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Abstract 

Several meso-scale biological intracellular regulatory networks that have specified directionality 

of interactions have been recently assembled from experimental literature. Directed networks 

where links are characterized as positive or negative can be converted to systems of differential 

equations and analyzed as dynamical systems. Such analyses have shown that networks 

containing only sign-consistent loops, such as positive feed-forward and feedback loops function 

as monotone systems that display well-ordered behavior. Perturbations to monotone systems 

have unambiguous global effects and a predictability characteristic that confers advantages for 

robustness and adaptability. We find that three intracellular regulatory networks: bacterial and 

yeast transcriptional networks and a mammalian signaling network contain far more sign-

consistent feedback and feed-forward loops than expected for shuffled networks. Inconsistent 

loops with negative links can be more easily removed from real regulatory networks as compared 

to shuffled networks. This topological feature in real networks emerges from the presence of 

hubs that are enriched for either negative or positive links, and is not due to a preference for 

double negative links in paths. These observations indicate that intracellular regulatory networks 

may be close to monotone systems and that this network topology contributes to the dynamic 

stability. 
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Introduction 

Recently, three meso-scale (100-1,000 nodes) intracellular regulatory networks that 

specify the directionality and the effects of interactions have been developed: a mammalian cell 

signaling biochemical regulatory network in neurons (1), a bacterial (Escherichia Coli) gene 

regulatory network (2, 3), and a yeast (Saccharomyces cerevisiae) gene regulatory network (4, 

5). These networks were constructed manually from the experimental literature and are derived 

from high-confidence functional experimental data.   Knowledge of the functional consequence 

of the interaction allows the links to be characterized as positive for activation and negative for 

repression. Implicitly, the directions of interactions, i.e. the assignments of source and target 

nodes, are specified resulting in sign-specified directed networks. Since information flows 

through such networks, these can be considered dynamical systems. 

In intracellular biochemical regulatory systems, the nodes can be proteins, metabolites, or 

genes, and the links can represent their direct interactions and/or indirect functional activity; for 

example: enzymatic, binding or translocation ability, or changes in overall quantity of the active 

form of a protein, or the quantity of a diffusible metabolite. Mathematically,  sign –specified 

directed networks containing only “sign-consistent” loops, such as feed-forward or feedback 

loops (Fig. 1a), when converted to systems of differential equations, which represent the time 

evolutions of concentrations, always behave as monotone systems (6-8). Dynamical systems are  

labeled as monotone when a partial order of variables is preserved during time-progression of 

dynamical behavior (9). Monotone dynamical systems, extensively studied in control theory, are 

mathematically guaranteed to evolve in a predictable manner.  They do not exhibit observable 

chaotic 

behavior, while variable quantitative levels generically approach steady states as a function of 

time (9-12). Such dynamical behavior is commonly observed in cells. For example, bi-stability, 

multi-stability and monotone dynamics are typical in cell signaling regulatory networks and 

transcription quantitative levels in gene regulatory networks (13-16).  

In this study we address the question of whether intracellular biological regulatory 

networks are close to monotone systems by analyzing three sign-specified directed networks. We 

assess the “distance to monotone” architecture by analyzing the level of “sign-consistency” in 

feedback and feed-forward loops identified in the topology of these networks. If these networks 

have a relative abundance of “sign-consistent” loops, this may explain observed intracellular 
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dynamics stability and order. We developed algorithms to characterize the abundance of positive 

“sign-consistent” (Fig. 1a) and negative “sign-inconsistent” feedback and feed-forward loops 

(Fig. 1b) in the three intracellular regulatory networks. We find that positive feedback and feed-

forward loops are enriched in all three networks. This observation supports the hypothesis that 

one of us (ES) had mmade that biological intracellular regulatory networks may be close to 

monotone systems (12). We also find that abundance in positive feedback and feed-forward 

loops may be due to the enrichment of negative hubs and not because pathways contain 

disproportionate even number of negative links. 

