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state of the art devices. Carbon is an extremely versatile element, characterized by a variety of allotropes
and structures with different properties due to their sp, sp? or sp> hybridization. Among the diverse
carbon nanomaterials, carbon nanotubes and graphene are naturally excellent electrical conductors, thus
representing ideal candidates for interfacing electrical-excitable tissues. In addition, their dimensional
range holds the potential to enhance the material interactions with bio-systems. Successful interfacing of
the nervous system with devices that record or modulate neuronal electrical activity requires their stable
electrical coupling with neurons. The efficiency of this coupling can be improved significantly by the use
of conductive, ad hoc designed, nanomaterials. Here we review different carbon-based nanomaterials
currently under investigation in basic and applied neuroscience, and the recent developments in this
research field, with a special focus on in vitro studies.

© 2018 Published by Elsevier Ltd.
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1. Introduction
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Fig. 1. Carbon allotropes derived from synthetic process. (A colour version of this
figure can be viewed online.)

nanotubes [2] and nanowires [3,4]. These nanomaterials are of
particular interest for biomedical applications in neurology, where
conductive materials may promote electrical and chemical
communication within the nervous system at the micro- and nano-
scale levels. Applications of nanostructures to neuroscience have
rapidly expanded from molecular imaging [5], to neuro-
regenerative scaffolds [6] and neural interfaces [7—9].

In this framework, carbon-based nanomaterials (CBNs) and in
particular nanotubes deserve particular attention, due to the
exponential increase in neuroscience applications of materials
composed mainly by carbon with different hybridization or struc-
tures [10].

In this review we focus on the applications of CBNs-based
technology in vitro and, in part, in vivo to provide a picture of
past and ongoing research in this field, highlighting the goals that
have been achieved and the insights reached in understanding
CBNs interactions with neural tissues.

2. Carbon and carbon-based nanomaterials

Carbon is the most versatile element in the periodic table [11],
owing to the large number of bonds of different type and strength
that can form with it or with many other elements. Moreover, the
ability of carbon orbitals to hybridize in sp, sp® and sp> configura-
tions paves the way to the existence of a number of allotropes. To
date, the three naturally occurring allotropes of carbon (diamond,
amorphous carbon and graphite), have been joined by additional
ones deriving from synthetic processes (such as graphene, carbon
nanotubes, fullerenes, carbon nanohorns, nanodiamonds) [ [12];
Fig. 1].

Table 1
Comparison of some properties of various carbon nanomaterials.

The interest in CBNs has increased exponentially in the last
decades, first with the discovery of fullerenes (1985), then with that
of carbon nanotubes (CNTs; 1991) and finally with the synthesis of
graphene (GR) (2004).

The properties of these CBNs make them widely used in many
fields ranging from material science [13], energy production and
storage [14], environmental sciences [15,16], biology [17—19] and
medicine [20,21]. Table 1 summarizes the main properties of the
most common CBNs [22—25]:

Among the many carbon nanomaterials, CNTs and GR are
currently the most popular representatives and have been exten-
sively studied for their excellent mechanical strength, electrical and
thermal conductivity and optical properties. The Young's modulus
and tensile strength of CNTs and GR can reach 1TPa and 130 GPa
respectively [20,21]. Carrier mobility of graphene is around
860 cm? x V-1 x s~1 (hole mobility of 844 cm?V~1s~! and carrier
mobility of 866 cm?>V~'s1), and the current density of metallic
CNTs is orders of magnitude higher than those of metals such as
copper [26,27]. Thermal conductivities of CNTs and GR are about
3000—3500W/mK and 5000 W/mK respectively [28]. The light
absorption ratio of single-layer graphene is limited to 2.5% [29]. A
large amount of the research efforts were focused on exploiting
these properties for various applications including electronics,
biological engineering, filtration, lightweight/strong composite
materials, photovoltaic and energy storage [30—32]. CNTs and GR
are naturally good electrical conductors and their biocompatibility
can be modulated [33], making them good candidates for
improving electrodes for neural interfaces. Electrical recording or
stimulation of nerve cells is widely employed in neural prostheses
(for hearing, vision, and limb-movement recovery), in clinical
therapies (treating Parkinson's disease, dystonia, and chronic pain),
as well as in basic neuroscience studies. In all these applications,
electrodes of various shapes and dimensions stimulate and/or re-
cord neuronal activity to directly modulate behavior or to interface
machine. The performance of the electrodes can be significantly
improved by implementing the device with nanomaterial-based
coatings (such as CBNs), since their high surface area can drasti-
cally increase charge injection capacity and decrease the interfacial
impedance with neurons [34].

Signal transmission in neuronal systems results from ionic
currents passing through specific ion channels across the cell
membrane. Extracellular recordings monitor the electrical field
associated with this dynamic. The time course of the extracellular
action potential is typically ~1 ms and the amplitude is in the range
of a few tens to a few hundreds of microvolts [35—37]. This
amplitude is significantly smaller than the corresponding intra-
cellular spike, which is in the tens of millivolt range. A reverse
process takes place during stimulation where charges are delivered
from the electrode to affect membrane potential [37—39]. Stimu-
lating neurons and recording extracellular signals can be achieved
using a conducting electrode placed close to the cell or its processes
[37]. Clearly, an effective interface is a prerequisite for both stim-
ulation and recording.

Carbon Material Dimensions Hybridization Electrical conductivity (S cm™") Young modulus (GPa)
Graphite 3 sp? ~4000 p, 3.3¢ —
Graphene 2 sp? ~2000 856.4+0.7 (z)
964.0 + 0.68 (a)
SWCNTs 1 Mostly sp? 105—107 1000
MWCNTs 1 Mostly sp? 10°-10° 1000
Fullerene C60 0 sp? 107> -
Diamond 0 sp® 10-2-10""°
Carbon nanohorns 3 Mostly sp? 107! 240-730
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A successful brain interface will record neuronal signals with a
stable >5:1 signal-to-noise ratio [35]. The electrode's impedance
contributes to the noise, with higher impedance providing a lower
signal-to-noise ratio [35].

Brain electrodes have been manufactured with a variety of
different materials, including tungsten, platinum, iridium oxide,
titanium nitride, poly(ethylenedioxythiophene) (PEDOT). The
quality of the recording electrodes depends on their impedance at
1kHz, in vivo usually ranging between 50 kQ and 1 MQ [35]. In
stimulating electrodes, the amount of charge required for stimu-
lation is orders of magnitude higher than the recorded one [37,40],
thus delivering the appropriate charge to the tissue without
causing electrode or tissue damage is the main aim in any electrode
design [35,37,41]. An additional important parameter related to
stimulation electrodes is the reversible charge storage capacity
(CSC), also known as the reversible charge injection limit [37,42],
that is the total amount of charge that may be reversibly stored,
including storage in the double layer capacitance or any reversible
Faradaic reaction [37].

In general, electrodes used in neural stimulation can be divided
into two major categories. Macroelectrodes which exhibit high-
charge/phase and low-charge density thresholds; they are typi-
cally placed on the surface of the target tissue and have a geometric
surface area (GSA) larger than 100.000 um? [35]. Conversely, mi-
croelectrodes exhibit low-charge/phase thresholds and high-
charge density thresholds, and they are typically penetrating
electrodes with GSA smaller than 10.000 pm? [35]. The Huntington
Medical Research Institutes, upon an extensive study, has sug-
gested the GSA safe window for penetrating microelectrodes
(GSA < 2000 pm?) in the brain with charge/phase thresholds of
~1nCph~1 [43,44]. Similarly, Kuncel and Grill [45] identified GSA
for safe macroelectrodes used in clinical studies (GSA = 0.06 cm?)
with estimated charge density <10 pC cm~2 (~0.5 pC ph~!) to avoid
tissue damage [45].

