
Reading the Neural Code: What do Spikes Mean for Behavior?

Dorian Aur1, Mandar S. Jog1

1. Department of Clinical Neurological Sciences, Movement Disorders Program, 
London, Ontario, Canada

The present study reveals the existence of an intrinsic spatial code within neuronal 

spikes that predicts behavior. As rats learnt a T-maze procedural task, simultaneous 

changes  in  temporal  occurrence of  spikes  and spike  directivity  are  evidenced in 

“expert” neurons.  While the number of spikes between the tone delivery and the 

beginning of turn phase reduced with learning, the generated spikes between these 

two events acquired behavioral meaning that is of highest value for action selection. 

Spike directivity is thus a hidden feature that reveals the semantics of each spike 

and in  the  current  experiment,  predicts  the  correct  turn that  the  animal  would 

subsequently make to obtain reward. Semantic representation of behavior can then 

be revealed as modulations in spike directivity during the time. This predictability 

of  observed behavior  based on subtle  changes  in spike  directivity  represents  an 

important step towards reading and understanding the underlying neural code. 

The  idea  that  neurons  communicate  electrically1,2 the  generation  of  spikes  and  the 
relationship of spikes to behavior has been the central theme of research for many years. 
Typically, spikes are perceived to have stereotyped waveforms that can be reduced to an 
all or none event3-9. Such reduction allowed linking of neuronal activity to behavior on a 
temporal basis10-12. Thus, temporal analysis of spike trains became a standard method to 
understand  the  relationship  of  spiking  to  behavior.  Indeed,  searching  for  meaning  in 
neural  activity  started  even  earlier13.  Spatial  location  of  the  rat  was  associated  with 
changes in firing rates  in so called "place cells" from hippocampus.  However,  recent 
investigations show that place cells in the hippocampus appear to alter their preferred 
firing even in the absence of any changes in the environment14. The predictability of the 
animal’s location based on firing in the “place cells” may therefore not be as robust as 
once thought and such temporal  analyses may be too restrictive in their ability to define 
the complexity of neuronal activity. 
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Beyond their time of occurrence, each spike can be characterized by a new feature called 
spike directivity. The spike directivity term can be described by a preferred direction of 
propagation of electrical signal during each action potential (AP) and approximated with 
a vector15. This characteristic can be obtained using tetrodes or any other type of multi-tip 
receiver (with number of tips n 4) but cannot be measured based on single electrodes≥  
techniques. The richness and importance of spike directivity to organize with learning 
was shown in striatal medium spiny neurons16. Such analyses add an important level of 
subtlety to information processing by these neurons17.

Another accepted phenomenon is that of charge movement occurring during the action 
potential (AP) itself. Indeed, Oesch et al.18, using patch-clamp recordings and two-photon 
calcium imaging demonstrated that dendrites are selective to AP directivity. Equally, the 
dendritic  architecture  has  an  influence  on  the  cell  response  and  these  slight  spatial 
changes  in  spike  directivity  in  several  spikes  may  be  determined  by  a  preferential 
activation of dendritic tree during each AP19.

The role of the striatum in learning stimulus-response associations, action selection or 
habits formation is unquestionable and has been discussed and demonstrated in several 
papers22,11,23,24,25,12. The dorsal striatum which receives a substantial component of its input 
from  the  sensorimotor  cortex  plays  a  central  role  in  behavioral  action  selection 
studies11,26,12. It is for this reason that the dorso-lateral striatum was chosen in the current 
study  to  examine  the  relationship  between  observed  behavior  and  spike  directivity 
properties from neurons.

The presence of the so called “expert” neurons in the striatum has been advanced for 
some time11,20,21. The term “expert” neuron was used before in Barnes et al., relating spike 
timing of neurons from the striatum to meaningful events of the task on the T-maze12. We 
have  already  shown  that  using  a  charge  movement  model  (CMM)  it  is  possible  to 
compute  spike  directivity  for  every  action  potential15.  Additionally,  performing 
information theoretic analyses, we have been able to reveal that during rewarded T-maze 
learning  tasks,  spike  directivities  of  “expert”  neurons  from the  dorso-lateral  striatum 
become organized with behavioral learning16. The important question is what the newly 
described feature of spike directivity adds in further related to behavior.

