View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Heriot Watt Pure

MaxPair: Enhance OpenCL Concurrent Kernel Execution by
Weighted Maximum Matching

Yuan Wen
School of Computer Science and Statistics
Trinity College Dublin
Dublin, Ireland
weny@tcd.ie

Abstract

Executing multiple OpenCL kernels on the same GPU concurrently
is a promising method for improving hardware utilisation and
system performance. Schemes of scheduling impact the resulting
performance significantly by selecting different kernels to run to-
gether on the same GPU. Existing approaches use either execution
time or relative speedup of kernels as a guide to group and map
them to the device. However, these simple methods work on the
cost of providing suboptimal performance.

In this paper, we propose a graph-based algorithm to schedule
co-run kernel in pairs to optimise the system performance. Target
workloads are represented by a graph, in which vertices stand
for distinct kernels while edges between two vertices represent
the corresponding two kernels co-execution can deliver a better
performance than run them one after another. Edges are weighted
to provide information of performance gain from co-execution. Our
algorithm works in the way of finding out the maximum weighted
matching of the graph. By maximising the accumulated weights,
our algorithm improves performance significantly comparing to
other approaches.

CCS Concepts + Software and its engineering — Software
performance; Compilers; « Theory of computation — Sched-
uling algorithms;

Keywords Concurrent Kernels, Scheduling, GPGPU

ACM Reference Format:

Yuan Wen, Michael F.P. O'Boyle, and Christian Fensch. 2018. MaxPair:
Enhance OpenCL Concurrent Kernel Execution by Weighted Maximum
Matching. In GPGPU-11: General Purpose GPUs, February 24-28, 2018, Vienna,
Austria. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3180270.
3180272

1 Introduction

Modern Graphics Processing Units (GPUs) are widely used in most
of the mainstream systems because of their high performance and
low energy consumption. The increasing computing demands re-
quire that the GPU moves from an exclusive accelerator serving one
task at a time to a device that can be shared by multiple applications.
With mainstream GPU vendors keep upgrading the fabrication pro-
cess, more hardware resources such as physical cores, registers,
bandwidth, shared memory, and so on, have been integrated into
the same GPU device. Using these resources properly is not only

GPGPU-11, February 24-28, 2018, Vienna, Austria

© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in GPGPU-11: General
Purpose GPUs, February 24-28, 2018, Vienna, Austria, https://doi.org/10.1145/3180270.
3180272.

Michael F.P. O’Boyle
School of Informatics
University of Edinburgh
Edinburgh, United Kingdom
mob@inf.ed.ac.uk

Christian Fensch
MACS - Computer Science
Heriot-Watt University
Edinburgh, United Kingdom
c.fensch@hw.ac.uk

desirable but also necessary, as utilisation in many cases is critical
to performance.

Improving GPU utilisation has been concerned by both industry
and academia. As pointed out by state-of-the-art research, pro-
grams usually exhaust one kind of resource while leaving others
underutilised [1, 20]. Since the intrinsic unbalanced requirement by
programs causes wastage within the device, the solution of upgrad-
ing resource usage is to increase the diversity and make programs
share the same GPU properly.

Concurrent execution of multiple tasks on the same GPU is the
most widely accepted method to improve performance and device
utilisation. Such approach in many territories is also referred as
concurrent kernels because the program running on GPU is a kernel,
in both Nvidia and OpenCL terminology. Boosted performance
has been reported by running kernels concurrently in many prior
works [13, 20, 27]. However, to the best of our knowledge, all of
those works either naively mix compute and memory intensive
workload together or use greedy algorithms which are in favor of
co-run kernels that have the most promising performance and then
launch them to the same GPU at the same time.

Schedulers using greedy algorithms are easy to write and simple
to explain. Instead of examining all possibilities to acquire the best,
greedy algorithms frequently assume that maximizing every step’s
profit is the best approximation for solving problems, particularly
for those with high complexities. Though every step leads to an op-
timum solution, the overall outcome delivered by a greedy method
is usually not the best. State-of-the-art schedulers are designed
greedily due to simplicity.

In most cases, the guide for scheduling decisions is relative
speedup (RS). Here, the relative speedup stands for the quotient
of the aggregate time of programs sequential execution divided by
the execution time if running them all together at the same time
instead. The RS is either calculated from execution time provided
by programmers or directly estimated from target workloads stati-
cally. Though RS-based greedy scheduling works well in practice,
it experiences the same limitation all greedy algorithm has, which
is not able to find the globally optimal solution because it does not
consider all options.

In this paper, we propose a graph-based scheduling method to
maximize system throughput via launching concurrent tasks to
the same GPU. As the percentage of performance improvement
decreases with the number of concurrent works, in this paper, we
focus on selecting and allocating workload in pairs [19]. We first
model the problem by using a graph, in which the nodes represent
individual tasks and the edges link nodes for which co-execution
of the corresponding tasks can result in enhanced performance
from space sharing the same GPU. The weights on edges indicate

https://core.ac.uk/display/287546695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3180270.3180272
https://doi.org/10.1145/3180270.3180272
https://doi.org/10.1145/3180270.3180272
https://doi.org/10.1145/3180270.3180272

GPGPU-11, February 24-28, 2018, Vienna, Austria

the gain we can expect. Then, we schedule tasks in pairs from the
generated weighted graph by a max matching algorithm.
We make the following contributions in this paper:

o We identify the inhibitors of GPGPU concurrent task execu-
tion comes from the greedy scheduling algorithm. Failing
at considering other options makes such methods subopti-
mal. To overcome this shortage, we propose a graph-based
scheduling solution.

We model the concurrent execution problem as a graph. Once
relationships among distinct tasks are described in the graph,
various optimization can take place, such as max matching
which is used in graph theory to find an independent edge
set without repeated vertices.

We propose weighted max matching algorithm to optimise
system throughput. Different types of weights have been ex-
amined in this paper towards improving performance from
separate aspects. For instance, we can maximize the number
of concurrent pairs, accumulate RS, or aggregate execution
time. As shown by our experiment, using execution time as
a guide to weight edges constantly provides a better perfor-
mance over the others.

Our graph-based scheduling method constantly outperforms
the state of the art once given detailed knowledge about the
workloads.