The material used, the size and the shape of the electrode,
together with the electrolyte composition, and the electrical stim-
ulation waveform, will thus influence the CSC. We refer the reader
to specialized reviews for a detailed description of the electro-
chemical electrode-electrolyte interface of recording and stimula-
tion neuronal electrodes [35,37,42,46].

The peculiar physical features of certain classes of CBNs, very
high mechanical strength and electrical conductivity, combined
with the low dimensions favoring tissue adhesion, suggested the
potential engineering of artificial scaffolds composed by CBNs to
interface neuronal activity and to promote neuroregeneration, e.g.,
after spinal cord injuries [47—50].

CNTs are among the most studied carbon nanomaterials for
biomedical applications [51—53] in particular in neuroscience, due
to their privileged interactions with neuronal cells [53—60], which
make them potential components of innovative diagnostic and
therapeutic systems for brain pathologies. More recently, we have
witnessed a growing interest also in graphene [61,62], nano-
diamonds [63,64] and carbon dots [53,65,66]. Conversely, fuller-
enes are now experiencing a gradual loss of interest due to
increasing concerns regarding their toxicity [67—69]. A detailed
analysis of the diverse CBNs is reported in the following
paragraphs.

3. Carbon nanotubes (CNTs)

CNTs have been observed by Ijima in 1991 [70] and exhibit
outstanding mechanical, thermal, and conductive properties. They
are unique nano-objects made of one-atom-thick sheets of sp?-
hybridized carbon (graphene) rolled in a cylindrical shape.

Two major forms of CNTs have been used in biological

applications: single walled CNTs (SWCNTs) and multi walled CNTs
(MWCNTs). SWCNTs are made of a single layer of graphene and
their diameter ranges from 0.7 to 1.4 nm, while their length can
vary from few hundreds of nm up to many pm. MWCNTSs consist of
multiple concentric cylinders of rolled-up graphene sheets that
form tubes with diameters up to 100 nm.

CNTs possess high surface area, high mechanical strength,
accompanied by ultralight weight, electron-rich properties, and
excellent chemical and thermal stability [71]. These properties
make CNTs very promising in different fields: they have been used
in conductive composites, for energy storage and energy conver-
sion devices, sensors, field emission displays and radiation sources,
hydrogen storage media and nanometer-sized semiconductor de-
vices, probes, and interconnects [72]. Their poor solubility and their
potential toxicity have been discussed and partially alleviated in the
past decade through the functionalization of the CNTs surface by
means of many different approaches, aimed at increasing their
solubility and safe by design features, to promote biomedical ap-
plications [73]. CNTs have been proposed as biosensors [74], ion
channel blockers [75], biocatalysts [76], tools in cancer diagnosis
and therapy [77] and nanovectors [78].

Among the number of possible biological applications of CNTs,
tissue interfacing and engineering are the most intriguing ones
[79]. Due to their peculiar features, CNTs appear to be suitable for
the interaction with electrically active tissues, such as neuronal and
cardiac tissues. In particular, many studies have demonstrated that
CNTs substrates are able to sustain neuronal survival and to pro-
mote neuronal process outgrowth [54,57,73,74].

Most of our knowledge on neural interfaces has been gained by
studying 2D structures/devices, more recently biologists have
explored the use of 3D topographical complexes reminiscent of the
physiological extracellular environment in which cells routinely
operate in vivo [80]. In 2009, Ghibaudo and colleagues [81] have
reported differences in cellular interactions between 2D and 3D
substrates. Cells interfaced to 3D microenviroment showed more
elongated and branched shapes [81].

Gui et al. [82], have molded CNTs into a 3D porous sponge with a
very high porosity while retaining the desired mechanical prop-
erties. The sponge structure obtained was very stable, showing
excellent compressibility and ability to recover volume by free
expansion [82]. Bosi et al. were able to fabricate 3D PDMS scaffolds
with pores layered by an irregular CNTs carpet stably entrapped in
the PDMS matrix (Fig. 2) [83]. These 3D scaffolds made of polymer-
CNT and of pure CNT were applied not only to study the activity of
primary hippocampal neurons in vitro (Fig. 2) [83], but, in the form
of pure CNTs 3D scaffolds, for the growth and functional recon-
nection of spinal cord organotypic slices (Fig. 3) [50].

CNTs based components may contribute to the development of
robust and biocompatible neuroprosthetic devices, with the aim of
restoring abilities to patients who have lost sensory or motor
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Fig. 2. On the left, sketch of the PDMS_MWCNTs scaffold. In the middle, confocal
micrographs show hippocampal cultures grown (9 DIV) on 2D-PDMS (left) and 3D-
MWCNTS (right) immune-stained for p-tubulin III (in red), GFAP (green) and DAPI
(blue). Scale bar: 100 um. Repetitive Ca®* activities spontaneously recorded in 2D- and
3D-MWCNTs. (Modified with the permission from Bosi et al., 2015 [83]). (A colour
version of this figure can be viewed online.)
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3D CNF

Fig. 3. Spinal organotypic slices cocultured in Control and in 3D CNTs after 14 days of
growth. Immunofluorescence is for neuron-specific microtubules (B-tubulin III; red),
neurofilament H (SMI-32; green), and nuclei (DAPI; blue) (Modified with permission
from Usmani et al., 2016 [50]). (A colour version of this figure can be viewed online.)

function because of disease or injury.

Indeed, CNTs, beyond their being manufactured in 3D struc-
tures, display desirable properties for use in stimulation/recording
electrodes: (i) CNT-based electrodes have been successfully mini-
aturized and do not seem to inflict tissue damage; (ii) CNTs have the
ability to operate as ballistic conductors which aids in lowering
electrode impedance and increasing charge transfer; (iii) CNTs
display exceptional flexibility and they can be twisted and bent to a
large degree, although they are five times mechanically stronger
than steel [84].

In addition, CNTs are attractive as neural electrodes both in vitro
and in vivo because of the high electrochemical surface area (ESA)/
GSA ratio inherent in the nanotube geometry, which gives rise to a
large double-layer charge capacity. For neural stimulation, Wang
et al. [85] have found charge-injection capacities of 1-1.6 pC cm ™2
with vertically aligned nanotube electrodes, and work on the
development of nanotube and nanofiber neural interfaces has been
reported [35,85].

Such properties allowed for engineering CNT-based electrodes
used in interfacing neuronal activity in vitro and in vivo [84]; see
also below]: (i) stimulation of action potentials/Ca?* excitability in
a small group of neurons in culture via multi-electrode arrays, (ii)
stimulating and recording from neurons in hippocampal organo-
typic slice cultures as well and in the whole mount mouse retina,
(iii) stimulation of and recording from rat and monkey cortices, and
(iv) recording human electroencephalogram (EEG) [84,87].

Historically, the first experiment reporting neuronal electrical
stimulation through CNTs, was performed by Liopo and colleagues
[88]. CNTs were deposited onto polyethylene terephthalate films
and a separated stimulation chamber was created putting a ring in
the middle of the film to contain dorsal root ganglion neurons. The
stimulating electrodes were attached to the CNTs substrate outside
of the ring. It has been found that a current step of 1 A amplitude,
applied directly to the CNTs substrate, elicited a neuronal response,
monitored as inward trans-membrane current by whole-cell patch
recordings.

Similarly, Gheith and coworkers [89] showed that neurons were
activated by steps of electrical stimulation delivered through
SWCNTs films, made by the layer-by-layer method, which consists
in alternate layering with a negatively charged polyacrylic acid
polymer and positive charged SWCNTSs.

