
 
 
A potential role for Dkk-1 in the pathogenesis of osteosarcoma predicts 
novel diagnostic and treatment strategies. 
 
Narae Lee1, Angela J. Smolarz1, Scott Olson1, Odile David3, Jakob Reiser2, Robert 
Kutner2, Najat C. Daw4, Darwin J. Prockop1, Edwin M. Horwitz4,5, Carl A. Gregory1,6. 
 
 
1 Center for Gene Therapy and Department of Medicine, Tulane University Health Sciences Center, 1430 

Tulane Avenue, New Orleans  LA 70112, USA. 

2 Vector Core, Louisiana State University Health Sciences Center, 1901 Perdido Street, Suite 322 New 

Orleans, LA 70112, USA. 

3 Director of Cytopathology, University of Illinois College of Medicine, Chicago, IL 6061, USA. Formerly 

of the Department of Pathology, Tulane Hospital and Clinic, Tulane Avenue, New Orleans, LA 70112, 

USA. 

4 Department of Oncology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN  

38105-2794  USA 

5 Children's Hospital of Philadelphia, Abramson Research Center, 1116D, 3615 Civic Center Boulevard, 

Philadelphia, PA 19104, USA. Formerly of Division of Bone Marrow Transplantation, St. Jude Children's 

Research Hospital, 332 N. Lauderdale, Memphis, TN  38105-2794  USA. 

6 Corresponding author. 

 
 
Funded by: The NIH grants DK071780 and 5P20 R20152 and the Louisiana Gene 
Therapy Research Consortium. Supported in part by Cancer Center 
Support Grant CA21765 from the National Cancer Institute and by the American 
Lebanese Syrian Associated Charities (ALSAC). 
 
 
 
 
 
 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
07

.1
30

.1
 : 

P
os

te
d 

20
 J

un
 2

00
7

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nature Precedings

https://core.ac.uk/display/287391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Canonical Wnt signaling is an osteo-inductive signal that promotes bone repair 

through acceleration of osteogenic differentiation by progenitors [1-12]. Dkk-1 is a 

secreted inhibitor of canonical Wnt signaling [13-17] and thus inhibits osteogenesis 

[18-21]. To examine a potential osteo-inhibitory role of Dkk-1 in osteosarcoma (OS), 

we measured serum Dkk-1 in pediatric patients with OS (median age, 13.4 years) 

and found it to be significantly elevated. We also found that Dkk-1 was maximally 

expressed by the OS cells at the tumor periphery and in vitro Dkk-1 and RANKL 

are co-expressed by rapidly proliferating OS cells. Both Dkk-1 and conditioned 

media from OS cells reduces osteogenesis by human mesenchymal cells and by 

immuno-depletion of Dkk-1, or by adding a GSK3β inhibitor, the effects of Dkk-1 

were attenuated. In mice, we found that the expression of Dkk-1 from implanted 

tumors was similar to the human tumor biopsies in that human Dkk-1 was present 

in the serum of recipient animals. These data demonstrate that systemic levels of 

Dkk-1 are elevated in osteosarcoma. Furthermore, the expression of Dkk-1 by the 

OS cells at the periphery of the tumor probably contributes to its expansion by 

inhibiting repair of the surrounding bone. These data demonstrate that Dkk-1 may 

serve as a prognostic or diagnostic marker for evaluation of OS and furthermore, 

immuno-depletion of Dkk-1 or administration of GSK3β inhibitors could represent 

an adjunct therapy for this disease. 

 

We measured the levels of Dkk-1 in the serum of newly diagnosed individuals 

with OS by ELISA and found that, the mean levels were elevated (p<0.0001, 2 sample t-

test) in affected individuals (range, 16.84 ng mL-1 to 2210.14 ng mL-1, mean 191.91 ng 
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mL-1, median 90.53 ng mL-1) when compared to unaffected individuals (range, 2.28 ng 

mL-1 to 43.38 ng mL-1, mean 21.66 ng mL-1, median 19.67 ng mL-1). Although the 

control group (n=12) was smaller than the OS group (n=37), and the median age of the 

unaffected individuals was slightly higher (by approximately 7 years), the control Dkk-1 

values were similar to the normal levels reported by Tian et al. [20] who demonstrated 

that elevated levels of serum Dkk-1 were co-incident with the osteolytic lesions seen in 

most cases of multiple myeloma (Fig.1a). The Dkk-1 levels in the affected individuals 

were somewhat higher than those documented in the Tian et al. study with the highest 