The current paper describes the value of this organization of spike directivity in terms of 
what it represents within behavior. In these recordings, every tetrode implanted in the 
dorsolateral striatum is considered to form a frame of reference over which the electrical 
flow of charges in space can be analysed during each spike and trains of spikes. In this 
view, the directivity property of a spike is embedded in a vector that reflects the flow of 
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charges over the frame of reference (tetrode) for every spike. Having already shown the 
organization of directivity as rats learnt a procedural task16 we embarked on finding the 
semantic relevance of this organizational process by analyzing the T-maze data during 
the time that is of highest value for action selection in order to obtain the reward. This is 
the time between the cue (tone) delivery and the beginning of turn where spiking activity 
of striatal  neurons  is reduced with learning11,12.  We show that in animals which have 
already  acquired  the  task,  after  tone  delivery,  spatial  modulation  of  spike  directivity 
(during this time of highest value) predicts the correct turn that the animal would make in 
order to get the reward.

Results

During T-maze sessions (Fig 1, a) all three animals showed the expected improvement 
revealed in average percentages of correct responses during behavioral learning (Fig 1, b, 
Supplementary Methods). We recorded a daily average of 30 units per animal with six 
tetrodes each. Events associated with hexadecimal values are recorded simultaneously 
with neuronal spikes during each trial and color coded for display purposes (Table1).
The neurons showed an increase in spiking activity visibly correlated with behavioral 
events (tone cue, turning on T-maze, etc., Figure 2a and b). The percentage of units that 
responded to events in the task increased from approximately 50% to a maximum of 85% 
of recorded units, corresponding to a χ2 value with P<0.001. The number of units that 
responded to more than one event rose from 40% to 60%. At the beginning of training, 
27% of task-related units responded during turns while by the end of training only 14% 
responded (P<0.001). 

Table 1: Relationship between events and recorded values during left and right trials

Left Right

Start

Tone

Turn Begins

Turn Ends

Goal
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Between the events of tone delivery and turn beginning, with learning, the number of 
spiking units decreased as did the actual number of spikes per unit occurring in this time 
period confirming previously published results11,12. However, the remaining responsive 
neurons  showed  increased  modulation  in  spatial  directivity  with  learning  as  shown 
below.

All  data  analysed  and shown below are  after  at  least  70% correct  response  stage  is 
achieved. An example of temporal representation of events as recorded from one of the 
many neurons is shown (Fig 2, a). The lower half of the frame shows event flags as a 
color coded bar (per Table 1). The graph above represents actual spikes from this neuron 
in a single trial, plotted in each behavioral period. Fig 2a shows neuronal activity from 
the same neuron for a left turn while Fig 2b shows the right turn. The filtered version of 

unit  activation  Bs  for  the  selected  neuron  is  plotted  in  red  color  (Supplementary 

Methods). Neuronal activity occurs upon signal tone delivery, during turning movements 
on the right or on the left of the T-maze and before or during attaining the goal. It is also 
clear  that  the same neuron shows activity  for  both  turns.  At  the end of  the learning 
period,  all  neurons  that are  linked to turn  showed this  dual turn related responsivity. 
Other neurons showed a diversity of activities including response to start, tone or goal 
(analysed but  not  shown).  Such analysis  reveals  that  a  single neuron can respond to 
multiple complex events within a task. 

Figure 1: Experimental T-maze and behavioral response.

a,  Schematic representation of the T maze experiment. Events are associated with 

colors as per Table 1. 

b, An example of  behavioral response that shows average percentages of correct 

responses (APCR). The cyan color shows low levels of performance while the 
magenta color shows at least 70% correct responses in the three rats. The vertical 
bar shows the color scheme used to show the change in performance level across the 
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Spatial directivity is now calculated for neurons spiking during different phases of the T-
maze  task.  Every  spike  yields  only  one  vector15.  It  is  important  to  note  that  spike 
directivity analysis is carried out on neurons after the animal has already acquired the 
task  and  organization  in  spike  directivity  has  occurred.  The  fact  that  directivity  is 
reorganized during learning has already been demonstrated16. 