2 Background

In General Purpose computing on GPU (GPGPU), graphics cards
are usually connected to the central processing unit (CPU) via
PCle (Peripheral Component Interconnect Express). To perform
computation, GPUs usually work as accelerators who receive tasks
from the CPU and send back the results after calculation. As the host
device, the CPU manages the whole process, including initializing
the GPU, allocating data and functionalities to the GPU, activating
the computation, and acquiring the results back. The GPU, on the
other side, works as a slave device which performs the execution
on data in parallel. Modern GPGPU programming models, such as
CUDA and OpenCL, are designed to structure application upon this
architectural prototype.

2.1 GPU Programming Model

Modern GPU programming standards, such as CUDA and OpenCL,
view a computing system as a platform consisting the CPU and a
number of GPUs. The software programmed following such stan-
dards constitute of two parts accordingly, which are the host code
and the kernel.

Kernel The function that is executed on the GPU is called a kernel
in both CUDA and OpenCL terminology and written in a C-like
language. In practice, there are usually hundreds or thousands of
independent threads performing the same kernel function, but on
different data, namely, the kernel part works in the way of single
data multiple threads (SIMT). Limited by the number of computing
units on GPU, threads are grouped into sets, with each has a fixed
number of threads. These sets are called workgroups in OpenCL (or
blocks CUDA terminology). The GPU hardware scheduler allocates
workgroups to available compute units to perform the computation
and piles the others up behind. Threads within the same workgroup
are scheduled to separate processing element and run in parallel.

Yuan Wen, Michael F.P. O’Boyle, and Christian Fensch

Table 1. Execution time of each individual kernel

Kernel Full Name Time Benchmark
corr correlation_std_kernel 1.61ms Pollybench
atax atax_kernel2 2.54ms Pollybench
fdtd fdtd2d_kernel1 0.84ms Pollybench
mriQ mriQ_ComputeQ GPU 3.23ms Parboil
mm3 mm3_kernel3 2.1ms Pollybench

Table 2. Speedup or slowdown of concurrent execution.

corr atax fdtd mriQ mm3

corr — 1.59x 0.37x 1.32x 0.61x
atax — 1.19x 1.70x 1.60x
fdtd — 0.58x 0.20x
mriQ —— 0.65x
mm3 —

Host Code The host code (HC) runs on the CPU to organise the
software workflow. It consists of a series calls to the application
programming interfaces (APIs) to manage devices and data. Clas-
sicly, the host code first checks and initializes the device. Then, it
loads and compiles the kernel. Before a kernel can be launched, the
programmer has to create input/output buffers which are used to
store input data and the computation results. After buffers initiali-
sation and data movement, the HC sets the arguments of the kernel
function and launches it to the GPU. Once the GPU has finished
kernel execution, the corresponding API in the HC will be informed
to retrieve the results back and then carry on with the rest of the
functions until the program reaches the end.

2.2 GPU Sharing

The SIMT model intrinsically requires the kernel to have a simple
control flow. Divergence within the kernel can drastically decrease
threads parallelism, which in turn degrades the overall performance.
Though simple functionality is good for parallelism, it comes at the
cost of lower resource utilisation. The maximum number of threads
that can be accommodated by a GPU is determined by various
hardware resource limitations, such as register file size, amount
of shared/local memory, and the upper bound of workgroups and
threads. In most cases, a given kernel exhausts only one kind of
above resources and leaves the others underutilized. By squeezing
multiple kernels onto the same GPU, programmers have a chance to
balance the device requirements once separate kernels are bounded
by different resources, thereby, improve the overall throughput.

3 Motivation

Concurrent kernel execution is an effective method to improve
hardware utilization. However, to the best of our acknowledge,
all prior works choose the use of a greedy algorithm to select
and launch candidate kernels. This can easily result in suboptimal
system performance.

We have selected five kernels from two different benchmark
suites (PolyBench and Parboil) to illustrate why greedy algorithms
are limited in their performance. Table 1 lists the kernels we used
in this section, along with their sequential execution time.

In this work, we focus on two kernels concurrent execution,
because the performance improvement decreases with the number

MaxPair

Table 3. Execution time of co-execution

corr atax fdtd mriQ mm3

corr —— 2.6ms 6.55ms 3.69ms 8.71ms
atax —— 2.82ms 3.4ms 2.89ms
fdtd —— 6.97ms 14.85ms
mriQ — 8.22ms
mm3 —

of co-run kernels. Table 2 and 3 show the relative speedup and the
execution time of two kernels co-execution, respectively. Table 2
shows that some kernel pairs, such as atax+fdtd and mriQ+corr,
experience an enhanced performance, but others, such as fdtd+mm3
and fdtd+corr, suffer a slowdown.

Figure 1 shows the result of total execution time for all five
kernels using different scheduling strategies.

In sequential scheduling, all five tasks are enqueued back to
back. As the GPU is exclusively occupied by each kernel, unused
resources cannot be utilized by another kernel. As a consequence,
this strategy provides the poorest performance.

The performance of two state of the art greedy approaches is
visualised by the second and third bar. Speedup Greedy (SG) picks
the task pair that offers the highest speedup from the set of pending
tasks (Table 2), while Time Greedy (TG) selects the pair that offers
the highest improved execution time (Table 3). Once the greedy
scheduler has exhausted the pool of task pairs, it executes the
remaining tasks using sequential scheduling.

Finally, we performed an exhaustive search to find the best sched-
ule. It performs 7% better than the SG and TG counterparts. Please
note, although SG and TG perform identically in this example, in
practice their performance differs frequently.

In order to understand why the SG and TG approach are sub-
optimal, we create a task co-execution graph shown in Figure 2.
It presents the relationship of concurrent kernels. Each node rep-
resents an individual kernel. An edge indicates that the co-execution

of these two nodes can experience performance gain via co-execution.

Each edge is also labelled with the relative speedup of co-execution.

For SG-based scheduling, the algorithm selects atax-mriQ first,
as it supplies the the highest speedup (1.70). After atax and mriQ
are removed from the task set, the remaining tasks (corr, fdtd, and
mm3) have to be executed sequentially, as there are no edges between
them. The TG greedy algorithm selects the pair that shortens the
execution time the most. In our example, it makes the same decision
as SG because the co-run of atax-mriQ provides the largest reduc-
tion. As a consequence, the remaining kernels have to executed
sequentially.

