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entity2rec: Property-specific Knowledge Graph
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Abstract

Knowledge graphs have shown to be highly beneficial to recommender sys-
tems, providing an ideal data structure to generate hybrid recommendations
using both content-based and collaborative filtering. Most knowledge-aware
recommender systems are based on manually engineered features, typically
relying on path counting and/or on random walks. Recently, knowledge
graph embeddings have proven to be extremely effective at learning features
for prediction tasks, reducing the complexity and time required to manually
design effective features. In this work, we present entity2rec, which learns
user-item relatedness for item recommendation through property-specific
knowledge graph embeddings. A key element of entity2rec is the construction
of property-specific subgraphs. Through an extensive evaluation on three
datasets, we show that: (1) hybrid property-specific subgraphs consistently
enhance the quality of recommendations with respect to collaborative and
content-based subgraphs; (2) entity2rec generates accurate and non-obvious
recommendations, compared to a set of state-of-the-art recommender
systems, achieving high accuracy, serendipity and novelty. More in detail,
entity2rec is particularly effective when the dataset is sparse and has a
low popularity bias; (3) entity2rec is easily interpretable and can thus be
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configured for a particular recommendation problem.

Keywords:
recommender systems, knowledge graph embeddings, knowledge graphs

1. Introduction

In the last decade, research on recommender systems has shown that hy-
brid systems generally outperform collaborative or content-based systems,
addressing problems such as data sparsity, new items or overspecialization
(Adomavicius and Tuzhilin, 2005). Knowledge graphs are an ideal data struc-
ture for hybrid recommender systems, as they allow to easily represent user-
item interactions, and item and user properties as typed edges connecting
pairs of entities. Recommender systems based on knowledge graphs have
shown to generate high quality recommendations (Yu et al., 2014; Di Noia
et al., 2016; Catherine and Cohen, 2016; Ostuni et al., 2013; Palumbo et al.,
2017) that are also easier to interpret and explain (Kanjirathinkal, 2017).
The crucial point to use knowledge graphs to perform item recommenda-
tions is to be able to effectively define a measure of user-item relatedness
on the graph. At the present time, most knowledge-aware recommender
systems are based on manually engineered features based on path counting
and/or random walks (Figueroa et al., 2015). However, feature engineering is
a time consuming endeavour and machine learning research has shown that
feature learning algorithms generate higher quality features (Bengio et al.,
2013). Feature learning algorithms applied to a knowledge graph generate
‘knowledge graph embeddings’, which have proven to be very effective for
prediction tasks such as knowledge graph completion (Bordes et al., 2013;
Wang et al., 2014; Lin et al., 2015). Thus, recently, some works have started
to use knowledge graph embeddings in recommender systems. Notable ex-
amples have used translational models (Zhang et al., 2016; Wang et al., 2018)
or random walk-based approaches (Rosati et al., 2016; Ristoski et al., 2018).
This paper builds upon this related work and our previous work in the field:

• In Palumbo et al. (2018b) we use the random-walk based approach
node2vec (Grover and Leskovec, 2016) to create embeddings of the
knowledge graph as a whole;

• In Palumbo et al. (2018c,b) we show how translational models (Bor-
des et al., 2013) can be used for item recommendation embedding the
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knowledge graph as a whole and predicting the ‘feedback’ property;

• In Palumbo et al. (2017) we introduce the notion of property-specific
subgraphs that allows to derive user-item property-specific relatedness
scores and to combine them in a global user-item relatedness score used
as a ranking function for top-N item recommendation. This ‘divide and
conquer’ approach, based on the aggregation of property-specific em-
beddings, enables great interpretability and explainability of the rec-
ommendations, and produces high quality recommendations.

However, property-specific subgraphs, as built in Palumbo et al. (2017),
often exhibit poor connectivity in terms of node degree, i.e. number of con-
nections of a node, due to the fact that many properties typically connect
one item to a few or even a single entity. We argue that this may hinder
the effectiveness of a random walk-based feature learning algorithm and we
propose a new way of building property-specific subgraphs that tackles the
connectivity problem, by using users’ feedback as a pivot property to be com-
bined with all the item properties, one at the time. In this paper, we refer to
the approach presented in Palumbo et al. (2017) as ‘entity2rec (2017)’, while
to the approach presented in this work simply as ‘entity2rec’.

In this work, we present: (1) a critical analysis of the approach presented
in entity2rec (2017) (Palumbo et al., 2017) to build property-specific sub-
graphs through an analysis of their connectivity in terms of average degree;
(2) a new way of building property-specific subgraphs, overcoming the dis-
tinction between collaborative and content-based subgraphs and using the
‘feedback’ property in every graph; (3) a set of different ways to combine
property-specific relatedness scores into a single user-item relatedness score
used to provide recommendations; (4) a theoretical derivation of the com-
putational complexity of entity2rec in terms of the number of users and
items of the system; (5) an extensive empirical evaluation on three standard
benchmark datasets comparing entity2rec with its previous version and with
a set of state-of-the-art recommender systems. The evaluation protocol is
based on standard candidate generation techniques and on metrics that go
beyond pure accuracy, as suggested in Herlocker et al. (2004); (6) a com-
parative analysis of the experimental results across the different datasets
and an interpretation of the experimental results using statistical properties
of the datasets; (7) an assessment of entity2rec’s features importance and
an illustration of the interpretability and configurability of entity2rec’s rec-
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ommendation model. More specifically, we address the following research
questions:

RQ1 How do hybrid property-specific subgraphs perform with respect
to collaborative-content property-specific subgraphs, namely does
entity2rec work better than entity2rec (2017)?

RQ2 How do different aggregation functions perform in generating the user-
item relatedness score from property-specific relatedness scores?

RQ3 How does entity2rec perform with respect to collaborative filtering
systems in terms of precision, recall, serendipity and novelty of the
recommendations?

RQ4 How does entity2rec perform with respect to other knowledge graph
embeddings based systems for item recommendation? Is it justified to
generate property-specific embeddings to leverage the semantics of the
graphs?

RQ5 What is the interpretation of entity2rec features and what is their
importance?

RQ6 How can entity2rec be configured to specific user requirements and to
explain recommendations?

The structure of the paper is the following. In Sec. 2 we introduce some
relevant and recent published work related to the topic of the paper, in
Sec. 3 we introduce some definitions that are used throughout the paper, in
Sec. 4 we describe the entity2rec approach, in Sec. 5 we provide details on
the experimental setup, in Sec. 6 we report and discuss the experimental
results and in Sec. 7 we summarize the findings of the paper. In Appendix A
we provide additional details on the selection of the properties to build the
knowledge graph and in Appendix B we report results presented in Sec. 6 in
tabular format.
Software and datasets are publicly available at https://github.com/

D2KLab/entity2rec to support reproducibility.

2. Related Work

2.1. Knowledge graph embeddings
Feature learning algorithms are applied to networked structure to derive

feature vectors effectively encoding the graph structure. Recently, DeepWalk
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(Perozzi et al., 2014) has shown that language models such as Word2Vec
(Mikolov et al., 2013b) can be extended to graph structures by using random
walks to sample sequences of nodes, which can then be treated as ‘words’
of a document. node2vec (Grover and Leskovec, 2016) has built upon this
insight, introducing a 2nd order random walk that can be more easily tailored
to a diversity of graph connectivity patterns.

In knowledge graphs, not only the graph structure has to be encoded in
the features, but also properties and/or entity types. Thus, knowledge graph
embeddings are vector representations of entities and/or relations that at-
tempt to preserve the structure and the semantics of the knowledge graph.
They are generated using feature learning algorithms that project entities
and/or relations into a vector space by solving a learning problem (unsuper-
vised or supervised). Comprehensive surveys of machine learning algorithms
used to learn features from knowledge graphs are Nickel et al. (2016) and
Wang et al. (2017). All methods attempt to describe the existing triples in
the knowledge graph by learning latent features according to some modeling
assumption. RESCAL (Nickel et al., 2011) is a tensor factorization method
that explains triples via pairwise interactions of vector representations of en-
tities; NTN (Neural Tensor Network) is an expressive non-linear model that
learns representations using neural networks (Socher et al., 2013); distance
based models, such as the Structured Embeddings (SE) (Bordes et al., 2011),
explain triples using a distance in the vector space. Translational models are
a special case of distance-based models that represent relations as transla-
tions in the vector space and score triples according to a distance function.
These models have shown to be computationally efficient and accurate at the
same time (Bordes et al., 2013; Wang et al., 2014; Lin et al., 2015).

2.2. Knowledge-aware recommender systems

Several works have shown the effectiveness of external knowledge re-
sources in enhancing the performance of recommender systems. In Yu et al.
(2014) and in Catherine and Cohen (2016), the authors start from a graph-
based data model encompassing both user feedback and item relations to gen-
erate personalized entity recommendations. Several works leverage Linked
Open Data knowledge graphs (Bizer et al., 2009), which represent a wealth
of freely available multi-domain ontological knowledge, and have success-
fully been used in the past to build recommender systems (Figueroa et al.,
2015). In Di Noia et al. (2016) and in Ostuni et al. (2013), the authors
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adopt a hybrid graph-based data model utilizing Linked Open Data to ex-
tract metapath-based features that are fed into a learning to rank framework.
In the past couple of years, some works have applied knowledge graph em-
beddings to recommender systems. In Shi et al. (2018), the authors create
metapath-aware embeddings using DeepWalk (Perozzi et al., 2014), which
are then combined using an aggregation function and used to initialize a ma-
trix factorization for rating prediction. In Zhang et al. (2016), the authors
use translational models to create knowledge graph embeddings that are then
combined with embeddings of the items’ content (textual and visual knowl-
edge) to initialize a matrix factorization. In Ristoski et al. (2018), knowledge
graph embeddings are used as side information for a factorization machine
or for a content-based Item-KNN recommender system, like in Rosati et al.
(2016). Translational models have also been used to learn knowledge graph
embeddings to provide recommendations as a link prediction problem on a
knowledge graph (Palumbo et al., 2018c,a). node2vec has been used to gen-
erate recommendations using a knowledge graph (Palumbo et al., 2018b). In
Sun et al. (2018), the authors use recurrent neural networks to learn repre-
sentations of different meta-paths connecting users and items that are then
aggregated through a pooling and a fully connected layer.