The  change of  direction  cosines  during  the  whole  trial  is  first  computed  in  selected 
neurons for left and right turns. An example of these shapes for cosines angle variations 
is presented in Figs 3 a, b for the left and for the right turn trials on T-maze. At least two 
distinctive parts can be easily seen to exist in these plots for both the right and left turn 
trials.  This characteristic profile is akin to a signature.  In each trace of the change in 
cosines angle during the task, the first change occurs in  Lθ∆ or  Rθ∆  angle during or 

Figure 2: The variation in spike occurrence, estimated spike activity over time and 
events. Both graphs present activity from the same expert neuron. Event flags are 
represented as a color coded bar (per Table 1).

a, An example of temporal representation of events (bottom) where low tone was 

associated with left arm reward. Occurrence of spikes for the expert neuron is shown 
in blue color and the estimation of spiking activity in red color. 

b, An example of temporal representation of events (bottom) where high tone was 

associated with right arm reward. Occurrence of spikes for the expert neuron is shown 
in blue color and the estimation of spiking activity in red color.
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after tone cue event (see Supplementary Methods). The second distinctive change in Lθ∆  
or  Rθ∆ angle appears before or during left or right turns. The change of angle during 
movement shows similar variability during several trials. 

Supplementary Figs 1 a, b show the cosines angle changes from the same neuron in three 
successive trials for both right and left turns while  Supplementary Figs 1 c and d show 
corresponding spikes (for which the directivity analysis was performed) in blue color and 
spike activity estimates in red color. An important observation here is that the profiles for 
left versus right turns are visibly similar with slight changes from trial to trial, both in the 
temporal and the spatial directivity plots. 

Finally,  these changes in  the cosines angle can be compared  to what  happens in the 
traditional,  spike  timing  view  during  a  trial.  This  comparison  allows  us  to  reveal 
powerful similarities in dynamic variations in spike directivity and temporal activity. A 
correspondence between changes in the firing rate and modulation of spike directivity 
appears to exist as seen in Supplementary Figs 1 a-d. Thus when a significant change is 
seen in the timing of spike activity during a trial,  there is a corresponding change in 
cosines angle plotted for spikes (Supplementary Figs 1: a versus c; b versus d). Three 
such trials are represented for the left turn and right turn trials respectively. The variation 
in cosines angle for every trial is similar to the corresponding changes in timing of spike 
occurrence.
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The directivity vector of every spike occurring between start and tone (Figure 4, a), tone 
and beginning of turn (Figure 4, b) is plotted for about 20 trials and between beginning of 
turn and goal (Figure 4, c) for a single trial.  Sequential spikes from the same neuron 
during a specified turn show variability  in directivity  as shown in Fig 3. A principal 
component analysis (PCA) is then performed on a selected cosines angle yielding two 
distinct clusters16. These clusters are represented in specific colors for each type of turn 
(yellow and blue for right, red and magenta for left). Then, during a session, yellow and 
blue vectors can be plotted to represent these directivities for the right turn related trials 
on the maze. In a similar way red and magenta arrows are drawn for left turn related 
trials on the maze. Rotation of the three obtained 3D images showed a separation for 
spike directivity associated with the left versus the right turn trials on the T-maze only in 
Fig 4b. This separation between left and right turn related spikes cannot be seen in Figs 
4a or 4c in any of the analysed neurons. It is important to note that for Fig 4b directivity 
is calculated for spikes between tone delivery and before the turn has actually begun and 
not for those spikes that occur during the actual turn.

