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Abstract

This study analyzes ozone formation in the metropolitan area of Lima-Callao as a function of meteorological patterns and the
concentrations of nitrogen oxides and reactive organic gases. The study area is located on the west coast of South America (12°S)
in an upwelling region that is markedly affected by the Southeast Pacific anticyclone. The vertical stability and diurnal evolution
of the mixing layer were analyzed from radiosondes launched daily during 1992-2014 and from two intensive campaigns in
20009. Vertical profiles show that during June-November, the subsidence inversion base ranges from 0.6 to 0.9 km above sea level
(asl). In contrast, during December—May, subsidence inversion dissipates, leading to weak surface inversions from 0.1 to 0.6 km
asl. At the surface level, compliance with the ozone standard of 51 parts per billion by volume (ppbv) is explained by the marine
boundary layer effect and by strong inhibition of ozone formation due to titration with nitric oxide. Day-of-the-week variations in
ozone and nitrogen oxides suggest a VOC-limited ozone-formation regime in the atmosphere of Lima. Furthermore, the pattern
of C¢—C,, species indicates that gasoline-powered vehicles are the main source of volatile organic compounds (VOCs), whereas
the species with the greatest ozone-forming potential corresponded to the sum of the isomers m- and p-xylene. Mean benzene
concentrations exceeded the standard of 0.63 ppbv, reaching 1.2 ppbv east of Lima. Nevertheless, the cancer risk associated with
the inhalation of benzene was deemed acceptable, according to USEPA and WHO criteria.
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Introduction

Tropospheric ozone (O3) and volatile organic compounds
(VOCs) are key components in atmospheric chemistry. At the
surface level, ozone is considered one of the main anthropogenic
atmospheric pollutants (Schultz et al. 2017). Furthermore, ozone
is a key greenhouse gas due to its strong absorption in bands of
terrestrial infrared radiation (Monks et al. 2015).

O; is a secondary gas formed through photochemical oxi-
dation of VOCs in the presence of nitrogen oxides (NO +
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NO,), which are known as precursors (Fiore et al. 2015;
Alvim et al. 2017; Toro et al. 2013, 2014). Therefore, environ-
mental agencies commonly assess VOCs in ozone non-
attainment areas. The US Environmental Protection Agency
(USEPA) updated the list of 54 target VOCs measured at pho-
tochemical assessment monitoring stations (known as 54
PAMS) and currently recommends monitoring 25 organic spe-
cies that are mainly prioritized according to their contribution to
ozone formation (USEPA 2017). Other criteria include the role
played as secondary organic aerosol precursors, and whether
the compounds are considered hazardous air pollutants.

In urban areas, large proportions of organic precursors de-
rive from mobile sources (Fujita et al. 2012; Seguel et al.
2012; Rappengluck et al. 2005). Biogenic VOC emissions
derived from vegetation may also contribute to the inventory
of O; precursors (Chameides et al. 1988). Apart from photo-
chemical ozone formation, stratosphere—troposphere ex-
change favors irreversible ozone transport from the strato-
sphere and is thus another source of ozone, particularly for
the upper and middle troposphere (Seguel et al. 2018).

Epidemiological studies have shown significant associa-
tions between contamination by O; and damage to human
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health (Bell et al. 2004; Liu and Peng 2018). The most impor-
tant effects are decreased lung function, respiratory tract in-
flammation, pharyngeal irritation, functional changes, and
asthma symptoms in susceptible people (Lippmann 1991).
Forouzanfar et al. (2015) estimated the number of deaths at-
tributable to ozone exposure in 2013 at 217,000, which is 63%
higher than in 1990.

Due to the adverse health effects of ozone, many agen-
cies have established air quality standards following
World Health Organization (WHO) guidelines, which set
a value of 51 ppbv for ozone. Accordingly, Peru has strin-
gent standards of 51 ppbv for ozone and 0.63 ppbv for
benzene (MINAM 2017). The latter is not only a key
organic ozone precursor but is also a known carcinogen
(ATSDR 2007).

In Peru, in 2010, the first Automatic Air Quality
Monitoring Network, the so-called RAMCA (for its acronym
in Spanish), was implemented in the Metropolitan Area of
Lima-Callao (MALC), comprising 10 stations that record
hourly concentrations of gases and atmospheric aerosols
(Silva et al. 2017) over a vast geographical area with complex
terrain. The network is currently operated by the National
Service of Meteorology and Hydrology (SENAMHI) under
the Ministry of the Environment (MINAM).

Air quality in Lima is largely modulated by a persistent
weather and climate pattern (Enfield 1981). Underhill (2015)
determined that higher NO, concentrations are found during
the warm period than during the cold period. In turn, CO
records and the prevailing wind show that polluted air masses
are transported to the northeast of the city (Tashiro and
Taniyama 2002).