 

Results 

All three networks have similar nodes to links ratio, positive to negative links ratio, and 

display “small-world” properties (high clustering coefficients and similar characteristic path 

lengths compared to random networks) (Table 1). Counting the number of positive vs. negative 

feedback and feed-forward loops in the real regulatory networks vs. shuffled networks shows 

that there are significantly more positive loops than expected (Table 2). An approximate 

Binomial distribution analysis of the results is provided in Box 1. The shuffled networks used as 

a statistical control maintain the exact connectivity but differ in the distribution of signs (effects) 

associated with the links (random-swap), or in the assignment signs to links (positive vs. 

negative with probability p=0.5) (random-sign) (see Methods). Interestingly, the difference 

between the real and shuffled for the yeast network is less significant with the random swap 

methods than the difference for the signaling and E. coli. This can be explained by the fact that 

feed-forward loops in the yeast network are highly nested. For example, during the procedure of 

removing the link that contributes to the most negative loops, the positive link between DAL80 

and GLN3 caused the abolishment of 21 negative loops out of a total of 50. Both genes are 

GATA family transcription factors where DAL80 is an outgoing hub repressor regulated 

positively by GLN3 (17). The GATA family of genes makes up a complicated regulatory circuit 

which includes many members of the family regulating one another (18). Hence, the 

mathematical derivation in Box 1 assumes statistical independence of link contribution to loops, 

but in real network topologies the nesting of loops can drastically affect the distribution of 

positive to negative loops ratio also in shuffled networks, by making contribution of links to the 

formation of loops non-uniform, because some links may be reused to form many nested loops. 
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We developed an algorithm to remove links that contribute to the formation of 

inconsistent feedback and feed-forward loops. The algorithm, as demonstrated on a toy network 

(Fig. 2), gradually eliminates all small size negative loops (3-4 or 3-5 nodes per loop) from the 

real networks and from the shuffled networks. We find that it takes about one third (E. coli 

transcription), or one half (yeast transcription), or two thirds (mammalian signaling) of the links 

need to be removed from the real networks as compared to the number of links that need to be 

removed from corresponding shuffled networks (Fig. 3a, b, and c). This indicates that it is easier 

to convert the real networks to monotone “sign-consistent” topology as compared to shuffled 

networks.  

The relative abundance of positive loops in the real networks, and the relative ease in 

removing the negative loops, could be due to either hub nodes that have many in- or out-going 

negative links, or because pathways in feedback and feed-forward loops tend to have double 

negative links in them, making loops to be considered positive. The first case implies that 

negative links are concentrated within regions of the networks, and thus increase the likelihood 

for forming sign-consistent positive feed-forward and feedback loops. Alternatively, positive 

feedback and feed-forward loops are abundant because they contain an even number of negative 

links. To determine which of these scenarios is more likely in real networks, we first plotted the 

in-links vs. out-links difference on the x-axis and positive-links vs. negative-links difference on 

the y-axis for all nodes (Fig 4a, b, and c). The plots show the existence of hubs with abundance 

of negative links in all three real networks compared with shuffled network. In particular, the 

yeast and the E. coli transcriptional network had many more out-going hubs including negative 

hubs. The signaling network had both positive and negative in and out hubs that were diminished 

after shuffling. All three networks show preferential enrichment for hubs with either only 

positive or only negative links. Because negative links are concentrated in  

different parts of the network, around a few hubs, and are not evenly spread around like in the 

shuffled networks, the probability of forming negative loops is reduced. Hence, the existence of 

hubs enriched in positive or negative links in the topology of real networks leads to the 

preference for positive feedback and feed-forward loops. 

 It is possible that the abundance of positive feedback and feed-forward loops in the real 

networks is due to pathways being rich in double negatives (even number of negative links in 

paths).  Hence, we assessed whether the real networks are enriched with even number of 
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negative links in paths more than expected as compared to corresponding shuffled networks. For 

this, we used an algorithm that “starts” at any random node and explores random directed paths 

while counting the number of negative signs along the way. Pathways in the real networks did 

not show a propensity to contain an even number of negative links compared with pathways in 

the shuffled networks which have an unbiased probability to contain an even or an odd number 

of negative links in random directed paths (Fig 5a, b and c).  Hence, double negatives in paths 

are not likely to contribute to the formation of consistent feedback and feed-forward loops, in the 

real networks studied here. 