New insights were obtained by Mazzatenta and coauthors [90]:
by using an experimental setting similar to that reported by Liopo,
these authors found that neuronal circuits, chronically grown on
SWCNTs substrates, could be effectively stimulated via the
SWCNTs-layers. In fact, they observed that the delivery of voltage
steps via silver wire-SWCNTs layer induced the appearance of fast
inward currents in hippocampal cultured neurons, monitored in
voltage-clamp mode, which were abolished by tetrodotoxin (TTX),
a selective blocker of voltage gated fast sodium channels. When
recording in current clamp, supra-threshold stimulations elicited

repetitive action potentials (APs). However the effective stimula-
tion of neural network via SWCNTs was proved by monitoring the
emergence of synaptic responses in neurons due to action poten-
tials elicited by CNTs electrical stimulations of the pre-synaptic
cells.

In addition, the presence of tight contacts between neuronal
membranes and CNTs was imaged by SEM [90], indicating, together
with electrophysiological experiments, the presence of a tight
electrical coupling between CNTs and neuronal membranes.

The next advances in CNT-based neuronal interfacing were
provided by Wang and collaborators [85]. These authors designed a
prototype of neural interface, using vertically aligned MWCNTSs
pillars as microelectrodes (VACNF), which offered a high charge
injection limit (1—1.6 mC/cm?) without faradic reactions. Rat hip-
pocampal primary cultures were grown on these devices and, while
neurons were stimulated via CNTs electrodes, neuronal activity was
optically monitored by live calcium imaging, highlighting that the
use of CNTs as safer and more efficient neural prostheses electrodes
when compared to metal ones [85].

In a different study, CNTs were layered by electrically conductive
polymers, such as polypyrrole, to improve the mechanical proper-
ties of the substrate and the efficacy of the electrical stimulation,
improving also CNT biocompatibility [86]; potentially, this might
provide an additional strategy enabling controlled and localized
drug release [91]. Carbon nanofibers electrode architectures have
been further employed to provide long-term, neuron-electro-
analytical measurements of the dynamic processes of intercellular
communication between excitable cells. Multi-element electrode
arrays composed of individually addressed VACNF have been used
as growth substrates of neuronal-like cell lines (PC12) and primary
neurons (rat hippocampus) over extended periods (days to weeks)
[92]. Neuronal activity was indirectly monitored at the electrode
site via detection of oxidized species generated by the cultured
cells, i.e. neurotransmitters. Preliminary data suggested that
quantal release (in vesicular quanta) of easily oxidized transmitters
could be observed at the nanofiber electrode upon at least 16 days
of culturing [92].

Nowadays, in vivo recordings by CNTs-coated sharp electrodes
have been reported in the motor cortex of anesthetized rats and in
the visual cortex of monkeys [37]. Compared with bare metal
electrodes, CNTs coated ones reduced the noise and improved the
resolution of the detected spontaneous activity [93]. CNTs-coated
sharp electrodes were tested in the anesthetized rat motor cortex
(controlling limb movement) and in awaken trained monkey V4
visual cortex (involved in perception of form-with-color) [37,84]. In
these diverse in vivo experimental models, CNTs-coated electrodes
outperformed their paired control electrodes in terms of reduced
noise (~17 dB) and increased sensitivity of detection (on average
7.4 dB more power) of spontaneous electrical neuronal activity
throughout various ranges of acquisition frequencies (1-1000 Hz)
relevant to brain (patho)physiology [37]. Due to their mechanical
strength, CNTs endured the advancement of electrodes through the
dura mater and remained intact even after recordings were
completed, as assessed by electron microscopic investigation of the
used electrodes, thus planar and 3D electrodes coated by CNTs
enhanced the interface performance in in vitro and in vivo models
[37,84].

More recently, CNT-fiber's performance and biocompatibility
were further tested in vivo for neural stimulation and recording by
Vitale and collaborators [94]. In vivo chronic studies in Parkinso-
nian rodents showed that CNTs microelectrodes stimulate neurons
as metal electrodes with 10 times larger surface area, while eliciting
a significantly reduced inflammatory response [94], with the very
same CNTs microelectrode that can record neural activity for
weeks. These authors thus conclude that CNTs fibers are the ideal
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candidate material for the development of small, high charge
density, low impedance, flexible microelectrodes capable of stable
interfacing of neural ensembles [94].

Another issue addressed by several studies is related to the
optimization of the production process to obtain CNT-based
Multielectrode Array (MEA) systems more easily, cost-effectively
and with a high degree of reproducibility. Shein and collaborators
[95] prepared CNTs-MEA systems by means of a conventional
micro-fabrication technique, where CNTs were deposited through a
chemical vapor deposition growth procedure utilizing metal elec-
trodes as catalyst. The authors seeded rat cortical neurons on these
chips: after several days in culture, neurons and glial cells aggre-
gated and accumulated on CNT covered regions allowing the
detection of neuronal activity via CNT electrodes up to 60 days in-
vitro with high stability. Adjacent electrodes were used to stimulate
and to record evoked neuronal responses. In this work, CNTs were
exploited to design biocompatible, long lasting stimulation/
recording systems, where micro-fabrication technique allowed the
design of patterned network.

Shoval and coauthors [96] employed a similar procedure to
develop CNT-MEA devices, which were exploited to record the
activity of whole-mount neonatal mouse retinas. After minutes
from the placement of retinas on electrodes, the authors could
monitor neural spontaneous activity as typical bursting and prop-
agating waves with a higher signal-to-noise ratio in comparison
with commercially available electrodes. Interestingly, the recorded
signals underwent over a period of minutes to hours to a gradual
increase in the signal amplitude, suggesting a dynamic interaction
between CNTs and neurons, which resulted in enhanced cell elec-
trode coupling.

Chen and collaborators [97] developed a flexible CNT-MEA, with
an improved electrode impedance and charge-transfer capacity by
more than six times, thanks to the presence of CNTs. CNT-MEA was
used to record electrocorticograms from the rat cortex in vivo,
again showing improved signal-to-noise ratio [97].

Very recent developments are pointing to the potential use of
SWCNTs in manufacturing multifunctional human-machine in-
terfaces of the future [98]. Proof of principle experiments in
humans demonstrating the crucial role of SWCNTs in obtaining
effective prototypes for wearable or patchable smart systems [98]
clearly indicate the future potentials of these materials.

In more visionary developments, CNTs might not only improve
electrodes’ quality, but might also support and direct axons
regrowth and functions, thanks to CNT intrinsic properties. The
electrical activity of rat hippocampal neuronal networks developed
on CNTs microelectrodes is characterized by earlier onset (4 days
after seeding) in comparison to the ones of cultures grown on
control electrodes. The authors suggested that the increase in sur-
face roughness in CNT immobilized microelectrodes provides cells
with a larger surface area to adhere with, boosting the activation of
integrins, and promoting a faster neuronal differentiation [99].

Under controlled experimental conditions, CNTs showed also a
good biocompatibility in the brain in vivo. Intravenous (i.v.)
administration of 3C- enriched SWCNTSs in mice [53,100] demon-
strates that these nanomaterials (10—30 nm x 2—3 pm bundles) are
able to cross the Blood Brain Barrier (BBB) and accumulate inside
the brain tissue, yet only to a limited extent. This study suggested
that SWCNTs did not show acute toxicity despite their accumula-
tion in several organs (especially liver, lungs, and spleen) and
despite their slow clearance [53].

Aurand and co-authors [101] implanted PDMS-CNTs scaffolds
into the adult rat visual cortex for 2, 4 and 8 weeks showing min-
imal immune response following their implantation into the CNS
and confirming the biocompatibility of CNTs-scaffolds and sup-
porting their application as neural interfaces.

CNTs were also probed for neuroregenerative applications in
spinal cord injury (SCI) model rats. Post-injury administration of
PEG-functionalized SWCNTs (PEG-SWCNTs) in the lesion site was
found to promote axonal survival and repair, while delayed
administration was able to achieve a dose-dependent reduction in
the lesion volume in both gray and white matter, and an increase in
the number of neuronal fibers in the lesion epicenter with a modest
sprouting of corticospinal tract axons into this region [47,53].
Neither alterations in reactive astrogliosis at the lesion site nor
toxicity or neuropathic pain were detected. As outcome, a dose-
dependent moderate recovery of motility in treated rats was
achieved.