2.3. Beyond accuracy

In their survey dealing with the problem of evaluating a recommender sys-
tem, Herlocker et al. (2004) review and compare several metrics that could
be exploited for conducting a comparison among different algorithms. After
discussing the accuracy-based metrics, they argue that, in order to draw a
reliable conclusion, it is necessary to also consider other properties of the
recommended items. In their opinion, a recommender system should be ca-
pable of providing suggestions that are not only accurate but also useful. For
example, an extremely popular item may be an accurate but not an interest-
ing suggestion. For this reason, they also discuss other metrics that could be
considered beyond the traditional concept of accuracy, such as serendipity,
novelty, and diversity. The idea of relying not only on accuracy-based met-
rics is also supported by Ge et al. (2010). In their work, the authors state
that the purpose of an evaluation protocol is to assess the quality of the
recommended items and not their accuracy. However, metrics like precision
and recall alone are not capable of verifying that the recommendations are
actually useful. In fact, only the users of the system can judge their qual-
ity in the context of an online experiment. Therefore, their suggestion is to
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consider other metrics beyond accuracy when it is necessary to perform an
offline study.

3. Preliminaries

In this section, we introduce some definitions that will be used in the
remaining of this paper.

Definition 1. A knowledge graph is a set K = (E,R,O) where E is the set
of entities, R ⊂ E × Γ×E is a set of typed relations between entities and O
is an ontology. The ontology O defines the set of relation types (‘properties’)
Γ, the set of entity types Λ, assigns nodes to their type O : e ∈ E → Λ and
entity types to their related properties O : ε ∈ Λ→ Γε ⊂ Γ.

Definition 2. Users are a subset of the entities of the knowledge graph, u ∈
U ⊂ E.

Definition 3. Items are a subset of the entities of the knowledge graph, i ∈
I ⊂ E. Users and items form disjoint sets, U ∩ I = ∅.

Definition 4. A triple is an edge of the knowledge graph, i.e. (i, p, j) ∈ R
where i ∈ E and j ∈ E are entities and p ∈ Γ is a property.

Definition 5. The property ‘feedback’ describes an observed positive feedback
between a user and an item. Feedback only connects users and items, i.e.
(u, feedback, i) where u ∈ U and i ∈ I.

A depiction of the knowledge graph model for the specific case of movie
recommendation is provided in Fig. 1.

The problem of top-N item recommendation is that of selecting a set
of N items from a set of possible candidate items. Typically, the number
of candidates is order of magnitudes higher than N and the recommender
system has to be able to identify a short list of very relevant items for the
user. More formally:

Definition 6. Given a user u ∈ U , the set of candidate items Icandidates(u) ⊂
I is the set of items that are taken into account as being potential object of
recommendation.
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Figure 1: Knowledge graph represents user-item interactions through the special property
‘feedback’, as well as item properties and relations to other entities. Items are represented
in blue, whereas other entities are represented in grey. The knowledge graph allows to
model both collaborative and content-based interactions between users and items. In
this depiction, ‘starring’ and ‘director’ properties are represented as an example, more
properties are included in the experiments.

8



Definition 7. A ranking function ρ(u, i) : (u, i) ∈ U × Icandidates(u) → R is
a function that takes as inputs a user and a candidate item and assigns a
score to them. The higher the score, the more relevant the item is deemed to
be for user u.

Definition 8. A ranking function ρ(u, i) induces a permutation of integers
corresponding to sorting the list of items Icandidates(u) according its score:

π(u, Icandidates(u)) = {i1, i2, . . . , iL} (1)

where L = |Icandidates(u)| and ρ(u, ij) > ρ(u, ij+1) for any j = 1, . . . , L− 1.

Definition 9. Top-N item recommendation provides to each user u ∈ U the
recommended items R(u), i.e. the first N ≤ L elements of π(u, Icandidates(u)):

R(u) = π(u, Icandidates(u))N1 = {i1, i2, . . . , iN} (2)

where ρ(u, ij) > ρ(u, ij+1) for any j = 1, . . . , N − 1.

4. entity2rec

In this section, we describe the overall entity2rec approach, which is sum-
marized in Fig. 2.

4.1. node2vec

Before describing the entity2rec approach, we review node2vec (Grover
and Leskovec, 2016) on which entity2rec is based. node2vec can be seen
as a two stage approach: first, it samples nodes of a graph using a set of
biased random walks turning it into a ‘document’; then, node embeddings
are learned using neural language models such as Word2Vec Mikolov et al.
(2013b). A crucial concept introduced by node2vec is that of the neighbor-
hood of a node.

4.1.1. Neighborhood of a node

Networked structures can be organized according to different principles.
For example, in certain cases, graphs could be organized according to the
principle of homophily, meaning that similar entities will tend to be tightly
connected in communities. In other cases, the organization can be based
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Figure 2: entity2rec starts by creating property-specific subgraphs. Then, on each sub-
graph, it applies node2vec to compute property-specific embeddings. In the embedding
space, property-specific relatedness scores can be computed using vector similarity mea-
sures such as cosine similarity. The property-specific relatedness scores are then aggregated
to obtain a global relatedness score, which is used as a ranking function for item recom-
mendation. The figure illustrates the case in which hybrid property-specific subgraphs are
used, as described in Section 4.3.2, and where only the starring and the director properties
are considered.
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on the structural roles of nodes in the graph (‘structural equivalence’) and
entities can be considered similar because they have a similar role in the
network, e.g. they are both hubs or bridges between different communities.
Real-world networks commonly exhibit a mixture of such equivalences (Hen-
derson et al., 2012). Thus, the definition of a node neighborhood must be
flexible enough to account for different forms of possible equivalences. The
problem of defining neighborhoods can be seen as a question of local search.
In general, given a node n, there are two classic and opposite strategy of
local search to define a neighborhood Ns(n) of size k: Breadth-First Search
(BFS) and Depth-First Search (DFS). One of the shortcomings of prior work
is that it fails to offer flexibility in combining these two opposite approaches
(Perozzi et al., 2014). node2vec provides a definition of node neighborhood
that allows for a mixture of BFS and DFS through a neighborhood sampling
strategy based on a biased second order random walk. Parameters p and
q control how fast the walk explores and leaves the neighborhood of start-
ing node n. Tuning them allows a flexible sampling strategy and a notion of
neighborhood Ns(n), which is able to approximately interpolate between BFS
and DFS. p, also called return parameter, controls the likelihood of returning
to a previously visited node. Low values of p result in a search strategy that
lingers around the source node n. q, also called in-out parameter, controls
the probability of moving further away from the source node n. A high value
of q results in a strategy that approximates BFS, while low values encourage
outward exploration, approximating DFS.
After samples from the graph are generated using the second order random
walk, neural language models are applied to compute node embeddings.

4.1.2. Neural language models

Neural language models have been recently developed to overcome many
of the shortcomings of naive one-hot bag of words representations, where
word vectors are simply represented as binary feature vectors. While these
models have been quite popular for their simplicity and intuitiveness, they
suffer from several drawbacks, such as a dimensionality equal to the size of the
vocabulary, data sparsity, independence among words. Recent advancements
in the field of neural language models have allowed the generation of low-
dimensional dense word representations, among which word2vec (Mikolov
et al., 2013b) is the most popular one. Word2vec efficiently learns word
embeddings from a large amount of raw text, training a two layer neural
network to predict the context of a word, defined by a sliding window of am-
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Figure 3: node2vec turns the knowledge graph into a “document” made by a sequences of
nodes. Then, neural language models learn embeddings of the graph, preserving structural
properties on the graph in the embedding space. This approach has been used in previous
work to make recommendations (Palumbo et al., 2018b) and it is included in the results
section for comparison.

plitude c. Thus, given a word wt, the context is defined by the surrounding
words wt−c, wt−c+1...wt+c−1, wt+c. The most commonly used architecture is
the Skip-Gram model. The Skip-Gram model implements a two layer neural
network where the input corresponds to the target word wt and the output to
the context words wt−c, wt−c+1...wt+c−1, wt+c. Word embeddings are learned
so that the average likelihood on the training set of observing a word sur-
rounded by its actual context is maximized.
A full exemplification of the application of node2vec on the KG introduced
in Fig. 1 is given in Fig. 3. In this paper, we build upon this work by using
property-specific subgraphs and embeddings.

4.2. Property-specific knowledge graph embeddings

From these representations, the relatedness between two nodes can be
easily computed using vector similarity measures. However, node2vec can-
not account for the diversity of semantic properties of a knowledge graph.
Films can be related in terms of starring actors and not in terms of sub-
ject, can share the same director but not the same writer. Processing the
whole knowledge graph altogether neglecting the semantics of the properties
would not allow to account for these variations. Thus, we start by learning
property-specific vector representation of nodes considering one property at
the time, i.e. creating property-specific subgraphs Kp. Then, for each Kp in-
dependently, we learn a mapping xp : e ∈ Kp → Rd, optimizing the node2vec
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objective function (Grover and Leskovec, 2016):

max
xp

∑
e∈Kp

(− logZe +
∑

ni∈N(e)

xp(ni) · xp(e)) (3)

where Ze =
∑

v∈Kp
exp(xp(e) ·xp(v)) is the per-node partition function and it

is approximated using negative sampling (Mikolov et al., 2013b), and N(e) ∈
Kp is the neighborhood of the entity e defined by the node2vec random walk.
The optimization is carried out using stochastic gradient ascent over the
parameters defining xp and it attempts to maximize the dot product between
vectors of the same neighborhood, i.e. to embed them close together in vector
space.

4.3. Property-specific subgraphs

We consider two different strategies to create property-specific subgraphs.
The first one is the one presented in Palumbo et al. (2017), which keeps
separated collaborative and content-based information. We shall note with
Kp the property-specific subgraphs created with this strategy and we will
refer to it as entity2rec (2017) in Section 6. The latter is the one presented
in this work, which considers hybrid property-specific subgraphs, in the sense
that each of them contains both collaborative and content-based information.
We refer to the hybrid subgraphs as K+

p and to the whole approach as
entity2rec, as it has proven to be the most effective one among the two (see
Section 6).