 

Discussion 

Our study demonstrates that intracellular biological regulatory networks may be close to 

monotone systems due to selection for positive feedback and feed-forward loops and selection 

against negative feedback and feed-forward loops. Inconsistent (negative) feedback loops have 

been shown to be more prone to produce rich and complicated dynamics (6). Hence, the 

selection against them provides an explanation as to why stable or multi-stable dynamical 

behavior is commonly observed in cells, and oscillations are rare. Although negative feedback 

loops intuitively may seem to be important for cellular homeostasis, the topology observed 

shows that negative feedback loops are not common, and homeostasis is probably maintained 

mostly through less intricately regulated mechanisms such as degradation and unregulated 

deactivation such as dephosphorylation by constitutive unregulated phosphatases in signaling 

networks. Stable or multi-stable dynamical behavior has been frequently observed 

experimentally in cells (13-16). Besides dynamical stability, monotone system architecture is 

also advantageous for ordered behavior and predictability, and evolutionary modularity. 

Monotone systems are predictable and display ordered behavior (7, 8). For example, 

when we increase or decrease the concentration of a node or the rate constants for the interaction 

represented by a link in a network containing only positive feed-forward and feedback loops (19) 

the output would increase with time and then may decay due to constitutive negative regulators. 

In contrast, changes in the initial concentrations or rate constants in a network containing 

inconsistent feedback or feed-forward loops can induce oscillations or other complex behavior. 

Thus, monotone topology preserves input/output relationships between distal components in the 

network, a feature commonly observed in cell signaling pathways.  
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Monotone architecture is also useful for evolutionary modularity by limiting the 

propagation of changes to stay local. Consider a mutation in the most upstream component in an 

ensemble of nested feed-forward loops. The mutation provides enhanced adaptation for one part 

of the network while preserving the qualitative functional behavior of the remaining parts of the 

ensemble. Hence, a monotone architecture can assist in the preservation of modularity through 

network evolution.  

The human genome  has been found to have more types and isoforms of protein kinases than 

protein phosphatases (20). Our current understanding indicates that generally protein kinases in a 

regulated manner, selectively activates their downstream targets (1) although there are well-

known examples where phosphorylation inhibits the activity of the protein.  In contrast, protein 

phosphatases such as PP2A generally inhibit their targets and are considered “house-keeping” 

enzymes due to the assumption that they are less regulated than protein kinases and have many 

more substrates thus making them outgoing negative hubs. These interaction characteristics of 

the protein kinases vs. phosphatases may be the reason why the mammalian signaling network is 

a close to monotone system. 

 

In conclusion, we have found that three intracellular regulatory networks have an unexpected 

low abundance of negative feedback and feed-forward loops compared to the number of negative 

loops in the corresponding shuffled networks. We also found that links that contribute to 

negative feedback and feed-forward loops can be easily removed to make the networks sign-

consistent. This network topology results from an enrichment of hubs with many negative links 

and not due to the selection for pathways with an even number of negative links.  

We conclude that intracellular regulatory networks have evolved to be mostly “sign-consistent” 

and thus are close to monotone systems. The dynamic stability of the cell may  in part be due to 

this observed topology of the regulatory networks. 
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Methods 

Network datasets analyzed 

Signal transduction network representing interactions in mammalian neurons was assembled 

from literature (1) and downloaded from: 

http://amp.pharm.mssm.edu/data/9.22.2004.sig

Escherichia Coli transcriptional regulation dataset (3) was downloaded from: 

http://www.weizmann.ac.il/mcb/UriAlon/Network_motifs_in_coli/ColiNet-1.1/

Saccharomyces Cerevisiae gene regulatory dataset (4) was downloaded from: 

http://www.weizmann.ac.il/mcb/UriAlon/Papers/networkMotifs/yeastData.mat

These networks are directed graphs with three types of links: activation, inhibition, and neutral 

(signaling) or dual regulation (gene regulation). 