In alternative approaches, CNTs based systems have been
rigorously investigated in cancer therapy to carry and deliver drugs,
and assessed for potential gene, thermal, photodynamic and
lymphatic targeted therapy [102,103]. Current treatments for brain
cancer and other CNS diseases are of limited success, partly due to
the difficulties posed by the drugs insolubility and poor distribu-
tion, lack of selectivity and the inability to cross the cellular barrier
and the BBB. Ad hoc engineered CNTs (shape, dimensions, func-
tionalizations with different molecular moieties) may show,
together with good electronic properties, a remarkable cell mem-
brane penetrating capability, high drug-loading and pH-dependent
therapeutic unloading capacities, thermal properties, large surface
area and easy modification with molecules, which render them
suitable candidates as drug delivery nano-vectors [104].

Functionalized CNTs may show good pharmacokinetic profile,
the ability to make complexes with a desired selectivity and spec-
ificity allowing safe, effective and target delivery of therapeutic
agents to the tumor cells [103,105,106].

The large amount of CNTs applications in biomedicine and the
ongoing developments mentioned above, have prompted since
decades multiple studies addressing their potential toxicity. Yet,
toxicity of CNTs is still a matter of debate, indeed a number of in-
vestigations highlighted toxic effects in cells upon CNTs exposure
[53,107—109]. The danger of CNTs is lower by their being engi-
neered and immobilized in platforms, substrates or electrodes or
higher when used as free, unbound particles. In fact, when used as
substrates for in vitro studies, CNTs substrates were shown to have
no toxic effects on cell lines, dissociated primary cultures, or
organotypic slice cultures [23,57,110], accordingly all studies
reporting the use of CNT to implement in vivo electrodes did not
observed nano-tube related toxicity [37,84,93,94,98]. Different and
more complex is the case of unbound particles in fact both
MWCNTs and SWCNTs may have toxic effects in their soluble forms,
when not properly functionalized. The reported cytotoxicity is
mainly due to the capacity of CNTs and nanoparticles in general to
enter into cells and disperse in the cytoplasm as demonstrated by
Simon-Deckers and collegues in 2008 in human pneumocytes
[111].

Several studies have been conducted to understand the risks
related to CNTs exposure also in the perspective of biomedical
applications. Contaminants, such as Fe, Ni, Co, and Y nanoparticles
deriving from CNTs synthesis processes, may significantly
contribute to the material toxicity [53,112]. Pulmonary exposure
and ingestion represent the major issues for workers involved in
the manufacturing of CNTs [113]. Another important factor that has
been the focus of many studies is the potential of CNTs to induce
DNA damage and mutation, possibly leading to the onset of cancer,
the so-called genotoxicity [114]. MWCNTs for example are able to
enter and accumulate in mouse embryonic stem cells inducing
oxidative damage of DNA [115,116]. Additional determinants of
CNTs toxicity, are their size and surface functionalization together
with the way and dose of administration. By optimizing these
features CNTs were further developed towards clinical applications
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[117], for example CNTs were functionalized enabling bio-
macromolecules translocation inside cells and thus used as pro-
teins and nucleic acids nano-vectors [118,119]. Many studies
showed that MWCNTs can induce inflammation, fibrosis, angio-
genesis and cytotoxicity to macrophages [120] dependent upon
MWCNTs length, iron content or crystal structure [120,121].
Conversely, no toxicity has been observed in SWCNTs in a study on
mice over period of three months [122]. Yang et al., showed that
higher molecular weight PEG chain attachment to CNTs allowed for
a safe elimination from the body with no residual toxicity [123].
Yang et al. [124] noted that PEGylated CNTs has lower reticuloen-
dothelial system (RES) uptake, prolonged circulating time and
reduced deposition in liver and spleen [120].

Pondman et al. [125] overcome the activation of classical in-
flammatory pathway, thus reducing CNTs overall toxicity, by
coating CNTs with recombinant globular heads. Coated CNTs lack
the collagen region of human C1q that will help escaping phago-
cytosis [120,125,126]. Silva et al. [127] showed that purified or
functionalized MWCNTs induced smaller or negligible inflamma-
tion at pulmonary level. Selecting the right forms of SWCNTS is
another strategy to reduce toxicity [119,128]. In experiments
involving neuronal cells, which are commonly considered partic-
ularly sensitive to toxicants and to inflammation, high purity and
functionalized CNTs rarely show toxicity [53,129—131]. Impor-
tantly, CNTs can be enzymatically degraded by peroxidases [132] in
macrophages [133], eosinophils [134] and microglia [135], thus
mitigating the concerns regarding possible toxic effects due to their
accumulation inside the body [53].

In summary, we believe that this large amount of studies tes-
tifies how CNTs still represent cutting-edge nanomaterials for
biomedical applications in neurology.

4. Graphene

Among the new generations of carbon based nanomaterials,
graphene (GR) is definitely the most recently developed and
engineered in many fields of applications: this carbon allotrope
consists of a single layer of carbon atoms arranged in a hexagonal
honeycomb lattice and can be considered the founder of many
other allotropes of carbon, such as graphite, carbon nanotubes and
carbon nanohorns. GR is the thinnest compound known to man at
one atom thick, the lightest material known (with 1 square meter
coming in at around 0.77 mg), the strongest compound discovered
(between 100 and 300 times stronger than steel and with a tensile
stiffness of 150,000,000 psi), the best conductor of heat at room
temperature (around 5000 W/mK) and also the best conductor of
electricity known (with a reported carrier mobility of more than
15,000 cm? x V™! x s71[20]). The excellent electrical and chemical
properties of GR combined with its biocompatibility provide op-
portunities for new biomedical applications. After the ground-
breaking experiments of Geim and Novoselov [136] on GR, research
on this carbon allotrope has grown exponentially with more than
30000 publications in the last decade. Its simple molecular archi-
tecture and GR ability to combine with other existing nano- and
biomaterials make it suitable for a variety of purposes and it has
been developed in a wide variety of GR-based materials. Single
layer graphene, bi-layer graphene, multilayer graphene, graphene
oxide (GO), reduced graphene oxide (rGO) and chemically modified
GR are the members of the GR-based nanomaterial family: each
member of this family possesses its own features in terms of oxy-
gen content, number of layers, surface chemistry, purity, lateral
dimensions, defect density and composition. Due to its highly
reactive surface, single layer defect-free GR production is chal-
lenging and it is also difficult to suspend in water solutions. These
are the main reasons why GO and rGO are usually preferred for

biological applications.

Nonetheless, GR has already been engineered for several
biomedical applications, including cellular imaging and drug de-
livery [137], bio-analysis [138], stem cell research [139,140] and
even photothermal therapy for tumors [141].

GR films were shown to have excellent biocompatibility sup-
porting the growth of primary cultures of mouse hippocampal
neurons and promoting neurite sprouting and outgrowth, espe-
cially during hippocampal early developmental phases [142]. Fab-
bro et al. observed that GR-based materials are inert neuron-
interfacing materials, able to preserve the basal physiological
level of neuronal activity [ 143]. They noticed the uncommon ability
of GR-based substrates (GBSs) to support neuronal development (in
terms of neuronal passive properties, spontaneous synaptic activ-
ity, synaptogenesis, and short-term synaptic plasticity) without
pre-coating with adhesion-promoting peptides (e.g., polylysine or
polyornithine). More recently, GR was reported to tune the extra-
cellular ion distribution at the interface with hippocampal neurons,
a key regulator of neuronal excitability. The ability of GR to trap ions
is maximized when a single layer GR is deposited on electrically
insulated substrates. These biophysical changes caused a significant
shift in neuronal firing phenotypes and affected network activity
[144].