Despite recent efforts, characterization of Lima’s pho-
tochemical pollution is scarce in the scientific literature,
and the lack of permanent VOC measurements is a key
information gap that must be bridged to properly address
their management and to determine the population’s ex-
posure to hazardous organic species. Therefore, the ob-
jective of this study is to relate meteorological patterns to
air quality in the Lima-Callao metropolitan area, and to
identify the atmospheric chemical processes that govern
the ozone formation regime in the city. To meet these
objectives, atmospheric stability is first analyzed from
23 years of radiosondes that were launched between
1992 and 2014, followed by diurnal characterization of
the marine boundary layer during summer (February) and
winter (August) 2009. Subsequently, ozone behavior is
analyzed as a function of precursors of NO, (NO +
NO,) and reactive volatile organic compounds in periods
and regions of interest. Finally, the levels of reactive or-
ganic gases are contextualized, prioritized in terms of
their potential contribution to ozone formation, and com-
pared with national standards and international
guidelines.
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Methodology
Study area

The MALC is located on the west coast of South America
(12.0°S, 77.0°W, 2672 km?), has a population of approximate-
ly ten million, and spans elevations from sea level to the west-
ern slopes of the Andes mountain range (approximately
1.5 km asl) (Fig. 1).

The MALC experiences scarce rainfall, high atmospheric
humidity, and persistent cloud cover due to strong subsidence
inversion caused by the Southeastern Pacific anticyclone that
prevails over the region for much of the year.

On the Peruvian coast, the predominant surface wind from
the south-southwest favors the upwelling of cold waters along
the coast, which, together with subsidence inversion of the
subtropical anticyclone, results in dense cloud cover, particu-
larly from June to November (cold period). In turn, weakening
of the anticyclone during the warm period (December—May)
increases the number of clear days. These conditions make the
MALC one of the driest regions in the world. For example,
during 2010-2015, average temperature was 23 °C (range 13—
32 °C), average relative humidity was 85% (range 70-95%),
and average wind speed was 4 m/s (range 1-5 m/s), predom-
inantly from the south-southwest, with average annual rainfall
of 10 mm.

Radiosonde observations at the international airport
(1992-2014)

In total, 3046 radiosondes were launched from the Jorge
Chavez International Airport by the Peruvian Corporation of
Commercial Airports and Aviation (CORPAC, for its acro-
nym in Spanish) on a daily basis at 7:00 LT (in this paper,
UTC-5 will be used as Local Time (LT)) to assess tempera-
ture, relative humidity, atmospheric pressure, and wind direc-
tion and speed as a function of height up to approximately
150 hPa (15 km) (Table 1).

Daily radiosonde campaigns in Las Palmas

To monitor the daily evolution of the marine boundary layer,
two radiosonde campaigns were conducted in 2009 by
SENAMHI. Radiosondes were launched from the Las
Palmas meteorological station (Table 1) from February 16 to
28 during the warm period (33 launches) and from August 21
to 30 during the cold period (31 launches). Three launches
were conducted each day, at 07:00, 13:00, and 19:00 LT,
respectively.

Vertical profiles for meteorological variables (pressure,
temperature, and relative humidity) were recorded by Vaisala
RS92-SGP radiosondes. Calibration of the pressure,
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Fig. 1 Map of the metropolitan -77°1% -77°0’
area of Lima-Callao. Red circles
indicate air quality monitoring N 11048
stations, black circles indicate the <!
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=
a
=)
E -12°0’
<
[
-12°12’

temperature, and humidity sensors was performed with the
Vaisala Ground Check Set GC25.

Analysis from sounding

The potential temperature method (Theta method) was used to
estimate the marine boundary layer height. This method finds
the lowest critical inversion that meets the Theta gradient and
lapse-rate criteria according to Heffter (1980). The two criteria
are expressed as follows:

AB/AZ > 0.5K/100 m™ (1)
00, > 2K (2)

where AB / AZ is the potential temperature lapse rate in the
inversion layer, and 0, and 0, refer to the potential

temperatures at the base and top of the critical inversion layer,
respectively.

Surface observations (03, NO, NO,, and CO)

The hourly concentrations of O3, NOy, and CO were mea-
sured using Teledyne analyzers (models 400E, T200, and
T300, respectively; Teledyne Technologies, Inc., Thousand
Oaks, CA, USA). The analyzer operation includes zero and
span verifications, calibrations, detection of leaks, preventive
maintenance, and documentation. Verifications are conducted
on a monthly or weekly basis. The data are transmitted by
telemetry to SENAMHI headquarters, where the data are val-
idated after correcting null entries, duplicates, and/or anoma-
lies. For further details, see Silva et al. (2017).
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Sounding

Altitude  VOC campaign
(m asl)

Station location

Location and measurement periods for VOCs and radiosondes
(Lat; Lon)