In our example, the best scheduling sequence is {atax-mm3, corr-
mriQ, fdtf}. Rather than selecting the pair with the highest speedup
or execution time improvement, this schedule selects the second
best choice in order to acquire a second pair and overall improves
performance. In this paper, we propose a graph-based algorithm to
provide enhanced performance over greedy-based methods.

4 Concurrent Kernels

There are multiple ways to construct concurrent kernels. Each
method has its pros and cons. Assigning kernels to separate com-
mand queues indicates the absense of dependencies between them

GPGPU-11, February 24-28, 2018, Vienna, Austria

7-
6-
5-

Sequential Speedup Greedy Time Greedy Best

Exec. time (ms)
©

Figure 1. Execution time to run the five kernels from Table 1 using
different scheduling strategies.

Figure 2. The task co-execution graph G = (V, E, w) describes the
benefits we can expect from co-execution. A node V represents a
kernel; an edge E links two nodes if their co-execution performs
better than sequential run; the weight w of each edge quatifies the
benefit.

enabling the potential for concurrent execution. The alternative is
to merge the kernels before sending them to a command queue.

Using separate queues Figure 3a shows the most basic model of
concurrent kernels. In this model, kernels are executed from differ-
ent queues. For most of the time, the GPU is used exclusively by a
given kernel. Resources are only shared between two kernels, once
a kernels lacks enough active threads to fully utilize the processing
elements of a GPU. At this point, some thread workgroups from the
next kernel can co-run with the current one in order to fully utilise
all processing elements of the GPU. This back-to-back sharing is
easy to implement but provide limited benefits.

Figure 3b presents an improvement over Figure 3a. Instead of
issuing all workgroups of one kernel altogether, workgroups are
launched alternatively from two kernels via separate queues within
a loop. By changing the number of workgroups started from each
kernel, the kernel mixing ratio can be adjusted. This model is also
easy to implement. However, its functionality depends on the be-
haviour of the driver and hardware scheduler. At the moment, there
are no guarantees from either the driver or the hardware scheduler
that threads from different kernels will be executed concurrently
with an optimal mixing ratio to maximize utilization.

Merging kernels Figure 4 presents three approaches of kernel
merging. Kernel merging is an ahead of runtime method that con-
structs a super kernel from two candidate kernels. Kernel merging
is also referred to as kernel-fusion.

The merging can happen intra-thread, intra-thread workgroup,
or inter-thread workgroup [24]. Intra-thread merging shows in
Figure 4a. The super kernel contains two code from two candidates,
with one glued behind the other. Intra-workgroup merging (see

GPGPU-11, February 24-28, 2018, Vienna, Austria

Time

kernel 1
""" kernel 2 || kernel 2 kernel 1 || kernel 1 fpx==+
kernel 2

(a) Back-to-back execution: concurrent execution only happens at the tran-
sition between two kernel’s execution.
Time

kernel 1 || kernel 1 || kernel 1 || kernel 1 || kernel 1

kernel 2 [| kernel 2 || kernel 2 || kernel 2 || kernel 2

(b) Scheduler alternates thread fetching from different kernels.

Figure 3. Examples of concurrent kernel execution using seperate
queues.

I

bEE

{ {

{ if(threadld<X) if(workgroupld<X)
Kernell(); Kernell(); Kernell();
Kernel2(); else else

} Kernel2(); Kernel2();

} }

(a) Intra-thread (b) Intra-workgroup (c) Inter-workgroup

Figure 4. Examples of kernel merging strategies [24].

Figure 4b) uses the thread index within a workgroup to decide which
code is executed. Therefore, each workgroup contains a proportion
of threads that belong to one kernel, and the rest belongs the other.
A potetial drawback of this method is that it guarantees thread
divergence. Finally, inter-workgroup merging (see Figure 4c), uses
the workgroup index to select which kernel to run.

In this paper, we use the inter-workgroup method to construct
concurrent kernels as it outperforms the others. However, the sched-
uling method proposed in this paper can be used with all above
concurrent kernel implementations.

5 MaxPair Scheme

We use a graph-based algorithm to optimize the scheduling of
concurrent kernels. As introduced in Section3, co-execution of
kernels can be described by a graph, in which nodes represent tasks
while edges represent the co-run of two tasks.

5.1 Matching in a graph

In graph theory, a matching is a set of edges in which none of the
edges share a common node. The output of a matching algorithm is
of a set of edges and a set of individual nodes which are not linked
by an edge. By substituting the nodes with kernels, the result of the
matching is a schedule, in which task are either dispatched pairs or
seperately.

For any given graph, multiple matchings exists all representing
possible schedules. However, we are looking for the best matching

Yuan Wen, Michael F.P. O’Boyle, and Christian Fensch

Figure 5. We simplify the graph by removing edges representing
non beneficial co-execution.

representing the best schedule. Now the matching problem has
become a maximization problem characterized by weights that
we assign the edges. These weights can be selected in ways to
represent different aspects of co-execution and are explained in
the following sections. In an initial optimization, we remove edges
with negative weights as those represent a performance degredation
from co-execution. This process is illustrated in Figure 5, reducing
the number of edges to consider by 40%.

5.2 Weights

Different aspects of co-execution are represented by different weights.
We aim to create a set of edges that maximizes the total weight. In
our work, we considered three weights: unified weight, speedup
weight, and time weight.

Unified weight assigns an identical weight to all edges. The
matching represents a schedule that contains the most kernel pairs
with beneficial execution behaviour.

Speedup weight assigns the speed up to each edge expressed
as percentage improvement. Expressing the speedup as a factor
could result in a situation where multiple mediocre speedup pairs
(e.g. 1.01x + 1.01x) are choosen over a strong pair (e.g. 1.50x). By
using percentages, we avoid this problem (e.g. 1% + 1% <50%). This
strategy delivers the maximum overall speed up.

Time weight assigns the time saved by concurrent execution
over executing the tasks sequentially. This strategy delivers the
maximum overall time saved.

5.3 Why Schedule Task in Pairs

In order for tasks to benefit from co-execution they need to be
connected by an edge in the co-execution graph. To execute more
than two tasks concurrently, the nodes of these tasks need to form
fully connected sub graphs. For example, to concurrenly execute
three tasks we are looking for triangles in the graph.

Figure 6 shows two examples of other co-execution graphs that
we obtained as part of our experiments (for simplicity we do not
label the nodes and edges). We notice that the occurance of triangles
is rather limited. Only the 12-node graph contains two triangles T1
and T2. However as they share an edge, only one of these triangles
could be part of a schedule. Due to this lack of of fully connected
subgraphs, we decided to limit our technique to scheduling tasks
in pairs or individually.

