
We label this methodology the “threshold approach,” while in
other works it has been referred to as “majority voting” [15].

However, the accumulated photoluminescence resulting
from a batch of R Ramseys includes more information than
just a binary outcome. Therefore, the threshold approach may
not be optimal and different methodologies taking into ac-
count all available information may provide an improvement.

IV. BAYESIAN PROTOCOL

In the absence of single-shot detection it is still possible to
update the probability distribution P( fB) after each measure-
ment. We label this approach as single-measurement updating.
In this case, the probability of a detector click given the
frequency fB for a Ramsey experiment can be written as

Pd (1| fB) = Pd (1|m0)Pm(m0| fB) + Pd (1|m1)Pm(m1| fB), (3)

where Pd (1|mi ), with i = 0, 1, is the probability of a detector
click for the spin in the state |0〉 and |1〉, respectively. Substi-
tuting Eq. (1) in Eq. (3) we obtain

Pd (1| fB) = α[1 + V cos (2π fBτ − θ )], (4)

where V is the visibility given by

V = Pd (1|m0) − Pd (1|m1)

Pd (1|m0) + Pd (1|m1)
e−(τ/T ∗

2 )2

, (5)

and α = [Pd (1|m0) + Pd (1|m1)]/2. The probability of detect-
ing no photon is therefore given by

Pd (0| fB) = 1 − Pd (1| fB). (6)

The values of α and V are experimentally determined for the
specific system in use. For the probabilities Pd (1|mi ), with i =
0, 1, we use the mean probabilities of detecting a photon given
the spin state |i〉.

The probability P( fB) is updated based on Bayes’ theorem
as the following:

P( fB| �dn) ∝ P( fB| �dn−1)Pd (dn| fB), (7)

where dn = 1, 0 corresponds to detection or absence of a pho-
ton in the nth measurement, and Pd (dn| fB) is given by Eqs. (4)
and (6). The vector �d represents the measurement results,
i.e., �dn = (d1, d2, . . . , dn), with �d0 being an empty vector
representing no measurement. Assuming no initial knowl-
edge about the applied magnetic field, the initial probability
distribution P( fB| �d0), before any measurement is performed,
is a uniform distribution in the frequency range interval
[−1/(2τ0), 1/(2τ0)].

However, updating the probability after each measurement,
in particular in an adaptive measurement, is time intensive
and results in a significant overhead time. An experimentally
and numerically simpler approach is to batch R measurements
together and use the number of r detected photons from R
measurements. In this batching approach, for a sequence of n
batches with all measurements within each batch having the
same settings, i.e., the same interaction time and the same
angle θ , the probability of fB given the measurement results
�rn = (r1, r2, . . . , rn) is updated by Eq. (7) but replacing d in
the subscript with R and di in the probabilities with ri.

Since the probability of detecting more than one photon
in one Ramsey is negligible, the probability of detecting r
photons in a batch of R Ramseys can be written as a binomial
distribution, i.e.,

PR(r| fB) =
(

R
r

)
[Pd (1| fB)]r[1 − Pd (1| fB)]R−r, (8)
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where
(

R
r

)
is the binomial coefficient and Pd (1| fB) is given in

Eq. (4). In the limit of large r and R, the binomial distribution
can be approximated as a Gaussian distribution for r as

PR(r| fB) ≈ 1√
2πσ

exp

{
− [r − RPd (1| fB)]2

2σ 2

}
, (9)

with variance σ 2 = RPd (1| fB)[1 − Pd (1| fB)]. For R � 1 the
variance may be approximated by replacing Pd (1| fB) with the
mean value r/R, resulting in σ 2 ≈ r(R − r)/R.

Equation (9) is used in conjunction with Eq. (7) (modified
as explained above): after each batch of R Ramseys, the
Bayesian update consists of multiplying the current probabil-
ity density P( fB) by the Gaussian in Eq. (9). Figure 1(b) shows
a sketch of the batching protocol.

V. COMPARISON OF THE TWO APPROACHES

We compare the performances of the Bayesian and “thresh-
old” approaches by numerical simulations. We consider an
NV center with spin coherence time T ∗

2 = 1.3 μs and we
select the shortest interaction time to be τ0 = 12.5 ns. We
take the probabilities of a detector click, for the cases where
the electron spin is initialized in the states |0〉 and |1〉,
as Pd (1|m0) ≈ 0.03 and Pd (1|m1) ≈ 0.02, respectively. For
these probabilities, detections are included only up to a cutoff
time. We chose the cutoff time as 320 ns to maximize the
signal-to-noise ratio (SNR) [37].