levels in the micromolar range. Immunohistochemical staining of excised tumor biopsies 

demonstrated that Dkk-1 was expressed maximally at the periphery of the tumor, 

adjacent to the hosts’ bone tissue (Fig.1b). The expression of Dkk-1 by two osteosarcoma 

cell lines; MG63, a well-characterized osteogenic sarcoma and LS1, a cell line derived 

from an excised osteosarcoma, was examined in more detail in tissue culture 

experiments. Dkk-1 was found to be maximally secreted by cells rapidly proliferating in 

sparsely populated monolayers but was significantly reduced as proliferation slowed and 

the monolayer became more confluent (Fig.1c-d). Interestingly, Dkk-1 expression in the 

higher density monolayers was confined to a small fraction of cells that were clearly in 

the metaphase of division (Fig.1d). Also the potent upregulator of osteoclast activity, 

RANK ligand (RANKL) [22] mirrored the expression of Dkk-1 in OS cells but it was 

exclusively detected as the membrane bound form rather than the secreted form 

(Fig.1e,f). Based on these observations, we hypothesized that the expression of Dkk-1 

and RANKL at the periphery of the tumor was necessary for osteogenic remodeling as 

the tumor expands. The presence of high levels of Dkk-1 and RANKL facilitate 
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expansion by allowing the proliferative cells at the periphery of the tumor to accelerate 

bone resorption through expression of RANKL whilst inhibiting osteoid repair through 

the action of Dkk-1. 

The putative osteo-inhibitory effect of recombinant Dkk-1 was tested in a tissue 

culture model of osteogenic differentiation by human primary mesenchymal stem cells 

(MSCs) [21]. At concentrations equivalent to those measured in OS patients, Dkk-1 

inhibited the expression of the osteogenic marker, alkaline phosphatase, by MSCs in a 

dose dependent manner when added to osteogenic cultures (Fig.2a). The effect was 

observed in MSCs from 3 donors and pooled murine MSCs. In 2 donors (Fig.2a), MSCs 

cultured directly from bone spicules (red) were more resistant to Dkk-1 than those 

cultured from the fluid component of the marrow (black) suggesting that the MSCs were 

probably osteogenically pre-conditioned by the niche of the bone tissue. The observation 

that serum alkaline phosphatase is occasionally upregulated in osteosarcoma patients, 

suggests that Dkk-1 acts to prevent differentiation of progenitor cells, but does not affect 

the release of alkaline phosphatase from pre-existing osteoblasts at sites of bone 

remodeling. 

When media was conditioned by MG-63 OS cells and added to osteogenic 

cultures of MSCs, osteogenic inhibition occurred (Fig.2c) and this effect was attenuated 

upon immuno-depletion of Dkk-1 from the medium (Fig.2b,c). Dkk-1 inhibits the Wnt 

pathway by sequestering the Wnt co-receptor, LRP6 and preventing the Wnt-induced 

coalescence of Frizzled and LRP6 at the membrane. The downstream effect of the 

LRP6/Wnt/Frizzled complex is to inhibit glycogen synthetase kinase 3 beta 

(GSK3β), reduce phosphorylation of β-catenin and prevent its degradation by the 
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proteosomal machinery. Stabilized β-catenin complexes with TCF/LEF mediates 

transcription of target genes, in this case, osteogenic genes. The presence of a 

pharmaceutical inhibitor of GSK3β would be predicted to elicit the same effect as Wnt 

signaling, irrespective of the level of Dkk-1 in the system. Osteogenic cultures were 

prepared in the presence of Dkk-1 with or without the GSK3β inhibitor, bromo-indirubin-

3’-mono-oxime (BIO). The presence of BIO reduced the osteo-inhibitory effect of Dkk-1 

(Fig.2d). Since Wnt signaling has been implicated in the induction of oncogenesis, we 

tested the effect of escalating doses of BIO on MG-63 and LS-1 cell proliferation. At the 

concentrations tested, there was no significant induction of proliferation by BIO (Fig.2e).  