Once learning is achieved, neurons from striatum significantly reduced their number of 
spikes between when the gate is open and turn is performed while the number of spikes 
between  the  turn  and  goal  phase  show  an  increase.  This  temporal  reorganization 

Figure 3: Changes in cosines angle in an expert neuron from striatum as related 
to events (bottom) over time during the whole trial. Event flags are represented 
as a bar, color coded as in Table 1.

a, An example of temporal representation of events (bottom) with low tone for 

turning left and variation of directivity angle   in blue color.

b, Temporal representation of events (bottom)  with high tone for turning right 

and variation of directivity angle  in red color.
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phenomenon  of  neuronal  activity  was  previously  described  in  detail11,12 and  can  be 
directly observed in the number of spikes represented in Fig 4c and Figs 3a, b. While 
spike directivity for the data between when the gate opens and turn can be computed for 

every spike and represented as  vectors (Fig 3 a, b), a reliable statistical analysis of these 
data is considerably limited due to the low numbers of spikes.

Discussion

Figure 4: Representation of spike directivity vectors for spikes in an expert neuron. Left 
turn trial is represented by yellow and blue arrows while the right turn trial is 
represented by red and magenta arrows.

a, Spike directivity vectors of all spikes between gate opens and tone in about 20 trials

b, Spike directivity vectors of all spikes between tone and turn starts in about 20 trials

c, Representative spike directivity vectors of all spikes between beginning of turn and  
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Recent advances in analyses techniques have shown that the spike timing model (firing 
rate,  interspike  interval)  is  incomplete  in  terms  of  describing  neuronal  activity  and 
information transfer in neurons16,17. Using the tetrode system as a frame of reference, we 
have  shown that  an  analysis  of  the  newly  described  feature  of  spike  directivity  has 
important  implications  to  understanding  neuronal  activity16,19.  Based  on  electrical 
recordings and computational methods we are able to show that in certain neurons, spike 
directivity changes occur in a determined, behaviorally dependent fashion with events on 
the T-maze. Spike directivity is a hidden characteristic.  Unlike spike timing, directivity 
cannot be directly perceived by a human observer, it has to be computed in advance to 
allow further analysis. Additionally, as spike counts may decrease with learning, firing 
rate dependent analyses and ISI statistics cannot be performed. Since spike directivity is 
computed for every spike, only few spikes are required to expose the significance of this 
feature. Coupled with spike timing analysis, our work uses spike directivity to reveal a 
hitherto unrecognized yet important aspect of how behavior is expressed by neurons.

The first result is that “expert” units responded to more than one meaningful event. This 
suggests that spiking behavior of each cell is likely to represent more than one class of 
events and does not imply the existence of single neurons coding uniquely for certain 
discrete events. This is seen in the temporal response pattern in expert neurons (Fig 2a 
and b) and equally well demonstrated in the directivity analysis of spikes from the same 
neurons (Fig 3a and b) confirming the published observations that neurons do respond by 
changing spiking activity in specific periods of the T-maze behavior. The changes in the 
cosines  angle  in  spike  directivity  have  similar  inflections  as  spike  activity  plots, 
corresponding to the same phases in the same neuron. Therefore, alterations in spatial 
directivity occur simultaneously to changes in the spike timing. 

It is likely that immediately after delivery of the auditory tone, action selection of which 
turn  is  to  be  taken  occurs,  which  is  then  followed  by  turn  execution.  Neurons  that 
respond to meaningful events of the task appear to have robust firing rate changes to 
periods corresponding to “before” and “during” the actual turn. This implies that action 
selection and execution can be represented in the same expert neuron as shown in both 
the temporal and spike directivity analyses. Such neurons can then be seen to combine 
spatial directivity of spiking with time contingent properties. 

Yet a crucial difference exists between what we gain from spike time versus directivity 
analysis. If the spiking activity is considered, one can see clearly the occurrence of turn 
selection  and  execution  in  a  successive  manner.  However,  based  on  estimated  spike 
activity (Figure 2a and b, Supplementary Figs 1 c and d), an observer would be unlikely 
to  determine  the  direction  of  the  turn  that  the  animal  has  selected  since  there  is  no 
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significant difference between temporal spike activity corresponding to each direction of 
turn. This crucial piece of information that assigns which turn selection is valuable, i.e. 
has the potential to result in reward is however elegantly revealed in the spike directivity 
characteristic. Our  previous  work  demonstrated  that  spike  directivity  organizes  with 
learning16.  The  current  result  demonstrates  that  this  organization  during  the  period 
between tone and beginning of turn indicates the arm to be selected, information which is 
of great value to the animal in order to obtain reward. Most importantly, this separation 
in spike directivity does not occur in the previous phase, between gate opens and tone 
delivery (Fig 3b) and is not present after the selection of turn between the turn starts and 
goal  is achieved (Fig 3a).