Monitoring station

Table 1
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July 5, 20,21 and 23, 2017 (07:00-07:30;

September 3, 2015 (07:00-10:00;

358

—12.0261;

Ate (ATE)

12:00-12:30; 18:00-18:30 LT)
July 5, 20,21 and 23, 2017 (07:00-07:30;

12:00-15:00; 18:00-21:00 LT)

September 2, 2015 (07:00-10:00;

—76.9186
—12.1664;

292

Villa Maria del Triunfo

12:00-12:30; 18:00-18:30 LT)
July 5, 20,21 and 23, 2017 (07:00-07:30;

12:00-15:00; 18:00-21:00 LT)

August 20, 2015 (07:00-10:00;

—76.9200
—11.8500;

(VMT)
Puente Piedra (PPD)

205

12:00-12:30; 18:00-18:30 LT)

12:00-15:00; 18:00-21:00 LT)

—77.0700

International airport Jorge —12.0242;

January 1992 to

13

October

—77.1109

Chavez (JCH)

2014 (07:00 LT)
February 16-28 and

73

—12.1509;

Las Palmas (LPA)

August 21-30,

—76.9997

2009 (07:00, 13:00,
and 19:00 LT)

Due to the predominant wind direction and the significant
contribution of mobile sources from downtown Lima, pollut-
ed air masses are transported to the northeast area of the city.
Therefore, the selected air quality monitoring stations were
ATE (Ate district), VMT (Villa Maria del Triunfo district),
and PPD (Puente Piedra district), which are located 18 km
east, 16 km south, and 22 km north of the center of the
MALC, respectively (Fig. 1).

Descriptive statistical analyses of hourly measurements of
03, NOx, CO, and radiosonde data were performed using the
R open-source statistical programming language (R
Development Core Team, Vienna, Austria) and its Openair
package (Carslaw 2013) under the open-source software
RStudio (RStudio Boston, MA, available from http://www.
rstudio.org/).

Analysis of volatile organic compounds (Cs-C;5)

During 2015 and 2017, two VOC C¢C;, campaigns were
performed to complement the information collected from the
air quality monitoring network (Table 1). The sampling sites
were the same stations described previously (ATE, VMT, and
PPD). The first exploratory campaign was performed three
times per day. The second campaign was conducted on con-
secutive days and three times per day. The diurnal periods
were selected to measure the levels associated with rush hours
(7:00 and 18:00 LT) and favorable convective mixing condi-
tions (13:00 LT).

Air was pulled by constant airflow (0.1 L/min) and passed
through cartridges packed with Tenax TA., Carboxen 1000,
and Carbosieve SII. The C¢—C, species adsorbed on the car-
tridges were immediately analyzed in a gas chromatograph
with a mass spectrometry detector (GC/MS) using the TO-1
method of the US Environmental Protection Agency (USEPA
1999).

The gas chromatograph mass spectrometer (Shimadzu,
model GCMS-QP2010 ULTRA) includes a thermal desorp-
tion unit that volatilizes and pre-concentrates VOCs before
injection into the GC. The system was calibrated using a mix-
ture that contained C4—C;, compounds (carbon tetrachloride;
benzene; toluene; ethylbenzene; o-xylene; m-xylene; p-
xylene; styrene; n-propylbenzene; naphthalene; p-
isopropyltoluene, purchased from SUPELCO). The estimated
overall uncertainty of VOC measurements was approximately
10%.

Determination of priority volatile organic compounds
(C6—Ci2)

The measured mixing ratio for each C4—C;, species was mul-
tiplied by the maximum incremental reactivity (MIR) of the
compounds (Carter 2010) to obtain their average reactivity-
adjusted mixing ratio. Thus, each Cs—C;, species was
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categorized based on its proportional contribution to ozone
formation according to the following formula:

Proportional weighting of the compound

(C-min) <+ (max-min)-100 (3)
where C is the average MIR-adjusted mixing ratio for the
compound, and min (max) are the lowest (highest) average

MIR-adjusted mixing ratios, respectively, for all compounds.

Results and discussion
Weather patterns

A 23-year climatology of vertical stability based on radio-
sondes launched from the Jorge Chavez International
Airport at 7:00 LT is presented. The analysis identified two
markedly different periods: June-November and December—
May.

The vertical temperature profiles obtained between June
and November during 1992-2014 showed that the bases of
the inversions frequently occurred between 0.6 and 0.9 km
(max median 0.82 in June; min median 0.67 in September)
(Fig. 2a), and that temperature increased between 2 °C/100 m
in August and 1.2 °C/100 m in November (Fig. 2b).