5.4 Algorithm

The graph matching problem has been studied for decades. In our
work, we use maximum weight matching to schedule pairwise

MaxPair

(a) 8 nodes.

(b) 12 nodes.

Figure 6. Examples of larger co-execution graphs. Only the 12
nodes graph has groups of 3 kernels that could be executed concur-
rently.

concurrent kernels. Due to space constraints, we only present a
concise description here.

The input of the maximum matching algorithm is an undirected
graph, G = (V, E, w), with |V| = nand |E| = m. The nodes represent
tasks, and each edge represents a beneficial co-execution of two
tasks. The weights w quantify the gain. First, we introduce how
Maximum Cardinality Matching works in general graphs, then we
present the modifications for Maximum Weighted Matching.

The maximum cardinality matching algorithm finds a matching
with larges number of edges. For any given graph, a node can either
be single or matched. In Figure 7, the single and matched nodes are
highlight by different colors. Matched nodes are colored in orange
while the single nodes are colored in grey. An edge between two
matched nodes is called matched edge while all the other edges
are called unmatched edges. In the example, we have two matched
edges (1-2 and 3-4) drawn with a solid red line. All unmatched
edges are shown as a dashed black line.

An alternating path is a path that visits each node at most once
and in which every other edge is a matched edge. In our example,
we find several alternating paths: 1-2-3, 3-4-5, 1-2-3-4-8, etc. An
augmenting path is an alternating path that starts and ends on a
single node, for example 6-1-2-7 (highlighted in our example).

According to a theorem by Berge [6], a maximum cardinality
matching can be found by iteratively searching for an augmenting
path for each unmatched point. If an augmenting path found, then
the matching set M is updated by a process called Symmetric Differ-
ence, which is the disjunctive union of two sets. It contains elements
from either of the set but not their intersection. For instance, the
Symmetric Difference of set A = {1,2,3,4,5} and B = {3,4,5,6,7}
is A® B = {1,2,6,7}. If no augmenting path can be found for a
given node, we can safely remove it as it is not in the maximum
matching.

Theorem. The matchingM has maximum cardinality if and only if
there is no augmenting path with respect to M.

Circles in graphs require special attention. We employ a method
developed by Edmonds [8] that replaces the circles (called a “blos-
som”) with a super-node. The details are beyond the scope of this
concise summary. Algorithm 1 shows an overview of the final algo-
rithm.

For a weighted graph, we assign values to nodes. By making the
sum of two nodes greater and equal than that their edge weight,
the problem of maximizing the edge weights has been transformed
to minimizing the node values. Once the sum of node values in the

GPGPU-11, February 24-28, 2018, Vienna, Austria

Figure 7. Augument path.

augmenting path is equal to the edge weights, we extend the match-
ing. Otherwise, we adjust the node values and keep looking for an
augmenting path. More details about the algorithm are discussed
in the work proposed by Berge et al. [6].

INPUT: Graph G, matching M on G;
OUTPUT: A maximum matching Mxx on G;
Initialization: All nodes in G are unmatched nodes;
for each unmatched node in G do
instructions;
if the vertex is an unvisited node then
if this vertex has been matched then
‘ extend augmenting path P;
else
found an augmenting path P;
update M by P@ M;
end
else
if found a blossom then
‘ replace the blossom by a super node;

end
end

end
Algorithm 1: The MaxPair algorithm.

6 Runtime Deployment

To test MaxPair scheduling, we develop a runtime framework that
consists the scheduler and a Just-In-Time (JIT) compiler which is
used to construct concurrent kernel. Figure 8 illustrates how the
system works.

For all candidate kernels, the scheduler builds a task graph ac-
cording to their associativities. The edge weights of the graph are
assigned based on the knowledge of the candidate kernels. If we
have only very limited information (e.g. only know if two kernels
benefit from executing concurrently), then we allocate the same
weight to all edges. In this case, the matching algorithm will find the
maximum number of kernel pairs. When more knowledge about
the kernels provided, such as relative speedup or precise execu-
tion time, the edge weights are updated accordingly. Therefore,
the matching algorithm will find a pairing-up scheme that can
maximize the accumulated speedup or time-saving.

Our JIT-compiler merges kernels utilsing a source-to-source
transformation technique [27]. The fused kernel then replaces the
original kernel pair and is launched to the GPU instead. It is worth
noting, that our scheduling technique is independent of the mecha-
nism used for concurrent execution.

GPGPU-11, February 24-28, 2018, Vienna, Austria

Kernels

Launch task

to GPU
Scheduler »| GpPu
Create Graph
Match Graph

’ Selected kernel pa\rs‘

?Merge kernel in pairs

nr
merge kernels

Figure 8. The runtime system consists of a graph-based sched-
uler and a Just-In-Time compiler that create concurrent kernels by
source-to-source transformation.

Table 4. Hardware platform

Intel CPU NVIDIA GPU AMD GPU
Model Core i7 4770K GTX 780 HD7970
Architecture Haswell-DT Kepler GK110 Tahiti XT
Core Clock 3.4 GHz 1.2 GHz 1.0 GHz
Core Count 4 (8 w/ HT) 2,304 2,048
Memory 16 GB 3 GB 3 GB
Bandwidth 21GB/s 288 GB/s 264 GB/s

The runtime allocates kernels sequentially to the GPU. Merged
kernel first, and then separate kernels. When all merged kernels
are finished, the individual kernels, which are better to run alone,
are issued to the GPU one after another. As this paper focuses on
maximizing concurrent kernels performance on the GPU, we didn’t
use the multi-core CPU as a candidate device in our experiment.
However, our method can cooperate with heterogeneous scheduling
approaches [27, 28] with very trivial effort.

7 Experiment Setup
7.1 Platform

We evaluate our scheduling scheme using an AMD and NVIDIA
GPU. Both systems use an identical host system. The details of the
hard setting are shown in Table 4. We use Nvidia driver 375.20 and
AMD Catalyst driver 14.9. Programs are compiled by GCC 4.7.2
with the -O3 flag. We repeat each experiment 100x, in order to
eliminate noise.