The estimate of the frequency, denoted by f̌B, can be
achieved as

f̌B = 1

2πτ0
arg

∫
ei2π fBτ0 P( fB)dfB, (10)

where P( fB) is the probability of fB given the measurement
results obtained from Eq. (7). This estimate is chosen due to
the ease of calculations. This is an estimate normally used
for periodic quantities but frequency is not periodic. There-
fore, it is possible that for frequencies close to one side of
the frequency cut, i.e., ±1/(2τ0) = ±40 MHz (τ0 = 12.5 ns),
we obtain an estimate which is close to the other side of
the frequency cut. To avoid this issue, in our simulations
we have chosen frequencies in a slightly smaller range, i.e.,
[−39, 39] MHz. Although this results in a slight reduction
in dynamic range, in the limit of accurate measurements the
reduction in the dynamic range is very small. We note that this
frequency range corresponds to the range of the magnetic field
≈ [−1.39, 1.39] mT.

The accuracy in the estimates f̌B can be evaluated with the
mean-square error VB defined as

VB = 〈( f̌B − fB)2〉. (11)

Here, fB is the actual frequency and the average is taken over
the estimates of the frequency f̌B. A fair figure of merit which
takes into account all the available resources is known as the
sensitivity η defined as the square root of the product of VB

and the total measurement time, η = (VBTtot )1/2.
In addition to the free evolution time, each Ramsey requires

some additional overhead time for spin initialization and
readout. We take the overhead time for each Ramsey to be
3 μs. Therefore, in the case of repeating each interaction

FIG. 2. Sensitivity η as a function of the total measurement time,
for different protocols, in the case where only “averaged” qubit
readout is available. We consider the qubit dephasing time T ∗

2 =
1.3 μs, and we set K = 6, i.e., the interrogation time is changed
between 26τ0 and τ0, with τ0 = 12.5 ns. Blue lines with � and
� correspond to the threshold protocols for G = F = 9 and G =
15, F = 1, respectively. Orange line with 	 shows the Bayesian
batching protocol with G = 15, F = 1, while green line with ◦ is
the Bayesian protocol with single-measurement updating (SMU) for
R = 700 and F = 1. The data points for the threshold and batching
approaches are obtained by increasing the number of repetitions R of
each batch of Ramsey experiments. The data points of the Bayesian
with single-measurement updating is obtained by keeping R = 700
fixed and changing G.

time R[G + F (K − k)] times, the total overhead time is Toh =
3R(1 + K )(KF + 2G)/2 in μs. The total time required to
complete a full estimation sequence is given as the sum of
the total evolution time and the total overhead time, Ttot =
[2K+1(G + F ) − (K + 2)F − G]τ0R + Toh.

In Fig. 2 we have plotted the sensitivity η as a function
of the total measurement time for the threshold and Bayesian
(batching and single-measurement updating) protocols. For
the threshold protocol, assuming G = 15, F = 1, which we
found to be optimal, the best sensitivity (smallest value of η)
is achieved for R ∼ 2.5 × 103 (Ttot ≈ 1 s). For smaller values
of R the error, and therefore η, is significantly larger which
we have not plotted to have a better scaling in the graph.
The sensitivity initially improves for increasing R, since an
increased number of repetitions enhances the discrimination
of the spin state. However, for R > 2.5 × 103 the reduction
in measurement error given by better spin discrimination
becomes less important than the increase in sensing time given
by the additional repetitions. For comparison we have also
plotted the sensitivity of the threshold protocol for G = F =
9, as in Ref. [6]. For this case the optimal value of R is roughly
3 × 103 (Ttot ≈ 2.35 s).

The sensitivity of the Bayesian protocols appears to be
always better than the one for the threshold protocol and
reaches a saturation for large Ttot. This is consistent with
an improved way to include information from the measure-
ment results, whereas for the threshold protocol no additional
information is used once a number of repetitions sufficient for
discrimination has been reached. The Bayesian protocol uses
the available information in a very efficient way.
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FIG. 3. (a) Optically detected magnetic-resonance experiments provide more information than the number of detected photons. When
considering the arrival times of the detected photons, photon clicks corresponding to arrival times between 100 and 200 ns, for example, are
more likely to be associated with a spin prepared in the state |0〉. The photoluminescence signal is simulated based on a five-level model [37].
The blue line with • (red line with �) corresponds to the spin prepared in |0〉 (|1〉) state. (b) This additional information can also be included
in Bayesian estimation by updating the probability distribution for the magnetic field P( fB) from the distribution of photon arrival times.