During this cold period (June—-November), the strengthen-
ing and displacement of the subtropical anticyclone toward
the central coast of South America intensifies the interaction
between the Humboldt Current and the descending air masses.
As a result, a thick layer of cold and humid air is generated in
the lower troposphere. The above processes, coupled with
radiational cooling from the top of the stratus cloud deck,
leads to the development of a strong subsidence inversion
(Albrecht 1981).

On the other hand, during the warm period (December—
May), the weakening of the subtropical anticyclone and

Fig. 2 Variation of the first

displacement to higher latitudes produces clear skies over
Lima that are occasionally interrupted by the passage of
troughs.

The vertical temperature profiles obtained during
December—May of 1992-2014 showed that radiative heating
at surface level allows for the formation of weak surface in-
versions. The bases of the temperature inversions occurred
between 0.1 and 0.6 km (max median 0.59 in December;
min median 0.13 in March) (Fig. 2a), and the temperature
increased between 1 °C/100 m in May and 0.7 °C/100 m in
January (Fig. 2b).

Daily evolution of the marine boundary layer

The strength and persistence of the subsidence inversion sig-
nificantly determine the meteorological pattern over Lima.
Accordingly, radiosonde campaigns for the two distinct pe-
riods (cold and warm) were designed to evaluate the daily
marine boundary layer growth in more detail through vertical
temperature profiles, potential temperature, water vapor,
mixing ratios, wind speed, wind vectors, and cloud layers
(Fig. 3).

Cold period

The lapse rate shows that, from August 23 to 29, the atmo-
sphere experienced a significant temperature increase of ap-
proximately 9 °C from a height of 0.6 to 2.0 km (Fig. 3a) as a
result of adiabatic heating due to subsidence. Figure 3c shows
the potential temperature gradient used to calculate the marine
boundary layer height according to the method of Heffter
(1980). The potential temperature isotherm of 295 K marked
the height of the marine boundary layer.

During the period from August 21 to 30, 2009, the subsi-
dence inversion base reached a maximum height of 1.1 km asl
on August 21 (13:00 LT) and a minimum height of 0.46 km
asl on August 26 (13:00 LT). The average subsidence

temperature inversion base (a)
and vertical temperature gradient
(b) determined from radiosondes
launched at the international
airport by CORPAC during the
period 1992-2014 at 07:00 LT.
On each box, the central mark
indicates the median, and the
bottom and top edges of the box
indicate the 25th and 75th
percentiles, respectively. The
whiskers extend to the minimum
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Fig. 3 Vertical profiles of temperature, potential temperature, water
vapor, wind speed, and cloud layers measured using radiosondes
launched from Las Palmas (Lima) during August 21-30 (right panel)
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Days

and February 16-28 (left panel) 2009. The cloud scale range considers
clear sky (Clear), 1-2 oktas (FEW), 2—4 oktas (SCT: scattered), 5—7 oktas
(BKN: broken), and 8 oktas (OVC: overcast)
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inversion height at 7:00, 13:00, and 19:00 LT showed low
variability and was located at 798 m (standard deviation
(SD)=117), 796 m (SD =207), and 677 m (SD =154) asl,
respectively. Under these meteorological conditions, no sur-
face inversions were identified during the period August 21—
30, 20009.

Figure 3e shows the high water-vapor content of the marine
boundary layer, whereas the observed wind speeds were low,
generally less than approximately 4 m/s (Fig. 3g).

The period from August 21 to 30, 2009 was mostly char-
acterized by cloudiness located below the subsidence inver-
sion base. In general, a cloud layer with average thickness of
0.4 km was identified (Fig. 31). Clear skies were observed only
on August 26 and partly during the previous day.

Warm period

Analysis of the marine boundary layer from February 16 to
28, 2009 shows that the subsidence inversion was completely
dissipated. By contrast, surface inversions were developed.
Over this period, sunny days were occasionally interrupted
by cloudiness, mainly during morning hours (7:00 LT).

The cross-section of temperature (Fig. 3b) shows that days
with clouds (February 16, 21, 22, 25, 27, and 28) inhibit the
formation of surface inversions. Conversely, clear days show
the development of weak surface inversions. The most notable
period was from February 17 to 19, which showed a temper-
ature inversion of approximately 3 °C with base ranging from
0.1 to 0.5 km asl.

Throughout the day, in general, the increase in surface
heating increases the marine boundary layer height, thus im-
proving vertical mixing conditions. During this period, the
marine boundary layer grew throughout the day a few hundred
meters. The average base of the thermal inversion at 7:00,
13:00, and 19:00 LT was located at 227 m (SD =93), 350 m
(SD =287), and 336 m (SD = 167) asl respectively.

Figure 3f shows maximum water vapor mixing ratio at the
surface level, mainly on days with high surface temperatures.
Those days show a significant increase in water vapor (> 15 g/
kg), with higher values than those recorded in winter.
Furthermore, wind speed at the surface level is higher during
summer than winter (Fig. 3j).