7.2 Benchmarks

We use 38 kernels from 20 applications in our experiment (see
Table 5). We have selected kernels from all programs in Polybench.
However, as our source-to-source compiler focusses on 1D and 2D
kernels transformation, we were only able to use five applications
from Parboil. Due to space constraints, we use the index in Table 5
to refer to a specific kernel.

We use our kernel fusion mechanism (see Section 6) to create
concurrently executing kernels for our evaluation.

7.3 Alternative Algorithms

We use a random scheduling algorithm as our baseline. This al-
gorithm selects a pair of tasks at random and executes them con-
currently. The choosen pairs are always identical in all repeats of
an experiment. We compare our scheduling methods against two
existing state of the art, greedy-based algorithms: speedup greedy
(SG) and time greedy (TG). These algorithms are explained in more
detail in Section 3.

Yuan Wen, Michael F.P. O’Boyle, and Christian Fensch

Table 5. List of all kernels.

Index Kernels Benchmark
1 mvt_kernel2 Polybench
2 bicg_Kernell Polybench
3 Convolution3D_kernel Polybench
4 bicg_Kernel2 Polybench
5 covariance_reduce_kernel Polybench
[3 Convolution2D_kernel Polybench
7 gramschmidt_kernel1 Polybench
8 gramschmidt_kernel2 Polybench
9 gramschmidt_kernel3 Polybench
10 syr2k_kernel Polybench
11 mriQ_ComputeQ_GPU Parboil

12 covariance_mean_kernel Polybench
13 mriQ_ComputePhiMag_GPU Parboil

14 correlation_corr_kernel Polybench
15 sad_calc 8 Parboil

16 gesummv_kernel Polybench
17 mm?2_kernel2 Polybench
18 mm2_kernell Polybench
19 segmm_NT Polybench
20 sad_calc_16 Parboil

21 atax_kernell Polybench
22 atax_kernel2 Polybench
23 bfs_kernel Parboil

24 syrk_kernel Polybench
25 spmv_jds_naive Parboil

26 gemm_kernel Polybench
27 fdtd2d_kernel2 Polybench
28 fdtd2d_kernel3 Polybench
29 fdtd2d_kernell Polybench
30 covariance_covar_kernel Polybench
31 mvt_kernell Polybench
32 correlation_std_kernel Polybench
33 sad_calc Parboil

34 mm3_kernel2 Polybench
35 mm3_kernel3 Polybench
36 mm3_kernell Polybench
37 correlation_reduce_kernel Polybench
38 correlation_mean_kernel Polybench

8 Results

This section presents the result of MaxPair comparing to state of
the art greedy-based scheduling methods. In addition, we show
that the runtime overhead introduced by MaxPair is trivial.

8.1 Performance of Concurrent Execution

Selecting the optimal set of pairwise kernels is essential for maxi-
mizing performance. For a task scheduler, forming the task set and
determining the issue order needs to be guided. Speedup and time
saving of co-run kernels are two primary guides that are widely
advocated by most of the task schedulers [7, 13]. Figures 9 and 10
present the results of kernel co-execution in these forms, respec-
tively.

Figure 9 shows the speedup of concurrent execution. Distinct
kernels (identified by their index according to Table 5) are listed
along both axises. The resulting heatmap is based on the speedup
of their co-execution over executing them sequentially. A darker
grey means a higher speedup. A white tile means there is no perfor-
mance gain from the co-execution. Figure 10 uses the same method,

MaxPair

35 u

34

33

32 » = 0.8
S el P

2 I q m = = -l

271 W

26 l l

25

24 - - 06
53

-53 .- oam]

=

:;3_- - | -] nmn

[}

E%? L]] .

s 04

BN . u - nEEE

12 n

}é u m n

of m W] " = 02
8 n

7

6

5 HEN u H EEE EEN

g] L

; mam = L .]

1234567 891011121314151617181920212223242526272829303132333435363738
Kernel Index

Figure 9. Relative speedup of concurrent kernels. Kernels are
aligned along with x- and y-axis. The index represents each corre-
sponding kernel that is listed in Table 5. The colour scale bar shows
the range of speedup which is a form the darker, the better.

but presents the results of time-saving from concurrent kernel
execution.

As we can see, Figures 9 and 10 emphasise different aspects of
performance. Take kernel 12 for example: it has a good associativity
with other kernels. In most of the cases, running kernel 12 with
another one enhances performance compared to running them
sequentially. However as we can see from Figures 9 and 10, for some
cases the relative speedup improvement is small while the time
saving is large. This is because the execution time of the 12th kernel
is much longer than the others. Hence, a small proportion speedup
delivers a significant time-saving. On the other hand, concurrent
execution of kernel 2 and 29 has a high speedup but low time
improvement.

8.2 Performance Evaluation

Figures 11 and 12 present the performance improvement by our
graph-based scheduling method comparing to other alternatives on
AMD and Nvidia platforms, respectively. We consider three levels
of information that we possess about concurrent workloads. At the
first level, we only have binary knowledge if two kernels benefit
from co-execution. At the second level, we posses more detailed
information in form of relative speedup. At the third level, we have
full knowledge of the individual and concurrent execution times.

To fairly evaluate our method, the workloads are randomly se-
lected for each platform. However due to space constraints, we only
present the details for the AMD platform in Table 6.

8.2.1 Scheduling According to Task Associativity

Figures 11(a) and 12(a) shows the results of MaxPair over the ran-
dom algorithm. Each workload configuration is prefixed by the
platform, followed by the number of kernels in the workload and a
unique identifier.

With only binary information available, MaxPair aims to find
the maximum number of kernel pairs. The lack of a weight pro-
hibits the use of a greedy based algorithm. MaxPair improves the
performance by 0.46% over the random scheduling. If only consider

GPGPU-11, February 24-28, 2018, Vienna, Austria

Kernel Index
-
G

PNWBUON®O

1234567 8 91011121314151617181920212223242526272829303132333435363738
Kernel Index

Figure 10. Time-saving from concurrent kernels. Kernels are
aligned along with x- and y-axis. The index represents each corre-
sponding kernel that is listed in Table 5. The colour scale bar shows
the base 10 logarithms of saved time in microseconds. It is the form
of the darker, the better.

the average performance, MaxPair works equally poor as the ran-
dom. However, the result by MaxPair is more stable. As we can see
from Figures 11(a) and 12(a), the number of task scheduling that
experience an improvements outweigh the number of slowdowns.