 We established an osteosarcoma model to recapitulate some of the effects of Dkk-

1 and OS in vivo. MG-63 cells were labeled by lentiviral transduction of a fusion gene 

combining the mitochondrial localization sequence of cytochrome c oxidase with the 

fluorescent protein, dsRed (Fig.3a,b). Upon suspension culture in the presence of clotted 

human plasma, after 24-48 hours the cells formed tumor spheroids that ranged from 

approximately 10 to 5000 cells in diameter within the fibrin gel. Smaller spheroids 

expressed Dkk-1 throughout (Fig.3d), but the larger structures adopted an expression 

pattern for Dkk-1 that mimicked the tumor biopsies (Fig.3e) with the maximal level of 

expression at the periphery. To examine the expression and distribution of Dkk-1 

expression by osteosarcoma cells in vivo, fibrin constructs containing 1 million and 10 

million labeled MG63 cells were implanted in nude mice against the upper thoracic 

vertebrae. After 1 week, the constructs were clearly visible by live animal fluorescent 

imaging (Fig.4a). Furthermore, human Dkk-1 could be detected in the blood of implanted 

animals when assayed by ELISA (Fig.4b) and the level of circulating Dkk-1 correlated 
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with the number of surviving cells in the construct. After 2 and 4 weeks post 

implantation, the number of MG63 cells present in the recipients had reduced resulting in 

a concomitant reduction of systemic Dkk-1 (data not shown). The reason for the reduced 

viability of the cells over extended implantation periods is unclear but macrophage 

mediated destruction of implants in immuno-compromised mice has been reported in the 

literature [23]. In spite of the hosts’ response to the implanted cells, human Dkk-1 could 

be detected in the blood of the recipient mice, demonstrating that tumor-derived Dkk-1 

escapes into the blood stream. It is unclear at this point whether the elevated systemic 

Dkk-1 in OS patients is derived solely from the tumor, since the human Dkk-1 circulating 

in the blood of recipient mice was much lower than the mean levels detected in the blood 

of the human OS patients. It is possible, however, that the host tissue interacts with the 

tumor resulting in upregulation of the expression of Dkk-1, a phenomenon observed in 

the case of multiple myeloma [21]. The host microenvironment in the patients may be 

more readily affected by the tumor than the surrounding mouse tissue accounting for the 

reduced levels of Dkk-1 in the mouse blood when compared to the human blood. At any 

rate, the presence of OS cells in both humans and the recipient mice resulted in elevated 

circulating human Dkk-1, suggesting that the molecule could represent a valuable 

diagnostic tool. The correlation of tumor load with Dkk-1 levels also suggests that the 

assay also has potential for measuring the relative size and severity of such tumors.  

 These data strongly suggest that the secretion of the canonical Wnt inhibitor Dkk-

1 is highly expressed by OS tumors at levels that become detectable in the systemic 

circulation in humans. Furthermore, the in vivo data demonstrates that the level of Dkk-1 

detectable in blood is proportional to the number of surviving OS cells in the tumor. 
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Assays of Dkk-1 secretion could therefore represent a useful diagnostic and prognostic 

tool for the evaluation of OS patients. Serum Dkk-1 measurements may be useful for the 

evaluation of other types of malignancy but presently it is unclear whether the expression 

is confined solely to osteolytic tumors. This certainly seems feasible since a recent study 

has demonstrated that prostate tumors that express high levels of Dkk-1 produce more 

extensive local bone destruction [24]. Reducing the osteoinhibitory effects of Dkk-1 

would be predicted to reduce local bone damage, and as a result, probably reduce the 

expansion of the tumor. This could be achieved by pharmaceutical inhibition of GSK3β 

or by antibody mediated sequestration of Dkk-1. The osteoinductive properties of GSK3β 

inhibitors have been demonstrated both in vivo and in vitro by numerous investigators 

[25] and the benefits of administration of an anti-Dkk-1 antibody has been demonstrated 

recently in a murine model of multiple myeloma [26]. However, it remains to be seen 

whether the induction of Wnt signaling either by GSK3β inhibition, or by antibody 

administration may affect the metastatic potential of OS cells since Wnt signaling and/or 

beta catenin upregulation has been shown to be a key regulator of migration in prostate 

tumors, multiple myeloma cells and also in OS cells [24, 27, 28]. Since tumor derived 

Dkk-1 was present in the blood of mice at levels proportional to the number of surviving 

tumor cells, Dkk-1 may also serve as a prognostic or diagnostic marker for evaluation of 

patients with OS. 

 

Materials and methods. 
 
Human biomaterial acquisition. The handling and acquisition of human derived 

biomaterials were performed in accordance with the institutional review boards of Tulane 
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University Hospital and Clinic (New Orleans, Louisiana, USA) and St. Jude Children’s 

Hospital (Memphis, Tennessee, USA). The OS serum samples were acquired from the 

Tissue Bank of St. Jude Children’s Hospital, and the control group samples were 

collected from unaffected individuals at Tulane University Hospital and Clinic. Human 

mesenchymal stem cells were acquired from the Tulane Adult MSC Distribution Core 

(Tulane University, New Orleans, LA) and cultured in accordance with their protocols. 