Overview of 0;-NO,-CO

Lima shows high atmospheric concentrations of nitric oxide
and carbon monoxide throughout the year, especially at the
ATE station located downwind of the downtown area (Fig. 4).
By contrast, ozone measurements exhibited low mixing ratios.
For example, the annual average between 2015 and 2017 at
the PPD station varied from 5.7 to 6.9 ppbv, and the mean
diurnal cycle during the period did not exceed 18.9 ppbv
(13:00 LT). The 3-year average of the annual fourth-highest

daily maximum 8-h average (MDAG®) ozone-mixing ratio does
not exceed 30.1 ppbv (PPD). Similarly, annual maxima do not
exceed 39 ppbv. Therefore, mixing ratios of surface Os in the
MALC comply with the national air quality standard of
51 ppbv.

During the warm period, the mean diurnal cycle at station
ATE showed maximum nitric oxide concentration of 97 ppbv
at 7:00 LT, compared with 56 ppbv at 8:00 LT during the cold
season (Fig. 5). This pattern of higher concentrations during
the warm period was also observed at VMT (south of the city)
and at PPD (north of the city).

NO and CO mixing ratios as a function of wind speed and
direction are presented in polar coordinates in Fig. 6. The
polar plot shows that in the warm period of 2017, the mixing
ratios of the primary gases NO and CO mostly overlap regard-
ing wind direction and speed, as is expected for pollutants
from the same source. Conversely, in the cold period, NO
decreases and CO becomes concentrated (Fig. 5). Fine parti-
cles (PM 2.5) exhibited similar behavior than CO in ATE. The
drastic decreases in nitric oxide compared to carbon monoxide
from June to November (cold period) can be explained by
differences in the lifetimes of these species under conditions
of low atmospheric dispersion. Carbon monoxide has an av-
erage chemical lifetime of approximately 2 months in the tro-
posphere while for NO, the lifetime is about 1 day (Yin et al.
2015; Wenig et al. 2003). Hence, it is hypothesized that sub-
sidence inversion favor the accumulation of carbon monoxide
throughout the cold period and the oxidation of NO, to gas-
eous HNO;, followed by its uptake into condensed phase
would explain the significant drop of NO,. As described in
preceding sections, relative humidities are always high during
the cold season, and precipitation in the form of a very light
drizzle falls much of the time. For example, the relative hu-
midity in ATE, VMT, and PPD varies between 81 and 88%,
between 88 and 95%, and between 77 and 85% respectively
during the cold period of 2016.

0Ozone inhibition

The mean diurnal cycle (Fig. 4) shows that the NO mixing
ratio at ATE is always higher than 27.7 ppbv (14:00 LT),
thereby preventing ozone accumulation during the day
through titration with NO (reaction 1). The maximum ozone
concentration of 19.3 ppbv reached at 13:00 LT is lower than
the NO concentration at the same time (28.8 ppbv), which
illustrates the strong inhibitory effect of NO.

NO + 03 — NO; + O, (Reaction(1))

The polar plot (Fig. 6) shows O3 response to NO levels.
During the warm period, quadrants with higher ozone levels at
ATE, PPD, and VMT are clearly accompanied by decreases in
NO. Inversely, quadrants with low ozone levels have higher
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Fig. 4 Daily and weekly ‘

(a) Daily variation ‘ |

(b) Weekly variation

variations in NO,, NO, CO, and

05 mixing ratios for the period

2015-2017 (O5 period: 2012~ 35
2017) at stations ATE, VMT, and
PPD —~
2
9 25
e
e)
=2

25

20

NO(ppbv)

CO(ppmv)

O3(ppbv)

NO mixing ratios. This behavior is illustrated by the low O/
NO ratio found in all sites especially in warm periods (Fig. 6).

The weekly variation of the primary pollutants CO and
NO, (Fig. 4) shows that the main decrease affects nitric oxide,
given the longer lifetime of CO. Average mixing ratio indi-
cates higher NO concentrations on workdays (Monday—
Thursday) than at the weekend (Sunday), differing by 29, 9,
and 19% at stations ATE, VMT, and PPD, respectively.
Conversely, for ozone, the average mixing ratio is higher on
the weekend (Sunday) than at the workdays (Monday—
Thursday) differing by 16, 13, and 7%, at the ATE, VMT,
and PPD stations, respectively. Over the weekends, a decrease
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in NO, reduces consumption of the ‘OH radical (reaction 2).
Consequently, the greater availability of "OH would favor
VOC oxidation, leading to O3 formation. This result suggests
a VOC-limited ozone-formation regime in the atmosphere of
Lima.