One of the first observations related to the possible use of GR in
the brain environment was that the biocompatibility and broad-
spectrum transparency, flexibility and mass-producibility makes
GR an ideal candidate for replacement of commonly used indium-
tin oxide in neural interfacing devices. Indeed, there are several
examples of effective GR-based electrode devices in the recent
literature. A GR-based, carbon-layered electrode array (CLEAR)
device was implanted on the brain surface in rodents for high-
resolution neurophysiological recording. The optical transparency
of the device at > 90% transmission over the ultraviolet to infrared
spectrum demonstrated its utility through optical interface exper-
iments using this broad-spectrum light wavelength transparency.
These experiments included optogenetic activation of focal cortical
areas directly beneath electrodes, in vivo imaging of the cortical
vasculature via fluorescence microscopy and 3D optical coherence
tomography [ [145]; Fig. 4].

GR and GR related materials (GRMs) offer several benefits as
novel components for the engineering of neural interfaces,
including multi-functionality and biocompatibility. Kostarelos et al.
[146], reported the manufacturing of flexible neural implants
characterized by very low noise levels. Using a flexible array of GR
field-effect transistors, the implants successfully detected slow-
wave activity, synchronous epileptic activity and audio-visual re-
sponses in rats, matching the performance of state-of-the-art
platinum electrode implants [147].

Recently, Thunemann and collaborators [148] explored trans-
parent graphene array technology integrated with 2-photon
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Fig. 4. Left panel: diagram of carbon-layered electrode array (CLEAR) device con-
struction showing the layered structures; middle panel: schematic drawing of opto-
experimental setup, showing the CLEAR device implanted on the cerebral cortex of a
mouse, with an optical fibre delivering blue light stimuli to the neural cells; right
panel: optical evoked potentials recorded by the CLEAR device. X-scale bars represent
50 ms, y-scale bars represent 100 mV (Modified with the permission from Park et al.,
2014 [145]). (A colour version of this figure can be viewed online.)
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imaging and single-photon optogenetic photostimulation. With
this approach, these authors obtained simultaneous mapping of
surface local field potentials and high-resolution 2-photon imaging
of neuronal calcium transients in in vivo animal models [148].

The merging of integrated in vivo optical imaging and stimula-
tion methods by engineering graphene-based electrodes proves
that transparent graphene technology is a versatile platform
applicable to numerous different experimental settings. Whenever
depth-resolved electrical recordings are not required, optically
transparent graphene technology allows seamless integration with
depth-resolved optical imaging and stimulation, circumventing the
need for more invasive brain probes [148].

This combination of measurements holds the potential to bridge
research models (cell cultures, brain slices, in vivo mouse re-
cordings, etc.), to human non-invasive electro-/magnetoencepha-
lography measurements [148,149].

GR is also explored as a novel platform for the local delivery of
therapeutic molecules, and the preliminary results are encour-
aging. Functionalization of GR and GO can tailor their properties
and enable their use as carriers of therapeutic molecules, while
their biosensing, optical and photothermal properties are also be-
ing exploited for combinatory interventions [150]. As an electro-
active material, GR is considered emerging as a next-generation
neuronal tissue engineering scaffolds to enhance neuronal regen-
eration and functional recovery after brain injury. Electrospun mi-
crofiber scaffolds coated with self-assembled colloidal graphene
were implanted into the striatum or into the subventricular zone of
adult rats [151], while microglia and astrocytes activation levels
were suppressed with GR functionalization. In addition, self-
assembled GR implants prevented glial scarring in the brain 7
weeks following implantation. Astrocytes guidance within the
scaffold and redirection of neuroblasts from the subventricular
zone along the implants was also demonstrated. Song et al.
observed [152] that 3D GR supported the growth of microglia and
showed good biocompatibility. Microglia is a macrophage like
phagocytic cell normally inactive unless provoked by damaging
xenobiotics. These cells are derived from myeloid cells and
constitute 12% of brain cells [153]. The observations indicated that
3D GR offered milder neuroinflammation on microglial cells
compared to 2D GR, which further suggested that the topographical
features could affect inflammatory behaviors. Additionally, the 3D
GR foams facilitated the growth of neural stem cells and PC-12 cells
(originated from neural crest) and proved that they can be used for
neural repairing and neurogenesis.

Additional researches supported the ability of GR substrates to
promote neurites sprouting and outgrowth [142], to enhance
neuron electrical signaling [154] and to reduce tissue inflammatory
response [152]. In neurology, GR represents a promising tool for
neuronal implants or bio-devices, with potential applications that
range from neuro-oncology to neuro-regeneration [117,155].
Recently, it was reported that small graphene oxide nanosheets (s-
GO) interfere specifically with neuronal synapses, without affecting
cell viability. In particular, in cultured neuronal networks, upon
chronic s-GO exposure, glutamatergic release sites were sized
down [156]. Different studies reported the use of GBSs at the CNS
level for cell labeling and real-time live-cell monitoring [157—159];
delivery to the brain of molecules that are usually rejected by the
BBB [160,161], and cell analysis based on GR-electrodes [93,94]. In
addition, interfacing GR with neuronal cells might be of help in
promoting neuronal regeneration [ [142,143,161,162], Fig. 5].

Among the different possible implementations of GBSs, the
production of GR-based scaffolds for cell growth and differentiation
is particularly promising. 3D GR foams (3D-GF) can be obtained
using nickel foam template for chemical vapor deposition of GR.
Neural stem cells growth on these substrates allows their electrical
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Fig. 5. SEM images showing large number of graphene oxide flakes (white arrowheads) in
contact with the neuronal cortical cell membrane, exposed to GO flakes for 14 days. On the
right panel, representative spontaneous (left panels) or bicuculline-evoked (right panels)
Ca®* oscillations recorded in 14 DIV cortical cultures in control or GO conditions.
(Reprinted with the permission from Bramini et al. 2016 [162], American Chemical
Society).

stimulation in more physiological 3D geometries [ [163]; Fig. 6].

Neuronal dissociated hippocampal cultures, grown on 3D-GFs
built as previously described, were also able to recapitulate two
basic properties of the complexity of the brain: firstly, the coexis-
tence of local and global electrical activity, and secondly, the exis-
tence of neuronal assembly with a degree of correlated electrical
activity varying in space and time [164]. With a different strategy
Martin et al. built hybrid hydrogels with polyacrylamide and gra-
phene and showed that GR improves the neuronal biocompatibility
of the 3D scaffold [165].

Lopez-Dolado et al. [49,166] were the first to study the in vivo
tissue response in the injured rat spinal cord to the implantation of
flexible and porous 3D scaffolds composed of rGO. These scaffolds
were fabricated by using the ice segregation-induced self-assembly
(ISISA) technique. The results revealed that these substrates
allowed the formation of a soft interface at the injury site, with no
significant differences in the fibroglial scar features with respect to
lesions without scaffolds. Due to its porous structure, extracellular
matrix molecules (e.g., collagen) and different cell phenotypes
were able to infiltrate and migrate to the inner parts of the scaffolds

Fig. 6. Top panel: low- (a) and high- (b) magnified SEM images of NSCs cultured on
3D-GFs. The inset illustrates the interaction between the cell filopodia and 3D-GF
surface. Bottom panel: Representative fluorescence images of differentiated NSCs un-
der differentiation conditions, the cells were immunostained with Tuj-1 for neuron
(green, a), GFAP for astrocyte (red, a&b), 04 for oligodendrocyte (green, b) and DAPI for
nuclei (blue, a&b) (Modified from Li et al., 2013 [163]). (A colour version of this figure
can be viewed online.)
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contributing to the stabilization of both the scaffold and the lesion
site [166]. In the brain, Defterali et al. [167] explored the biocom-
patibility of rGO and its influence on neurogenesis in the adult mice
olfactory bulb (OB) in vivo. Major findings revealed that rGO had no
deleterious effects on the survival of the resident populations of
neurons and astrocytes and of the newly generated neurons. Recent
studies by Mendongca et al. [168] focused on the effects of rGO on
the blood-brain barrier (BBB) components in vivo. rGO and rGO-
PEG were injected intravenously and their toxic effects on BBB
integrity analyzed. Both materials caused a notable downregulation
of astrocyte markers (GFAP and connexin-43), endothelial tight
(occludin) and adherens (B-catenin) junctions and basal lamina
(laminin) at 3 h after administration. Interestingly, this effect dis-
appeared after 7 days of exposure to rGO, while in the rGO-PEG
group it was permanent and increased over time [168].