4.3.1. Collaborative-content subgraphs

For each property p ∈ Γε, we define a subgraph Kp as the set of enti-
ties connected by the property p, i.e. the triples (i, p, j). For example, if p
= ‘starring’, we have edges connecting movies to their starring actors, e.g.
(Fargo, starring, Steve Buscemi), if p = ‘subject’ we have edges connecting
movies to their category, e.g. (Fargo, subject, American crime drama films).
The only subgraph Kp containing users is that corresponding to p = ‘feed-
back’, where triples represent user-item interactions, e.g. (user201, feedback,
dbr:Fargo). From the vector representations xp, property-specific relatedness
scores can be defined as follows:

ρp(u, i) =

{
s(xp(u), xp(i)) if p = ‘feedback′

1
|R+(u)|

∑
i′∈R+(u) s(xp(i), xp(i

′)) otherwise

13



where R+(u) denotes a set of items liked by the user u in the past and
s denotes a measure of vector similarity. In this work, we consider s as
the cosine similarity. The features include both collaborative and content
information and have a straight-forward interpretation. When considering p
= ‘feedback’, K is reduced to the graph of user-item interactions and thus
ρfeedback(u, i) models collaborative filtering. ρfeedback(u, i) will be high when
xfeedback(u) is close to the item xfeedback(i) in vector space, i.e. when i has
been liked by users who have liked the same items of u in the past and are
thus tightly connected in the Kfeedback graph. On the other hand, when
p corresponds to other properties of the ontology O, the features encode
content information. For instance, if p is ‘starring’, ρstarring(u, i) will be high
if xstarring(i) is close to items xstarring(i

′), i.e. when i shares starring actors
with items that the user u has liked in the past. For ‘new items’, i.e. with
no feedback from users, we are still able to compute all the content-based
features.

4.3.2. Hybrid subgraphs

The largest issue with the use of property-specific subgraphs that con-
sider collaborative and content-based information as separated is that often
these graphs have poor connectivity, as a consequence of the fact that many
properties connect one item to a few or even a single entity. This is clearly
undesirable for feature learning algorithms based on random walks such as
Palumbo et al. (2017); Grover and Leskovec (2016); Perozzi et al. (2014).
Consider the example of the property p = ‘director’. Since most films have
only one director, Kdirector is similar to a set of disconnected star graphs,
where each director is connected to his/her movies. In order to overcome
this limitation and maintain the interpretability and explainability of the
approach of using one property at the time to create features, we propose to
use the ‘feedback’ property as a pivot property to create bridges between dif-
ferent parts of the graph, i.e. to replace Kp with K+

p = Kp

⋃
(u, feedback, i),

where u ∈ U and i ∈ I. Therefore, we move from an approach where collab-
orative (Kfeedback) and content-based (Kp with p 6= feedback) information
is well distinguished to a set of property-specific graphs that are hybrid, as
they contain both the ‘feedback’ information and one specific item property
(Fig. 4).

In this case, Γε = Γε \ feedback. From the subgraphs K+
p , vector repre-

sentations xp can be learned as described in Section 4.2 and property-specific
relatedness scores between a user u ∈ U and an item i ∈ I can be defined as
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follows:
ρp(u, i) = s(xp(u), xp(i)) (4)

where s is the cosine similarity. Note that since users are now part of every
subgraph K+

p , it is no longer necessary to distinguish between collaborative
features, where the relatedness score can be computed directly as in Eq. 4,
and content-based features that require to look at the items that the user u
has rated in the past, as done in Palumbo et al. (2017). For ‘new items’, i.e.
with no feedback from users, we are able to compute all features.

4.4. Global user-item relatedness

For each user-item pair, we are now able to compute all property-specific
relatedness scores ~ρ(u, i) = {ρp(u, i)}p∈Γ, either using content/collaborative
subgraphs as described in Section 4.3 or using hybrid subgraphs as described
in Section 4.3.2. We aim to consider these scores as features of a global user-
item relatedness model that can be used to provide item recommendation.
To this end, we experiment both an unsupervised and a supervised approach.

4.4.1. Unsupervised approach

In the unsupervised approach, user-item property-specific relatedness
scores are combined into a single user-item relatedness score used as ranking
function ρ(u, i) through different possible functions such as:

entity2recavg(u, i) = avg({ρp(u, i)}p∈Γ) (5)

entity2recmin(u, i) = min({ρp(u, i)}p∈Γ) (6)

entity2recmax(u, i) = max({ρp(u, i)}p∈Γ) (7)

4.4.2. Supervised approach

In the supervised setting, we define the global user-item relatedness
ρ(u, i; θ) = f(~ρ(u, i); θ) as a function f of the property-specific scores ~ρ(u, i)
and of a set of parameters θ. The goal is that of finding the parameters θ
that optimize top-N item recommendation as a supervised learning to rank
problem (Liu et al., 2009).

Training data. Given the set of users U = {u1, u2, . . . , uN}, each user uk is
associated with a set of items from feedback data ~ik = {ik1, ik2, . . . , ikn(k)},
where n(k) denotes the number of feedback released by the user uk, and a
set of labels ~yk = {yk1, yk2, . . . , ykn(k)} denoting the ground truth relevance of

items ~ik (e.g. ratings with explicit feedback or boolean values with implicit
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feedback). The training set is thus represented as τ = {(uk, ~ik, ~yk)Nk=1}. In
the case of implicit feedback, negative examples are obtained by random
sampling, i.e. by randomly selecting items that the user has not interacted
with.

Sorting. ρ(u, i; θ) is a ranking function, meaning that, for each user uk, the
corresponding items ~ik are sorted according to its score. ρ(u, i; θ) induces a
permutation of integers π(uk, ~ik, θ), corresponding to sorting the list of items
~ik according its score (see Section 3).

Loss. The agreement A(π(uk, ~ik, θ), ~yk) between the permutation π(uk, ~ik, θ)
induced by ρ(u, i; θ) and the list of ground truth relevance of items ~yk can
be measured by any information retrieval metric that measures ranking ac-
curacy, such as P@k (Powers, 2011). From this score, a loss function can be
easily derived as:

C(θ) =
N∑
k=1

(1− A(π(uk, ~ik, θ)) (8)

Optimization. The learning process has thus the objective of finding the set
of parameters θ that minimize the loss function C over the training data:

θ̂ = arg min
θ
C(θ) (9)

In this work, we use LambdaMart (Burges, 2010), a listwise learning to rank
algorithm that has state-of-the-art results in learning to rank and has shown
to achieve the best scores in previous work such as Palumbo et al. (2017);
Di Noia et al. (2016). We define:

entity2reclambda(u, i) = LambdaMart({ρp(u, i)}p∈Γ) (10)

4.5. Computational complexity

In this section, we derive the computational complexity of entity2rec in
terms of the number of users U and the number of items I. The computa-
tional complexity of entity2rec can be divided into a component required for
training and one required for testing:

Tentity2rec = T trainentity2rec + T testentity2rec (11)
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Figure 4: (a): Property-specific subgraphs as defined in Palumbo et al. (2017). Collabora-
tive and content information are separated. User-item relatedness scores can be computed
directly only for Kfeedback, whereas for content properties it is necessary to average the
distance with respect to the items that a user has rated in the past. For properties such
as “director”, the connectivity is poor. (b): Property-specific subgraphs as defined in this
work. Feedback from user to items is included in every graph, improving connectivity and
allowing to measure directly user-item relatedness for all properties.
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The training of entity2rec can be in turn expressed as the training time of
node2vec repeated for p times, where p is the number of distinct properties
in the graph, which is the time required to generate the embeddings and the
time required to learn the global relatedness score:

T trainentity2rec = pT trainnode2vec + T trainglobal (12)

node2vec is mainly composed of three steps: one in which transition prob-
abilities are pre-computed for each edge, one in which nodes are sampled
through random walks, and one in which the word2vec model is applied to
learn the embeddings (Grover and Leskovec, 2016):

T trainnode2vec = Tpreprocessing + Twalks + Tword2vec (13)

The time for pre-processing transition probabilities depends on the number
of edges Tpreprocessing = O(E). Since a fixed number of random walks is
performed for each node and a single random walk is done in unitary time,
Twalks = O(N). Learning the embeddings with word2vec using the Skip-gram
model can be done in Tword2vec = O(Nlog2N) as explained in Mikolov et al.
(2013a). Summing the three components, we obtain that:

T trainnode2vec(N,E) = O(E) +O(N) + (N log2N) (14)

Given that the number of edges E ∼ UI and the number of nodes N ∼ U+I,
we have:

T trainnode2vec(U, I) = O(UI) +O(U + I) +O((U + I) log2 (U + I)) (15)

Now, in the unsupervised case:

T trainglobal = O(1) (16)

and the total training complexity:

T trainentity2rec(p, U, I) = O(pUI)+O(p(U+I))+O(pU log2(U+I))+O(pI log2(U+I))
(17)

The time for testing is:

T testentity2rec = O(pUI) (18)
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as for each pair of user and items we need to compute p scores. The total
complexity for entity2rec becomes:

Tentity2rec(p, U, I) = O(pUI)+O(p(U+I))+O(pU log2(U+I))+O(pI log2(U+I))
(19)

meaning that for large values of U and I:

Tentity2rec(p, U, I) ∼ O(pUI) (20)

entity2rec is linear in the number of users, linear in the number of items and
linear in the number of properties in the graph. Note that the dependence on
p can be removed using an embarrassingly parallel implementation that dis-
tributes the generation of the embeddings on different machines, obtaining:

T parallelentity2rec(U, I) ∼ O(UI) (21)

5. Experimental setup

In this section, we describe the experimental setup, providing information
about the three datasets used in the experiments, how the knowledge graph
has been created, and how we have configured and evaluated the systems.
The objectives of the experiments reported in this paper are manifold:

• Comparing entity2rec to entity2rec (2017), showing the effectiveness of
hybrid property-specific subgraphs;

• Comparing different aggregation functions within entity2rec;

• Comparing entity2rec to other state-of-the-art recommendation algo-
rithms;

• Showing that the use of property-specific subgraphs leads to features
that can be easily interpretable and can be configured to a specific
recommendation problem.