‘OH + NO; + M—HNO; + M ((Reaction(2))
The observed “weekend effect” highlights that future re-
strictions on nitrogen oxides without properly managing

VOC:s could lead to increased O5 concentrations, as described
in the literature (Fujita et al. 2003).
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Fig. 5 Variations in O3, NO,,
NO, and CO mixing ratios and
PM 2.5 concentration during the
warm (left panel) and cold (right
panel) periods of 2016 at stations
ATE, VMT, and PPD

3
0,,NO,, NO [ppbv] & PM,, . [ug/m’]

\ ATE (Warm period)

ATE (Cold period) r

e~

CO [ppmv]

80

60

40+

0,, NO,, NO [ppbv] & PM, [ug/m’]

VMT (Warm period) VMT (Cold period) i

CO [ppmv]

80

0, NO,, NO [ppbv] & PM, [ug/m’]

PPD (Warm period)

CO [ppmv]

In summary, meteorological conditions of Lima do not
promote photochemical activity during most of the year. The
cloud cover affects actinic flux, and the moderate tempera-
tures do not favor ozone formation. However, the highest
ozone levels were typically found during the warm period
mainly due to a presence of photochemical precursors and
the occurrence of thermal inversions. Statistically significant
differences between cold and warm periods (2014-2016) were
found for all sites as determined by ANOVA (= 0.05).

From a chemical perspective, in Lima, NO is reacting rap-
idly with Os to generate NO, (reaction 1). Furthermore, at low
VOC/NOx ratios, OH reacts predominantly with NO, (reac-
tion 2), removing radicals, retarding O; formation, and pro-
viding (in theory) a major source of HNOj in fogs and parti-
cles. Hence, the high degree of ozone inhibition caused by
titration with nitric oxide, and the scarcity the radical ‘OH
explain the lower ozone concentrations observed at the ATE,
PPD, and VMT stations.

T T T T T T T T T T T
8 10 12 14 16 18 20 22 2 4 6 8

T T T T
10 12 14 16 18 20 22

Local time (h) Local time (h)

—0, ——NO, ——NO ——PM,, - -CO

Case study: VOCs in urban atmosphere of Lima

The air quality network of the MALC fails to measure relevant
organic precursors. Therefore, the campaigns conducted to
measure Cs—Cj, species are the first efforts to address this
issue in the MALC and results of C4—C;, speciation is pre-
sented to illustrate the impact of several VOCs on air quality
and health. Specifically, knowledge of atmospheric VOC
levels in the MALC is critical for (1) understanding the pro-
cesses that govern ozone formation, (2) assessing their contri-
bution to the formation of secondary organic aerosols, and (3)
determining exposure to intrinsically hazardous substances.

Pattern of Cs—C;, species
The results of Cs—C;, species show that the highest mixing

ratios are oriented eastward to the MALC center (ATE) in
accordance with the predominant wind direction. Figure 7
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Fig. 7 Cs—C;, pattern assessed at
ATE, PPD, and VMT from
exploratory campaigns performed
on July 5, 20, 21, and 23, 2017
(top panel); comparison between
the 2015 pattern and that assessed
from the campaign conducted in
July 2017 (bottom panel)

—o—ATE
—e—PPD 4
VMT

—o—Aug 2015
——Jul 2017

shows that the pattern of C4—C;, species analyzed at ATE,
PPD, and VMT is relatively similar and comparable to cam-
paigns conducted in August 2015 and July 2017 (Fig. 7).
Consequently, the pattern of C¢—C;, species confirms the con-
tribution of a main source to the inventory of VOCs, whereas
the speciation of Cs—C;, compounds identifies tracers that are
typical of vehicular emissions, e.g., benzene, toluene, and xy-
lenes. The city of Lima, with approximately 2.2 million motor
vehicles (Silva et al. 2017), experiences significant traffic con-
gestion and gas emissions from vehicles throughout the day,
due to the lack of a comprehensive public transport system
(Tashiro and Taniyama 2002).

Priority C—C;; in Lima

The importance of each compound for ozone formation was
determined using the mixing ratios found in Lima (Table 2)
and the maximum incremental reactivity (MIR) scale (Carter
2010). As shown in Table 2, adjusting the mixing ratio ac-
cording to reactivity makes it possible to identify substances
with greater potential to increase ozone formation, compared
with those that are less productive despite having higher at-
mospheric concentrations. For example, benzene occurs at
higher concentrations than o-xylene, but the latter has greater
ozone-forming potential. At ATE, PPD, and VMT, the species
with the highest ozone formation potential is the sum of the
species m-xylene and p-xylene (expressed as a sum because
these isomers cannot be separated by current analytical
methods). As shown in Table 2, the theoretical productivity

of ozone associated with m + p-xylene is 23, 20, and 17 times
the productivity of benzene at ATE, PPD, and VMT, respec-
tively. By contrast, the species naphthalene, styrene, p-
isopropyltoluene, n-propylbenzene, n-butylbenzene, and
isopropilbenzene add little value in all sites.