The single-measurement updating reaches better sensitiv-
ities (smaller η) in shorter times. However, it is clear that,
for large R, the batching approach is a good approximation
for the single-measurement updating. We note that, for the
single-measurement updating, we found that each measure-
ment setting, i.e., each interaction time and phase θ , should be
repeated R times, with the optimal value found to be R = 700.
The reason is that the mean number of detected photons is
small and as a result the measurements should be repeated to
achieve enough information for each setting. For this case, to
have a range of values of Ttot we have kept R = 700 fixed and
have changed G (with F = 1 also fixed). Note that because
single measurement updating reaches small sensitivities in
shorter times, it can be used to track signals that fluctuate
faster. We also note that, for all the protocols in our simulation,
the readout angle θ is predetermined and changed in steps of
π/Mk after R Ramsey measurements.

The Bayesian batching (single-measurement updating)
protocol achieves the sensitivity η = 1.62(1.54) μT Hz−1/2,
which is a factor of ∼1.47(1.54) enhancement over the best
threshold protocol that we were able to find, for which G =
15, F = 1, R = 2.5 × 103 (Ttot ≈ 1 s). The Bayesian proto-
col provides an even better enhancement factor of ∼3.6(3.7)
as compared to the threshold protocol of Ref. [6], for which
G = 9, F = 9, and R = 5 × 104 (Ttot = 39.2 s).

The enhancement achieved depends on the photon collec-
tion efficiency and the contrast of the photoluminescence data,
i.e., the probabilities Pd (1|m0) and Pd (1|m1). A lower contrast
in the photoluminescence could be a result of lower initial spin
polarization or imperfect population transfer between the spin
states. For lower contrast or photon collection efficiency the
Bayesian protocol results in a lower enhancement over the
threshold protocol.

VI. INCLUDING THE TIMING INFORMATION OF THE
DETECTOR CLICKS

Optically detected magnetic-resonance experiments with
NV centers provide more information than just the number
r of photons detected in a batch of R Ramsey experiments.
The arrival time of photons carries information about the spin
state. The spin-dependence of photoluminescence intensity is

a result of spin-dependent intersystem crossing to metastable
singlet states. In other words, since the | ± 1〉 excited states
couple more strongly to the long-lived singlet states than the
|0〉 state, the | ± 1〉 state exhibits reduced photoluminescence
compared to the |0〉 state during the first few hundred nanosec-
onds after optical excitation [37].

This is evidenced in Fig. 3(a), which shows the photolumi-
nescence signal, when either |0〉 or |1〉 states are prepared,
as a function of time after optical excitation. For the case
plotted, the spin difference in the photoluminescence signal
is significant up to ∼700 ns. For example, a photon arriving at
60 ns is more likely to correspond to the spin being in the |0〉
state. No such information is available on longer time scales:
a photon is equally likely to be detected at 1 μs for the spin in
the states |0〉 or |1〉.

We will now discuss how this additional information con-
tained in the arrival time of the photons can be included by
Bayesian estimation, and quantify the advantage in terms of
sensitivity. The probability to detect a photon at time ti given
fB, P(i)

d (1| fB), can be written in terms of the probability of de-
tecting a photon at time ti given the spin state |m〉, P(i)

d (1|m),
and the probability of the spin state |m〉 given fB, Pm(m| fB),
as the following:

P(i)
d (1| fB) = P(i)

d (1|m0)Pm(m0| fB) + P(i)
d (1|m1)Pm(m1| fB).

(12)

In the Bayesian protocol, we considered the mean number
of photons detected up to only topt = 320 ns. This is the time
interval which maximizes the SNR. However, the differential
photoluminescence goes beyond this optimal time. For the
example shown in Fig. 3(a) the difference is significant up
to ∼700 ns. Considering the arrival time of photons, it is
advantageous to take into account the photoluminescence data
beyond 320 ns and up to time 700 ns. We discretize the time
interval [0, 700] ns to time bins. To simplify the numerical
calculations we have only considered four time bins [37].
For the time bin 	ti, P(i)

d (1|m) is the mean probability of
detecting a photon given the spin state |m〉, obtained from the
photoluminescence simulations shown in Fig. 3(a).