5.1. Datasets

The first dataset is MovieLens 1M.1 MovieLens 1M (Harper and Konstan,
2016) is a well known dataset for the evaluation of recommender systems

1https://grouplens.org/datasets/movielens/1m/
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and it contains 1,000,209 anonymous ratings of approximately 3,900 movies
made by 6,040 MovieLens users. The second dataset is the LastFM dataset,2

which contains 92,834 listen counts of 1,892 users of 17,632 musical artists
(Cantador et al., 2011). The third dataset is LibraryThing,3 which contains
7,112 users, 37,231 books and 626,000 book ratings ranging from 1 to 10.
For these three datasets, their items have been mapped to the corresponding
DBpedia entities (Ostuni et al., 2013) and we make use of these publicly
available mappings to create the knowledge graphs using DBpedia data (Auer
et al., 2007). We select the most frequently occurring properties p from the
DBpedia Ontology4 (see Appendix A), and for each item property p, we
include all the triples (i, p, e) where i ∈ I and e ∈ E, e.g. (dbr:Pulp Fiction,
dbo:director, dbr:Quentin Tarantino) in KMovielens1M .5 We finally add the
‘feedback’ property, modeling user-item interactions. Similarly to what has
been done in previous work (Di Noia, 2016; Ristoski et al., 2018), we add
a ‘feedback’ edge for all movie ratings where r ≥ 4 in Xtrain, all user-item
interactions in LastFM as the dataset does not contain explicit feedback, and
ratings where r ≥ 8 for LibraryThing.
We split the data into a training Xtrain, validation Xval and test set Xtest

containing, for each user, respectively 70%, 10% and 20% of the ratings.
Users with less than 10 ratings are removed from the dataset, as well as
items that do not have a corresponding entry in DBpedia. In this process, we
lose 674 movies from Movielens1M, 27 users and 7867 musical artists from
LastFM, 323 users and 27305 books for LibraryThing. The final datasets
statistics after this processing are reported in Table 1. The sparsity of the
feedback matrix ρf is defined as:

ρf =
F

|U ||I|
(22)

where F is the number of user-item interactions (e.g. ratings or implicit
feedback), |U | is the number of users and |I| is the number of items in the
dataset. The sparsity measures how many interactions, out of all the possible

2http://files.grouplens.org/datasets/hetrec2011/

hetrec2011-lastfm-readme.txt
3https://www.librarything.com
4https://wiki.dbpedia.org/services-resources/ontology
5dbo stands for DBpedia Ontology, dct stands for Dublin Core Terms and dbr stands

for DBpedia resource.
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Dataset Domain Feedback Users Items ρf H
Movielens 1M Movie 948976 6040 3226 95.13 7.17
LastFM Music 78633 1865 9765 99.57 7.77
LibraryThing Book 410199 6789 9926 99.39 8.26

Table 1: Datasets statistics. ρr represents the sparsity of the user-item interactions, H is
the entropy of the positive feedback distribution.

interactions, have actually taken place between users and items of the system.
Given that typically users interact with a very limited fraction of all the items
available, the sparsity of datasets for recommender systems is generally very
high (Billsus and Pazzani, 1998). We observe that Movielens 1M has a much
lower sparsity with respect to LastFM and LibraryThing. The entropy of the
dataset is defined in terms of the distribution of positive feedback assigned
by users to items:

H = −
∑
i∈I

P+(i) logP+(i) (23)

where P+(i) : I → [0, 1] is the fraction of positive feedback attributed to the
item i. The entropy of the dataset is a useful measure of the popularity bias,
i.e. the effect according to which most of the positive feedback is concentrated
on a few very popular items (Cremonesi et al., 2010). Being the entropy
maximum when the distribution is uniform, a low entropy value indicates a
strong concentration of feedback on very popular items, i.e. high popularity
bias, whereas a high entropy value points at the contrary effect. In Figure 5,
we represent the P+(i) distributions for the three datasets to visualize this
effect. Movielens 1M and LastFM have a strong popularity bias, whereas
this effect is relatively weaker for LibraryThing.

Note that the choice of relying on the DBpedia Ontology to build K
is not the only possible. For instance, Wikidata (Vrandečić and Krötzsch,
2014) is a more recent project, started in 2012 by the Wikimedia Foundation,
collaboratively edited and created by the community. Although it is younger
than DBpedia, it is gaining momentum, and currently contains information
about 52 million things.6 The major convenience of using DBpedia is that
public mappings have been released to popular RS datasets.

6https://www.wikidata.org/wiki/Wikidata:Statistics
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Figure 5: Showing how the positive feedback is distributed among the items of the three
datasets, in a log-log scale. LastFM has a strong concentration in the top-100 items, but
it has a significant long tail compared to Movielens 1M. In LibraryThing, the popular-
ity bias is weaker and the feedback is more evenly distributed among the items. These
considerations are consistent with the values of entropy reported in Table 1.
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5.2. Evaluation

We use the evaluation protocol known as AllUnratedItems (Steck, 2013),
i.e. for each user, we select as possible candidate items, all the items present
in the training or in the test set that he or she has not rated before in the
training set:

Icandidates(u) = I \ {i ∈ Xtrain(u)} (24)

Items that are not appearing in test set for user u are considered as negative
examples, which is a pessimistic assumption, as users may actually like items
that they have not seen yet. Scores are thus to be considered as a worst-
case estimate of the real recommendation quality. We measure standard
information retrieval metrics such as precision (P@k) and recall (R@k).

P(k) =
1

|U |
∑
u∈U

k∑
j=1

hit(ij, u)

k
(25)

R(k) =
1

|U |
∑
u∈U

k∑
j=1

hit(ij, u)

|rel(u)|
(26)

where the value of hit is 1 if the recommended item i is relevant to user u,
otherwise it is 0, and rel(u) is the set of relevant items for user u in the test
set. Differently from P (k), R(k) accounts for the fact that different users
can have a different number of relevant items, e.g. for a user who is highly
selective and likes fewer items, finding relevant items is harder.

In addition to these accuracy-focused metrics, we also decided to measure
the serendipity and the novelty of the recommendations. Serendipity can be
defined as the capability of identifying items that are both attractive and
unexpected (de Gemmis et al., 2015). Ge et al. (2010) proposed to measure it
by considering the precision of the recommended items after having discarded
the ones that are too obvious. Eq. 27 details how we compute this metric.
hit non pop is similar to hit, but top-k most popular items are always counted
as non-relevant, even if they are included in the test set of user u. Popular
items can be regarded as obvious because they are usually well-known by
most users.

SER(k) =
1

|U |
∑
u∈U

k∑
j=1

hit non pop(ij, u)

k
(27)

In contrast, the metric of novelty is designed to analyze if an algorithm is
able to suggest items that have a low probability of being already known by a
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user, as they belong to the long-tail of the catalog. This metric was originally
proposed by Vargas and Castells (2011) in order to support recommenders
capable of helping users to discover new items. We formalize how we com-
puted it in Eq. 28. Note that this metric, differently from the previous ones,
does not consider the correctness of the recommended items, but only their
novelty.

NOV(k) = − 1

|U | × k
·
∑
u∈U

k∑
j=1

log2 Ptrain(ij) (28)

The function Ptrain : I → [0, 1] returns the fraction of feedback attributed
to the item i in the training set. This value represents the probability of
observing a certain item in the training set, that is the number of ratings
related to that item divided by the total number of ratings available. In order
to avoid considering as novel items that are not available in the training set,
we consider log2(0)

.
= 0 by definition.

We compare entity2rec to a set of state-of-the-art collaborative filtering
recommender systems from the MyMediaLite library (Gantner et al., 2011),
which has shown to outperform competing libraries in controlled experiments
(Said and Belloǵın, 2014):

• BPRMF: a matrix factorization method where the optimization is per-
formed using Bayesian Personalized Ranking (Rendle et al., 2009).

• BPRSLIM: a Sparse LInear Method where the optimization is per-
formed using Bayesian Personalized Ranking (Ning and Karypis, 2011).

• ItemKNN: a K-nearest neighbor recommender based on items (Sarwar
et al., 2001).

• LeastSquareSLIM: a Sparse LInear Method optimized for the ranking
elastic net loss (Ning and Karypis, 2011).

• MostPop: a simple baseline algorithm where the top-N popular items
are recommended to every user.

• WRMF: the Weighted Regularized Matrix Factorization is a matrix
factorization method where a weighting matrix is used to account for
different confidence levels in the user-item feedback (Hu et al., 2008).
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Furthermore, we consider other recommender systems based on translational
models for knowledge graph embeddings, where the property to predict is
‘feedback’, as explained in Palumbo et al. (2018c):

• TransE (Bordes et al., 2013): it learns representations of entities and
relations so that h+ l ≈ t where (h, l, t) ∈ R is a triple. h is the ‘head’
entity, l is the relation and t is the ‘tail’ entity. The score function for
a triple is thus f(h, l, t) = D(h + l, t), where D is a distance function
such as the L1 or the L2 norm.

• TransH (Wang et al., 2014): the first extension of TransE, enables
entities to have different representations when involved in different re-
lations by projecting entities on a hyperplane identified by the normal
vector wl. The score function becomes: f(h, l, t) = D(h⊥+l, t⊥), where
h⊥ = h − wTl hwl and t⊥ = t − wTl twl, where D is a distance function
such as the L1 or the L2 norm.

• TransR (Lin et al., 2015): it enables entities and relations to be embed-
ded in a separate vector space through a matrix Ml associated to any
relation l that performs projections of vectors from entity to relation
space. The score function is: f(h, l, t) = D(hl + l, tl) where hl = hMl

and tl = tMl, where D is a distance function such as the L1 or the L2

norm.

Finally, we also analyze the behaviour of knowledge graph embeddings com-
puted using node2vec:

• node2vec (Grover and Leskovec, 2016): it performs random walks
through a flexible exploration strategy of the graph and feeds the sam-
pled sequences into a word2vec model that learns node embeddings.
node2vec does not take into account the semantics of the properties,
we apply it directly on the whole knowledge graph K as done in
Palumbo et al. (2018b).

All the baselines have been trained on the user ratings contained in Xtrain

in the original matrix format and tested on Xtest. The implementations of
the translational based embeddings7 and of node2vec8 are available online.