8.2.2 Scheduling According to Relative Speedup

Relative speedup provides more information about how large the
performance gain we can expect from two kernels co-execution.
Figures 11(b) and 12(b) present the result of MaxPair compared to a
greedy-based algorithm that uses the same guide. The results show
the performance improvements of MaxPair over Speedup-Greedy.
MaxPair outperforms or matches Speedup-Greedy in all configu-
rations, except #33 on AMD. Out of the whole 36 experiments, 26
and 24 show a performance improvement of over 10% on the AMD
and Nvidia platform, respectively.

On average, MaxPair is 12% and 10% better than Speedup-Greedy
scheduling on those platforms, respectively.

8.2.3 Scheduling According to Precise Execution Time

Precise execution time provides more detailed information than rel-
ative speedup. Figures 11(c) and 12(c) present the results by MaxPair
against the Time-Greedy algorithm.Figures 11(c) and 12(c) show
that MaxPair continually outperforms the Time-Greedy method.
Out of the whole 36 experiments, 14 and 12 deliver an improvement
over 10% on AMD and Nvidia, respectively. On average, the MaxPair
improves the system performance by 8% and 4%, respectively.

8.2.4 Summary of the Results

Figures 11(d) and 12(d) summarizes our results. In general, Time-
Greedy outperforms Speedup-Greedy scheduling. Though for some
special cases, MaxPair-Speedup is slightly worse than greedy-based
algorithms, in majority cases, it outperforms both of the greedy
methods. Given execution time details, the MaxPair constantly
provides the best performance by maximizing the accumulated
time-saving in all cases.

GPGPU-11, February 24-28, 2018, Vienna, Austria Yuan Wen, Michael F.P. O’Boyle, and Christian Fensch

(@) " MaxPair ovex random

25~

-50-

(b) MaxPair-Speedup over Speedup—-Greedy

(c) MaxPair-Time over Time—Greedy

over Random

Performance Improvement (%)

Concurrent Kernels Configuration

— MaxPair-Speedup — MaxPair-Time Time-Greedy — Speedup-Greedy

Figure 11. Performance improvement over alternative methods on the AMD system. When only kernel associativity is known, the MaxPair
works as good/poor as the random concurrent scheduling on average, as shown in (a). Part (b) shows that with knowledge of concurrent
kernels relative speedup, MaxPair outperform speedup-greedy algorithm in most of the case. If precise execution times are provided, MaxPair
constantly works better than the time-greedy algorithm, as shown in (c). Subfigure (d) puts all methods together and normalize their results
compared to random.

MaxPair over random

(@) 1o-
0

-10-
-20-
-30-

20-

(b) e MaxPair-Speedup over Speedup-Greedy

MaxPair-Time over Time-Greedy

Performance Improvement (%)

0]
PLEEFEEILLLEIEIILEITIITIIIIPIIFTIIFIFILIS

KON

@
é\/ é\

Concurrent Kernels Configuration

— MaxPair-Speedup — MaxPair-Time Time-Greedy — Speedup-Greedy

Figure 12. Performance improvement over alternative methods on Nvidia platform. MaxPair is 0.4% better than the random scheduling when
only kernel associativity is given, as shown in (a). With information of relative speedup, MaxPair is 10% better than SG method, as shown in
(b). With precise execution time, MaxPair is 4% better than TG method, like the line shown in (c). Figure (d) normalise MaxPair-Speedup,
MaxPair-Time, Speedup-Greedy, and Time-Greedy results to the random scheduling. As can be seen from the graph, MaxPair always
outperforms the other counterparts.

MaxPair

Table 6. Task configuration of the experiment

Index Kernel Name # Task
c5a 7-26-31-38-38 5
c5b 9-10-12-26-29 5
c5c¢ 7-13-20-21-38 5
c6a 1-2-21-21-22-27 6
c6b 1-4-23-32-32-36 6
c6¢ 1-4-22-29-29-32 6
c7a 1-11-15-26-32-33-33 7
c7b 1-6-7-9-28-33-36 7
c7c 12-12-20-22-26-32-36 7
c8a 6-7-12-17-31-33-35-38 8
c8b 1-2-4-8-15-19-25-33 8
c8¢ 1-4-11-12-20-21-26-29 8
c9a 1-6-7-12-13-23-25-27-37 9
c9b 9-11-22-25-25-31-32-34-37 9
c9c 4-4-5-8-12-17-18-29-32 9
cl0a 1-2-4-4-6-9-19-27-28-35 10
c10b 2-15-18-26-26-31-33-37-38-38 10
c10c 6-9-22-25-29-29-31-33-35-37 10
clla 3-3-5-6-7-9-26-28-31-35-38 11
cl1b 3-7-7-7-21-22-22-28-31-33-37 11
cllc 6-7-9-9-12-19-20-21-21-27-31 11
cl2a 4-6-8-9-12-13-19-29-33-34-36-38 12
c12b 1-1-3-7-15-19-21-24-26-32-33-37 12
cl2c 2-3-4-5-9-12-12-13-26-31-35-36 12
cl3a 1-1-4-6-19-21-23-25-25-27-28-31-36 13
c13b 1-2-3-4-18-22-22-26-27-27-27-28-33 13
cl3c 1-3-3-4-10-15-21-25-29-32-32-33-36 13
cl4a 7-8-10-11-13-17-17-20-20-21-27-33-36-37 14
c14b 3-4-5-5-7-9-9-9-23-31-35-37-37-37 14
cl4dc 3-9-9-12-13-20-22-23-25-25-27-31-31-36 14
cl5a 1-2-2-3-5-6-7-7-8-19-23-25-27-32-32 15
c15b 1-5-5-8-9-10-13-13-15-15-15-20-25-35-37 15
cl5¢ 1-5-7-11-11-13-19-23-32-33-33-36-36-38-38 15
cl6a 1-3-7-9-11-12-19-19-25-26-28-28-34-35-36-38 16
c16b 1-1-2-2-3-4-6-9-10-11-12-15-26-31-32-33 16
clé6c 1-4-9-9-10-11-12-19-22-25-25-26-26-31-35-37 16

8.3 Runtime Cost

The MaxPair scheduler introduces two additional costs: generating
the co-execution graph and running the matching algorithm.