 

Counting positive and negative cycles in the networks 

A positive consistent feedback or feed-forward loop is defined as containing an even number of 

negative links or no negative links. A feedback loop or a feed-forward loop is negative if it is not 

positive (1, 12, 21, 22). A recursive algorithm that uses depth-first search was developed to count 

positive and negative feedback and feed-forward loops (21). The neutral links in the signaling 

network and bidirectional links in the gene regulatory networks have not been considered valid 

links when counting feedback and feed-forward loops. Neutral and bi-directional links are not 

abundant in all three networks (table 1) and considering these links as either negative or positive 

does not significantly affect our results. For a definition of neutral links in the signaling network 

see reference (21) and for a definition of bi-directional links in the gene regulatory networks see 

reference (4). 

 

Removing links that contribute to negative loops 

The following protocol was used to eliminate negative feedback and feed-forward loops of up to 

a certain size: 

1. Apply the algorithm described above to find all the negative feedback and feed-forward loops 

of a certain size. 

2. Sort links based on number of times links participate in found negative loops. 
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3. Remove the link that contributes to the most number of found negative loops. 

4. Repeat until there are no more negative loops of a certain size. 

Fig. 2 illustrates this concept on a toy network model. This algorithm was applied because 

removing all negative loops is NP-hard, although approximation algorithms for this task have 

been developed (23).  

 

Creating shuffled networks 

Shuffled signed networks were created from the original networks for use as statistical controls.  

The algorithm used to create these sign-shuffled networks is briefly described. Signs of links are 

randomly shuffled by picking randomly a pair of links and swapping their signs repeatedly. The 

shuffled signed networks maintain the same connectivity and maintain the same ratio of negative 

to positive links as the original networks. Randomly assigned signs networks were created by 

randomly assigning a positive or negative sign with p=0.5 to all directed links. 
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Table 1:  Characteristics of the three intracellular regulatory networks 

 

 

 

Network Nodes Links CC CPL* 

Positive 

links 

Negative 

links 

Neutral or 

Bidirectional 

links 

E. coli Ver. 

1.1 gene 

regulation 

418 519 0.086 4.848 321 172 26 

S. cerevisiae 

gene 

regulation 

690 1082 0.047 5.208 860 221 1 

CA1 neuron 

Signaling 
546 1259 0.107 4.219 690 306 263 

 

 

 

 

 

 

 

 

 

 

 

* computed for the largest connected island 

 

Statistical measurements for the networks: number of nodes, number of links, clustering 

coefficients (CC) and characteristic path lengths (CPL) (24), positive, negative and neutral or 

bidirectional links.  
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Table 2 Positive and negative motifs in three intracellular regulatory networks. 

 

Network 

Positive 

feedback 

and feed-

forward 

loops  in 

real 

networks 

Negative 

feedback 

and feed-

forward 

loops  in 

real 

networks 

Positive 

loops 

in 20 

randomly 

swapped 

signs 

networks 

Negative 

loops 

in 20 

randomly 

swapped 

signs 

networks 

Positive 

loops  

  in 20 

randomly 

assigned 

signs 

networks 

Negative 

loops  

 in 20 

randomly 

assigned 

signs 

networks 

 

 

 

 

 

 
E. coli Ver. 1.1 

gene regulation 

(cycles size 3-5) 

35 6 20.6 ± 3.0 
19.45 ± 

2.84 

21.75 ± 

4.01 

19.25 ± 

4.01 
 

 

 
S. cerevisiae gene 

regulation 

(cycles size 3-5) 

115 50 
92.72 ± 

11.57 

72.75 ± 

11.09 

87.75 ± 

5.41 

76.55 ± 

5.41 
 

 

 
CA1 neuron 

Signaling 

(cycles size 3-4) 

475 245 
276.35 ± 

35.03 

260.1 ± 

20.46 

359.2 ± 

8.39 

360.8 ± 

8.39 

 

 

 

 

Comparison between positive and negative feedback and feed-forward loops found in the 

original networks and in shuffled networks created from the original networks using the recipe 

described in the methods. The numbers in the shuffled networks columns are average ± standard 

deviation. The reason that the totals (positives + negatives) for the randomized signaling 

networks are not the same as the real networks is because neutral links where also shuffled. This 

affects the counts of feedback and feed-forward loops which do not contain neutral links. 
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Box 1: Analytical explanation for the distribution of positive vs. negative loops in shuffled 

networks 

 