7https://github.com/thunlp/KB2E
8https://github.com/aditya-grover/node2vec
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entity2rec is also publicly available on GitHub.9

5.3. Configuration

We have configured entity2rec hyper-parameters by assessing the P@5 of
the model on the validation set, using grid and manual searches. We have
optimized the dimension of the embeddings d, the maximum length of the
random walk l, the context size for the optimization c, the return parameter
p, the in-out parameter q, the number of random walks per each node of
the graph n (see Grover and Leskovec (2016) for more information on these
parameters). More in detail, we started to search for hyper-parameters on
the Movielens 1M dataset, making a grid search and evaluating the model
on the validation set, using the ranges p ∈ {0.25, 1, 4}, q ∈ {0.25, 1, 4}, d ∈
{200, 500}, l ∈ {10, 20, 30, 50, 100}, c ∈ {10, 20, 30}, n ∈ {10, 50}. We found
the optimal configuration in this range to be C1 = {p : 4, q : 1, d : 200, l :
100, c : 30, n : 50}, and we observed that the performance was improving
when increasing l and c. Thus, we have run a configuration C2 = {p :
4, q : 1, d : 200, l : 100, c : 50, n : 100}, which achieved better performance
on the validation set. For LastFM, we started from the configuration C1,
and then explored the ranges: p ∈ {1, 4}, q ∈ {1, 4}, c ∈ {30, 40, 50, 60},
l ∈ {60, 100, 120}, n ∈ {50, 100}. We found the configuration C3 = {p : 4, q :
4, d : 200, l : 100, c : 60, n : 100} to be optimal on the validation set in this
range. For LibraryThing, we have explored the ranges p ∈ {1, 4}, q ∈ {1, 4},
c ∈ {30, 50}, keeping l = 100, n = 100, d = 200. The optimal configuration
is: C4 = {p : 1, q : 1, d : 200, l : 100, c : 50, n : 100}. The hyper-parameters
of the LambdaMart (Burges, 2010) algorithm have been left to their default
values as reported in the implementation that has been used for this work.10

In general, we can observe that, for all datasets in consideration, using long
walks (l = 100), many walks per entity (n = 100), and a large context size
such as c = 50 improves the quality of the recommendations. This kind of
configuration ought to be used as a starting point in configuring entity2rec
with new datasets.

9https://github.com/D2KLab/entity2rec
10https://github.com/jma127/pyltr
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Kp K+
p

property N M κ N M κ
dbo:cinematography 2757 2136 1.6 9881 382636 77.4
dbo:director 4607 3142 1.4 10881 383642 70.5
dbo:distributor 3180 3180 2.0 9594 383680 80.0
dbo:editing 2292 1809 1.6 9851 382309 77.6
dbo:musicComposer 3682 3031 1.7 10322 383531 74.3
dbo:producer 4358 3817 1.8 11135 384317 69.0
dbo:starring 8969 13990 3.1 15375 394490 51.3
dbo:writer 5044 3836 1.5 11668 384336 65.9
dct:subject 9809 49897 10.2 15967 430397 53.9
feedback 9119 380500 83.5 n/a n/a n/a

Table 2: Network stats for Movielens 1 M for Kp and K+
p . N = n nodes, M = n edges,

κ = average degree.

6. Results

6.1. Hybrid property-specific subgraphs

In this section, we compare the new version of entity2rec based on hybrid
property specific subgraphs to the one proposed in Palumbo et al. (2017), i.e.
entity2rec to entity2rec (2017). In Table 2, Table 3 and Table 4, we report
statistics for the property-specific subgraphs Kp and K+

p for Movielens 1M,
LastFM and LibraryThing respectively. It can be noticed that for many
content properties, the average degree is small, indicating that items are
connected to few entities, as discussed in Section 1. On the other hand,
hybrid property-specific subgraphs always have a better connectivity in terms
of average degree of the nodes.

We have compared entity2rec to entity2rec (2017) for the three datasets
under analysis. The results are reported in Table 5, Table 6 and Table 7. The
first finding is that entity2rec consistently obtains better scores for different
configurations of the hyper-parameters for the three datasets, proving the
effectiveness of using hybrid property-specific subgraphs as suggested in this
work. The second finding is that using learning to rank (entityreclambda) is
crucial to obtain good recommendations for entity2rec (2017), but it is no
longer useful for entity2rec, especially if hyper-parameters are properly opti-
mized. In order to interpret this result, we remind the reader that, as shown
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Kp K+
p

property N M κ N M κ
dbo:associatedBand 15212 19492 2.6 20169 74444 7.4
dbo:associatedMusicalArtist 15211 19491 2.6 20168 74443 7.4
dbo:bandMember 9768 7587 1.6 17113 62539 7.3
dbo:birthPlace 5650 5581 1.9 12992 60533 9.3
dbo:formerBandMember 8870 7481 1.7 16621 62433 7.5
dbo:genre 10258 26064 5.1 13034 81016 12.4
dbo:hometown 9646 12386 2.6 13870 67338 9.7
dbo:instrument 2236 4411 3.9 11137 59363 10.7
dbo:occupation 2211 3246 2.9 10970 58198 10.6
dbo:recordLabel 12159 20279 3.3 15938 75231 9.4
dct:subject 25827 88375 6.8 27946 143327 10.3
feedback 10147 54952 10.8 n/a n/a n/a

Table 3: Network stats for LastFM for Kp and K+
p . N = n nodes, M = n edges, κ =

average degree.

Kp K+
p

property N M κ N M κ
dbo:author 13132 9757 1.5 20564 194416 18.9
dbo:country 2015 1921 1.9 16657 186580 22.4
dbo:coverArtist 1990 1438 1.4 17126 186097 21.7
dbo:language 1975 1906 1.9 16630 186565 22.4
dbo:literaryGenre 7211 8526 2.4 17292 193185 22.3
dbo:mediaType 4632 5539 2.4 16676 190198 22.8
dbo:previousWork 4845 3261 1.3 17559 187920 21.4
dbo:publisher 8696 8241 1.9 17878 192900 21.6
dbo:series 3317 2562 1.5 17319 187221 21.6
dbo:subsequentWork 5928 3930 1.3 18245 188589 20.7
dct:subject 18903 51324 5.4 26138 235983 18.1
feedback 16501 184659 22.4 n/a n/a n/a

Table 4: Network stats for LibraryThing for Kp and K+
p . N = n nodes, M = n edges,

κ = average degree.
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System P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10
entity2reclambda (C2) 0.2125 0.182 0.0967 0.1564 0.1913 0.1526 9.6541 9.6521
entity2recavg (C2) 0.2372 0.2013 0.1045 0.1691 0.2125 0.1676 9.5770 9.5778
entity2recmin (C2) 0.2198 0.1837 0.0976 0.1547 0.1946 0.1504 9.4661 9.4731
entity2recmax (C2) 0.2206 0.1895 0.0951 0.1556 0.2038 0.1645 10.0462 10.0583

entity2reclambda (2017) (C2) 0.1836 0.1557 0.0748 0.1208 0.1640 0.1319 9.9477 9.9492
entity2recavg (2017) (C2) 0.0578 0.0520 0.0234 0.0385 0.0523 0.0408 11.0848 11.0976
entity2recmin (2017) (C2) 0.0166 0.0183 0.0090 0.0164 0.0166 0.0181 11.5409 11.5677
entity2recmax (2017) (C2) 0.0099 0.0087 0.0023 0.0039 0.0095 0.0081 12.1286 12.0962

entity2reclambda (C1) 0.2221 0.1915 0.0988 0.1592 0.2021 0.1655 9.8909 9.9055
entity2recavg (C1) 0.2265 0.1936 0.0997 0.1613 0.2051 0.1658 9.8195 9.8331
entity2recmin (C1) 0.2020 0.1726 0.0912 0.1467 0.1787 0.1451 9.7436 9.7550
entity2recmax (C1) 0.1954 0.1672 0.0865 0.1388 0.1825 0.1480 10.2081 10.2742

entity2reclambda (2017) (C1) 0.1670 0.1413 0.0707 0.1131 0.1521 0.1237 10.3686 10.3843
entity2recavg (2017) (C1) 0.0100 0.0112 0.0052 0.0101 0.0100 0.0110 14.5820 14.0342
entity2recmin (2017) (C1) 0.0214 0.0200 0.0107 0.0187 0.0213 0.0197 12.2140 12.1437
entity2recmax (2017) (C1) 0.0069 0.0075 0.0020 0.0043 0.0069 0.0074 12.4162 12.4051

Table 5: entity2rec outperforms entity2rec (2017) for different configurations of hyper-
parameters on Movielens 1M (C1 = {p : 4, q : 1, d : 200, l : 100, c : 30, n : 50}, C2 = {p :
4, q : 1, d : 200, l : 100, c : 50, n : 100}). In entity2rec as presented in this work, the learning
to rank is no longer useful, as the unsupervised approach appears to be more effective.
Results can be considered with no error for comparisons as the standard deviation is
negligible up to the reported precision.

P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10
entity2reclambda (C3) 0.1852 0.1506 0.1066 0.1736 0.1512 0.1526 10.1008 10.2065
entity2recavg (C3) 0.2062 0.158 0.1191 0.1823 0.1682 0.1676 10.3794 10.514
entity2recmin (C3) 0.2055 0.1571 0.1191 0.1823 0.1664 0.1504 9.8074 9.8965
entity2recmax (C3) 0.1693 0.1366 0.0986 0.1589 0.1423 0.1645 10.2432 10.4455

entity2reclambda (2017) (C3) 0.1469 0.1227 0.0844 0.1411 0.1194 0.1319 11.0919 11.1020
entity2recavg (2017) (C3) 0.0597 0.0508 0.0351 0.0598 0.0574 0.0408 13.1432 13.1107
entity2recmin (2017) (C3) 0.0002 0.0001 0.0001 0.0001 0.0002 0.0181 13.0900 11.9789
entity2recmax (2017) (C3) 0.1387 0.1104 0.0801 0.1274 0.1063 0.0081 11.4262 11.4113

entity2reclambda (C1) 0.1745 0.1372 0.1009 0.1584 0.1405 0.1655 11.2273 11.3843
entity2recavg (C1) 0.1505 0.1182 0.0870 0.1367 0.1182 0.1658 12.2672 12.3319
entity2recmin (C1) 0.1699 0.1321 0.0981 0.1532 0.1343 0.1451 11.3311 11.4215
entity2recmax (C1) 0.1295 0.1085 0.0753 0.1258 0.1037 0.1480 10.5371 10.8922

entity2reclambda (2017) (C1) 0.1054 0.0914 0.0611 0.1060 0.0810 0.1237 12.2735 12.2602
entity2recavg (2017) (C1) 0.0396 0.0353 0.0238 0.0423 0.0380 0.0110 13.6894 13.649
entity2recmin (2017) (C1) 0.0002 0.0001 0.0001 0.0001 0.0002 0.0197 13.0893 11.9755
entity2recmax (2017) (C1) 0.0952 0.0764 0.0553 0.0889 0.0651 0.0074 12.4498 12.4131