Figure 8 shows the cumulative percentage of each C4—C,
species, based on reactivity (Eq. 3). Categorization shows that
5 of the 14 species account for nearly 90% of the ozone for-
mation potential. These species are m + p-xylene (36%), tolu-
ene (21%), 1,2,4-trimethylbenzene (14%), 1,2,5-
trimethylbenzene (13%), and o-xylene (8%). Furthermore,
these five VOCs prevail at the three sampling sites, and also
match the priority compounds proposed by the USEPA.

BTEX levels

In 2014, the national ambient air quality standard for benzene
was reduced from 1.3 to 0.63 ppbv annual average in Peru.
Currently, no systematic benzene measurements are per-
formed to evaluate compliance or exceedance of the standard.
In this context, the campaigns reported herein determine the
current levels of and exposure to this carcinogenic pollutant.

Elevated levels of reactive organic gases (BTEX: benzene,
toluene, ethylbenzene, and xylene) have been found in the
MALC. Table 3 shows that mean and median benzene con-
centrations exceeded the standard during the study period,
with the maximum concentration (1.2 ppbv) recorded at sta-
tion ATE located east of Lima. For context, Table 3 also pre-
sents some statistical parameters gathered from BTEX
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Table2 Mixing ratio of C¢—C); species at Lima multiplied by maximum incremental reactivity (MIR, Carter 2010)

Cs—C12 Ate PP VMT MIR (g O5/g VOC) Reactivity-adjusted
average mixing ratio

Median Mean Max Median Mean Max Median Mean Max

ppbv Ate PP VMT
m+ p-Xylene 1.4 2.1 74 098 12 47 097 1.2 23 975 20 11 12
Toluene 23 2.7 9.1 12 1.6 53 12 2.0 49 40 11 65 8.0
1,2,4-Trimethylbenzene  0.30 059 31 035 043 1.3 0.27 040 084 11.97 7.0 52 47
1,3,5-Trimethylbenzene  0.30 055 28 028 036 1.1 030 041 095 11.76 6.5 42 48
0-Xylene 0.35 060 25 030 036 12 047 038 0.64 7.064 4.6 27 29
Ethylbenzene 0.46 062 21 029 037 12 041 041 075 3.04 1.9 1.1 1.3
Benzene 0.81 12 48 077 080 1.8 1.0 097 13 072 0.9 06 0.7
Naphthalene 0.07 0.13  0.53 0.06 0.19 1.1  0.06 0.08 0.14 334 0.4 06 03
Styrene 0.22 024 053 0.13 0.16 050 0.13 039 15 173 0.4 03 0.7
p-Isopropyltoluene 0.05 0.06 0.09 0.05 0.05 0.07 0.05 0.04 0.06 444 0.3 02 02
n-Propylbenzene 0.10 0.13 036 0.05 0.07 0.17 0.08 0.08 0.16 2.03 0.3 01 02
n-Butylbenzene 0.05 0.09 0.19 0.02 004 007 - - - 2.36 0.2 0.1 0.0
Isopropylbenzene 0.06 0.06 0.09 0.04 0.04 005 - - - 2.52 0.1 0.1 0.0

measurements in Lima and compares them to the latest official
values reported for Santiago de Chile (SCL), another South
American capital city, which has been designated an ozone
non-attainment area over the last 20 years (Seguel et al. 2018).
The mean benzene values found in the MALC exceed
those reported for downtown SCL and approximately 16 km
downwind. In Table 3, upwind SCL is a suburban site located
26 km from the city center. Mean toluene concentrations are
similar for both cities, and the maximum toluene concentra-
tions were found in ATE and in downtown SCL. Mean ethyl-
benzene concentrations are relatively similar for both cities,
except for higher mean concentrations in central SCL.

Fig. 8 Cumulative sum of the
proportional weight of each 0

As mentioned in the previous section, m-xylene and p-
xylene are the species with the highest ozone formation po-
tential among the C¢—C, species studied in the MALC, sim-
ilar to the SCL, considering the 54 PAMS. The levels of m +
p-xylene at ATE are similar to those found downwind of SCL.
The same was observed for mean o-xylene levels.
Nevertheless, the ozone standard is not exceeded at ATE, in
contrast to downwind SCL. This result is attributed to the
prevailing meteorological conditions in Lima and to the chem-
ical regime characterized by the ozone reaction with NO and
low availability of the radical ‘OH consumed by high levels of
NO, relative to VOCs.
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Table 4 Comparison of mean

values for aromatic hydrocarbon Sites Benzene Toluene Ethylbenzene m + p-Xylene 0-Xylene
mixing ratios for various cities of ppbv
Latin America (Sao Paulo: Alvim
etal. 2017; Santiago: Seguel et al. Sao Paulo 0.81 +0.02 440+0.18 1.15+0.03 0.65+0.03/1.40 +0.13 0.63 £ 0.01
2013; Mexico City: Jaimes- 2008
Palomera et al. 2016) Santiago 0.48 £0.13 1.9+09 0.55+0.38 19+14 0.64 £ 045
2009
Mexico City 1.63+0.42 8.99+5.18 0.82+£0.45 1.42+£0.58 1.09 +£0.58
2012
Lima 1.0+0.2 2.1+05 0.46 £0.13 15+0.5 0.45+0.14
2017