Figure 13 shows the time required for generating the co-execution
graph. The time spent on graph generating is linear to the number
of tasks. The overhead introduced by this process is trivial. Tak-
ing a graph creation with 28 kernels for example, it needs 1.75
milliseconds on average which is far less than the sum of task ex-
ecution time. One thing to note is that this overhead is not just
introduced by MaxPair; greedy-based algorithm also need to create
a co-execution graph.

Figure 14 presents the performance of MaxPair matching. Theo-
retically, the graph matching algorithm has a complexity of O(n3).
In practice however, it works rather fast as the graph is sparse. For
a graph with 28 nodes, the average time spent on the matching is
about 2 milliseconds. As an extra overhead introduced by MaxPair,
this runtime cost is neglectable.

Figures 13 and 14 also show the time proportion spent on graph
creating and matching from the overall kernel execution time. They
confirm that the runtime overhead is trivial and neglectable.

GPGPU-11, February 24-28, 2018, Vienna, Austria

150~

)
w

(%) awiL 28x3 0 uonoeId

Execution Time

— Percentage
100-

Time (ms)
s ©
s N

o

W

o7y
o
o

0 10 20
Number of Kernels

Figure 13. Overall time and percentage spent on graph creating.

I

2.0- -0004 §
Execution Time S

g 15y m= Percentage 0003 o
e U
£ 10 -0002 &
[=}
0.5- -0.001 3

@

<

0.0-, | | ,-0.000 &

0 10 20 30
Number of Kernels

Figure 14. Overall time and percentage spent on graph matching.

9 Related Work

Both the space sharing approaches and scheduling methods for
GPUs have been well studied in recent years. However, there is a
lack of research on how to schedule workloads to share GPU by
multiple concurrent workloads efficiently.

GPU Space Sharing At the compile and runtime, a GPU can
be shared statically or dynamically [24]. Kernels can be launched
through separated command queues on-the-fly to the same GPU or
be merged/fused to form a new kernel which will be issued to the
device as a substitute. In the former solution, typically kernels are
chunked into workgroups first and then a runtime framework issues
workgroups from different kernel to the same GPU via separate
command queue simultaneously [13]. Slices [23, 30] with multiple
workgroups are also used in fair sharing of the GPU by adjusting the
kernels mixing ratio. Besides group into slices, interleaved issuing
workgroups [3, 5, 11, 26, 29] to a GPU is also an option for sharing
hardware among multiple kernels.

Apart from the runtime implementation, different kernels can
also be physically merged to form a new kernel which performs as
a substitute for the original ones. Multiple kernels are merged at the
compile-time to either optimise data accessing [9, 18] or improve
resource utilization [27]. Comparing to runtime solutions, static
methods work more accuratly as the overhead of kernel fusion is
not impacted by the GPU drivers.

Besides software methods, architectural solutions have been
studied as well. The fairness of concurrent GPU application can
be improved by augmenting memory scheduling scheme [10, 24],
or by providing virtual memory system [4] or making the GPU
device preemptible [17, 21, 22]. Jog et al. [14, 15, 25] have also
been looking at concurrent kernel execution but with the aim to
make the memory system of the GPU aware of it as opposed to
our approach which focuses on finding beneficial kernel pairs. This
work is orthogonal to our work proposed in this paper.

The combination of software and hardware optimisation im-
proves both the efficiency and the utilisation of the GPU devices via
running multiple workloads simultaneously. However, in practice,
there is a lack of effective scheduling method.

GPGPU-11, February 24-28, 2018, Vienna, Austria

Scheduling Schemes on the GPU Scheduling algorithms are
guided by some information, like workload dependencies, rela-
tive speedup or execution time. For example, the Heterogeneous
Earliest Finish Time scheme (HEFT) requires the programmer or
the runtime system to provide execution time for each task on all
candidate processors [7]. Also, the dependencies among workload
are required to optimize the communication overhead. As a sub-
stitute for precise execution, execution models are also used as
approximations when scheduling workloads to devices [2].

Scheduling concurrent workloads to the same GPU can be guided
by execution time, relative speedup [13], compute-and-memory
intensity [12, 16], bound of hardware resources [19] or use round-
robin [5] and random methods (like First-In-First-Out) [20] when
there is a lack of details about the target tasks.

All these scheduling mechanisms work properly. However, as
they are all greedy-based algorithm, they provide suboptimal perfor-
mance in many cases. Our work, on the other hand, delivers better
performance than these state-of-the-arts with the same information
used by greedy-based methods by a graph-based scheme.

10 Conclusion

Though concurrent kernel execution can improve performance of
GPU execution, there is a lack of effective scheduling method. In this
paper, we provide a graph-based solution: MaxpPair. By mapping
the concurrent task execution to a graph matching problem, we
adopt maximum weight graph matching algorithm. We compae our
method to two state-of-the-art schemes on two different platforms.
With the same knowledge of the workloads, MaxPair outperforms
these schemes by 8% and 4% on average on the AMD and Nvidia
platform, respectively.

Acknowledgments

This is work is in part supported by EPSRC (grant agreement
EP/P010946/1).

References

[1] Jacob Adriaens, Katherine Compton, Nam Sung Kim, and Michael J. Schulte.
2012. The case for GPGPU spatial multitasking. In HPCA. IEEE Computer Society,
79-90.

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-

nier. 2011. StarPU: a unified platform for task scheduling on heterogeneous

multicore architectures. Concurrency and Computation: Practice and Experience

23,2 (2011), 187-198.

[3] Mihir Awatramani, Joseph Zambreno, and Diane T. Rover. 2013. Increasing GPU
throughput using kernel interleaved thread block scheduling. In ICCD. IEEE
Computer Society, 503-506.

[4] Michela Becchi, Kittisak Sajjapongse, Ian Graves, Adam M. Procter, Vignesh T.
Ravi, and Srimat T. Chakradhar. 2012. A virtual memory based runtime to support
multi-tenancy in clusters with GPUs. In HPDC. ACM, 97-108.

[5] Mehmet E. Belviranli, Farzad Khorasani, Laxmi N. Bhuyan, and Rajiv Gupta. 2016.
CuMAS: Data Transfer Aware Multi-Application Scheduling for Shared GPUs. In
ICS. ACM, 31:1-31:12.

[6] Claude Berge. 1957. Two Theorems in Graph Theory. In Proceedings of the
National Academy of Sciences of the United States of America. 842 — 844.