 

If there are P positive and N negative links, and P and N are sufficiently large, the probability of 

picking, using a Bernoulli process, a negative link is: 

 

(1) ,  and a positive link: )/()( PNNp +=− )(1)( −−=+ pp  

 

We define p(k) as the probability that a feedback or feed-forward loop is positive, where k is the 

number of links and nodes making up the loop. A positive loop is defined as a loop with either 

all positive links or an even number of negative links. Thus, we have the following linear first-

order recurrence: 

 

 (2) ))(1))((1()()()1( kppkppkp −+−++=+  with p(1) = p(+).   

 

This recurrence has the solution: 

 

 (3)  p(k) = [1 + (2p-1)^k ] / 2 

 

Thus, for 0 < p(+) < 1, p(k) converges to 0.5, and for p(+) = 1, p(k) = 1 (all links are positive), 

and p(k) alternates between 0 and 1 if p(+) = 0 (the network is made of only negative links). 

For example, for k = 5 and the E-coli transcriptional network, where we have 321 positive links, 

172 negative links, and 26 neutral links (we count neutral links as positive) we have:  

 p(+) = 347/ (347 + 172) = approximately 0.67. 

Therefore, using this simplified Bernoulli argument, the probability of getting a positive loop is: 

p(5) = [1 + (0.34)^5 ] / 2 = 0.502 

(For k = 4, p = 0.507, and for k = 3, p = 0.52). 
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Figures Legends 

Fig. 1 Examples of “sign-consistent” and “sign-inconsistent” feed-forward and feedback 

loops. (a) Examples of “sign-consistent” positive loops in the form of two positive feed-forward 

loops and one positive feedback loop. If the input node A is mutated or its concentration 

increases or decrease the output node D and the overall qualitative circuit behavior would be 

predictable. (b) In contracts, examples of negative “sign-inconsistent” feed-forward loops and a 

feedback loop are shown, where the output node D could be either overall increasing or 

decreasing as a result of a change in the properties of node A. Green arrows represent activation. 

Red plungers represent inhibition. 

 

Fig. 2 Toy network to illustrate the algorithm that removes links that contribute to negative 

feed-forward loops.  

First, the algorithm counts the number of times a link contributes to the formation of negative 

feedback and feed-forward loops. Then the link that contributes to the most number of negative 

loops is removed from the network. The link from A to D is removed because it participates in 

two negative feed-forward loops (more than all other links). After this link is removed there are 

no more negative loops left in the toy network. 

 

Fig. 3 

Gradual removals of links that contribute to negative loops.  

The number of positive and negative feedback and feed-forward loops of size 3-5 in the S. cerevisiae 

and E. coli networks, and 3-4 in the CA1 signaling network were counted. Then, the link that contributes 

to the most number of negative loops was removed. The process is repeated until the networks no longer 

have small-size negative feedback and feed-forward loops. The results for the real networks are 

compared to applying the same procedure on randomly shuffled networks created from the original 

networks. (a) E.Coli gene regulation network. (b) S. Cerevisiae gene regulation network. (c) CA1 

neuronal cell signaling network. 

 

Fig. 4 

Visualization of positive-negative and in-out hubs. All nodes in the networks where positioned in a 2D 

grid based on an x-axis location as the difference between the in and out links for each node, and based 
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on y-axis location as the difference between the positive and negative links for each node.  The results 

are compared to a randomly selected shuffled network plotted the same way. (a) E.Coli gene regulation 

network. (b) S.Cerevisiae gene regulation network. (c) CA1 neuronal cell signaling network. 

 

Fig. 5 

Tracing random directed pathways sign-consistency. Starting from 10,000 randomly chosen nodes, 

directed pathways of variant length in a random direction where traced from the number of negative 

links. The counts of pathways with 0 to 5 negative links (black bars) are compared to average and 

standard deviation computed by applying the same procedure to 20 shuffled networks.  (a) E. coli gene 

regulation network. (b) S. cerevisiae gene regulation network. (c) CA1 neuronal cell signaling network. 
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