For Sao Paulo, separate results for m-xylene and p-xylene were available

Lastly, Table 4 compares BTEX levels with other two Latin
America megacities (Sao Paulo and Mexico City). In general,
a good agreement for m + p-xylenes and o-xylene is observed.
Toluene stands out as one of the aromatics that presents higher
concentrations and greater variation among the four cities
reported.

Risk assessment for benzene

Benzene is a known carcinogen (WHO 2000). Therefore, the
USEPA and WHO have established ranges and levels of risk
associated with its inhalation 0f 2.2-10°~7.8-10 ® and 6-10°°,
respectively (ATSDR 2007). Benzene measurements at ATE,
PPD, and VMT were used to estimate the excess lifetime risk
of leukemia. Table 5 shows the exposure concentration
modeled for a residential scenario. This concentration was
calculated by multiplying the 95% upper confidence limit
(95% UCL) of the arithmetic mean by the factor 0.41, which
corresponds to a residential scenario. Specifically, an average
lifetime of 70 years, exposure duration of 30 years, and an
exposure frequency of 350 days/year were considered to de-
termine this factor (Table 5).

The results show that the cancer risk ranges from 2 per hun-
dred thousand to 9 per million inhabitants. The estimated risk
associated with benzene inhalation is considered acceptable, ac-
cording to the criteria established by the USEPA and WHO.

Table 5

Conclusions

Twenty-three years of radiosonde observations identified a
persistent subsidence inversion over Lima, which was stron-
gest during cold period (June—November) with an average
base altitude of 0.74 km. During the warm period
(December—May), the subsidence inversion was dissipated
entirely, and weak surface inversions developed with an aver-
age base altitude of 0.29 km.

The daily evolution of the marine boundary layer showed
no surface inversions during the period August 21-30, 2009
and a cloud layer with an average thickness of 0.4 km was
usually identified below the subsidence inversion base.
During February 16-28, 2009, the marine boundary layer
grew along the day reaching the higher average altitude of
0.35(SD=0.29) at 13:00 LT.

In the warm period, efficient ozone formation was hindered
by the intermittent occurrence of numerous cloudy days.
Similarly, on clear days with greater solar radiation and with
the presence of precursors, a substantial increase in ozone was
not observed, which was again attributed to strong inhibitory
effect resulting from the titration of nitric oxide that is present
at high atmospheric concentrations in the Lima-Callao metro-
politan area. Maintaining compliance with ozone standards
over time, in a continuously growing city, will require effec-
tive measures for the balanced reduction of both NO, and
VOC concentrations.

Exposure levels and risk assessment for benzene according to EPA and WHO inhalation unit risk

Site  N° Min. Max. SD Coefficient of

Mean Median 95% Student’s t UCL Residential

Inhalation unit risk

variation exposure
(Factor: 0.41) USEPA range WHO
pg/m’ 22:10° 7.810° 6.010°
ATE 12 025 15 44 36 39 26 6.3 2.6 6in1-10° 2in1-10° 2in1-10°
PPD 12 081 56 15 19 25 25 3.5 14 3in1-10° 1in1-10° 9in1-10°
VMT 12 17 43 11 1.1 31 33 3.8 15 3in1-10° 1in1-10° 9in1-10°

#Factor = (350 x 30) / (70 % 365): average lifetime = 70 years; exposure duration = 30 years; exposure frequency =350 days/year
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The pattern of C4—C,, species was relatively similar in the
atmosphere of the Lima-Callao metropolitan area and was
mainly attributed to mobile sources. In the group of Cs—Ci,
species, five were classified as priority species for their ozone-
forming potential: m + p-xylene, toluene, 1,2,4-
trimethylbenzene, 1,2,5-trimethylbenzene, and o-xylene.
Further, the observed BTEX levels were high and similar to
those reported in non-attainment areas (benzene (1.0 ppbv),
toluene (2.1 ppbv), ethylbenzene (0.5 ppbv), m + p-xylene
(1.5 ppbv), and o-xylene (0.4 ppbv)).

In terms of public health implications, the exploratory ben-
zene mixing ratios found in this study exceeded the standard
of 0.61 ppbv. However, exposure to this carcinogenic pollut-
ant is considered acceptable, based on risk analysis conducted
in accordance with USEPA and WHO guidelines.
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