The studies reported above suggest that GR and its derivatives
are suitable candidates for biomedical applications in the CNS. For
this reason, it is expected that the high attention given nowadays to
graphene will stimulate rapid improvements both in GR engi-
neering for medical applications, including brain interfaces, and in
the understanding of its eventual toxic effects.

5. Diamond

Diamond, a natural as well as a synthetic material, is currently
under investigation in several fields of applications. In any list
summarizing the specific material properties, diamond is often at
the extreme [169]: crystalline diamond shows the highest atomic
density of any bulk crystal, the highest bulk modulus and highest
thermal conductivity. Diamond, a wide band gap semiconductor, is
optically transparent from the far infrared to the ultraviolet, making
it an ideal candidate for optical applications [170]. The attractive-
ness of diamond is that different morphologies and forms can be
obtained from this sp>-hybridized material. Indeed, modulation of
the growth parameters results in microcrystalline to ultra-
nanocrystalline CVD diamond films. Ultra-nanocrystalline films
have the advantage of possessing smooth surfaces, lower strain and
improved fracture resistance. Such films are characterized by dia-
mond domains that are =10nm or less in size, with thin sp?
boundaries.

Nanoscale diamond particles (also termed nanodiamonds, NDs)
and diamond nano-films represent the most interesting forms of
diamond explored for applications in drug delivery or medical
diagnostics.

Due to its chemical and biochemical inertness, diamond is
generally considered as a biocompatible material, meaning that it is
chemically non-cytotoxic when in contact with biological cells
[171]. This makes diamond a material of interest for coating med-
ical devices, building artificial organs, and as a growth support for
biological cells. ND particles and thin films have been used as
substrates for cultivation of different cell phenotypes including
neurons [172], fibroblasts [173], osteoblasts [174] and many other
cell lines [175]. Guarina and collaborators [176] used fluorescent
nanodiamonds (FND) to evaluate their functional implications on
hippocampal neurons, using MEA recordings. The firing frequency
of neurons was differently affected depending on the develop-
mental stage of incubation with FNDs (7 versus 14). When FNDs
were applied at 14 days in vitro they drastically reduced the
neuronal firing frequency (Fig. 7).

In all cases diamond exhibited no measurable cytotoxicity and,
in some cases, appeared to promote cell adhesion and proliferation
over conventional materials such as glass or tissue culture
polystyrene.

In neuroscience, in addition to the employment as growing
substrate, NDs were applied in the development of biosensors for

CTRL +FND (added at 7 DIV) +FND (added at 14 DIV)

Fig. 7. Confocal fluorescence micrograph of cultured hippocampal neurons (14 DIV),
exposed to 40 ug/ml FND for 2 days, and stained in green with the cytoplasmic
labelling dye (CellTracker™ Green CMFDA). Red emission is from FNDs. The entire field
and cross-sections (XZ and YZ) were shown. Representative traces of spontaneous
firing at 18 DIV (data from 3 representative MEA channels) under control conditions
(CTRL), without FNDs, with FNDs seeded at 7 DIV and at 14 DIV. Insets: higher
magnification of single spikes and bursts. (Modified with the permission from Guarina
et al., 2018 [176]). (A colour version of this figure can be viewed online.)

recording neuronal activity, thanks to their peculiar electrical and
chemical properties and stability [177,178].

Despite the encouraging results in vitro for biological applica-
tions, in vivo applications of NDs in the CNS are still in their early
days [53]. To date only one report suggests the possible use of NDs
for therapeutic applications in the CNS: CED (convection-enhanced
delivery, an experimental high efficiency intracranial delivery sys-
tem) of DOX-loaded NDs (4—8 nm) is found to provide efficient
treatment of different aggressiveness gliomas in mice striatum
[53,179]. The treatment positively impact mice survival (with
respect to DOX treatment) of 1.4 times in the case of the most
aggressive tumor and 1.8 times in the case of the less aggressive
one. Notably, in the latter case tumor is eradicated in 3 out of 5
mice, while all mice treated with non-conjugated DOX die [53].

Diamond thin films have been proposed in vivo, as coatings for
implants and prostheses [180].

The increasing interest and the recent development of new
techniques for constructing micro/nanodevices [181—185] has
rapidly broadened the number of diamond-based MEAs (DBMs)
employed for electrical recording and stimulation and for detecting
neurotransmitter release [186]. DBMs can now be used to either
resolve the electrical activity in complex neuronal networks (low-
density MEAs) [187], to identify the extension of cell microdomains
(active zones) where neurosecretion occurs (high-density MEAs)
[188] or to assay the protein content of the physiological liquids
that condition the growth, formation, and maturation of complex
neuronal networks [189,190].

Ariano and colleagues fabricated a device to record extracellular
activity of cultured neurons, based on hydrogen terminated (H-
terminated) conductive diamonds. The device allows recording the
entire activity of the network in a way similar to conventional
microelectrode array (MEA) and with comparable neuronal activity
signals [177]. 2D and 3D MEA systems based on diamond and
consisting of 256 electrodes on a surface of 28.8 mm? have also
been developed with the purpose of studying ex-vivo models, in
order to obtain more information from a more complex neuronal
network [191]. Finally, Halpern and colleagues successfully
implanted diamond electrodes in Aplysia californica attaching it on
the buccal nerve 2, a primary nerve involved in the feeding
behavior of Aplysia and recording extracellular electrical activity for
up to 9 days after the implantation [192].

Diamond in the form of nanowires should also be considered.
The use of diamond nanowires is believed to address positively
issues related to improving the overall performance of sensors,
including sensitivity and selectivity [193—196].

In the field of cellular sensing, diamond-based substrates offer
unique advantages in comparison to conventional materials (sili-
con, glass, metals, and polymers) [197], which directly derive from



438 R. Rauti et al. / Carbon 143 (2019) 430—446

the extreme physical properties of this material, i.e.,, mechanical
robustness, wide optical transparency and thermal conductivity
[198].

In vitro tests demonstrated that diamond-based substrates are
non-cytotoxic and support significantly better adhesion and
growth of cells in comparison with standard substrates [199,200].

Furthermore, the chemical inertness of the pristine diamond
surface does not prevent its efficient chemical functionalization
upon the termination with specific covalent bonds that allows the
attachment of a broad variety of molecules, including DNA strands
[201—203].

The H-termination of the diamond surface favors the formation
of an electrically conductive two-dimensional layer in contrast with
the insulating O-terminated surface [177]. These transparent elec-
trodes have been exploited to record the activity of cultured
neuronal cells with a single macroelectrode [177] and subsequently
to record the activity of cultured cardiomyocyte-like and human
embryonic kidney cells using arrays of solution-gated field-effect
transistors.

One of the main challenges when dealing with nanodiamond for
brain interfacing is represented by the difficulties in integrating
diamond on flexible substrates and this difficulty has been faced by
the retinal implant community. The Diamond to Retina Artificial
Microinterface Structures (DREAMS) project, funded by the Euro-
pean Commission, utilized an array of boron doped diamond (BDD)
microelectrodes transferred to a flexible substrate [204] and have
successfully developed this general strategy to fabricate a range of
MEA types [205,206]. Reporting the MEA from a sacrificial layer to a
flexible substrate also enables the fabrication of flexible implants
for retinal stimulation. Here the ultimate challenge was to make the
fabrication of diamond compatible with a soft substrate material,
and it was achieved using a sacrificial substrate lift-off technique,
enabling the preparation of such implants on polyimide as well as
on parylene [204].