Table 6: entity2rec outperforms entity2rec (2017) for different configurations of hyper-
parameters on LastFM (C1 = {p : 4, q : 1, d : 200, l : 100, c : 30, n : 50}, C3 = {p : 4, q :
4, d : 200, l : 100, c : 60, n : 100}). In entity2rec as presented in this work, the learning
to rank is no longer useful, as the unsupervised approach appears to be more effective.
Results can be considered with no error for comparisons as the standard deviation is
negligible up to the reported precision.
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P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10
entity2reclambda (C4) 0.1271 0.1091 0.0803 0.12680 0.1229 0.1025 12.4693 12.7922
entity2recavg (C4) 0.1800 0.1398 0.1072 0.15640 0.1736 0.1306 12.886 12.0837
entity2recmin (C4) 0.1831 0.1410 0.1084 0.15750 0.1757 0.1309 11.7088 11.6704
entity2rec max (C4) 0.1634 0.1304 0.0984 0.14800 0.1591 0.1230 12.7834 12.7289

entity2reclambda (2017) (C4) 0.1322 0.1026 0.0746 0.11030 0.1285 0.0978 12.9999 13.1216
entity2recavg (2017) (C4) 0.0720 0.0478 0.0495 0.06290 0.0719 0.0477 13.4809 13.5570
entity2rec min (2017) (C4) 0.0060 0.0044 0.0027 0.00370 0.0060 0.0044 13.3955 13.5335
entity2rec max (2017) (C4) 0.0319 0.0196 0.0250 0.03130 0.0316 0.0194 14.5486 14.6138

entity2reclambda (C1) 0.1396 0.1135 0.0815 0.12630 0.1365 0.1092 13.2614 13.3021
entity2recavg (C1) 0.1678 0.1298 0.1014 0.14700 0.1639 0.1248 12.7306 12.7946
entity2rec min (C1) 0.1735 0.1344 0.1041 0.15100 0.1689 0.1283 12.3012 12.3449
entity2rec max (C1) 0.1411 0.1124 0.0865 0.13020 0.1390 0.1093 13.6293 13.6267

entity2reclambda (2017) (C1) 0.1160 0.0926 0.0689 0.10330 0.1132 0.0895 13.4436 13.5271
entity2recavg (2017) (C1) 0.0661 0.0447 0.0453 0.05810 0.0661 0.0446 13.2703 13.4478
entity2rec min (2017) (C1) 0.0041 0.0032 0.0018 0.00260 0.0041 0.0032 13.5453 13.5686
entity2rec max (2017) (C1) 0.0129 0.0091 0.0122 0.01680 0.0128 0.0091 14.339 14.3491

Table 7: entity2rec outperforms entity2rec (2017) for different configurations of hyper-
parameters on LibraryThing (C1 = {p : 4, q : 1, d : 200, l : 100, c : 30, n : 50}, C4 = {p :
1, q : 1, d : 200, l : 100, c : 50, n : 100}). In entity2rec as presented in this work, the learning
to rank is no longer useful, as the unsupervised approach appears to be more effective.
Results can be considered with no error for comparisons as the standard deviation is
negligible up to the reported precision.

in Palumbo et al. (2017), the most relevant information to make predictions
comes from the user-item interaction, i.e. from the ‘feedback’ property. In
entity2rec (2017), the feedback property was contained only in the ‘feed-
back’ subgraph, and thus the learning to rank was fundamental to attribute
different weights to the properties. On the other hand, for hybrid property-
specific subgraphs, user-item interactions are present for all the properties,
and the feature learning process, with an appropriate configuration of the
hyper-parameters, is able to encode effectively all the necessary information
to make recommendations, so that the learning to rank algorithm appears
redundant and even damaging, and a simple unsupervised approach such as
averaging the features is more effective. Note that the scores of entity2rec
(2017) reported in the tables are generally lower than those reported in the
original paper Palumbo et al. (2017). This is due to the fact that the eval-
uation protocol is different. In Palumbo et al. (2017), the set of candidate
items did not include all the unrated items, but only a random subset of 100
unrated items per user, making the task easier.
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Figure 6: Results on Movielens 1M, LastFM, and LibraryThing datasets for P@5, R@5,
SER@5, and NOV@5. entity2rec performs well for all datasets, but it is especially effec-
tive for LibraryThing, where sparsity and entropy are high. Scores are reported in tab-
ular form in Appendix B. entity2rec refers to entity2recavg(C1), entity2recavg(C2), and
entity2recavg(C3) for Movielens 1M, LastFM, and LibraryThing respectively. node2vec
refers to node2vec(C1), node2vec(C2) and node2vec(C3) for Movielens 1M, LastFM, and
LibraryThing respectively. Results can be considered with no error for comparisons as the
standard deviation is negligible up to the reported precision.
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6.2. Comparison with state-of-the-art recommender systems
We have measured precision, recall, serendipity and novelty for all the

recommender systems and the three datasets under analysis. We can see
from Figure 6a, Figure 6b, and Figure 6c that entity2rec outperforms com-
peting systems for all datasets for P@5, R@5, and SER@5, except for P@5
in Movielens 1M where WRMF is performing better. As we can see from
Figure 6d, WRMF is characterized by low novelty of the recommendations,
i.e. it tends to recommend very popular items. This proves to be effective
in Movielens 1M and LastFM that have a high popularity bias as shown by
the entropy value (Table 1), the distribution of items (Figure 5), previous
literature (Cremonesi et al., 2010) and the effectiveness of the MostPopular
baseline. Looking at SER@5, i.e. considering the top-5 items as non rele-
vant, entity2rec has a slightly better score than WRMF. Movielens 1M is also
characterized by a lower sparsity with respect to the other datasets, and this
favors collaborative filtering systems, which are known to suffer from data
sparsity (Adomavicius and Tuzhilin, 2005). In fact, all of collaborative filter-
ing systems, even ItemKNN that does not perform dimensionality reduction,
achieve scores above 20%. LastFM is much sparser than Movielens 1M, and
this affects the performance of ItemKNN, whereas matrix factorization based
techniques maintain good scores. In LibraryThing, where the popularity bias
is weaker (Figure 5), entity2rec is significantly more effective than competing
systems and matrix factorization techniques are much less well performing
with respect to the other two datasets. ItemKNN, on the other hand, is
outperforming matrix factorization techniques. Looking at R@5 (Figure 6b)
we can see that entity2rec outperforms all competing systems, also in the
Movielens 1M dataset, where WRMF has a better precision. Since R@5 is
weighting the number of hits by the number of relevant items for the user,
this shows that entity2rec generally works better than other systems with
users having fewer relevant items.

In terms of novelty, ItemKNN is the best performing system (Figure 6d),
but it is not comparable to competing systems in terms of P@5, R@5 and
SER@5. Recommender systems based on knowledge graph embeddings (en-
tity2rec, node2vec, translational models) have better novelty with respect to
collaborative filtering systems. We also observe that entity2rec outperforms
node2vec for all the datasets and for P@5, R@5, and SER@5, justifying the
creation of property-specific embeddings that are aggregated in a later stage,
rather than embedding the whole knowledge graph. Furthermore, we ob-
serve that using knowledge graph embeddings approaches based on neural
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language models such as entity2rec and node2vec is more effective than using
translational models.

In general, we can say that entity2rec generates accurate (high precision
and recall) and non-obvious (high serendipity, good novelty) recommenda-
tions and it is particularly effective with respect to state-of-the-art systems
when the sparsity and the entropy of the datasets are high (e.g. Library-
Thing). A tabular representation of the scores on the three datasets is re-
ported in Appendix B.

6.3. Feature interpretability

In this section, we address the question of the interpretation of the en-
tity2rec model. We focus on entity2recavg, as it proved to be more effective
on the three datasets. entity2recavg, as described in Section 4, is the average
of property-specific relatedness scores:

entity2recavg(u, i) = avg({ρp(u, i)}p∈Γ) (29)

where the property-specific relatedness scores are obtained from the embed-
dings of the property-specific subgraphs, containing user-item interactions
and item relations p to other entities. With respect to most knowledge-aware
recommender systems based on metapaths, the interpretation is thus easier,
as it considers one property at the time. We report in Table 8, Table 9, and
Table 10 the scores of using a single property ρp as a ranking function. We
can see that for all datasets, the information coming from “dct:subject” is
quite relevant. Then, for movies, the starring actors and the director appear
to be strong features, for musical artists the record label and the genre, and
for books previous and subsequent work. In general, none of the features
individually outperforms the average of the features.

The simplicity of the final ranking function and the ability to interpret
the model in an easy way has several positive consequences. An in-depth
discussion of this point is matter of future work, but we mention two big
advantages. The first is that entity2rec can be easily used in an interactive
interface, as a sort of multicriteria recommender system, replacing Eq. 29
with a weighted average of the property-specific relatedness score. For ex-
ample, the user might assign more weight to the “director” property and
recommendations could change accordingly. The second is the possibility of
explaining recommendations along different dimensions. Explanations can
be generated in terms of related items, looking at what items of the users’
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property P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10
feedback dbo:cinematography 0.1847 0.1599 0.0813 0.1323 0.1675 0.1341 9.835 9.813

feedback dbo:director 0.1913 0.1615 0.0842 0.1344 0.1741 0.1354 9.859 9.859
feedback dbo:distributor 0.1846 0.1581 0.0805 0.1309 0.1673 0.1337 9.894 9.903

feedback dbo:editing 0.1829 0.1565 0.0810 0.1299 0.1668 0.1320 9.855 9.829
feedback dbo:musicComposer 0.1861 0.1598 0.0817 0.1310 0.1691 0.1350 9.891 9.882

feedback dbo:producer 0.1777 0.1500 0.0826 0.1322 0.1603 0.1267 10.349 10.457
feedback dbo:starring 0.2113 0.1794 0.0937 0.1507 0.1965 0.1559 9.957 10.028
feedback dbo:writer 0.1808 0.1483 0.0822 0.1285 0.1652 0.1269 10.393 10.599

feedback dct:subject 0.2249 0.1932 0.0958 0.1555 0.2044 0.1658 9.831 9.822

Table 8: Feature evaluation for Movielens 1M dataset. The most effective features appear
to be the subject, the starring actors and the director of the movie. The writer and the
producer introduce more novelty. Results can be considered with no error for comparisons
as the standard deviation is negligible up to the reported precision.