 

ELISA assays. Frozen serum samples from newly diagnosed patients with OS were 

acquired from St. Jude Children’s Hospital under the supervision of Dr. N. Daw and Dr. 

E. Horwitz. Serum samples from unaffected individuals were drawn and prepared at 

Tulane University Hospital and Clinic. ELISA assays were performed as previously 

described [21].  

 

Histology and immunocytochemistry. Osteosarcoma tumors, synthetic tumor constructs 

or monolayer cells were fixed in formalin and processed as paraffin blocks if necessary. 

For histochemistry, 8 µm sections were prepared, deparaffinized and rehydrated. After an 

acidic antigen retrieval step (R and D Systems, Minneapolis, MN), sections were blocked 

and incubated in the presence of a 1:800 dilution of goat anti-human Dkk-1 or 

monoclonal anti RANKL antibody (R and D Systems). Monolayer cultures were directly 

subjected to immunocytochemistry after fixation. Alexafluor 594 or 488 conjugated 

secondary (Invitrogen, Carlsbad, CA) antibodies were employed to detect antigen 

binding. 
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Alkaline phosphatase assays. Monolayer phosphatase assays were performed on 

monolayers in 6-well format as previously described [21]. Dkk-1 preparation and culture 

conditions were as previously described [21]. BIO was acquired commercially 

(Calbiochem, LaJolla, CA). 

 

Cell counting assays. Cells were counted based on nucleic intercalation of a fluorescent 

dye (CyQuant, Invitrogen). Assays were performed as previously described [21, 29]. 

 

Western blotting. Western blots were performed on Triton X100 (Sigma, Poole, UK) 

insoluble extracts of cells using the goat anti-human Dkk-1 or monoclonal anti RANKL 

antibody (R and D Systems). Controls for actin and GAPDH were employed as 

previously described [30]. 

 

Immunoaffinity depletion. Dkk-1 was depleted from the medium by antibody 

incubation and protein A mediated depletion as previously described [29]. 

 

Cell labeling. The lentiviral construct encoding the dsRed fluorescent protein coupled to 

the mitochondrial localization sequence of human cytochrome C oxidase subunit VIII 

was prepared using standard protocols by virus core facility at Louisiana State University 

viral vector core [31,32]. Proliferating MG63 cells were exposed to the virus at a 

multiplicity of infection of 80 in the presence of 9 µg mL-1 polybrene for 18 hours. After 

4 days, approximately 50% of the cells expressed the fluorescent protein. Expressing 
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cells were selected by fluorescent activated cell sorting (Facsvantage SE, Becton 

Dickinson).  

 

Constructs. Labeled cells were suspended in 1 mL of a 2x reconstitution of dried human 

plasma (Sigma) and mixed with an equal volume of thromboplastin C (Plastinex, Fisher 

Lifesciences, Pittsburg, PA). The mixture was transferred to a 10 mm x 20 mm chamber 

slide for gelling. Clotting was allowed to proceed for 2-4 hr, and then the appropriate 

experimental medium preparation was added to cover the solid construct until 

implantation. 

 

Implantation. Fibrin constructs were implanted subcutaneously between the scapulae of 

anaesthetized nude mice. A 10 mm incision was made longitudinally between the 

scapulae and a small cavity was made between the dermis of the skin and the fascia 

below to accommodate the constructs which were 10 mm square. The incision was then 

closed by 2-3 sutures, and sealed (Vetbond, 3M, St. Paul, MN). After 5 days, the sutures 

were removed. Seven days thereafter, the animals were placed under anesthesia, 

euthanized by cardiac exsanguination, and serum was prepared from the blood. The 

implants were removed for genomic DNA extraction. Genomic DNA was extracted from 

the tissue by phenol chloroform extraction (Trizol, Invitrogen) and subjected to 

quantitative real time PCR for the dsRed gene using the following primers: forward; 

ACTACAAGAAGCTGTCCTTCC and reverse; TTCACGCCGATGAACTTCACC. 

Reactions were cycled on an ABI PRISM 7700 Sequence Detector (Applied Biosystems) 

for 40 cycles with the annealing temperature set to 60oC. Products were detected by 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
07

.1
30

.1
 : 

P
os

te
d 

20
 J

un
 2

00
7



fluorescence intercalation (SYBR Green, Applied Biosystems) and validated by gel 

electrophoresis and melting curve analysis. 
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Figure legends. 
 