The future for diamond-based substrates looks promising;
however, it should be noted that the nanomaterial is still of limited
use when developing biomedical applications, especially in the
neurosciences field. May be in the future, as in the case of GO,
suitable tailoring of the nanomaterial chemical, morphological and
physical properties will help to overcome its current strong limi-
tations [53].

6. Carbon nanofibers

Carbon nanofibers (CNFs) have been classified as linear, sp*-
based discontinuous filaments, where the aspect ratio is greater
than 100 [207]. Depending on the angle of the graphene layers that
compose the filament, CNFs have even been classified as stacked
(graphene layers stacked perpendicularly to the fiber axis) or
herringbone/cup-stacked (graphene layers stacked at an angle be-
tween parallel and perpendicular to the fiber axis) [208].

The typical lengths and diameters of carbon nanofibers are in
the ranges of 5-100 mm and 5—500 nm, respectively [209]. CNTs
and GR are the most studied carbon nanomaterials for neural in-
terfaces, however CNFs are also attractive in bio-interfacing de-
velopments due to their chemical and physical properties [1]: CNFs
are chemically stable and inert in physiological environment [2],
they are biocompatible for long-term implantation due to CNFs
solid carbon skeleton [3], they are electrically robust and conduc-
tive for signal detection [4], they can be manufactured into 3D
structures allowing intra-tissue and intracellular penetration [210],
CNFs possess high surface-to-volume ratio, which greatly reduces
electrical impedance, and [5] ultra-micro scale sizes that provide
high spatial resolution. CNFs have been applied as promising ma-
terials in many fields, such as energy conversion and storage,

reinforcement of composites and self-sensing devices.

In addition, CNF based materials have been developed as elec-
troconductive scaffolds for neural tissues to facilitate communica-
tion through neural interfaces. Electrical fields are able to enhance
and direct nerve growth [211], therefore electroconductive scaf-
folds have been applied to enhance the nerve regeneration process,
not only providing physical support for cell growth but also deliv-
ering the functional stimulus. CNFs may represent novel, versatile
neural interfaces, being capable of dual-mode operation by
detecting electrophysiological and neurochemical signals, not only
at the extracellular level with high spatial resolution, but also at the
intracellular level by penetrating into single neurons [9].

Despite the longstanding experience on these nanomaterials
and the deep knowledge of the CNFs-neuron interface in vitro,
in vivo experiments on their possible application for the treatment
of brain and spinal cord injuries or diseases are still limited to few
examples [53,212,213]. In the first report CNFs impregnated with
subventricular stem cells were employed to promote neuro-
regeneration after experimental stroke [53]. The animals receiving
the CNF-based treatment show reduction of the infarcted volume
as well as recovery of motor and somatosensory activity. These data
indicate that CNFs are optimal support material for neuronal tissue
regeneration [53].

Recently, Guo and collaborators [104] developed a polymer-
based neural probe with CNFs composites as recording electrodes
via the thermal drawing process [213]. They demonstrated that in
situ CNFs alignment was achieved during the thermal drawing,
which contributes to a drastic improvement of electrical conduc-
tivity by 2 orders of magnitude compared to a conventional poly-
mer electrode. The resulting neural probe has a miniature footprint,
with a recording site reduced in size to match single neuron, yet
maintaining impedance value able to capture neural signals. In
chronic settings, long-term reliable electrophysiological recordings
with single-spike resolution and minimal tissue response over
extended period of implantation in wild-type mice were shown
[213].

A future development might lead to a smart system able to di-
agnose and treat neurological diseases (e.g. by local drug delivery)
responding to real-time detection of electrical and chemical infor-
mation from the target nervous tissue.

7. Fullerenes

The first fullerene C60 came to life in 1985 [214] but the family of
fullerenes includes a wide range of carbon-based molecules with
different number of carbon atoms and symmetries. The most
common fullerene is also called buckyball and consists of 60 carbon
atoms arranged into 12 pentagons and 20 hexagons to create a
structure with the geometry of a hollow sphere [214—216]. Cgo
attracted great attention because of its very stable and symmetric
structure [217].

Fullerenes are considered zero-dimensional materials, which
possess very interesting physical and chemical properties
[218—222] for medicine and technology.

The main issue of Cgg in the biomedical field is represented by its
natural water repulsion and its resulting hydrophobicity. This
insolubility in aqueous media induces fullerenes to aggregate [223]
and this pushed the research to develop several strategies to
overcome the problem. Hydroxyl and malonic acid functionalized
fullerenes found important applications in neuroprotection against
free radicals generated by fatty acid aerobic metabolism, which
neurons are rich of [224], after brain injury or inflammatory
response to diseases. These derivatives of fullerene can interrupt
chain reactions, generating the radicals by removing intermediate
peroxyl radicals and showing robust neuroprotection activity in
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several in vitro models of CNS injury and neurological disease
including Parkinson's disease [225]. For this ability fullerenes can
prevent excitotoxicity produced by the leakage of neurotransmit-
ters and excitatory ions that results from the free radical damage
consequent to a neuroprosthetic surgery and this effect could
probably be due in part to their capacity of inhibiting glutamate
channels [226].

Fullerenes have been extensively studied in a number of appli-
cations such as organic photovoltaics [53,219,227], gas storage
[228], and molecular sensing [229]. In the last 30 years fullerenes
were considered among the cutting-edge nanomaterials for
biomedical applications: they were proposed as oxidative damage
protecting agents, photosensitizers for photodynamic therapy of
cancer, antiretroviral agents and as drugs and gene delivery vectors
[230,231]. Fullerenes also were the pioneering carbon nano-
materials investigated in vivo for their potential applications in the
therapy of brain diseases. However, the raising concerns of their
toxicity have reduced significantly the interest in developments
from these materials in the biomedical scientific community [53].

Fullerene-based therapeutics can significantly ameliorate
experimental allergic encephalomyelitis (EAE), a rodent model of
human multiple sclerosis [MS] characterized by inflammation in
the CNS [232]. Fullerene derivatives have demonstrated to protect
neurons from oxidative and glutamate-induced injury, and restore
glutamine synthesis and glutamate transporter expression in as-
trocytes under inflammatory insult. The in vitro efficacy translated
into in vivo efficacy, as treatment initiated after disease onset
reduced the clinical progression of chronic EAE in mice, suggesting
this may be useful in the treatment of progressive MS and other
neurodegenerative diseases. Oxidative stress, through the genera-
tion of radical oxygen species, is an underlying mechanism that
mediates mast cells signaling and MS pathology [233]. Indeed,
several antioxidants are currently in various phases of human
clinical trials (i.e., lipoic acid, inosine and Triomar® [Pronova Bio-
care, Oslo, Norway], see [ClinicalTrials.gov. http://clinicaltrials.gov/
]). Since fullerene derivatives can stabilize MCs [234], are potent
antioxidants [230,235] and are anti-inflammatory agents [236], if
rationally designed these compounds may be used as a platform for
new areas of therapeutic research for MS.

In vivo, fullerenes are the first carbon nanomaterials found to
distribute in the brain after systemic administration. Bio-
distribution studies using a 14C-radiolabeled carboxylated C60
derivative (14 C-C60) in rats after i.v. administration [237] reveal
that the nanomaterial rapidly spreads in several organs including
brain, indicating that it is able to cross the BBB despite its high
molecular weight (995 Da). No toxic effects are observed after i.v.
administration, while toxicity is observed after intraperitoneal in-
jection [53]. This raises concerns about the possible occurrence of
long-term toxicity or toxicity after chronic administration since the
fullerene can reach with time toxic concentrations inside specific
sites. Although extensive researches have been conducted to
address the intrinsic neuroprotective properties of fullerenes, there
are very few reports regarding in vivo drug delivery and imaging
applications within the CNS [53].