property P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10
feedback dbo:associatedBand 0.1539 0.1260 0.0894 0.1459 0.1253 0.0949 11.050 11.102

feedback dbo:associatedMusicalArtist 0.1575 0.1284 0.0915 0.1486 0.1299 0.0970 10.950 11.081
feedback dbo:bandMember 0.1511 0.1231 0.0873 0.1416 0.1217 0.0910 11.60 11.66

feedback dbo:birthPlace 0.1612 0.1289 0.0925 0.1482 0.1287 0.0942 11.080 11.137
feedback dbo:formerBandMember 0.1580 0.1264 0.0909 0.1454 0.1274 0.0929 11.480 11.498

feedback dbo:genre 0.1801 0.1428 0.1042 0.1652 0.1466 0.1083 10.330 10.451
feedback dbo:hometown 0.1708 0.1374 0.0979 0.1573 0.1371 0.1034 10.360 10.414
feedback dbo:instrument 0.1601 0.1281 0.0919 0.1475 0.1270 0.0925 11.250 11.285
feedback dbo:occupation 0.1457 0.1154 0.0844 0.1336 0.1103 0.0809 10.960 10.932
feedback dbo:recordLabel 0.1856 0.1499 0.1076 0.1735 0.1532 0.115 10.420 10.463
feedback dct:subject 0.1954 0.1550 0.1131 0.1799 0.1655 0.1239 10.190 10.271

Table 9: Feature evaluation for LastFM dataset. The most effective features appear to be
the subject, the record label and the genre. The instruments and the former band players
introduce more novelty. Results can be considered with no error for comparisons as the
standard deviation is negligible up to the reported precision.

profile are more similar to the recommended ones using the global ρ(u, i)
(e.g. “Because you liked Titanic”); in terms of properties, by comparing the
property-specific relatedness scores ρp(u, i) and using the highest scores to
unravel specific properties of the item to which the user is more related (e.g.
“Because you may like the cast”); in terms of item content, since property-
specific relatedness scores ρp(u, e) can be measured between a user u and any
entity of the knowledge graph e ∈ E, not just for items i ∈ I (e.g. “Because
you may like Steve Buscemi”).

7. Conclusions and future work

In this paper, we have presented entity2rec, a recommender system based
on property-specific knowledge graph embeddings. We have introduced a new
way of creating property-specific subgraphs and to aggregate the relatedness
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property P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10
feedback dbo:author 0.1603 0.1279 0.0972 0.1463 0.1556 0.1208 12.736 12.645
feedback dbo:country 0.1629 0.1254 0.0976 0.1407 0.1572 0.1171 12.360 12.372

feedback dbo:coverArtist 0.1625 0.1250 0.0973 0.1406 0.1571 0.1170 12.362 12.366
feedback dbo:language 0.1619 0.1258 0.0971 0.1407 0.1558 0.1172 12.350 12.363

feedback dbo:literaryGenre 0.1633 0.1273 0.0978 0.1430 0.1583 0.1199 12.353 12.361
feedback dbo:mediaType 0.1610 0.1241 0.0956 0.1399 0.1559 0.1167 12.411 12.444

feedback dbo:previousWork 0.1688 0.1321 0.1001 0.1484 0.1630 0.1241 12.523 12.458
feedback dbo:publisher 0.1643 0.1273 0.0979 0.1430 0.1588 0.1196 12.326 12.319

feedback dbo:series 0.1635 0.1280 0.0976 0.1438 0.1581 0.1204 12.460 12.433
feedback dbo:subsequentWork 0.1687 0.1307 0.1007 0.1465 0.1634 0.1227 12.520 12.458

feedback dct:subject 0.1733 0.1362 0.1037 0.1537 0.1684 0.1275 12.031 11.997

Table 10: Feature evaluation for LibraryThing dataset. The most effective features appear
to be the subject, the previous and following works. The author introduces more novelty.
Results can be considered with no error for comparisons as the standard deviation is
negligible up to the reported precision.

scores into the final ranking function, and conducted several experiments to
address our research questions:

RQ1 How do hybrid property-specific subgraph perform with respect to
collaborative-content property-specific subgraphs, namely does en-
tity2rec work better than entity2rec (2017)? Experiments reported in
Section 6.1 show that hybrid property-specific subgraphs significantly
enhance the recommendation quality for all the datasets.

RQ2 How do different aggregation functions perform in generating the user-
item relatedness score from property-specific relatedness scores? Exper-
iments in Section 6.1 show that, when building content-collaborative
property-specific subgraphs as in entity2rec (2017), a learning to rank
algorithm to combine the property-specific relatedness scores is funda-
mental to obtain good recommendations. However, when using hybrid
property-specific subgraphs and a proper configuration of the hyper-
parameters (long walks, many walks per entity, large context size), the
learning to rank is no longer beneficial.

RQ3 How does entity2rec perform with respect to collaborative filtering sys-
tems in terms of accuracy, serendipity and novelty of the recommen-
dations? Experiments in Section 6.2 show that entity2rec outperforms
all collaborative filtering systems for accuracy-based metrics for all
datasets, but P@5 in Movielens 1M, where WRMF obtains the best
score. However, WRMF shows to consistently have a little level of
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novelty, which highlights the fact that predictions tend to be concen-
trated on highly popular items. In particular, entity2rec appears to
be particularly effective for the LibraryThing dataset. This dataset is
characterized by a high sparsity, which is similar to a real world sce-
nario, and a lower popularity bias with respect to the other datasets.

RQ4 How does entity2rec performs with respect to other knowledge graph
embeddings based systems for item recommendation? Is it justified to
generate property-specific embeddings to leverage the semantics of the
graphs, or is node2vec enough? Experiments in Section 6.1 show trans-
lational models appear to be less effective than node2vec-based models
for generating recommendations. entity2rec appears the most effective
way to generate recommendations using knowledge graph embeddings
among the systems under analysis. The fact that entity2rec outper-
forms node2vec on all the datasets shows that it is justified to generate
property-specific embeddings and aggregate the scores, rather than cre-
ating embeddings of the whole graph without taking into account the
semantics of the properties.

RQ5 What is the interpretation of entity2rec features and what is their im-
portance? The recommender model of entity2rec has a straight forward
interpretation, as shown in Section 6.3. entity2recavg aggregates several
property-specific relatedness scores, whose interpretation is a measure
of the relatedness between the user and the item with respect to spe-
cific aspects of the item content. “dct:subject” appears to be effective
for all datasets. Then, for movies, the starring actors and the director
appear to be strong features, for musical artists the record label and
the genre, and for books previous and subsequent work.

RQ6 How can entity2rec be configured for specific user requirements and
to explain recommendations? In Section 6.3, we show that, since
entity2recavg averages property-specific relatedness scores, the aggre-
gation function could be easily modified according to weights entered
by a user in an interactive interface. Moreover, property-specific re-
latedness scores can be leveraged to generate rich explanations of the
recommendations, in terms of related past items, item properties and
item content.

As a summary, we believe that the strengths of entity2rec that make it
outperform competing approaches are:
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• its ability of leveraging a very rich and diverse source of data (KG
containing both content-based and collaborative information).

• extending a state-of-the-art graph embedding approach (node2vec),
which has proven to be very effective for prediction tasks. Also, the use
of property-specific embeddings that are then aggregated in a “divide
and conquer” approach can be seen as a sort of “ensemble method”,
which are known to boost accuracy in machine learning tasks.

entity2rec is domain-agnostic, as we have applied it to movie, book, and
musical artist recommendations. However, should it be applied to a new
domain, it would require an ontology that models the item properties.

As a future work, we will perform an online experiment testing the effec-
tiveness of the richer explanations generated by entity2rec, as well as the
users’ appreciation of the configurability of the recommender interface. We
will also deal with the problems of having a recommender system working
online, i.e. how to generate recommendations for new users (e.g. asking to
rate a set of seed items and using item-to-item relatedness scores), and of
updating entity2rec when new data (users, items, and/or feedback) comes in
without retraining the model from scratch.
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Appendix A. Item modeling

In order to create the knowledge graph, we need an item model, i.e. we
need to define the properties that describe an item type for the datasets used
in this work. To this end, we start from the DBpedia Ontology, that defines
properties for different item types11. However, a property selection strategy
purely based on the schema of the data does not provide any guarantee on
how frequently used are those properties in the data. Thus, we opt for an em-
pirical approach where we count what are the DBpedia properties (“dbo:”)
most frequently used in DBpedia data to describe the items in the datasets.
More specifically, for each item i in the dataset, we retrieve all triples (i, p, o)
in DBpedia and we count the most frequently occurring properties p. Then,
we sort the properties according to their frequency of occurrence and we

11http://mappings.dbpedia.org/server/ontology/classes/
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select the first N so that the frequency of the N+1-th property is less than
50% of the previous one. In this way, we avoid to select a fixed number of
properties and we rely on the actual frequency of occurrence to determine
the cut-off. Finally, we add “dct:subject” to the set of properties, as it
provides an extremely rich categorization of items, as done in previous work
(Palumbo et al., 2017; Di Noia et al., 2016). We obtain: [“dbo:director”,
“dbo:starring”, “dbo:distributor”, “dbo:writer”,“dbo:musicComposer”,
“dbo:producer”, “dbo:cinematography”, “dbo:editing”, “dct:subject”]
for Movielens 1M, [“dbo:genre”, “dbo:recordLabel”, “dbo:hometown”,
“dbo:associatedBand”, “dbo:associatedMusicalArtist”, “dbo:birthPlace”,
“dbo:bandMember”, “dbo:formerBandMember”, “dbo:occupation”,
“dbo:instrument”, “dct:subject”] for LastFM and [“dbo:author”,
“dbo:publisher”, “dbo:literaryGenre”, “dbo:mediaType”, “dbo:subsequentWork”,
“dbo:previousWork”, “dbo:series”, “dbo:country”, “dbo:language”,
“dbo:coverArtist”, “dct:subject”].
Recently, some works such as ABSTAT (Di Noia et al., 2018) have
dealt with the problem of finding a selection of properties to create a
knowledge graph that optimizes recommender systems accuracy. For
example, for the datasets under analysis, ABSTAT property selection
in the configuration: k = 10, norep.AbsOccAvgS is: [“dbo:director”,
“dbo:starring”, “dbo:distributor”, “dbo:writer”, “dbo:musicComposer”,
“dbo:producer”, “dbo:cinematography”, “dbo:music”, “dbo:language”,
“dct:subject”] for Movielens 1M, [“dbo:genre”, “dbo:recordLabel”,
“dbo:hometown”,“dbo:birthPlace”,“dbp:placeOfBirth”, “dbo:deathPlace”,
“dbo:field”, “dbo:nationality”, “dbp:placeOfDeath”, “dct:subject”
] for LastFM and [“dct:subject”, “dbo:author”, “dbo:publisher”,
“dbo:literaryGenre”, “dbo:mediaType”, “dbo:country”, “dbo:language”,
“dbo:series”, “dbo:nonFictionSubject”, “dbo:coverArtist”]. We have run an
experiment comparing entity2rec on a KG built using our property selection
and the ABSTAT selection for the LastFM dataset, which is the one where
the properties are differing more, but the scores did not show a consistent
improvement of the recommendation quality (Tab. A.11).