[7] Raphaél Bleuse, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, and

Denis Trystram. 2015. Scheduling independent tasks on multi-cores with GPU

accelerators. Concurrency and Computation: Practice and Experience 27, 6 (2015),

1625-1638.

Jack Edmonds. 1987. Paths, Trees, and Flowers. Birkhduser Boston, 361-379.

Jiri Filipovic, Matus Madzin, Jan Fousek, and Ludek Matyska. 2015. Optimizing

CUDA code by kernel fusion: application on BLAS. The Journal of Supercomputing

71, 10 (2015), 3934-3957.

[10] Xiang Gong, Zhongliang Chen, Amir Kavyan Ziabari, Rafael Ubal, and David R.

Kaeli. 2017. TwinKernels: an execution model to improve GPU hardware sched-
uling at compile time. In CGO. ACM, 39-49.

[2

8
[o

—_

Yuan Wen, Michael F.P. O’Boyle, and Christian Fensch

[11] Chris Gregg, Jonathan Dorn, Kim M. Hazelwood, and Kevin Skadron. 2012. Fine-
Grained Resource Sharing for Concurrent GPGPU Kernels. In HotPar. USENIX
Association.

Marisabel Guevara, Chris Gregg, Kim Hazelwood, and Kevin Skadron. 2009.

Enabling task parallelism in the CUDA scheduler. (01 2009).

Qing Jiao, Mian Lu, Huynh Phung Huynh, and Tulika Mitra. 2015. Improving

GPGPU energy-efficiency through concurrent kernel execution and DVFS. In

CGO. IEEE Computer Society, 1-11.

Adwait Jog, Evgeny Bolotin, Zvika Guz, Mike Parker, Stephen W. Keckler, Mah-

mut T. Kandemir, and Chita R. Das. 2014. Application-aware Memory Sys-

tem for Fair and Efficient Execution of Concurrent GPGPU Applications. In

GPGPU@ASPLOS. ACM, 1.

Adwait Jog, Onur Kayiran, Tuba Kesten, Ashutosh Pattnaik, Evgeny Bolotin,

Niladrish Chatterjee, Stephen W. Keckler, Mahmut T. Kandemir, and Chita R.

Das. 2015. Anatomy of GPU Memory System for Multi-Application Execution.

In MEMSYS. ACM, 223-234.

Teng Li, Vikram K. Narayana, Esam El-Araby, and Tarek A. El-Ghazawi. 2011.

GPU Resource Sharing and Virtualization on High Performance Computing

Systems. In ICPP. IEEE Computer Society, 733-742.

Zhen Lin, Lars Nyland, and Huiyang Zhou. 2016. Enabling efficient preemption

for SIMT architectures with lightweight context switching. In SC. IEEE Computer

Society, 898-908.

Thibaut Lutz, Christian Fensch, and Murray Cole. 2015. Helium: a transparent

inter-kernel optimizer for OpenCL. In GPGPU@PPoPP. ACM, 70-80.

Christos Margiolas and Michael F. P. O’Boyle. 2016. Portable and transparent

software managed scheduling on accelerators for fair resource sharing. In CGO.

ACM, 82-93.

Sreepathi Pai, Matthew J. Thazhuthaveetil, and R. Govindarajan. 2013. Improving

GPGPU concurrency with elastic kernels. In ASPLOS. ACM, 407-418.

Jason Jong Kyu Park, Yongjun Park, and Scott A. Mahlke. 2015. Chimera: Col-

laborative Preemption for Multitasking on a Shared GPU. In ASPLOS. ACM,

593-606.

Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho Navarro, and

Mateo Valero. 2014. Enabling preemptive multiprogramming on GPUs. In ISCA.

IEEE Computer Society, 193-204.

[23] Ayman Tarakji, Alexander Gladis, Tarek Anwar, and Rainer Leupers. 2015. En-

hanced GPU Resource Utilization through Fairness-aware Task Scheduling. In

TrustCom/BigDataSE/ISPA (3). IEEE, 45-52.

Guibin Wang, Yisong Lin, and Wei Yi. 2010. Kernel Fusion: An Effective Method

for Better Power Efficiency on Multithreaded GPU. In GreenCom/CPSCom. IEEE

Computer Society, 344-350.

Haonan Wang, Fan Luo, Mohamed Ibrahim, Onur Kayiran, and Adwait Jog.

2018. Efficient and Fair Multi-programming in GPUs via Effective Bandwidth

Management. In HPCA. IEEE Computer Society.

Lingyuan Wang, Miaoqing Huang, and Tarek A. El-Ghazawi. 2011. Exploiting

concurrent kernel execution on graphic processing units. In HPCS. IEEE, 24-32.

[27] Yuan Wen and Michael F. P. O’Boyle. 2017. Merge or Separate?: Multi-job
Scheduling for OpenCL Kernels on CPU/GPU Platforms. In GPGPU@PPoPP.
ACM, 22-31.

[28] Yuan Wen, Zheng Wang, and Michael F. P. O’Boyle. 2014. Smart multi-task
scheduling for OpenCL programs on CPU/GPU heterogeneous platforms. In
HiPC. IEEE Computer Society, 1-10.

[29] F. Wende, F. Cordes, and T. Steinke. 2012. On Improving the Performance of

Multi-threaded CUDA Applications with Concurrent Kernel Execution by Kernel

Reordering. In Application Accelerators in High Performance Computing (SAAHPC),

2012 Symposium on.

Jianlong Zhong and Bingsheng He. 2014. Kernelet: High-Throughput GPU Kernel

Executions with Dynamic Slicing and Scheduling. IEEE Trans. Parallel Distrib.

Syst. 25, 6 (2014), 1522-1532.

[12

[13

[14

[15

(16

[17

(18

[19

[20

[21

[22

[24

[25

™
2

[30

	Abstract
	1 Introduction
	2 Background
	2.1 GPU Programming Model
	2.2 GPU Sharing

	3 Motivation
	4 Concurrent Kernels
	5 MaxPair Scheme
	5.1 Matching in a graph
	5.2 Weights
	5.3 Why Schedule Task in Pairs
	5.4 Algorithm

	6 Runtime Deployment
	7 Experiment Setup
	7.1 Platform
	7.2 Benchmarks
	7.3 Alternative Algorithms

	8 Results
	8.1 Performance of Concurrent Execution
	8.2 Performance Evaluation
	8.3 Runtime Cost

	9 Related Work
	10 Conclusion
	References

