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Abstract—In the context of quantitative Magnetic Resonance Imag-

ing (qMRI), the recently proposed Magnetic Resonance Fingerprinting

(MRF) technique has significantly reduced the acquisition time. MRF
reconstructions are based on the correlation of multiple aggressively

undersampled time acquisitions. Coil sensitivity calibration is a crucial

step in the reconstruction process to obtain accurate results. Traditionally,

MRF calibration is performed upstream of the imaging process, using a
different acquisition. This technique makes the overall acquisition time

consuming and may introduce artefacts in the image estimate. Usual

MRI self-calibration methods, reconstructing independently the time
acquisitions, are not suitable for highly undersampled MRF data. In

this work, leveraging recent developments in non-convex optimisation,

we propose the first self-calibration method for MRF, exploiting the

correlation in the time acquisitions.

I. INTRODUCTION

In MRF, the objective is to estimate the parameters associated

with each of the N voxels of an imaged volume, from degraded un-

dersampled measurements Y ∈ C
Q×L×C [1]. These measurements

are acquired from C coils, with an excitation sequence of length

L. For each coil, and each excitation, Q degraded measurements

are acquired. Let M ∈ C
N×L be the response of the imaged

volume of interest. For every excitation l ∈ {1, . . . , L} and coil c ∈
{1, . . . , C}, the corresponding observation Y:,l,c ∈ C

Q is given by

Y:,l,c = Ω:,:,lFDiag(S:,c)M:,l + η:,l,c, where Ω ∈ {1, 0}Q×N×L

is the concatenation of L selection matrices, F ∈ C
N×N models

the 2D discrete Fourier transform, S ∈ C
N×C is the concatena-

tion of the C sensitivity maps, and Diag is a function that takes

a vector and returns the corresponding diagonal matrix. Finally,

η ∈ C
Q×L×C is a realisation of a random i.i.d. Gaussian noise.

Let h : CN×C ×C
N×L → C

Q×L×C be the linear mapping defining

the complete acquisition process, i.e. Y = h (S,M)+η. The image

volume response M belongs to a non-convex set B that models the

constraints from the physics of the magnetic resonance as well as

other relevant phenomena such as the partial volume effect [1], [2].

The magnetisation sequence can be obtained by defining M as a

minimiser of F (S,M) = 1/2‖Y−h(S,M)‖22, under the constraint

M ∈ B, when S is fixed and has been pre-calibrated.

Traditional MRF methods estimate S beforehand, using different

acquisitions, making the data acquisition process more expensive. In

addition, since calibration is performed by a single acquisition, S

is calibrated up to a voxel-wise global phase. Whilst estimating M

has been the focus of works such as [1], [2], the lack of advanced

techniques for the coil sensitivity estimation can significantly affect

the image reconstruction. Moreover, due to the highly undersampled

MRF acquisitions, MRI self-calibration methods are not suitable.

Hence the need for developing joint calibration and imaging methods

for MRF. In the next section, we propose an optimisation approach to

estimate simultaneously the sensitivity maps S and the image volume

response M.

II. JOINT CALIBRATION AND IMAGING FOR MRF

We propose to minimise
M∈B,S∈RN×C

F (S,M). To solve this problem,

we use an alternating forward-backward approach [3], described in

Algorithm 1, where ∇MF (resp. ∇SF ) denotes the partial gradient

of F with respect to M (resp. S). Under technical conditions [3], the

sequence (M(k),S(k))k∈N generated by Algorithm 1 is guaranteed

to converge to a critical point of the objective function of interest.

Algorithm 1 Joint Calibration and Imaging for MRF

1: Input: S(0) ∈ CN×C , M(0) ∈ B, (I, J) ∈ N2
∗, (µ, ν) ∈ (R+

∗ )2

2: for k = 0, 1, . . . do

3: M̃(0) = M(k) and S̃(0) = S(k)

4: for i = 0, 1, . . . , I − 1 do

5: M(i) = PB

(
M̃(i) − µ∇MF

(
S(k),M̃(i)

))

6: end for

7: M(k+1) = M̃(I)

8: for j = 0, 1, . . . , J − 1 do

9: S
(j) = S̃

(j) − ν∇SF
(
S̃
(j),M(k+1)

)

10: end for

11: S(k+1) = S̃(J)

12: end for

III. RESULTS

We test our algorithm with a partial volume phantom using the

model defined in [2]. As shown in Fig. 1, the estimated tissue

proportion maps are close to the ground truth. While the algorithm

is able to accurately estimate the parameters and the proportions of

each tissue, the obtained proton densities are not accurate. This is

due to the ambiguity in the operator h, i.e. for any voxel n, the norm

of Mn,: can be absorbed in Sn,: and vice-versa. In future work, we

aim to address the ambiguity by adding more prior information in

the model such as, spatial regularisation on the proton density and

smoothness in the sensitivity maps.
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Fig. 1: Tissue proportion maps. The first row correspond to the Ground Truth and

the second row to our reconstructions. The columns correspond, from left to right, to

Adipose Tissue, White Matter, Muscle, Gray Matter and Cerebrospinal fluid.
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