The  conclusion  is  then  obvious  that  upon  tone  delivery,  the  spike  directivity  that 
separates  the  left  versus  the  right  turn  represents  the  selection  phase.  Since  correct 
selection increases the chances of reward, this intriguing result then implies that the spike 
directivity predicts which turn is subsequently to be executed.  

During  this  action  selection  phase,  the  number  of  spikes  decreases  with  learning. 
However,  the spike directivity analysis shows that each spike now has more value in 
indicating the turn arm being selected. It is intriguing to suggest that the occurring spikes 
are now more efficient at providing information about the task. The cosine between two 
spike  directivity  vectors  from  the  same  neuron  or  just  their  scalar  product  can  be 
considered to measure  the semantic  distance between neuronal  spikes.  The computed 
semantic  distance  of  spikes  (see  Supplementary  Methods)  shows  the  similarity  of 
meaning between two spikes from the same neuron implying that the more separated the 
directivity between spikes, the more distinct the spikes are semantically. Indeed one may 
predict the animals’ turn direction on the T-maze simply based upon the directivity of 
spikes in the selection period. Once organized, at a point when the animal has acquired 
the task, the rat “understands” the meaning of the low or high tone and selects the turning 
arm to maximize the way of getting the reward.

Summarizing then, this paper shows that the same “expert” neurons respond to multiple 
events of the T-maze task, that they show response modulations in spiking frequency 
(temporal domain) and in spike directivity (spatial domain). This temporal and spatial 
responsivity  occurs  to  similar  events  in  the  task.  In  addition,  we  show  that  spike 
directivity can be correlated with meaning in terms of which turn selection would have 
the highest likelihood of obtaining reward.  We anticipate  that  these changes in spike 
directivity could be a manifestation of a form of neuronal plasticity. Since electrical flux 
of charges carry information17, “expert” neurons can be seen as projecting information 
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related to behavior, temporally and spatially, to different targets at certain moments in 
time.  The directionality  of charge  flow as observed by the tetrodes  is a reflection of 
intracellular and dendritic events that may to some extent be determined by the received 
inputs16,19.

Communication in the brain appears to be represented by such spatiotemporal electrical 
flux on a small  scale  which contains behaviorally  meaningful  data that  is transferred 
between anatomically interconnected structures. Such electrical waves can be effectively 
measured in the brain in recordings such as field potentials or electroencephalography 
and identified as rhythms of the brain28. In our work, the use of tetrodes provides a local 
frame of reference that allows the visualization of these subtle changes in time and space 
on a small spike-level scale. 

Finally and most importantly, our work has shown that predictability of the upcoming 
behavior is an inherent property of analysed neurons as demonstrated by their spatio-
temporal dynamics. Based on measured electrical activity from tetrode recordings, the 
demonstration of such subtle yet necessary feature is in essence equivalent to reading the 
neural code.

Materials and methods

We analyzed  electrical  activity  of  isolated  units  from the  dorsolateral  portion  of  the 
striatum of 3 Sprague-Dawley rats (Supplementary Methods). Tetrode recordings were 
obtained with established methods10,27,29 and data was captured at an acquisition rate of 
about 25 KHz per channel using a Neuralynx@ data acquisition system. On average, 6 
tetrodes  were  available  for  analysis  in  each  animal.  Subsequent  processing  included 
clustering into putative neurons  and de-noising of the data (Supplementary Methods). 
The  details  of  spike  activity  estimation  (Supplementary  Methods),  spike  directivity 
computation based on the charge movement model are  presented in15  and also briefly 
explained in Supplementary Methods.
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