To take into account the timing information, in the single-
measurement updating case, if a photon is detected in the
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FIG. 4. Sensitivity η vs total measurement time. The orange
lines with � and 	 show the batching approach with and without
taking the arrival time information (t-info) of photons into account,
respectively. For these lines we have set K = 6 and G = 15, F = 1
while varying R, the number of repetitions. The green lines with •
and ◦ show the single-measurement updating (SMU) approach with
and without the arrival time information, respectively. In this case
R = 700 and F = 1 are kept fixed and G is varied.

time bin 	ti we update the probability distribution P( fB) with
Eq. (4), replacing Pd (1|mi) with P(i)

d (1|mi ). If no photon is
detected, we update the probability P( fB) with Eq. (6), taking
into account that the probabilities Pd (1|m0) and Pd (1|m1) are
the sum of the probabilities of all the time bins.

In the batching approach, for a batch of R Ramseys with
the same measurement settings, the probability of detecting
r1 photons in the time bin 	t1, r2 photons in the time bin
	t2, . . ., and r4 photons in the time bin 	t4 is a multinomial
distribution which can be approximated as a multivariate
Gaussian distribution, i.e.,

PR(�r| fB) ≈
4∏

i=1

1√
2πσi

exp

[
−

(
ri − RP(i)

d (1| fB)
)2

2σ 2
i

]
. (13)

Here, �r is the vector of detected photons in the time bins,
�r = (r1, r2, r3, r4), P(i)

d (1| fB) is given by Eq. (4), replacing
Pd (1|mi ) with P(i)

d (1|mi ). Using the same approximation as in
Eq. (9) for the variance we have σ 2

i ≈ ri(R − ri )/R.
In Fig. 4 we have compared the Bayesian protocols with

and without considering the arrival time information of pho-
tons. This figure shows that including the timing information
in the batching approach only results in a slight enhancement
for large values of R, corresponding to large Ttot. The reason
is for small values of R (R < 104) the number of detected
photons in some of the time bins is small and therefore the
Gaussian is not a good approximation. On the other hand,
including the timing information in the single-measurement
updating case results in an enhancement even for small
Ttot. In this case the enhancement achieved is up to ∼10%
over the corresponding Bayesian protocol without the timing
information.

While all the simulations above consider a nonadaptive
protocol, where the controlled phase is deterministically up-
dated at each step according to a predetermined rule, recent
work has shown that real-time adjustment of the controlled

phase based on previous measurement outcomes can provide
advantages in terms of measurement bandwidth. We note that
our Bayesian approach is compatible with real-time adapta-
tion of the controlled phase. However, for simplicity we have
only presented the nonadaptive results.

VII. CONCLUSIONS

We analyzed how the quantum phase estimation algorithm
can be used efficiently for high dynamic range sensing with
a single qubit, in the case where single-shot readout is not
available, for example in room-temperature magnetometry
with the electron spin of an NV center in diamond. Our results
show that using Bayesian estimation to update the probability
after every single measurement results in enhancement of the
sensitivity over the threshold protocol. We also showed that
batching the measurements together and using the number
of detected photons in the Bayesian updating is a good
approximation of updating the probability after every single
measurement. The batching approach is easier to implement
experimentally.

An important figure of merit is the ratio between the
range of the magnetic field and the sensitivity. Our proposed
Bayesian protocol achieves Bmax/η ≈ 859(902) Hz1/2, for
batching (single-measurement updating), which is a factor of
∼3.6(3.7) enhancement over the threshold protocol used in
previous work. Moreover, we showed that using additional
information on the arrival time of the detected photons can
further enhance the sensitivity up to ∼10%.

The Bayesian protocol proposed here could also be useful
in sensing applications with other qubit systems, such as
superconducting transmon qubit [11], in cases where only an
averaged readout is available. Moreover, our findings could be
extended beyond dc magnetometry to the characterization of
the qubit environment through dynamical decoupling [38–40].
Moreover, as the single shot readout of the nuclear-spin
state at room temperature is also achieved through repetitive
readout of the electron spin and comparing with a threshold
[10,41] this protocol may also be useful in enhancing the
readout of the nuclear spin.
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