Figure 1: Panel a: Scatter plot of the circulating Dkk-1 levels in OS patients and 
unaffected individuals. Measurements were performed by ELISA assay. For statistical 
values, see text. Panel b: A sectioned osteosarcoma immuno-stained for the detection of 
Dkk-1 (red). Dkk-1 expression is maximal at the border zone between the osteoid tissue 
(green autofluorescence) and the tumor cells (white dotted line). Nuclei are stained with 
DAPI (blue) Panel c: Secretion of Dkk-1 by rapidly dividing, low density cultures (log) 
and slowly dividing confluent cultures (slow) of MG63 and LS1 osteosarcoma cells. 
Measurements were achieved by ELISA assay, values represent the mean (n=6), and 
error bars represent standard deviations. P values were calculated by 2-tailed Student’s t-
test. Panel d: Monolayers of MG63 cells at high (slow) and low (log) density 
immunostained for Dkk-1. Note that staining is maximal in the low density cultures and 
in the high density cultures, Dkk-1 staining is confined to those cells undergoing mitosis 
(arrowed). The DNA is stained with DAPI (blue). Panel e: Western blot of membrane 
isolates derived from MG63 and LS1 osteosarcoma cells. The control lanes (upper) were 
simultaneously incubated with an anti-β-actin and anti-GAPDH antibodies since 
enrichment for insoluble, membrane bound, β-actin confirms that the membranes have 
been efficiently recovered at the expense of cytosolic components such as GAPDH. 
Membrane bound RANKL was detected on the same stripped blot (lower) with an anti 
RANKL antibody. Panel f: Monolayers of non-permeablised MG63 cells at high (slow) 
and low (log) density immunostained for RANKL. Note that staining is maximal in the 
low density cultures and punctuate in the high density cultures. The DNA is stained with 
DAPI (blue).  
 
Figure 2: Panel a: Osteogenic differentiation of MSCs in the presence of Dkk-1. Results 
from cells derived from 3 human donors and pooled murine donors are presented. 
Osteogenic differentiation is presented as a function of membrane ALP activity, an early 
marker of osteogenesis. Measurements are normalized to control levels of activity, 
designated 1.0. The black lines represent MSCs prepared from the fluid component of 
bone marrow and the red lines represent MSCs prepared from bone spicules filtered from 
the aspirates. Dkk-1 exposure causes a dose dependent inhibition of alkaline phosphatase 
activity. Panel b: Immunodepletion of Dkk-1 from MG63 OS conditioned medium 
through incubation with a polyclonal antibody against Dkk-1. The Dkk-1:antibody 
complexes were removed from the medium by protein A affinity chromatography, then 
the medium was assayed by ELISA. Panel c: Osteogenic differentiation by MSCs in the 
presence of non-depleted and Dkk-1 immuno-depleted conditioned medium from MG63 
OS cells. Representative results from one of three donors are presented. Measurements 
were achieved by ALP assay, values represent the mean (n=6), and error bars represent 
standard deviations. P values were calculated by 2-tailed Student’s t-test. Panel d: 
Osteogenic differentiation by MSCs in the presence of Dkk-1 and with or without the 
GSK3β inhibitor BIO. Panel e: The effect of a range of BIO doses on the proliferation of 
osteosarcoma cells. Cell numbers were evaluated by fluorescent nucleic acid intercalation 
assay. 
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Figure 3: Panel a: Fluorescence activated cell sorting of transduced cells expressing 
mitochondrially localized red fluorescent protein. The cells from the gate designated M1 
were used in subsequent experiments. Panel b: Micrographs of the labeled MG63 OS 
cells. Panel c: Micrographs of the tumorspheres derived from culture in clotted human 
plasma. Panel d: A sectioned tumorsphere (red) immuno-stained for the detection of 
Dkk-1 (green). Nuclei are stained with DAPI (blue). The isotype control is presented on 
the right. 
 
Figure 4: Panel a: Live animal fluorescence imaging of an implanted construct 
containing labeled MG63 OS cells. Panel b: Evaluation of human Dkk-1 levels in the 
blood of implanted animals after 1 week. The x-axis represents the initial number of 
implanted cells. Measurements were achieved by ELISA assay on mouse serum, values 
represent the mean (n=4, 2 males and 2 females), and error bars represent standard 
deviations. P values were calculated by 2-tailed Student’s t-test. 
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