Appendix B. Scores

In this section, we report the extended results of the comparison of en-
tity2rec with the state-of-the-art in tabular form. For completeness, we in-
clude also:
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Property selection System P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10
dbo + frequency (C3) entity2reclambda 0.1852 0.1506 0.1066 0.1736 0.1512 0.1126 10.101 10.206
dbo + frequency (C3) entity2recavg 0.2062 0.158 0.1191 0.1823 0.1682 0.1193 10.379 10.514
dbo + frequency (C3) entity2recmin 0.2055 0.1571 0.1191 0.1823 0.1664 0.1171 9.807 9.897
dbo + frequency (C3) entity2recmax 0.1693 0.1366 0.0986 0.1589 0.1423 0.1063 10.243 10.446
ABSTAT (C3) entity2reclambda 0.1799 0.1410 0.1039 0.1628 0.1419 0.1028 10.343 10.444
ABSTAT (C3) entity2recavg 0.1915 0.1463 0.1102 0.1683 0.1528 0.1082 10.681 10.782
ABSTAT (C3) entity2recmin 0.2010 0.1537 0.1162 0.1778 0.1604 0.1143 9.830 9.873
ABSTAT (C3) entity2recmax 0.1731 0.1370 0.1003 0.1585 0.1422 0.1047 10.280 10.462
dbo + frequency (C1) entity2reclambda 0.1745 0.1372 0.1009 0.1584 0.1405 0.1054 11.227 11.384
dbo + frequency (C1) entity2recavg 0.1505 0.1182 0.0870 0.1367 0.1182 0.0881 12.267 12.332
dbo + frequency (C1) entity2recmin 0.1699 0.1321 0.0981 0.1532 0.1343 0.1001 11.331 11.421
dbo + frequency (C1) entity2recmax 0.1295 0.1085 0.0753 0.1258 0.1037 0.0825 10.537 10.892
ABSTAT (C1) entity2reclambda 0.1750 0.1386 0.1011 0.1605 0.1433 0.1076 11.251 11.363
ABSTAT (C1) entity2recavg 0.1390 0.1090 0.0808 0.1263 0.1043 0.0788 12.039 12.087
ABSTAT (C1) entity2recmin 0.1604 0.1284 0.0926 0.1485 0.1264 0.0971 11.320 11.401
ABSTAT (C1) entity2recmax 0.1382 0.1118 0.0800 0.1291 0.1110 0.0848 10.968 11.237

Table A.11: ABSTAT property selection and the heuristics used in this paper (“dbo +
frequency”) are compared on the LastFM dataset. The heuristics work best for C3 = {p :
4, q : 4, d : 200, l : 100, c : 60, n : 100}, ABSTAT selection works best for C1 = {p : 4, q :
1, d : 200, l : 100, c : 30, n : 50}. Scores can be considered with no error for comparisons as
the standard deviation is negligible up to the reported precision.

• SoftMarginRankingMF: a matrix factorization model for item predic-
tion optimized for a soft margin (hinge) ranking loss (Rendle, 2011).

• WeightedBPRMF: a weighted version of BPRMF with frequency ad-
justed sampling (Gantner et al., 2012).

All scores can be considered as without error up to the digit reported in the
tables, as the standard deviation is negligible.
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System P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10
entity2reclambda (C2) 0.2125 0.1820 0.0967 0.1564 0.1913 0.1526 9.654 9.652
entity2recavg (C2) 0.2372 0.2013 0.1045 0.1691 0.2125 0.1676 9.577 9.578
entity2recmin (C2) 0.2198 0.1837 0.0976 0.1547 0.1946 0.1504 9.466 9.473
entity2recmax (C2) 0.2206 0.1895 0.0951 0.1556 0.2038 0.1645 10.046 10.058

node2vec (C2) 0.2313 0.2010 0.0994 0.1649 0.2119 0.1720 9.675 9.656
TransE 0.2014 0.1751 0.0791 0.1304 0.1951 0.1638 9.882 9.948
TransH 0.2001 0.1735 0.0772 0.1290 0.1920 0.1592 9.768 9.841
TransR 0.1864 0.1613 0.0731 0.1231 0.1822 0.1513 9.960 10.059
BPRMF 0.2150 0.1900 0.0809 0.1391 0.1829 0.1431 9.303 9.392

BPRSLIM 0.2252 0.1929 0.0961 0.1562 0.1969 0.1593 9.438 9.564
ItemKNN 0.2004 0.1820 0.0758 0.1325 0.1920 0.1671 10.546 10.378

LeastSquareSLIM 0.2162 0.1808 0.0832 0.1325 0.1656 0.1254 8.811 8.922
MostPopular 0.1446 0.1292 0.0492 0.0849 0.0647 0.0537 8.429 8.524

SoftMarginRankingMF 0.1222 0.1122 0.0405 0.0737 0.1206 0.096 9.721 9.805
WeightedBPRMF 0.0945 0.0865 0.0364 0.0660 0.0900 0.0804 11.334 11.357

WRMF 0.255 0.2179 0.0991 0.1605 0.2117 0.1704 8.910 9.038

Table B.12: Results for the Movielens 1M dataset. Scores can be considered with no error
for comparisons as the standard deviation is negligible up to the reported precision.

System P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10
entity2reclambda (C2) 0.1852 0.1506 0.1066 0.1736 0.1512 0.1126 10.101 10.206
entity2recavg (C2) 0.2062 0.158 0.1191 0.1823 0.1682 0.1193 10.379 10.514
entity2recmin (C2) 0.2055 0.1571 0.1191 0.1823 0.1664 0.1171 9.807 9.897
entity2recmax (C2) 0.1693 0.1366 0.0986 0.1589 0.1423 0.1063 10.243 10.446

node2vec (C3) 0.1994 0.1562 0.1161 0.1822 0.1665 0.1234 10.337 10.470
TransE 0.1628 0.1328 0.0935 0.1538 0.1393 0.1084 9.662 9.861
TransH 0.1549 0.1227 0.0892 0.1410 0.1347 0.1005 9.791 9.984
TransR 0.1417 0.1158 0.0812 0.1336 0.1276 0.0986 10.643 10.852
BPRMF 0.1254 0.0968 0.0720 0.1109 0.0798 0.0547 7.976 8.171

BPRSLIM 0.1921 0.1469 0.1106 0.1700 0.1526 0.1085 8.860 9.101
ItemKNN 0.1144 0.1001 0.0652 0.1149 0.0956 0.0747 13.116 12.937

LeastSquareSLIM 0.1502 0.1129 0.0868 0.1303 0.1050 0.0718 8.307 8.481
MostPopular 0.0764 0.0648 0.0444 0.0750 0.0231 0.0177 7.307 7.480

SoftMarginRankingMF 0.0426 0.0408 0.0244 0.0466 0.0387 0.0342 9.876 9.925
WeightedBPRMF 0.1067 0.0857 0.0611 0.0980 0.0958 0.0744 10.452 10.682

WRMF 0.2003 0.1491 0.1152 0.1711 0.1598 0.1095 8.305 8.561

Table B.13: Results for the LastFM dataset. Scores can be considered with no error for
comparisons as the standard deviation is negligible up to the reported precision.
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System P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10
entity2reclambda (C2) 0.1271 0.1091 0.0803 0.1268 0.1229 0.1025 12.469 12.792
entity2recavg (C2) 0.1800 0.1398 0.1072 0.1564 0.1736 0.1306 12.089 12.084

entity2recmin (C2) 0.1831 0.1410 0.1084 0.1575 0.1757 0.1309 11.709 11.670
entity2recmax (C2) 0.1634 0.1304 0.0984 0.1480 0.1591 0.1230 12.783 12.729

node2vec (C4) 0.1749 0.1379 0.1046 0.1551 0.1706 0.1311 12.495 12.458
TransE 0.0972 0.0791 0.0598 0.0919 0.0944 0.0754 11.370 11.486
TransH 0.1041 0.0828 0.0634 0.0951 0.1016 0.0787 11.397 11.522
TransR 0.0774 0.0648 0.0459 0.0721 0.0748 0.0612 11.474 11.572
BPRMF 0.0377 0.0336 0.0262 0.0463 0.0240 0.0192 9.487 9.546

BPRSLIM 0.1136 0.0866 0.1013 0.1439 0.0982 0.0709 9.853 10.008
ItemKNN 0.1225 0.0995 0.1009 0.1556 0.1177 0.0912 13.114 12.773

LeastSquareSLIM 0.0722 0.0517 0.0522 0.0700 0.0565 0.0354 10.131 10.580
MostPopular 0.0343 0.0299 0.0256 0.0430 0.0070 0.0056 8.453 8.646

SoftMarginRankingMF 0.0204 0.0191 0.0141 0.0271 0.0183 0.0138 10.313 10.423
WeightedBPRMF 0.0381 0.0324 0.0326 0.0529 0.0375 0.0307 11.830 11.963

WRMF 0.0802 0.0645 0.0620 0.0969 0.0658 0.0487 9.101 9.288

Table B.14: Results for the LibraryThing dataset. Scores can be considered with no error
for comparisons as the standard deviation is negligible up to the reported precision.
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