Despite some good results achieved, fullerenes represent the
“past” of carbon nanomaterials research [53]. This is mostly due to
concerns related to their accumulation in several organs, their long
persistency in the body and their-in general-unpredictable toxicity.
With all these serious impairments, it is not easy to say if the risk-
benefit ratio will still provide opportunities for the development of
these nanomaterials in biomedical applications.

8. Other carbon nanomaterials

Single-wall carbon nanohorns (SWCNHs), reported by Ijima in

1999, are tiny graphene sheets, wrapped up to form horn-shaped
cones with a half fullerene cap, having 30—50 nm length and
2—5nm diameter. They have the tendency to group together and
form aggregates (spherical clusters or bundles) like “dahlia” flowers
or buds, with an overall diameter of 80—100 nm.

Being their structure similar to tiny carbon nanotubes, SWCNHs
maintain most of the typical properties of nanotubes: high elec-
trical conductivity, high thermal conductivity and possibility of
functionalization. SWCNHs peapods (functionalized with CdSe/
ZnSe QDs), encapsulating GA3N@C80 fullerenes and delivered to
U87 tumor bearing mice by convection-enhanced delivery intra-
tumoral infusion [238], enabled tumor imaging either in vivo by
MRI (thanks to Gd3™) and ex vivo by confocal microscopy (owing to
the presence of QDs). SWCNHs showed to be retained inside the
tumor for at least 3 days. Although this study indicates SWCNHs as
a possible brain drug delivery nano-platform, other reports on the
in vivo bio-distribution of SWCNHs have demonstrated that they
could not cross the BBB [239,240]. This precludes the SWCNHs to be
delivered i.v. to the brain, leaving the more dangerous and
complicated intracranial administration as the only feasible option
available at the moment.

Carbon dots (CDs) are a recently discovered class of discrete,
quasi-spherical CBNs [241], which essentially combine the pres-
ence of an amorphous core and a graphitic shell. CDs are expected
to have a huge impact in biotechnological and environmental ap-
plications, based on their high potential as a nontoxic, fluorescent
alternative to the popular semiconductor-based quantum dots
(QDs). Their peculiar properties have been exploited in photo-
catalysis [242], electrocatalysis [243], as sensitizers for solar cells
[244], as well as for sensing applications [245]. Due to their high
intrinsic fluorescence that can span from the visible to the near
infrared [246,247], CDs were considered particularly appealing for
bioimaging applications (for a review see Peng Z. et al. [248]).
Depending on the synthetic strategy adopted, they might expose
functional groups on their surface, allowing surface passivation
with biocompatible polymers or grafting additional biomolecules
[249,250]. Finally, molecules like anticancer drugs and nucleic acids
can be non-covalently loaded on their surface, allowing the use of
these nanomaterials for delivery purposes [251,252]. CDs seem to
display a very good biocompatibility [253], probably resulting from
the high density of charged groups on their surface, which confers
high stability to their suspensions in water and biological fluids.
Several authors have reported that CDs penetrate cell lines in vitro
[254—258]. No toxicity was observed in various studies conducted
on cell lines [253,256] and on animals [259]. However, Borisova
et al. reported that these nanoparticles could interfere with
exocytotic mechanisms, and therefore hamper the normal neuronal
and brain functions [260]. However, the effect of CDs on cellular
biochemistry has not been thoroughly explored.

Given their recent discovery, only a few studies have applied
CDs to the CNS with the aim of diagnosis and therapy. Interestingly,
the CDs used in in vivo biodistribution studies exhibited very good
BBB crossing capabilities and a strong tendency to accumulate in
the brain even if they were not specifically functionalized: 100 nm
fluorescent CDs, prepared via the inexpensive and efficient pyrol-
ysis of a glucose and glutamic acid mixture, were taken up by the
brain tissues after i.v. administration in mice [261]. Epifluorescence
imaging, made possible thanks to the CDs bright fluorescence
emission, revealed that they readily crossed the BBB after systemic
injection and diffused in the brain tissues, where they reached the
highest concentration within 1h. Ex vivo imaging of brain slices
indicated that CDs were mostly accumulated in the cortex, in the
hippocampus and in the ventricles. The authors hypothesized that
the presence of still intact glucose and glutamine molecules on the
CDs surface endowed the nanoparticles of “CNS-targeting”


http://clinicaltrials.gov/

440 R. Rauti et al. / Carbon 143 (2019) 430—446

capabilities. From the available epifluorescence images, the nano-
material did not show diffusion in other specific body regions apart
from the brain and the blood. Interestingly, the nanomaterial was
also rapidly cleared from the CNS. In vitro studies [262,263] have
demonstrated that CDs dispersions in plasma had high stability,
and good hemocompatibility with moderate cytotoxicity for brain
endothelial cells, detected only at very high concentrations. In
summary, they provided in vivo data, although referring only to
early time-points, suggested that the nanomaterial had an
adequate safety profile for biomedical applications in the CNS.

Also 3—4 nm glycine-derived CDs were able to cross very effi-
ciently the BBB and accumulate in the brain. Moreover, they were
able to target a human glioma tumor xenographted in mice brain
[264]. Epifluorescence imaging indicated that they displayed a
maximum brain uptake just 5min after tail vein injection, and
strongly localized inside the tumor mass to be then rapidly cleared.
Systemically, CDs distributed in the liver, kidneys and hearth.
In vitro hemolysis, plasma stability and cytotoxicity studies indi-
cated a high biocompatibility of this nanomaterials [259,265].
Although these CDs displayed fast and consistent accumulation
inside the tumor, their potential use as vectors for delivering
antitumor drugs in the CNS is not suggested at the moment because
of their fast excretion from the tumor lesion and their accumulation
in the heart, which is a known target of anticancer drugs toxicity.

Also these nanomaterials are in their early stages of develop-
ment for biomedical applications: suitable chemical modification
with molecules able to increase their plasma circulation time and/
or with targeting moieties might improve their retention in the
brain allowing future applications in tumor therapy. A deep toxi-
cological evaluation of their effects in the CNS in particular but also
in the whole body is needed since current available data, albeit very
promising, are not sufficient to draw clear conclusions.

9. Conclusions

CBNs have been studied in a plethora of technological fields,
including biomedical applications. Many CBNs showed unexpected
and outstanding interactions when interfacing electrically active
tissues, such as the neuronal and the cardiac ones. In particular,
CNTs are in the spotlight for their powerful influence on the
physiology of neuronal cells and axons. The precise biophysical
mechanisms of these special interactions are not completely un-
derstood, but the features and the remarkable applications of such
materials, together with their ability to manipulate neural activity,
still hold strong promises in manufacturing interfaces enriched by
artificial cues that can improve the interfacing electrode perfor-
mance and guide tissue reconstruction. The ability of CNT-based 3D
structures to dictate neurite web morphology toward successful
reconnection of segregated spinal explants has been explored
in vitro [81] and the same material has been implanted in vivo in
the rat brain with a limited tissue reaction surrounding the im-
plants [83]. The new player among CBNs, GR, has also displayed
interesting features that can be exploited to interface neurons and
other CBNs are under investigation for their own peculiar
properties.

In this review we have reported some of the more recent CBN
applications related to engineering brain interfaces. We have dis-
cussed their properties and their performances in improving and
boosting neuronal growth, in developing new research lines in
neurophysiology and neurobiology and in providing novel methods
to explore brain functions. For their peculiarities CNTs and GR seem
to be the most promising materials for the future development of
innovative human interfaces or sensors. Hundreds of researchers
are exploring their potentialities and several international projects
are involving their usage in multiple biological fields of application.

We strongly believe that a great future awaits CBNs particularly for
the production of multifunctional human (brain) interfaces and in
tissue engineering to support neuronal regeneration.
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